2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock
);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node
);
81 EXPORT_PER_CPU_SYMBOL(numa_node
);
84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
93 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
95 int _node_numa_mem_
[MAX_NUMNODES
];
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex
);
100 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy
;
104 EXPORT_SYMBOL(latent_entropy
);
108 * Array of node states.
110 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
111 [N_POSSIBLE
] = NODE_MASK_ALL
,
112 [N_ONLINE
] = { { [0] = 1UL } },
114 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
118 [N_MEMORY
] = { { [0] = 1UL } },
119 [N_CPU
] = { { [0] = 1UL } },
122 EXPORT_SYMBOL(node_states
);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock
);
127 unsigned long totalram_pages __read_mostly
;
128 unsigned long totalreserve_pages __read_mostly
;
129 unsigned long totalcma_pages __read_mostly
;
131 int percpu_pagelist_fraction
;
132 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page
*page
)
147 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
149 page
->index
= migratetype
;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
163 static gfp_t saved_gfp_mask
;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
168 if (saved_gfp_mask
) {
169 gfp_allowed_mask
= saved_gfp_mask
;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
177 WARN_ON(saved_gfp_mask
);
178 saved_gfp_mask
= gfp_allowed_mask
;
179 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly
;
194 static void __free_pages_ok(struct page
*page
, unsigned int order
);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
215 #ifdef CONFIG_HIGHMEM
221 EXPORT_SYMBOL(totalram_pages
);
223 static char * const zone_names
[MAX_NR_ZONES
] = {
224 #ifdef CONFIG_ZONE_DMA
227 #ifdef CONFIG_ZONE_DMA32
231 #ifdef CONFIG_HIGHMEM
235 #ifdef CONFIG_ZONE_DEVICE
240 char * const migratetype_names
[MIGRATE_TYPES
] = {
248 #ifdef CONFIG_MEMORY_ISOLATION
253 compound_page_dtor
* const compound_page_dtors
[] = {
256 #ifdef CONFIG_HUGETLB_PAGE
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 int min_free_kbytes
= 1024;
265 int user_min_free_kbytes
= -1;
266 int watermark_scale_factor
= 10;
268 static unsigned long nr_kernel_pages __meminitdata
;
269 static unsigned long nr_all_pages __meminitdata
;
270 static unsigned long dma_reserve __meminitdata
;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
274 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
275 static unsigned long required_kernelcore __initdata
;
276 static unsigned long required_kernelcore_percent __initdata
;
277 static unsigned long required_movablecore __initdata
;
278 static unsigned long required_movablecore_percent __initdata
;
279 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __meminitdata
;
280 static bool mirrored_kernelcore __meminitdata
;
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 EXPORT_SYMBOL(movable_zone
);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
289 int nr_online_nodes __read_mostly
= 1;
290 EXPORT_SYMBOL(nr_node_ids
);
291 EXPORT_SYMBOL(nr_online_nodes
);
294 int page_group_by_mobility_disabled __read_mostly
;
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
300 int nid
= early_pfn_to_nid(pfn
);
302 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static inline bool update_defer_init(pg_data_t
*pgdat
,
313 unsigned long pfn
, unsigned long zone_end
,
314 unsigned long *nr_initialised
)
316 /* Always populate low zones for address-constrained allocations */
317 if (zone_end
< pgdat_end_pfn(pgdat
))
320 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
321 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
322 pgdat
->first_deferred_pfn
= pfn
;
329 static inline bool early_page_uninitialised(unsigned long pfn
)
334 static inline bool update_defer_init(pg_data_t
*pgdat
,
335 unsigned long pfn
, unsigned long zone_end
,
336 unsigned long *nr_initialised
)
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
346 #ifdef CONFIG_SPARSEMEM
347 return __pfn_to_section(pfn
)->pageblock_flags
;
349 return page_zone(page
)->pageblock_flags
;
350 #endif /* CONFIG_SPARSEMEM */
353 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
355 #ifdef CONFIG_SPARSEMEM
356 pfn
&= (PAGES_PER_SECTION
-1);
357 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
