net/mlx5e: IPoIB, Add netdevice profile skeleton
[linux-2.6/btrfs-unstable.git] / ipc / sem.c
blob947dc2348271f9b8b373e098932c1e4e351806de
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 * namespaces support
22 * OpenVZ, SWsoft Inc.
23 * Pavel Emelianov <xemul@openvz.org>
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * protection)
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * SETALL calls.
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 * Internals:
43 * - scalability:
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
72 #include <linux/slab.h>
73 #include <linux/spinlock.h>
74 #include <linux/init.h>
75 #include <linux/proc_fs.h>
76 #include <linux/time.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/audit.h>
80 #include <linux/capability.h>
81 #include <linux/seq_file.h>
82 #include <linux/rwsem.h>
83 #include <linux/nsproxy.h>
84 #include <linux/ipc_namespace.h>
85 #include <linux/sched/wake_q.h>
87 #include <linux/uaccess.h>
88 #include "util.h"
90 /* One semaphore structure for each semaphore in the system. */
91 struct sem {
92 int semval; /* current value */
94 * PID of the process that last modified the semaphore. For
95 * Linux, specifically these are:
96 * - semop
97 * - semctl, via SETVAL and SETALL.
98 * - at task exit when performing undo adjustments (see exit_sem).
100 int sempid;
101 spinlock_t lock; /* spinlock for fine-grained semtimedop */
102 struct list_head pending_alter; /* pending single-sop operations */
103 /* that alter the semaphore */
104 struct list_head pending_const; /* pending single-sop operations */
105 /* that do not alter the semaphore*/
106 time_t sem_otime; /* candidate for sem_otime */
107 } ____cacheline_aligned_in_smp;
109 /* One queue for each sleeping process in the system. */
110 struct sem_queue {
111 struct list_head list; /* queue of pending operations */
112 struct task_struct *sleeper; /* this process */
113 struct sem_undo *undo; /* undo structure */
114 int pid; /* process id of requesting process */
115 int status; /* completion status of operation */
116 struct sembuf *sops; /* array of pending operations */
117 struct sembuf *blocking; /* the operation that blocked */
118 int nsops; /* number of operations */
119 bool alter; /* does *sops alter the array? */
120 bool dupsop; /* sops on more than one sem_num */
123 /* Each task has a list of undo requests. They are executed automatically
124 * when the process exits.
126 struct sem_undo {
127 struct list_head list_proc; /* per-process list: *
128 * all undos from one process
129 * rcu protected */
130 struct rcu_head rcu; /* rcu struct for sem_undo */
131 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
132 struct list_head list_id; /* per semaphore array list:
133 * all undos for one array */
134 int semid; /* semaphore set identifier */
135 short *semadj; /* array of adjustments */
136 /* one per semaphore */
139 /* sem_undo_list controls shared access to the list of sem_undo structures
140 * that may be shared among all a CLONE_SYSVSEM task group.
142 struct sem_undo_list {
143 atomic_t refcnt;
144 spinlock_t lock;
145 struct list_head list_proc;
149 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
151 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
153 static int newary(struct ipc_namespace *, struct ipc_params *);
154 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
155 #ifdef CONFIG_PROC_FS
156 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
157 #endif
159 #define SEMMSL_FAST 256 /* 512 bytes on stack */
160 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
163 * Switching from the mode suitable for simple ops
164 * to the mode for complex ops is costly. Therefore:
165 * use some hysteresis
167 #define USE_GLOBAL_LOCK_HYSTERESIS 10
170 * Locking:
171 * a) global sem_lock() for read/write
172 * sem_undo.id_next,
173 * sem_array.complex_count,
174 * sem_array.pending{_alter,_const},
175 * sem_array.sem_undo
177 * b) global or semaphore sem_lock() for read/write:
178 * sem_array.sem_base[i].pending_{const,alter}:
180 * c) special:
181 * sem_undo_list.list_proc:
182 * * undo_list->lock for write
183 * * rcu for read
184 * use_global_lock:
185 * * global sem_lock() for write
186 * * either local or global sem_lock() for read.
188 * Memory ordering:
189 * Most ordering is enforced by using spin_lock() and spin_unlock().
190 * The special case is use_global_lock:
191 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
192 * using smp_store_release().
193 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
194 * smp_load_acquire().
195 * Setting it from 0 to non-zero must be ordered with regards to
196 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
197 * is inside a spin_lock() and after a write from 0 to non-zero a
198 * spin_lock()+spin_unlock() is done.
201 #define sc_semmsl sem_ctls[0]
202 #define sc_semmns sem_ctls[1]
203 #define sc_semopm sem_ctls[2]
204 #define sc_semmni sem_ctls[3]
206 void sem_init_ns(struct ipc_namespace *ns)
208 ns->sc_semmsl = SEMMSL;
209 ns->sc_semmns = SEMMNS;
210 ns->sc_semopm = SEMOPM;
211 ns->sc_semmni = SEMMNI;
212 ns->used_sems = 0;
213 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
216 #ifdef CONFIG_IPC_NS
217 void sem_exit_ns(struct ipc_namespace *ns)
219 free_ipcs(ns, &sem_ids(ns), freeary);
220 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
222 #endif
224 void __init sem_init(void)
226 sem_init_ns(&init_ipc_ns);
227 ipc_init_proc_interface("sysvipc/sem",
228 " key semid perms nsems uid gid cuid cgid otime ctime\n",
229 IPC_SEM_IDS, sysvipc_sem_proc_show);
233 * unmerge_queues - unmerge queues, if possible.
234 * @sma: semaphore array
236 * The function unmerges the wait queues if complex_count is 0.
237 * It must be called prior to dropping the global semaphore array lock.
239 static void unmerge_queues(struct sem_array *sma)
241 struct sem_queue *q, *tq;
243 /* complex operations still around? */
244 if (sma->complex_count)
245 return;
247 * We will switch back to simple mode.
248 * Move all pending operation back into the per-semaphore
249 * queues.
251 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
252 struct sem *curr;
253 curr = &sma->sem_base[q->sops[0].sem_num];
255 list_add_tail(&q->list, &curr->pending_alter);
257 INIT_LIST_HEAD(&sma->pending_alter);
261 * merge_queues - merge single semop queues into global queue
262 * @sma: semaphore array
264 * This function merges all per-semaphore queues into the global queue.
265 * It is necessary to achieve FIFO ordering for the pending single-sop
266 * operations when a multi-semop operation must sleep.
267 * Only the alter operations must be moved, the const operations can stay.
269 static void merge_queues(struct sem_array *sma)
271 int i;
272 for (i = 0; i < sma->sem_nsems; i++) {
273 struct sem *sem = sma->sem_base + i;
275 list_splice_init(&sem->pending_alter, &sma->pending_alter);
279 static void sem_rcu_free(struct rcu_head *head)
281 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
282 struct sem_array *sma = ipc_rcu_to_struct(p);
284 security_sem_free(sma);
285 ipc_rcu_free(head);
289 * Enter the mode suitable for non-simple operations:
290 * Caller must own sem_perm.lock.
292 static void complexmode_enter(struct sem_array *sma)
294 int i;
295 struct sem *sem;
297 if (sma->use_global_lock > 0) {
299 * We are already in global lock mode.
300 * Nothing to do, just reset the
301 * counter until we return to simple mode.
303 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
304 return;
306 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
308 for (i = 0; i < sma->sem_nsems; i++) {
309 sem = sma->sem_base + i;
310 spin_lock(&sem->lock);
311 spin_unlock(&sem->lock);
316 * Try to leave the mode that disallows simple operations:
317 * Caller must own sem_perm.lock.