359 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
360 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
361 #endif /* CONFIG_SPARSEMEM */
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @end_bitidx: The last bit of interest to retrieve
369 * @mask: mask of bits that the caller is interested in
371 * Return: pageblock_bits flags
373 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
375 unsigned long end_bitidx
,
378 unsigned long *bitmap
;
379 unsigned long bitidx
, word_bitidx
;
382 bitmap
= get_pageblock_bitmap(page
, pfn
);
383 bitidx
= pfn_to_bitidx(page
, pfn
);
384 word_bitidx
= bitidx
/ BITS_PER_LONG
;
385 bitidx
&= (BITS_PER_LONG
-1);
387 word
= bitmap
[word_bitidx
];
388 bitidx
+= end_bitidx
;
389 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
392 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
393 unsigned long end_bitidx
,
396 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
399 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
401 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @flags: The flags to set
408 * @pfn: The target page frame number
409 * @end_bitidx: The last bit of interest
410 * @mask: mask of bits that the caller is interested in
412 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
414 unsigned long end_bitidx
,
417 unsigned long *bitmap
;
418 unsigned long bitidx
, word_bitidx
;
419 unsigned long old_word
, word
;
421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
423 bitmap
= get_pageblock_bitmap(page
, pfn
);
424 bitidx
= pfn_to_bitidx(page
, pfn
);
425 word_bitidx
= bitidx
/ BITS_PER_LONG
;
426 bitidx
&= (BITS_PER_LONG
-1);
428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
430 bitidx
+= end_bitidx
;
431 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
432 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
434 word
= READ_ONCE(bitmap
[word_bitidx
]);
436 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
437 if (word
== old_word
)
443 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
445 if (unlikely(page_group_by_mobility_disabled
&&
446 migratetype
< MIGRATE_PCPTYPES
))
447 migratetype
= MIGRATE_UNMOVABLE
;
449 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
450 PB_migrate
, PB_migrate_end
);
453 #ifdef CONFIG_DEBUG_VM
454 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
458 unsigned long pfn
= page_to_pfn(page
);
459 unsigned long sp
, start_pfn
;
462 seq
= zone_span_seqbegin(zone
);
463 start_pfn
= zone
->zone_start_pfn
;
464 sp
= zone
->spanned_pages
;
465 if (!zone_spans_pfn(zone
, pfn
))
467 } while (zone_span_seqretry(zone
, seq
));
470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 pfn
, zone_to_nid(zone
), zone
->name
,
472 start_pfn
, start_pfn
+ sp
);
477 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
479 if (!pfn_valid_within(page_to_pfn(page
)))
481 if (zone
!= page_zone(page
))
487 * Temporary debugging check for pages not lying within a given zone.
489 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
491 if (page_outside_zone_boundaries(zone
, page
))
493 if (!page_is_consistent(zone
, page
))
499 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
505 static void bad_page(struct page
*page
, const char *reason
,
506 unsigned long bad_flags
)
508 static unsigned long resume
;
509 static unsigned long nr_shown
;
510 static unsigned long nr_unshown
;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown
== 60) {
517 if (time_before(jiffies
, resume
)) {
523 "BUG: Bad page state: %lu messages suppressed\n",
530 resume
= jiffies
+ 60 * HZ
;
532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
533 current
->comm
, page_to_pfn(page
));
534 __dump_page(page
, reason
);
535 bad_flags
&= page
->flags
;
537 pr_alert("bad because of flags: %#lx(%pGp)\n",
538 bad_flags
, &bad_flags
);
539 dump_page_owner(page
);
544 /* Leave bad fields for debug, except PageBuddy could make trouble */
545 page_mapcount_reset(page
); /* remove PageBuddy */
546 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
550 * Higher-order pages are called "compound pages". They are structured thusly:
552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557 * The first tail page's ->compound_dtor holds the offset in array of compound
558 * page destructors. See compound_page_dtors.
560 * The first tail page's ->compound_order holds the order of allocation.
561 * This usage means that zero-order pages may not be compound.
564 void free_compound_page(struct page
*page
)
566 __free_pages_ok(page
, compound_order(page
));
569 void prep_compound_page(struct page
*page
, unsigned int order
)
572 int nr_pages
= 1 << order
;
574 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
575 set_compound_order(page
, order
);
577 for (i
= 1; i
< nr_pages
; i
++) {
578 struct page
*p
= page
+ i
;
579 set_page_count(p
, 0);
580 p
->mapping
= TAIL_MAPPING
;
581 set_compound_head(p
, page
);
583 atomic_set(compound_mapcount_ptr(page
), -1);
586 #ifdef CONFIG_DEBUG_PAGEALLOC
587 unsigned int _debug_guardpage_minorder
;
588 bool _debug_pagealloc_enabled __read_mostly
589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
590 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
591 bool _debug_guardpage_enabled __read_mostly
;
593 static int __init
early_debug_pagealloc(char *buf
)
597 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
599 early_param("debug_pagealloc", early_debug_pagealloc
);
601 static bool need_debug_guardpage(void)
603 /* If we don't use debug_pagealloc, we don't need guard page */
604 if (!debug_pagealloc_enabled())
607 if (!debug_guardpage_minorder())
613 static void init_debug_guardpage(void)
615 if (!debug_pagealloc_enabled())
618 if (!debug_guardpage_minorder())
621 _debug_guardpage_enabled
= true;
624 struct page_ext_operations debug_guardpage_ops
= {
625 .need
= need_debug_guardpage
,
626 .init
= init_debug_guardpage
,
629 static int __init
debug_guardpage_minorder_setup(char *buf
)
633 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
634 pr_err("Bad debug_guardpage_minorder value\n");
637 _debug_guardpage_minorder
= res
;
638 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
643 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
644 unsigned int order
, int migratetype
)
646 struct page_ext
*page_ext
;
648 if (!debug_guardpage_enabled())
651 if (order
>= debug_guardpage_minorder())
654 page_ext
= lookup_page_ext(page
);
655 if (unlikely(!page_ext
))
658 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
660 INIT_LIST_HEAD(&page
->lru
);
661 set_page_private(page
, order
);
662 /* Guard pages are not available for any usage */
663 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
668 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
669 unsigned int order
, int migratetype
)
671 struct page_ext
*page_ext
;
673 if (!debug_guardpage_enabled())
676 page_ext
= lookup_page_ext(page
);
677 if (unlikely(!page_ext
))
680 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
682 set_page_private(page
, 0);
683 if (!is_migrate_isolate(migratetype
))
684 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
687 struct page_ext_operations debug_guardpage_ops
;
688 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
689 unsigned int order
, int migratetype
) { return false; }
690 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
691 unsigned int order
, int migratetype
) {}
694 static inline void set_page_order(struct page
*page
, unsigned int order
)
696 set_page_private(page
, order
);
697 __SetPageBuddy(page
);
700 static inline void rmv_page_order(struct page
*page
)
702 __ClearPageBuddy(page
);
703 set_page_private(page
, 0);
707 * This function checks whether a page is free && is the buddy
708 * we can coalesce a page and its buddy if
709 * (a) the buddy is not in a hole (check before calling!) &&
710 * (b) the buddy is in the buddy system &&
711 * (c) a page and its buddy have the same order &&
712 * (d) a page and its buddy are in the same zone.
714 * For recording whether a page is in the buddy system, we set PageBuddy.
715 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
717 * For recording page's order, we use page_private(page).
719 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
722 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
723 if (page_zone_id(page
) != page_zone_id(buddy
))
726 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
731 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
733 * zone check is done late to avoid uselessly
734 * calculating zone/node ids for pages that could
737 if (page_zone_id(page
) != page_zone_id(buddy
))
740 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
748 * Freeing function for a buddy system allocator.
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
771 static inline void __free_one_page(struct page
*page
,
773 struct zone
*zone
, unsigned int order
,
776 unsigned long combined_pfn
;
777 unsigned long uninitialized_var(buddy_pfn
);
779 unsigned int max_order
;
781 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
783 VM_BUG_ON(!zone_is_initialized(zone
));
784 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
786 VM_BUG_ON(migratetype
== -1);
787 if (likely(!is_migrate_isolate(migratetype
)))
788 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
790 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
791 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
794 while (order
< max_order
- 1) {
795 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
796 buddy
= page
+ (buddy_pfn
- pfn
);
798 if (!pfn_valid_within(buddy_pfn
))
800 if (!page_is_buddy(page
, buddy
, order
))
803 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
804 * merge with it and move up one order.