319 static void complexmode_tryleave(struct sem_array *sma)
321 if (sma->complex_count) {
322 /* Complex ops are sleeping.
323 * We must stay in complex mode
325 return;
327 if (sma->use_global_lock == 1) {
329 * Immediately after setting use_global_lock to 0,
330 * a simple op can start. Thus: all memory writes
331 * performed by the current operation must be visible
332 * before we set use_global_lock to 0.
334 smp_store_release(&sma->use_global_lock, 0);
335 } else {
336 sma->use_global_lock--;
340 #define SEM_GLOBAL_LOCK (-1)
342 * If the request contains only one semaphore operation, and there are
343 * no complex transactions pending, lock only the semaphore involved.
344 * Otherwise, lock the entire semaphore array, since we either have
345 * multiple semaphores in our own semops, or we need to look at
346 * semaphores from other pending complex operations.
348 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
349 int nsops)
351 struct sem *sem;
353 if (nsops != 1) {
354 /* Complex operation - acquire a full lock */
355 ipc_lock_object(&sma->sem_perm);
357 /* Prevent parallel simple ops */
358 complexmode_enter(sma);
359 return SEM_GLOBAL_LOCK;
363 * Only one semaphore affected - try to optimize locking.
364 * Optimized locking is possible if no complex operation
365 * is either enqueued or processed right now.
367 * Both facts are tracked by use_global_mode.
369 sem = sma->sem_base + sops->sem_num;
372 * Initial check for use_global_lock. Just an optimization,
373 * no locking, no memory barrier.
375 if (!sma->use_global_lock) {
377 * It appears that no complex operation is around.
378 * Acquire the per-semaphore lock.
380 spin_lock(&sem->lock);
382 /* pairs with smp_store_release() */
383 if (!smp_load_acquire(&sma->use_global_lock)) {
384 /* fast path successful! */
385 return sops->sem_num;
387 spin_unlock(&sem->lock);
390 /* slow path: acquire the full lock */
391 ipc_lock_object(&sma->sem_perm);
393 if (sma->use_global_lock == 0) {
395 * The use_global_lock mode ended while we waited for
396 * sma->sem_perm.lock. Thus we must switch to locking
397 * with sem->lock.
398 * Unlike in the fast path, there is no need to recheck
399 * sma->use_global_lock after we have acquired sem->lock:
400 * We own sma->sem_perm.lock, thus use_global_lock cannot
401 * change.
403 spin_lock(&sem->lock);
405 ipc_unlock_object(&sma->sem_perm);
406 return sops->sem_num;
407 } else {
409 * Not a false alarm, thus continue to use the global lock
410 * mode. No need for complexmode_enter(), this was done by
411 * the caller that has set use_global_mode to non-zero.
413 return SEM_GLOBAL_LOCK;
417 static inline void sem_unlock(struct sem_array *sma, int locknum)
419 if (locknum == SEM_GLOBAL_LOCK) {
420 unmerge_queues(sma);
421 complexmode_tryleave(sma);
422 ipc_unlock_object(&sma->sem_perm);
423 } else {
424 struct sem *sem = sma->sem_base + locknum;
425 spin_unlock(&sem->lock);
430 * sem_lock_(check_) routines are called in the paths where the rwsem
431 * is not held.
433 * The caller holds the RCU read lock.
435 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
437 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
439 if (IS_ERR(ipcp))
440 return ERR_CAST(ipcp);
442 return container_of(ipcp, struct sem_array, sem_perm);
445 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
446 int id)
448 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
450 if (IS_ERR(ipcp))
451 return ERR_CAST(ipcp);
453 return container_of(ipcp, struct sem_array, sem_perm);
456 static inline void sem_lock_and_putref(struct sem_array *sma)
458 sem_lock(sma, NULL, -1);
459 ipc_rcu_putref(sma, sem_rcu_free);
462 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
464 ipc_rmid(&sem_ids(ns), &s->sem_perm);
468 * newary - Create a new semaphore set
469 * @ns: namespace
470 * @params: ptr to the structure that contains key, semflg and nsems
472 * Called with sem_ids.rwsem held (as a writer)
474 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
476 int id;
477 int retval;
478 struct sem_array *sma;
479 int size;
480 key_t key = params->key;
481 int nsems = params->u.nsems;
482 int semflg = params->flg;
483 int i;
485 if (!nsems)
486 return -EINVAL;
487 if (ns->used_sems + nsems > ns->sc_semmns)
488 return -ENOSPC;
490 size = sizeof(*sma) + nsems * sizeof(struct sem);
491 sma = ipc_rcu_alloc(size);
492 if (!sma)
493 return -ENOMEM;
495 memset(sma, 0, size);
497 sma->sem_perm.mode = (semflg & S_IRWXUGO);
498 sma->sem_perm.key = key;
500 sma->sem_perm.security = NULL;
501 retval = security_sem_alloc(sma);
502 if (retval) {
503 ipc_rcu_putref(sma, ipc_rcu_free);
504 return retval;
507 sma->sem_base = (struct sem *) &sma[1];
509 for (i = 0; i < nsems; i++) {
510 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
511 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
512 spin_lock_init(&sma->sem_base[i].lock);
515 sma->complex_count = 0;
516 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
517 INIT_LIST_HEAD(&sma->pending_alter);
518 INIT_LIST_HEAD(&sma->pending_const);
519 INIT_LIST_HEAD(&sma->list_id);
520 sma->sem_nsems = nsems;
521 sma->sem_ctime = get_seconds();
523 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
524 if (id < 0) {
525 ipc_rcu_putref(sma, sem_rcu_free);
526 return id;
528 ns->used_sems += nsems;
530 sem_unlock(sma, -1);
531 rcu_read_unlock();
533 return sma->sem_perm.id;
538 * Called with sem_ids.rwsem and ipcp locked.
540 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
542 struct sem_array *sma;
544 sma = container_of(ipcp, struct sem_array, sem_perm);
545 return security_sem_associate(sma, semflg);
549 * Called with sem_ids.rwsem and ipcp locked.
551 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
552 struct ipc_params *params)
554 struct sem_array *sma;
556 sma = container_of(ipcp, struct sem_array, sem_perm);
557 if (params->u.nsems > sma->sem_nsems)
558 return -EINVAL;
560 return 0;
563 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
565 struct ipc_namespace *ns;
566 static const struct ipc_ops sem_ops = {
567 .getnew = newary,
568 .associate = sem_security,
569 .more_checks = sem_more_checks,
571 struct ipc_params sem_params;
573 ns = current->nsproxy->ipc_ns;
575 if (nsems < 0 || nsems > ns->sc_semmsl)
576 return -EINVAL;
578 sem_params.key = key;
579 sem_params.flg = semflg;
580 sem_params.u.nsems = nsems;
582 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
586 * perform_atomic_semop[_slow] - Attempt to perform semaphore
587 * operations on a given array.
588 * @sma: semaphore array
589 * @q: struct sem_queue that describes the operation
591 * Caller blocking are as follows, based the value
592 * indicated by the semaphore operation (sem_op):
594 * (1) >0 never blocks.
595 * (2) 0 (wait-for-zero operation): semval is non-zero.
596 * (3) <0 attempting to decrement semval to a value smaller than zero.
598 * Returns 0 if the operation was possible.
599 * Returns 1 if the operation is impossible, the caller must sleep.
600 * Returns <0 for error codes.