806 if (page_is_guard(buddy
)) {
807 clear_page_guard(zone
, buddy
, order
, migratetype
);
809 list_del(&buddy
->lru
);
810 zone
->free_area
[order
].nr_free
--;
811 rmv_page_order(buddy
);
813 combined_pfn
= buddy_pfn
& pfn
;
814 page
= page
+ (combined_pfn
- pfn
);
818 if (max_order
< MAX_ORDER
) {
819 /* If we are here, it means order is >= pageblock_order.
820 * We want to prevent merge between freepages on isolate
821 * pageblock and normal pageblock. Without this, pageblock
822 * isolation could cause incorrect freepage or CMA accounting.
824 * We don't want to hit this code for the more frequent
827 if (unlikely(has_isolate_pageblock(zone
))) {
830 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
831 buddy
= page
+ (buddy_pfn
- pfn
);
832 buddy_mt
= get_pageblock_migratetype(buddy
);
834 if (migratetype
!= buddy_mt
835 && (is_migrate_isolate(migratetype
) ||
836 is_migrate_isolate(buddy_mt
)))
840 goto continue_merging
;
844 set_page_order(page
, order
);
847 * If this is not the largest possible page, check if the buddy
848 * of the next-highest order is free. If it is, it's possible
849 * that pages are being freed that will coalesce soon. In case,
850 * that is happening, add the free page to the tail of the list
851 * so it's less likely to be used soon and more likely to be merged
852 * as a higher order page
854 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
855 struct page
*higher_page
, *higher_buddy
;
856 combined_pfn
= buddy_pfn
& pfn
;
857 higher_page
= page
+ (combined_pfn
- pfn
);
858 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
859 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
860 if (pfn_valid_within(buddy_pfn
) &&
861 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
862 list_add_tail(&page
->lru
,
863 &zone
->free_area
[order
].free_list
[migratetype
]);
868 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
870 zone
->free_area
[order
].nr_free
++;
874 * A bad page could be due to a number of fields. Instead of multiple branches,
875 * try and check multiple fields with one check. The caller must do a detailed
876 * check if necessary.
878 static inline bool page_expected_state(struct page
*page
,
879 unsigned long check_flags
)
881 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
884 if (unlikely((unsigned long)page
->mapping
|
885 page_ref_count(page
) |
887 (unsigned long)page
->mem_cgroup
|
889 (page
->flags
& check_flags
)))
895 static void free_pages_check_bad(struct page
*page
)
897 const char *bad_reason
;
898 unsigned long bad_flags
;
903 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
904 bad_reason
= "nonzero mapcount";
905 if (unlikely(page
->mapping
!= NULL
))
906 bad_reason
= "non-NULL mapping";
907 if (unlikely(page_ref_count(page
) != 0))
908 bad_reason
= "nonzero _refcount";
909 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
910 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
911 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
914 if (unlikely(page
->mem_cgroup
))
915 bad_reason
= "page still charged to cgroup";
917 bad_page(page
, bad_reason
, bad_flags
);
920 static inline int free_pages_check(struct page
*page
)
922 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
925 /* Something has gone sideways, find it */
926 free_pages_check_bad(page
);
930 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
935 * We rely page->lru.next never has bit 0 set, unless the page
936 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
938 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
940 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
944 switch (page
- head_page
) {
946 /* the first tail page: ->mapping may be compound_mapcount() */
947 if (unlikely(compound_mapcount(page
))) {
948 bad_page(page
, "nonzero compound_mapcount", 0);
954 * the second tail page: ->mapping is
955 * deferred_list.next -- ignore value.
959 if (page
->mapping
!= TAIL_MAPPING
) {
960 bad_page(page
, "corrupted mapping in tail page", 0);
965 if (unlikely(!PageTail(page
))) {
966 bad_page(page
, "PageTail not set", 0);
969 if (unlikely(compound_head(page
) != head_page
)) {
970 bad_page(page
, "compound_head not consistent", 0);
975 page
->mapping
= NULL
;
976 clear_compound_head(page
);
980 static __always_inline
bool free_pages_prepare(struct page
*page
,
981 unsigned int order
, bool check_free
)
985 VM_BUG_ON_PAGE(PageTail(page
), page
);
987 trace_mm_page_free(page
, order
);
990 * Check tail pages before head page information is cleared to
991 * avoid checking PageCompound for order-0 pages.
993 if (unlikely(order
)) {
994 bool compound
= PageCompound(page
);
997 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1000 ClearPageDoubleMap(page
);
1001 for (i
= 1; i
< (1 << order
); i
++) {
1003 bad
+= free_tail_pages_check(page
, page
+ i
);
1004 if (unlikely(free_pages_check(page
+ i
))) {
1008 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1011 if (PageMappingFlags(page
))
1012 page
->mapping
= NULL
;
1013 if (memcg_kmem_enabled() && PageKmemcg(page
))
1014 memcg_kmem_uncharge(page
, order
);
1016 bad
+= free_pages_check(page
);
1020 page_cpupid_reset_last(page
);
1021 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1022 reset_page_owner(page
, order
);
1024 if (!PageHighMem(page
)) {
1025 debug_check_no_locks_freed(page_address(page
),
1026 PAGE_SIZE
<< order
);
1027 debug_check_no_obj_freed(page_address(page
),
1028 PAGE_SIZE
<< order
);
1030 arch_free_page(page
, order
);
1031 kernel_poison_pages(page
, 1 << order
, 0);
1032 kernel_map_pages(page
, 1 << order
, 0);
1033 kasan_free_pages(page
, order
);
1038 #ifdef CONFIG_DEBUG_VM
1039 static inline bool free_pcp_prepare(struct page
*page
)
1041 return free_pages_prepare(page
, 0, true);
1044 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1049 static bool free_pcp_prepare(struct page
*page
)
1051 return free_pages_prepare(page
, 0, false);
1054 static bool bulkfree_pcp_prepare(struct page
*page
)
1056 return free_pages_check(page
);
1058 #endif /* CONFIG_DEBUG_VM */
1060 static inline void prefetch_buddy(struct page
*page
)
1062 unsigned long pfn
= page_to_pfn(page
);
1063 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1064 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1070 * Frees a number of pages from the PCP lists
1071 * Assumes all pages on list are in same zone, and of same order.
1072 * count is the number of pages to free.
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1080 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1081 struct per_cpu_pages
*pcp
)
1083 int migratetype
= 0;
1085 int prefetch_nr
= 0;
1086 bool isolated_pageblocks
;
1087 struct page
*page
, *tmp
;
1091 struct list_head
*list
;
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1102 if (++migratetype
== MIGRATE_PCPTYPES
)
1104 list
= &pcp
->lists
[migratetype
];
1105 } while (list_empty(list
));
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free
== MIGRATE_PCPTYPES
)
1112 page
= list_last_entry(list
, struct page
, lru
);
1113 /* must delete to avoid corrupting pcp list */
1114 list_del(&page
->lru
);
1117 if (bulkfree_pcp_prepare(page
))
1120 list_add_tail(&page
->lru
, &head
);
1123 * We are going to put the page back to the global
1124 * pool, prefetch its buddy to speed up later access
1125 * under zone->lock. It is believed the overhead of
1126 * an additional test and calculating buddy_pfn here
1127 * can be offset by reduced memory latency later. To
1128 * avoid excessive prefetching due to large count, only
1129 * prefetch buddy for the first pcp->batch nr of pages.
1131 if (prefetch_nr
++ < pcp
->batch
)
1132 prefetch_buddy(page
);
1133 } while (--count
&& --batch_free
&& !list_empty(list
));
1136 spin_lock(&zone
->lock
);
1137 isolated_pageblocks
= has_isolate_pageblock(zone
);
1140 * Use safe version since after __free_one_page(),
1141 * page->lru.next will not point to original list.