602 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
604 int result, sem_op, nsops, pid;
605 struct sembuf *sop;
606 struct sem *curr;
607 struct sembuf *sops;
608 struct sem_undo *un;
610 sops = q->sops;
611 nsops = q->nsops;
612 un = q->undo;
614 for (sop = sops; sop < sops + nsops; sop++) {
615 curr = sma->sem_base + sop->sem_num;
616 sem_op = sop->sem_op;
617 result = curr->semval;
619 if (!sem_op && result)
620 goto would_block;
622 result += sem_op;
623 if (result < 0)
624 goto would_block;
625 if (result > SEMVMX)
626 goto out_of_range;
628 if (sop->sem_flg & SEM_UNDO) {
629 int undo = un->semadj[sop->sem_num] - sem_op;
630 /* Exceeding the undo range is an error. */
631 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
632 goto out_of_range;
633 un->semadj[sop->sem_num] = undo;
636 curr->semval = result;
639 sop--;
640 pid = q->pid;
641 while (sop >= sops) {
642 sma->sem_base[sop->sem_num].sempid = pid;
643 sop--;
646 return 0;
648 out_of_range:
649 result = -ERANGE;
650 goto undo;
652 would_block:
653 q->blocking = sop;
655 if (sop->sem_flg & IPC_NOWAIT)
656 result = -EAGAIN;
657 else
658 result = 1;
660 undo:
661 sop--;
662 while (sop >= sops) {
663 sem_op = sop->sem_op;
664 sma->sem_base[sop->sem_num].semval -= sem_op;
665 if (sop->sem_flg & SEM_UNDO)
666 un->semadj[sop->sem_num] += sem_op;
667 sop--;
670 return result;
673 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
675 int result, sem_op, nsops;
676 struct sembuf *sop;
677 struct sem *curr;
678 struct sembuf *sops;
679 struct sem_undo *un;
681 sops = q->sops;
682 nsops = q->nsops;
683 un = q->undo;
685 if (unlikely(q->dupsop))
686 return perform_atomic_semop_slow(sma, q);
689 * We scan the semaphore set twice, first to ensure that the entire
690 * operation can succeed, therefore avoiding any pointless writes
691 * to shared memory and having to undo such changes in order to block
692 * until the operations can go through.
694 for (sop = sops; sop < sops + nsops; sop++) {
695 curr = sma->sem_base + sop->sem_num;
696 sem_op = sop->sem_op;
697 result = curr->semval;
699 if (!sem_op && result)
700 goto would_block; /* wait-for-zero */
702 result += sem_op;
703 if (result < 0)
704 goto would_block;
706 if (result > SEMVMX)
707 return -ERANGE;
709 if (sop->sem_flg & SEM_UNDO) {
710 int undo = un->semadj[sop->sem_num] - sem_op;
712 /* Exceeding the undo range is an error. */
713 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
714 return -ERANGE;
718 for (sop = sops; sop < sops + nsops; sop++) {
719 curr = sma->sem_base + sop->sem_num;
720 sem_op = sop->sem_op;
721 result = curr->semval;
723 if (sop->sem_flg & SEM_UNDO) {
724 int undo = un->semadj[sop->sem_num] - sem_op;
726 un->semadj[sop->sem_num] = undo;
728 curr->semval += sem_op;
729 curr->sempid = q->pid;
732 return 0;
734 would_block:
735 q->blocking = sop;
736 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
739 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
740 struct wake_q_head *wake_q)
742 wake_q_add(wake_q, q->sleeper);
744 * Rely on the above implicit barrier, such that we can
745 * ensure that we hold reference to the task before setting
746 * q->status. Otherwise we could race with do_exit if the
747 * task is awoken by an external event before calling
748 * wake_up_process().
750 WRITE_ONCE(q->status, error);
753 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
755 list_del(&q->list);
756 if (q->nsops > 1)
757 sma->complex_count--;
760 /** check_restart(sma, q)
761 * @sma: semaphore array
762 * @q: the operation that just completed
764 * update_queue is O(N^2) when it restarts scanning the whole queue of
765 * waiting operations. Therefore this function checks if the restart is
766 * really necessary. It is called after a previously waiting operation
767 * modified the array.
768 * Note that wait-for-zero operations are handled without restart.
770 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
772 /* pending complex alter operations are too difficult to analyse */
773 if (!list_empty(&sma->pending_alter))
774 return 1;
776 /* we were a sleeping complex operation. Too difficult */
777 if (q->nsops > 1)
778 return 1;
780 /* It is impossible that someone waits for the new value:
781 * - complex operations always restart.
782 * - wait-for-zero are handled seperately.
783 * - q is a previously sleeping simple operation that
784 * altered the array. It must be a decrement, because
785 * simple increments never sleep.
786 * - If there are older (higher priority) decrements
787 * in the queue, then they have observed the original
788 * semval value and couldn't proceed. The operation
789 * decremented to value - thus they won't proceed either.
791 return 0;
795 * wake_const_ops - wake up non-alter tasks
796 * @sma: semaphore array.
797 * @semnum: semaphore that was modified.
798 * @wake_q: lockless wake-queue head.
800 * wake_const_ops must be called after a semaphore in a semaphore array
801 * was set to 0. If complex const operations are pending, wake_const_ops must
802 * be called with semnum = -1, as well as with the number of each modified
803 * semaphore.
804 * The tasks that must be woken up are added to @wake_q. The return code
805 * is stored in q->pid.
806 * The function returns 1 if at least one operation was completed successfully.
808 static int wake_const_ops(struct sem_array *sma, int semnum,
809 struct wake_q_head *wake_q)
811 struct sem_queue *q, *tmp;
812 struct list_head *pending_list;
813 int semop_completed = 0;
815 if (semnum == -1)
816 pending_list = &sma->pending_const;
817 else
818 pending_list = &sma->sem_base[semnum].pending_const;
820 list_for_each_entry_safe(q, tmp, pending_list, list) {
821 int error = perform_atomic_semop(sma, q);
823 if (error > 0)
824 continue;
825 /* operation completed, remove from queue & wakeup */
826 unlink_queue(sma, q);
828 wake_up_sem_queue_prepare(q, error, wake_q);
829 if (error == 0)
830 semop_completed = 1;
833 return semop_completed;
837 * do_smart_wakeup_zero - wakeup all wait for zero tasks
838 * @sma: semaphore array
839 * @sops: operations that were performed
840 * @nsops: number of operations
841 * @wake_q: lockless wake-queue head
843 * Checks all required queue for wait-for-zero operations, based
844 * on the actual changes that were performed on the semaphore array.
845 * The function returns 1 if at least one operation was completed successfully.
847 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
848 int nsops, struct wake_q_head *wake_q)
850 int i;
851 int semop_completed = 0;
852 int got_zero = 0;
854 /* first: the per-semaphore queues, if known */
855 if (sops) {
856 for (i = 0; i < nsops; i++) {
857 int num = sops[i].sem_num;
859 if (sma->sem_base[num].semval == 0) {
860 got_zero = 1;
861 semop_completed |= wake_const_ops(sma, num, wake_q);
864 } else {
866 * No sops means modified semaphores not known.
867 * Assume all were changed.
869 for (i = 0; i < sma->sem_nsems; i++) {
870 if (sma->sem_base[i].semval == 0) {
871 got_zero = 1;
872 semop_completed |= wake_const_ops(sma, i, wake_q);
877 * If one of the modified semaphores got 0,
878 * then check the global queue, too.
880 if (got_zero)
881 semop_completed |= wake_const_ops(sma, -1, wake_q);
883 return semop_completed;
888 * update_queue - look for tasks that can be completed.
889 * @sma: semaphore array.
890 * @semnum: semaphore that was modified.