1143 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1144 int mt
= get_pcppage_migratetype(page
);
1145 /* MIGRATE_ISOLATE page should not go to pcplists */
1146 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1147 /* Pageblock could have been isolated meanwhile */
1148 if (unlikely(isolated_pageblocks
))
1149 mt
= get_pageblock_migratetype(page
);
1151 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1152 trace_mm_page_pcpu_drain(page
, 0, mt
);
1154 spin_unlock(&zone
->lock
);
1157 static void free_one_page(struct zone
*zone
,
1158 struct page
*page
, unsigned long pfn
,
1162 spin_lock(&zone
->lock
);
1163 if (unlikely(has_isolate_pageblock(zone
) ||
1164 is_migrate_isolate(migratetype
))) {
1165 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1167 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1168 spin_unlock(&zone
->lock
);
1171 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1172 unsigned long zone
, int nid
)
1174 mm_zero_struct_page(page
);
1175 set_page_links(page
, zone
, nid
, pfn
);
1176 init_page_count(page
);
1177 page_mapcount_reset(page
);
1178 page_cpupid_reset_last(page
);
1180 INIT_LIST_HEAD(&page
->lru
);
1181 #ifdef WANT_PAGE_VIRTUAL
1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 if (!is_highmem_idx(zone
))
1184 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189 static void __meminit
init_reserved_page(unsigned long pfn
)
1194 if (!early_page_uninitialised(pfn
))
1197 nid
= early_pfn_to_nid(pfn
);
1198 pgdat
= NODE_DATA(nid
);
1200 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1201 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1203 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1206 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1209 static inline void init_reserved_page(unsigned long pfn
)
1212 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215 * Initialised pages do not have PageReserved set. This function is
1216 * called for each range allocated by the bootmem allocator and
1217 * marks the pages PageReserved. The remaining valid pages are later
1218 * sent to the buddy page allocator.
1220 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1222 unsigned long start_pfn
= PFN_DOWN(start
);
1223 unsigned long end_pfn
= PFN_UP(end
);
1225 for (; start_pfn
< end_pfn
; start_pfn
++) {
1226 if (pfn_valid(start_pfn
)) {
1227 struct page
*page
= pfn_to_page(start_pfn
);
1229 init_reserved_page(start_pfn
);
1231 /* Avoid false-positive PageTail() */
1232 INIT_LIST_HEAD(&page
->lru
);
1234 SetPageReserved(page
);
1239 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1241 unsigned long flags
;
1243 unsigned long pfn
= page_to_pfn(page
);
1245 if (!free_pages_prepare(page
, order
, true))
1248 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1249 local_irq_save(flags
);
1250 __count_vm_events(PGFREE
, 1 << order
);
1251 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1252 local_irq_restore(flags
);
1255 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1257 unsigned int nr_pages
= 1 << order
;
1258 struct page
*p
= page
;
1262 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1264 __ClearPageReserved(p
);
1265 set_page_count(p
, 0);
1267 __ClearPageReserved(p
);
1268 set_page_count(p
, 0);
1270 page_zone(page
)->managed_pages
+= nr_pages
;
1271 set_page_refcounted(page
);
1272 __free_pages(page
, order
);
1275 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1276 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1278 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1280 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1282 static DEFINE_SPINLOCK(early_pfn_lock
);
1285 spin_lock(&early_pfn_lock
);
1286 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1288 nid
= first_online_node
;
1289 spin_unlock(&early_pfn_lock
);
1295 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1296 static inline bool __meminit __maybe_unused
1297 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1298 struct mminit_pfnnid_cache
*state
)
1302 nid
= __early_pfn_to_nid(pfn
, state
);
1303 if (nid
>= 0 && nid
!= node
)
1308 /* Only safe to use early in boot when initialisation is single-threaded */
1309 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1311 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1316 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1320 static inline bool __meminit __maybe_unused
1321 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1322 struct mminit_pfnnid_cache
*state
)
1329 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1332 if (early_page_uninitialised(pfn
))
1334 return __free_pages_boot_core(page
, order
);
1338 * Check that the whole (or subset of) a pageblock given by the interval of
1339 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340 * with the migration of free compaction scanner. The scanners then need to
1341 * use only pfn_valid_within() check for arches that allow holes within
1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1346 * It's possible on some configurations to have a setup like node0 node1 node0
1347 * i.e. it's possible that all pages within a zones range of pages do not
1348 * belong to a single zone. We assume that a border between node0 and node1
1349 * can occur within a single pageblock, but not a node0 node1 node0
1350 * interleaving within a single pageblock. It is therefore sufficient to check
1351 * the first and last page of a pageblock and avoid checking each individual
1352 * page in a pageblock.