891 * @wake_q: lockless wake-queue head.
893 * update_queue must be called after a semaphore in a semaphore array
894 * was modified. If multiple semaphores were modified, update_queue must
895 * be called with semnum = -1, as well as with the number of each modified
896 * semaphore.
897 * The tasks that must be woken up are added to @wake_q. The return code
898 * is stored in q->pid.
899 * The function internally checks if const operations can now succeed.
901 * The function return 1 if at least one semop was completed successfully.
903 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
905 struct sem_queue *q, *tmp;
906 struct list_head *pending_list;
907 int semop_completed = 0;
909 if (semnum == -1)
910 pending_list = &sma->pending_alter;
911 else
912 pending_list = &sma->sem_base[semnum].pending_alter;
914 again:
915 list_for_each_entry_safe(q, tmp, pending_list, list) {
916 int error, restart;
918 /* If we are scanning the single sop, per-semaphore list of
919 * one semaphore and that semaphore is 0, then it is not
920 * necessary to scan further: simple increments
921 * that affect only one entry succeed immediately and cannot
922 * be in the per semaphore pending queue, and decrements
923 * cannot be successful if the value is already 0.
925 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
926 break;
928 error = perform_atomic_semop(sma, q);
930 /* Does q->sleeper still need to sleep? */
931 if (error > 0)
932 continue;
934 unlink_queue(sma, q);
936 if (error) {
937 restart = 0;
938 } else {
939 semop_completed = 1;
940 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
941 restart = check_restart(sma, q);
944 wake_up_sem_queue_prepare(q, error, wake_q);
945 if (restart)
946 goto again;
948 return semop_completed;
952 * set_semotime - set sem_otime
953 * @sma: semaphore array
954 * @sops: operations that modified the array, may be NULL
956 * sem_otime is replicated to avoid cache line trashing.
957 * This function sets one instance to the current time.
959 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
961 if (sops == NULL) {
962 sma->sem_base[0].sem_otime = get_seconds();
963 } else {
964 sma->sem_base[sops[0].sem_num].sem_otime =
965 get_seconds();
970 * do_smart_update - optimized update_queue
971 * @sma: semaphore array
972 * @sops: operations that were performed
973 * @nsops: number of operations
974 * @otime: force setting otime
975 * @wake_q: lockless wake-queue head
977 * do_smart_update() does the required calls to update_queue and wakeup_zero,
978 * based on the actual changes that were performed on the semaphore array.
979 * Note that the function does not do the actual wake-up: the caller is
980 * responsible for calling wake_up_q().
981 * It is safe to perform this call after dropping all locks.
983 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
984 int otime, struct wake_q_head *wake_q)
986 int i;
988 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
990 if (!list_empty(&sma->pending_alter)) {
991 /* semaphore array uses the global queue - just process it. */
992 otime |= update_queue(sma, -1, wake_q);
993 } else {
994 if (!sops) {
996 * No sops, thus the modified semaphores are not
997 * known. Check all.
999 for (i = 0; i < sma->sem_nsems; i++)
1000 otime |= update_queue(sma, i, wake_q);
1001 } else {
1003 * Check the semaphores that were increased:
1004 * - No complex ops, thus all sleeping ops are
1005 * decrease.
1006 * - if we decreased the value, then any sleeping
1007 * semaphore ops wont be able to run: If the
1008 * previous value was too small, then the new
1009 * value will be too small, too.
1011 for (i = 0; i < nsops; i++) {
1012 if (sops[i].sem_op > 0) {
1013 otime |= update_queue(sma,
1014 sops[i].sem_num, wake_q);
1019 if (otime)
1020 set_semotime(sma, sops);
1024 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1026 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1027 bool count_zero)
1029 struct sembuf *sop = q->blocking;
1032 * Linux always (since 0.99.10) reported a task as sleeping on all
1033 * semaphores. This violates SUS, therefore it was changed to the
1034 * standard compliant behavior.
1035 * Give the administrators a chance to notice that an application
1036 * might misbehave because it relies on the Linux behavior.
1038 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1039 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1040 current->comm, task_pid_nr(current));
1042 if (sop->sem_num != semnum)
1043 return 0;
1045 if (count_zero && sop->sem_op == 0)
1046 return 1;
1047 if (!count_zero && sop->sem_op < 0)
1048 return 1;
1050 return 0;
1053 /* The following counts are associated to each semaphore:
1054 * semncnt number of tasks waiting on semval being nonzero
1055 * semzcnt number of tasks waiting on semval being zero
1057 * Per definition, a task waits only on the semaphore of the first semop
1058 * that cannot proceed, even if additional operation would block, too.
1060 static int count_semcnt(struct sem_array *sma, ushort semnum,
1061 bool count_zero)
1063 struct list_head *l;
1064 struct sem_queue *q;
1065 int semcnt;
1067 semcnt = 0;
1068 /* First: check the simple operations. They are easy to evaluate */
1069 if (count_zero)
1070 l = &sma->sem_base[semnum].pending_const;
1071 else
1072 l = &sma->sem_base[semnum].pending_alter;
1074 list_for_each_entry(q, l, list) {
1075 /* all task on a per-semaphore list sleep on exactly
1076 * that semaphore
1078 semcnt++;
1081 /* Then: check the complex operations. */
1082 list_for_each_entry(q, &sma->pending_alter, list) {
1083 semcnt += check_qop(sma, semnum, q, count_zero);
1085 if (count_zero) {
1086 list_for_each_entry(q, &sma->pending_const, list) {
1087 semcnt += check_qop(sma, semnum, q, count_zero);
1090 return semcnt;
1093 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1094 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1095 * remains locked on exit.
1097 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1099 struct sem_undo *un, *tu;
1100 struct sem_queue *q, *tq;
1101 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1102 int i;
1103 DEFINE_WAKE_Q(wake_q);
1105 /* Free the existing undo structures for this semaphore set. */
1106 ipc_assert_locked_object(&sma->sem_perm);
1107 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1108 list_del(&un->list_id);
1109 spin_lock(&un->ulp->lock);
1110 un->semid = -1;
1111 list_del_rcu(&un->list_proc);
1112 spin_unlock(&un->ulp->lock);
1113 kfree_rcu(un, rcu);
1116 /* Wake up all pending processes and let them fail with EIDRM. */
1117 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1118 unlink_queue(sma, q);
1119 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1122 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1123 unlink_queue(sma, q);
1124 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1126 for (i = 0; i < sma->sem_nsems; i++) {
1127 struct sem *sem = sma->sem_base + i;
1128 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1129 unlink_queue(sma, q);
1130 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1132 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1133 unlink_queue(sma, q);
1134 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1138 /* Remove the semaphore set from the IDR */
1139 sem_rmid(ns, sma);
1140 sem_unlock(sma, -1);
1141 rcu_read_unlock();
1143 wake_up_q(&wake_q);
1144 ns->used_sems -= sma->sem_nsems;
1145 ipc_rcu_putref(sma, sem_rcu_free);
1148 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1150 switch (version) {
1151 case IPC_64:
1152 return copy_to_user(buf, in, sizeof(*in));
1153 case IPC_OLD:
1155 struct semid_ds out;
1157 memset(&out, 0, sizeof(out));
1159 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1161 out.sem_otime = in->sem_otime;
1162 out.sem_ctime = in->sem_ctime;
1163 out.sem_nsems = in->sem_nsems;
1165 return copy_to_user(buf, &out, sizeof(out));
1167 default:
1168 return -EINVAL;
1172 static time_t get_semotime(struct sem_array *sma)
1174 int i;
1175 time_t res;
1177 res = sma->sem_base[0].sem_otime;
1178 for (i = 1; i < sma->sem_nsems; i++) {
1179 time_t to = sma->sem_base[i].sem_otime;
1181 if (to > res)
1182 res = to;
1184 return res;
1187 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1188 int cmd, int version, void __user *p)
1190 int err;
1191 struct sem_array *sma;
1193 switch (cmd) {
1194 case IPC_INFO:
1195 case SEM_INFO:
1197 struct seminfo seminfo;
1198 int max_id;
1200 err = security_sem_semctl(NULL, cmd);
1201 if (err)
1202 return err;
1204 memset(&seminfo, 0, sizeof(seminfo));
1205 seminfo.semmni = ns->sc_semmni;
1206 seminfo.semmns = ns->sc_semmns;
1207 seminfo.semmsl = ns->sc_semmsl;
1208 seminfo.semopm = ns->sc_semopm;
1209 seminfo.semvmx = SEMVMX;
1210 seminfo.semmnu = SEMMNU;
1211 seminfo.semmap = SEMMAP;
1212 seminfo.semume = SEMUME;
1213 down_read(&sem_ids(ns).rwsem);
1214 if (cmd == SEM_INFO) {
1215 seminfo.semusz = sem_ids(ns).in_use;
1216 seminfo.semaem = ns->used_sems;
1217 } else {
1218 seminfo.semusz = SEMUSZ;
1219 seminfo.semaem = SEMAEM;
1221 max_id = ipc_get_maxid(&sem_ids(ns));
1222 up_read(&sem_ids(ns).rwsem);
1223 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1224 return -EFAULT;
1225 return (max_id < 0) ? 0 : max_id;
1227 case IPC_STAT:
1228 case SEM_STAT:
1230 struct semid64_ds tbuf;
1231 int id = 0;
1233 memset(&tbuf, 0, sizeof(tbuf));
1235 rcu_read_lock();
1236 if (cmd == SEM_STAT) {
1237 sma = sem_obtain_object(ns, semid);
1238 if (IS_ERR(sma)) {
1239 err = PTR_ERR(sma);
1240 goto out_unlock;
1242 id = sma->sem_perm.id;
1243 } else {
1244 sma = sem_obtain_object_check(ns, semid);
1245 if (IS_ERR(sma)) {
1246 err = PTR_ERR(sma);
1247 goto out_unlock;
1251 err = -EACCES;
1252 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1253 goto out_unlock;
1255 err = security_sem_semctl(sma, cmd);
1256 if (err)
1257 goto out_unlock;
1259 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1260 tbuf.sem_otime = get_semotime(sma);
1261 tbuf.sem_ctime = sma->sem_ctime;
1262 tbuf.sem_nsems = sma->sem_nsems;
1263 rcu_read_unlock();
1264 if (copy_semid_to_user(p, &tbuf, version))
1265 return -EFAULT;
1266 return id;
1268 default:
1269 return -EINVAL;
1271 out_unlock:
1272 rcu_read_unlock();
1273 return err;
1276 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1277 unsigned long arg)
1279 struct sem_undo *un;
1280 struct sem_array *sma;
1281 struct sem *curr;
1282 int err, val;
1283 DEFINE_WAKE_Q(wake_q);
1285 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1286 /* big-endian 64bit */
1287 val = arg >> 32;
1288 #else
1289 /* 32bit or little-endian 64bit */
1290 val = arg;
1291 #endif
1293 if (val > SEMVMX || val < 0)
1294 return -ERANGE;
1296 rcu_read_lock();
1297 sma = sem_obtain_object_check(ns, semid);
1298 if (IS_ERR(sma)) {
1299 rcu_read_unlock();
1300 return PTR_ERR(sma);
1303 if (semnum < 0 || semnum >= sma->sem_nsems) {
1304 rcu_read_unlock();
1305 return -EINVAL;
1309 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1310 rcu_read_unlock();
1311 return -EACCES;
1314 err = security_sem_semctl(sma, SETVAL);
1315 if (err) {
1316 rcu_read_unlock();
1317 return -EACCES;
1320 sem_lock(sma, NULL, -1);
1322 if (!ipc_valid_object(&sma->sem_perm)) {
1323 sem_unlock(sma, -1);
1324 rcu_read_unlock();
1325 return -EIDRM;
1328 curr = &sma->sem_base[semnum];
1330 ipc_assert_locked_object(&sma->sem_perm);
1331 list_for_each_entry(un, &sma->list_id, list_id)
1332 un->semadj[semnum] = 0;
1334 curr->semval = val;
1335 curr->sempid = task_tgid_vnr(current);
1336 sma->sem_ctime = get_seconds();
1337 /* maybe some queued-up processes were waiting for this */
1338 do_smart_update(sma, NULL, 0, 0, &wake_q);
1339 sem_unlock(sma, -1);
1340 rcu_read_unlock();
1341 wake_up_q(&wake_q);
1342 return 0;
1345 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1346 int cmd, void __user *p)
1348 struct sem_array *sma;
1349 struct sem *curr;
1350 int err, nsems;
1351 ushort fast_sem_io[SEMMSL_FAST];
1352 ushort *sem_io = fast_sem_io;
1353 DEFINE_WAKE_Q(wake_q);
1355 rcu_read_lock();
1356 sma = sem_obtain_object_check(ns, semid);
1357 if (IS_ERR(sma)) {
1358 rcu_read_unlock();
1359 return PTR_ERR(sma);
1362 nsems = sma->sem_nsems;
1364 err = -EACCES;
1365 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1366 goto out_rcu_wakeup;
1368 err = security_sem_semctl(sma, cmd);
1369 if (err)
1370 goto out_rcu_wakeup;
1372 err = -EACCES;
1373 switch (cmd) {
1374 case GETALL:
1376 ushort __user *array = p;
1377 int i;
1379 sem_lock(sma, NULL, -1);
1380 if (!ipc_valid_object(&sma->sem_perm)) {
1381 err = -EIDRM;
1382 goto out_unlock;
1384 if (nsems > SEMMSL_FAST) {
1385 if (!ipc_rcu_getref(sma)) {
1386 err = -EIDRM;
1387 goto out_unlock;
1389 sem_unlock(sma, -1);
1390 rcu_read_unlock();
1391 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1392 if (sem_io == NULL) {
1393 ipc_rcu_putref(sma, sem_rcu_free);
1394 return -ENOMEM;
1397 rcu_read_lock();
1398 sem_lock_and_putref(sma);
1399 if (!ipc_valid_object(&sma->sem_perm)) {
1400 err = -EIDRM;
1401 goto out_unlock;
1404 for (i = 0; i < sma->sem_nsems; i++)
1405 sem_io[i] = sma->sem_base[i].semval;
1406 sem_unlock(sma, -1);
1407 rcu_read_unlock();
1408 err = 0;
1409 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1410 err = -EFAULT;
1411 goto out_free;
1413 case SETALL:
1415 int i;
1416 struct sem_undo *un;
1418 if (!ipc_rcu_getref(sma)) {
1419 err = -EIDRM;
1420 goto out_rcu_wakeup;
1422 rcu_read_unlock();
1424 if (nsems > SEMMSL_FAST) {
1425 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1426 if (sem_io == NULL) {
1427 ipc_rcu_putref(sma, sem_rcu_free);
1428 return -ENOMEM;
1432 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1433 ipc_rcu_putref(sma, sem_rcu_free);
1434 err = -EFAULT;
1435 goto out_free;
1438 for (i = 0; i < nsems; i++) {
1439 if (sem_io[i] > SEMVMX) {
1440 ipc_rcu_putref(sma, sem_rcu_free);
1441 err = -ERANGE;
1442 goto out_free;
1445 rcu_read_lock();
1446 sem_lock_and_putref(sma);
1447 if (!ipc_valid_object(&sma->sem_perm)) {
1448 err = -EIDRM;
1449 goto out_unlock;
1452 for (i = 0; i < nsems; i++) {
1453 sma->sem_base[i].semval = sem_io[i];
1454 sma->sem_base[i].sempid = task_tgid_vnr(current);
1457 ipc_assert_locked_object(&sma->sem_perm);
1458 list_for_each_entry(un, &sma->list_id, list_id) {
1459 for (i = 0; i < nsems; i++)
1460 un->semadj[i] = 0;
1462 sma->sem_ctime = get_seconds();
1463 /* maybe some queued-up processes were waiting for this */
1464 do_smart_update(sma, NULL, 0, 0, &wake_q);
1465 err = 0;
1466 goto out_unlock;
1468 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1470 err = -EINVAL;
1471 if (semnum < 0 || semnum >= nsems)
1472 goto out_rcu_wakeup;
1474 sem_lock(sma, NULL, -1);
1475 if (!ipc_valid_object(&sma->sem_perm)) {
1476 err = -EIDRM;
1477 goto out_unlock;
1479 curr = &sma->sem_base[semnum];
1481 switch (cmd) {
1482 case GETVAL:
1483 err = curr->semval;
1484 goto out_unlock;
1485 case GETPID:
1486 err = curr->sempid;
1487 goto out_unlock;
1488 case GETNCNT:
1489 err = count_semcnt(sma, semnum, 0);
1490 goto out_unlock;
1491 case GETZCNT:
1492 err = count_semcnt(sma, semnum, 1);
1493 goto out_unlock;
1496 out_unlock:
1497 sem_unlock(sma, -1);
1498 out_rcu_wakeup:
1499 rcu_read_unlock();
1500 wake_up_q(&wake_q);
1501 out_free:
1502 if (sem_io != fast_sem_io)
1503 ipc_free(sem_io);
1504 return err;
1507 static inline unsigned long
1508 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1510 switch (version) {
1511 case IPC_64:
1512 if (copy_from_user(out, buf, sizeof(*out)))
1513 return -EFAULT;
1514 return 0;
1515 case IPC_OLD:
1517 struct semid_ds tbuf_old;
1519 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1520 return -EFAULT;
1522 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1523 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1524 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1526 return 0;
1528 default:
1529 return -EINVAL;
1534 * This function handles some semctl commands which require the rwsem
1535 * to be held in write mode.
1536 * NOTE: no locks must be held, the rwsem is taken inside this function.
1538 static int semctl_down(struct ipc_namespace *ns, int semid,
1539 int cmd, int version, void __user *p)
1541 struct sem_array *sma;
1542 int err;
1543 struct semid64_ds semid64;
1544 struct kern_ipc_perm *ipcp;
1546 if (cmd == IPC_SET) {
1547 if (copy_semid_from_user(&semid64, p, version))
1548 return -EFAULT;
1551 down_write(&sem_ids(ns).rwsem);
1552 rcu_read_lock();
1554 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1555 &semid64.sem_perm, 0);
1556 if (IS_ERR(ipcp)) {
1557 err = PTR_ERR(ipcp);
1558 goto out_unlock1;
1561 sma = container_of(ipcp, struct sem_array, sem_perm);
1563 err = security_sem_semctl(sma, cmd);
1564 if (err)
1565 goto out_unlock1;
1567 switch (cmd) {
1568 case IPC_RMID:
1569 sem_lock(sma, NULL, -1);
1570 /* freeary unlocks the ipc object and rcu */
1571 freeary(ns, ipcp);
1572 goto out_up;
1573 case IPC_SET:
1574 sem_lock(sma, NULL, -1);
1575 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1576 if (err)
1577 goto out_unlock0;
1578 sma->sem_ctime = get_seconds();
1579 break;
1580 default:
1581 err = -EINVAL;
1582 goto out_unlock1;
1585 out_unlock0:
1586 sem_unlock(sma, -1);
1587 out_unlock1:
1588 rcu_read_unlock();
1589 out_up:
1590 up_write(&sem_ids(ns).rwsem);
1591 return err;
1594 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1596 int version;
1597 struct ipc_namespace *ns;
1598 void __user *p = (void __user *)arg;
1600 if (semid < 0)
1601 return -EINVAL;
1603 version = ipc_parse_version(&cmd);
1604 ns = current->nsproxy->ipc_ns;
1606 switch (cmd) {
1607 case IPC_INFO:
1608 case SEM_INFO:
1609 case IPC_STAT:
1610 case SEM_STAT:
1611 return semctl_nolock(ns, semid, cmd, version, p);
1612 case GETALL:
1613 case GETVAL:
1614 case GETPID:
1615 case GETNCNT:
1616 case GETZCNT:
1617 case SETALL:
1618 return semctl_main(ns, semid, semnum, cmd, p);
1619 case SETVAL:
1620 return semctl_setval(ns, semid, semnum, arg);
1621 case IPC_RMID:
1622 case IPC_SET:
1623 return semctl_down(ns, semid, cmd, version, p);
1624 default:
1625 return -EINVAL;
1629 /* If the task doesn't already have a undo_list, then allocate one
1630 * here. We guarantee there is only one thread using this undo list,
1631 * and current is THE ONE
1633 * If this allocation and assignment succeeds, but later
1634 * portions of this code fail, there is no need to free the sem_undo_list.
1635 * Just let it stay associated with the task, and it'll be freed later
1636 * at exit time.
1638 * This can block, so callers must hold no locks.
1640 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1642 struct sem_undo_list *undo_list;
1644 undo_list = current->sysvsem.undo_list;
1645 if (!undo_list) {
1646 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1647 if (undo_list == NULL)
1648 return -ENOMEM;
1649 spin_lock_init(&undo_list->lock);
1650 atomic_set(&undo_list->refcnt, 1);
1651 INIT_LIST_HEAD(&undo_list->list_proc);
1653 current->sysvsem.undo_list = undo_list;
1655 *undo_listp = undo_list;
1656 return 0;
1659 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1661 struct sem_undo *un;
1663 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1664 if (un->semid == semid)
1665 return un;
1667 return NULL;
1670 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1672 struct sem_undo *un;
1674 assert_spin_locked(&ulp->lock);
1676 un = __lookup_undo(ulp, semid);
1677 if (un) {
1678 list_del_rcu(&un->list_proc);
1679 list_add_rcu(&un->list_proc, &ulp->list_proc);
1681 return un;
1685 * find_alloc_undo - lookup (and if not present create) undo array
1686 * @ns: namespace
1687 * @semid: semaphore array id
1689 * The function looks up (and if not present creates) the undo structure.
1690 * The size of the undo structure depends on the size of the semaphore
1691 * array, thus the alloc path is not that straightforward.
1692 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1693 * performs a rcu_read_lock().
1695 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1697 struct sem_array *sma;
1698 struct sem_undo_list *ulp;
1699 struct sem_undo *un, *new;
1700 int nsems, error;
1702 error = get_undo_list(&ulp);
1703 if (error)
1704 return ERR_PTR(error);
1706 rcu_read_lock();
1707 spin_lock(&ulp->lock);
1708 un = lookup_undo(ulp, semid);
1709 spin_unlock(&ulp->lock);
1710 if (likely(un != NULL))
1711 goto out;
1713 /* no undo structure around - allocate one. */
1714 /* step 1: figure out the size of the semaphore array */
1715 sma = sem_obtain_object_check(ns, semid);
1716 if (IS_ERR(sma)) {
1717 rcu_read_unlock();
1718 return ERR_CAST(sma);
1721 nsems = sma->sem_nsems;
1722 if (!ipc_rcu_getref(sma)) {
1723 rcu_read_unlock();
1724 un = ERR_PTR(-EIDRM);
1725 goto out;
1727 rcu_read_unlock();
1729 /* step 2: allocate new undo structure */
1730 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1731 if (!new) {
1732 ipc_rcu_putref(sma, sem_rcu_free);
1733 return ERR_PTR(-ENOMEM);
1736 /* step 3: Acquire the lock on semaphore array */
1737 rcu_read_lock();
1738 sem_lock_and_putref(sma);
1739 if (!ipc_valid_object(&sma->sem_perm)) {
1740 sem_unlock(sma, -1);
1741 rcu_read_unlock();
1742 kfree(new);
1743 un = ERR_PTR(-EIDRM);
1744 goto out;
1746 spin_lock(&ulp->lock);
1749 * step 4: check for races: did someone else allocate the undo struct?
1751 un = lookup_undo(ulp, semid);
1752 if (un) {
1753 kfree(new);
1754 goto success;
1756 /* step 5: initialize & link new undo structure */
1757 new->semadj = (short *) &new[1];
1758 new->ulp = ulp;
1759 new->semid = semid;
1760 assert_spin_locked(&ulp->lock);
1761 list_add_rcu(&new->list_proc, &ulp->list_proc);
1762 ipc_assert_locked_object(&sma->sem_perm);
1763 list_add(&new->list_id, &sma->list_id);
1764 un = new;
1766 success:
1767 spin_unlock(&ulp->lock);
1768 sem_unlock(sma, -1);
1769 out:
1770 return un;
1773 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1774 unsigned, nsops, const struct timespec __user *, timeout)
1776 int error = -EINVAL;
1777 struct sem_array *sma;
1778 struct sembuf fast_sops[SEMOPM_FAST];
1779 struct sembuf *sops = fast_sops, *sop;
1780 struct sem_undo *un;
1781 int max, locknum;
1782 bool undos = false, alter = false, dupsop = false;
1783 struct sem_queue queue;
1784 unsigned long dup = 0, jiffies_left = 0;
1785 struct ipc_namespace *ns;
1787 ns = current->nsproxy->ipc_ns;
1789 if (nsops < 1 || semid < 0)
1790 return -EINVAL;
1791 if (nsops > ns->sc_semopm)
1792 return -E2BIG;
1793 if (nsops > SEMOPM_FAST) {
1794 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1795 if (sops == NULL)
1796 return -ENOMEM;
1799 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1800 error = -EFAULT;
1801 goto out_free;
1804 if (timeout) {
1805 struct timespec _timeout;
1806 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1807 error = -EFAULT;
1808 goto out_free;
1810 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1811 _timeout.tv_nsec >= 1000000000L) {
1812 error = -EINVAL;
1813 goto out_free;
1815 jiffies_left = timespec_to_jiffies(&_timeout);
1818 max = 0;
1819 for (sop = sops; sop < sops + nsops; sop++) {
1820 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1822 if (sop->sem_num >= max)
1823 max = sop->sem_num;
1824 if (sop->sem_flg & SEM_UNDO)
1825 undos = true;
1826 if (dup & mask) {
1828 * There was a previous alter access that appears
1829 * to have accessed the same semaphore, thus use
1830 * the dupsop logic. "appears", because the detection
1831 * can only check % BITS_PER_LONG.
1833 dupsop = true;
1835 if (sop->sem_op != 0) {
1836 alter = true;
1837 dup |= mask;
1841 if (undos) {
1842 /* On success, find_alloc_undo takes the rcu_read_lock */
1843 un = find_alloc_undo(ns, semid);
1844 if (IS_ERR(un)) {
1845 error = PTR_ERR(un);
1846 goto out_free;
1848 } else {
1849 un = NULL;
1850 rcu_read_lock();
1853 sma = sem_obtain_object_check(ns, semid);
1854 if (IS_ERR(sma)) {
1855 rcu_read_unlock();
1856 error = PTR_ERR(sma);
1857 goto out_free;
1860 error = -EFBIG;
1861 if (max >= sma->sem_nsems) {
1862 rcu_read_unlock();
1863 goto out_free;
1866 error = -EACCES;
1867 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1868 rcu_read_unlock();
1869 goto out_free;
1872 error = security_sem_semop(sma, sops, nsops, alter);
1873 if (error) {
1874 rcu_read_unlock();
1875 goto out_free;
1878 error = -EIDRM;
1879 locknum = sem_lock(sma, sops, nsops);
1881 * We eventually might perform the following check in a lockless
1882 * fashion, considering ipc_valid_object() locking constraints.
1883 * If nsops == 1 and there is no contention for sem_perm.lock, then
1884 * only a per-semaphore lock is held and it's OK to proceed with the
1885 * check below. More details on the fine grained locking scheme
1886 * entangled here and why it's RMID race safe on comments at sem_lock()
1888 if (!ipc_valid_object(&sma->sem_perm))
1889 goto out_unlock_free;
1891 * semid identifiers are not unique - find_alloc_undo may have
1892 * allocated an undo structure, it was invalidated by an RMID
1893 * and now a new array with received the same id. Check and fail.
1894 * This case can be detected checking un->semid. The existence of
1895 * "un" itself is guaranteed by rcu.
1897 if (un && un->semid == -1)
1898 goto out_unlock_free;
1900 queue.sops = sops;
1901 queue.nsops = nsops;
1902 queue.undo = un;
1903 queue.pid = task_tgid_vnr(current);
1904 queue.alter = alter;
1905 queue.dupsop = dupsop;
1907 error = perform_atomic_semop(sma, &queue);
1908 if (error == 0) { /* non-blocking succesfull path */
1909 DEFINE_WAKE_Q(wake_q);
1912 * If the operation was successful, then do
1913 * the required updates.
1915 if (alter)
1916 do_smart_update(sma, sops, nsops, 1, &wake_q);
1917 else
1918 set_semotime(sma, sops);
1920 sem_unlock(sma, locknum);
1921 rcu_read_unlock();
1922 wake_up_q(&wake_q);
1924 goto out_free;
1926 if (error < 0) /* non-blocking error path */
1927 goto out_unlock_free;
1930 * We need to sleep on this operation, so we put the current
1931 * task into the pending queue and go to sleep.
1933 if (nsops == 1) {
1934 struct sem *curr;
1935 curr = &sma->sem_base[sops->sem_num];
1937 if (alter) {
1938 if (sma->complex_count) {
1939 list_add_tail(&queue.list,
1940 &sma->pending_alter);
1941 } else {
1943 list_add_tail(&queue.list,
1944 &curr->pending_alter);
1946 } else {
1947 list_add_tail(&queue.list, &curr->pending_const);
1949 } else {
1950 if (!sma->complex_count)
1951 merge_queues(sma);
1953 if (alter)
1954 list_add_tail(&queue.list, &sma->pending_alter);
1955 else
1956 list_add_tail(&queue.list, &sma->pending_const);
1958 sma->complex_count++;
1961 do {
1962 queue.status = -EINTR;
1963 queue.sleeper = current;
1965 __set_current_state(TASK_INTERRUPTIBLE);
1966 sem_unlock(sma, locknum);
1967 rcu_read_unlock();
1969 if (timeout)
1970 jiffies_left = schedule_timeout(jiffies_left);
1971 else
1972 schedule();
1975 * fastpath: the semop has completed, either successfully or
1976 * not, from the syscall pov, is quite irrelevant to us at this
1977 * point; we're done.
1979 * We _do_ care, nonetheless, about being awoken by a signal or
1980 * spuriously. The queue.status is checked again in the
1981 * slowpath (aka after taking sem_lock), such that we can detect
1982 * scenarios where we were awakened externally, during the
1983 * window between wake_q_add() and wake_up_q().
1985 error = READ_ONCE(queue.status);
1986 if (error != -EINTR) {
1988 * User space could assume that semop() is a memory
1989 * barrier: Without the mb(), the cpu could
1990 * speculatively read in userspace stale data that was
1991 * overwritten by the previous owner of the semaphore.
1993 smp_mb();
1994 goto out_free;
1997 rcu_read_lock();
1998 locknum = sem_lock(sma, sops, nsops);
2000 if (!ipc_valid_object(&sma->sem_perm))
2001 goto out_unlock_free;
2003 error = READ_ONCE(queue.status);
2006 * If queue.status != -EINTR we are woken up by another process.
2007 * Leave without unlink_queue(), but with sem_unlock().
2009 if (error != -EINTR)
2010 goto out_unlock_free;
2013 * If an interrupt occurred we have to clean up the queue.
2015 if (timeout && jiffies_left == 0)
2016 error = -EAGAIN;
2017 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2019 unlink_queue(sma, &queue);
2021 out_unlock_free:
2022 sem_unlock(sma, locknum);
2023 rcu_read_unlock();
2024 out_free:
2025 if (sops != fast_sops)
2026 kfree(sops);
2027 return error;
2030 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2031 unsigned, nsops)
2033 return sys_semtimedop(semid, tsops, nsops, NULL);
2036 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2037 * parent and child tasks.
2040 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2042 struct sem_undo_list *undo_list;
2043 int error;
2045 if (clone_flags & CLONE_SYSVSEM) {
2046 error = get_undo_list(&undo_list);
2047 if (error)
2048 return error;
2049 atomic_inc(&undo_list->refcnt);
2050 tsk->sysvsem.undo_list = undo_list;
2051 } else
2052 tsk->sysvsem.undo_list = NULL;
2054 return 0;
2058 * add semadj values to semaphores, free undo structures.
2059 * undo structures are not freed when semaphore arrays are destroyed
2060 * so some of them may be out of date.
2061 * IMPLEMENTATION NOTE: There is some confusion over whether the
2062 * set of adjustments that needs to be done should be done in an atomic
2063 * manner or not. That is, if we are attempting to decrement the semval
2064 * should we queue up and wait until we can do so legally?
2065 * The original implementation attempted to do this (queue and wait).
2066 * The current implementation does not do so. The POSIX standard
2067 * and SVID should be consulted to determine what behavior is mandated.
2069 void exit_sem(struct task_struct *tsk)
2071 struct sem_undo_list *ulp;
2073 ulp = tsk->sysvsem.undo_list;
2074 if (!ulp)
2075 return;
2076 tsk->sysvsem.undo_list = NULL;
2078 if (!atomic_dec_and_test(&ulp->refcnt))
2079 return;
2081 for (;;) {
2082 struct sem_array *sma;
2083 struct sem_undo *un;
2084 int semid, i;
2085 DEFINE_WAKE_Q(wake_q);
2087 cond_resched();
2089 rcu_read_lock();
2090 un = list_entry_rcu(ulp->list_proc.next,
2091 struct sem_undo, list_proc);
2092 if (&un->list_proc == &ulp->list_proc) {
2094 * We must wait for freeary() before freeing this ulp,
2095 * in case we raced with last sem_undo. There is a small
2096 * possibility where we exit while freeary() didn't
2097 * finish unlocking sem_undo_list.
2099 spin_unlock_wait(&ulp->lock);
2100 rcu_read_unlock();
2101 break;
2103 spin_lock(&ulp->lock);
2104 semid = un->semid;
2105 spin_unlock(&ulp->lock);
2107 /* exit_sem raced with IPC_RMID, nothing to do */
2108 if (semid == -1) {
2109 rcu_read_unlock();
2110 continue;
2113 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2114 /* exit_sem raced with IPC_RMID, nothing to do */
2115 if (IS_ERR(sma)) {
2116 rcu_read_unlock();
2117 continue;
2120 sem_lock(sma, NULL, -1);
2121 /* exit_sem raced with IPC_RMID, nothing to do */
2122 if (!ipc_valid_object(&sma->sem_perm)) {
2123 sem_unlock(sma, -1);
2124 rcu_read_unlock();
2125 continue;
2127 un = __lookup_undo(ulp, semid);
2128 if (un == NULL) {
2129 /* exit_sem raced with IPC_RMID+semget() that created
2130 * exactly the same semid. Nothing to do.
2132 sem_unlock(sma, -1);
2133 rcu_read_unlock();
2134 continue;
2137 /* remove un from the linked lists */
2138 ipc_assert_locked_object(&sma->sem_perm);
2139 list_del(&un->list_id);
2141 /* we are the last process using this ulp, acquiring ulp->lock
2142 * isn't required. Besides that, we are also protected against
2143 * IPC_RMID as we hold sma->sem_perm lock now
2145 list_del_rcu(&un->list_proc);
2147 /* perform adjustments registered in un */
2148 for (i = 0; i < sma->sem_nsems; i++) {
2149 struct sem *semaphore = &sma->sem_base[i];
2150 if (un->semadj[i]) {
2151 semaphore->semval += un->semadj[i];
2153 * Range checks of the new semaphore value,
2154 * not defined by sus:
2155 * - Some unices ignore the undo entirely
2156 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2157 * - some cap the value (e.g. FreeBSD caps
2158 * at 0, but doesn't enforce SEMVMX)
2160 * Linux caps the semaphore value, both at 0
2161 * and at SEMVMX.
2163 * Manfred <manfred@colorfullife.com>
2165 if (semaphore->semval < 0)
2166 semaphore->semval = 0;
2167 if (semaphore->semval > SEMVMX)
2168 semaphore->semval = SEMVMX;
2169 semaphore->sempid = task_tgid_vnr(current);
2172 /* maybe some queued-up processes were waiting for this */
2173 do_smart_update(sma, NULL, 0, 1, &wake_q);
2174 sem_unlock(sma, -1);
2175 rcu_read_unlock();
2176 wake_up_q(&wake_q);
2178 kfree_rcu(un, rcu);
2180 kfree(ulp);
2183 #ifdef CONFIG_PROC_FS
2184 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2186 struct user_namespace *user_ns = seq_user_ns(s);
2187 struct sem_array *sma = it;
2188 time_t sem_otime;
2191 * The proc interface isn't aware of sem_lock(), it calls
2192 * ipc_lock_object() directly (in sysvipc_find_ipc).
2193 * In order to stay compatible with sem_lock(), we must
2194 * enter / leave complex_mode.
2196 complexmode_enter(sma);
2198 sem_otime = get_semotime(sma);
2200 seq_printf(s,
2201 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2202 sma->sem_perm.key,
2203 sma->sem_perm.id,
2204 sma->sem_perm.mode,
2205 sma->sem_nsems,
2206 from_kuid_munged(user_ns, sma->sem_perm.uid),
2207 from_kgid_munged(user_ns, sma->sem_perm.gid),
2208 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2209 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2210 sem_otime,
2211 sma->sem_ctime);
2213 complexmode_tryleave(sma);
2215 return 0;
2217 #endif