1354 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1355 unsigned long end_pfn
, struct zone
*zone
)
1357 struct page
*start_page
;
1358 struct page
*end_page
;
1360 /* end_pfn is one past the range we are checking */
1363 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1366 start_page
= pfn_to_online_page(start_pfn
);
1370 if (page_zone(start_page
) != zone
)
1373 end_page
= pfn_to_page(end_pfn
);
1375 /* This gives a shorter code than deriving page_zone(end_page) */
1376 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1382 void set_zone_contiguous(struct zone
*zone
)
1384 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1385 unsigned long block_end_pfn
;
1387 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1388 for (; block_start_pfn
< zone_end_pfn(zone
);
1389 block_start_pfn
= block_end_pfn
,
1390 block_end_pfn
+= pageblock_nr_pages
) {
1392 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1394 if (!__pageblock_pfn_to_page(block_start_pfn
,
1395 block_end_pfn
, zone
))
1399 /* We confirm that there is no hole */
1400 zone
->contiguous
= true;
1403 void clear_zone_contiguous(struct zone
*zone
)
1405 zone
->contiguous
= false;
1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409 static void __init
deferred_free_range(unsigned long pfn
,
1410 unsigned long nr_pages
)
1418 page
= pfn_to_page(pfn
);
1420 /* Free a large naturally-aligned chunk if possible */
1421 if (nr_pages
== pageblock_nr_pages
&&
1422 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1423 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1424 __free_pages_boot_core(page
, pageblock_order
);
1428 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1429 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1430 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1431 __free_pages_boot_core(page
, 0);
1435 /* Completion tracking for deferred_init_memmap() threads */
1436 static atomic_t pgdat_init_n_undone __initdata
;
1437 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1439 static inline void __init
pgdat_init_report_one_done(void)
1441 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1442 complete(&pgdat_init_all_done_comp
);
1446 * Returns true if page needs to be initialized or freed to buddy allocator.
1448 * First we check if pfn is valid on architectures where it is possible to have
1449 * holes within pageblock_nr_pages. On systems where it is not possible, this
1450 * function is optimized out.
1452 * Then, we check if a current large page is valid by only checking the validity
1455 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1456 * within a node: a pfn is between start and end of a node, but does not belong
1457 * to this memory node.
1459 static inline bool __init
1460 deferred_pfn_valid(int nid
, unsigned long pfn
,
1461 struct mminit_pfnnid_cache
*nid_init_state
)
1463 if (!pfn_valid_within(pfn
))
1465 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1467 if (!meminit_pfn_in_nid(pfn
, nid
, nid_init_state
))
1473 * Free pages to buddy allocator. Try to free aligned pages in
1474 * pageblock_nr_pages sizes.
1476 static void __init
deferred_free_pages(int nid
, int zid
, unsigned long pfn
,
1477 unsigned long end_pfn
)
1479 struct mminit_pfnnid_cache nid_init_state
= { };
1480 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1481 unsigned long nr_free
= 0;
1483 for (; pfn
< end_pfn
; pfn
++) {
1484 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1485 deferred_free_range(pfn
- nr_free
, nr_free
);
1487 } else if (!(pfn
& nr_pgmask
)) {
1488 deferred_free_range(pfn
- nr_free
, nr_free
);
1490 touch_nmi_watchdog();
1495 /* Free the last block of pages to allocator */
1496 deferred_free_range(pfn
- nr_free
, nr_free
);
1500 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1501 * by performing it only once every pageblock_nr_pages.
1502 * Return number of pages initialized.
1504 static unsigned long __init
deferred_init_pages(int nid
, int zid
,
1506 unsigned long end_pfn
)
1508 struct mminit_pfnnid_cache nid_init_state
= { };
1509 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1510 unsigned long nr_pages
= 0;
1511 struct page
*page
= NULL
;
1513 for (; pfn
< end_pfn
; pfn
++) {
1514 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1517 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1518 page
= pfn_to_page(pfn
);
1519 touch_nmi_watchdog();
1523 __init_single_page(page
, pfn
, zid
, nid
);
1529 /* Initialise remaining memory on a node */
1530 static int __init
deferred_init_memmap(void *data
)
1532 pg_data_t
*pgdat
= data
;
1533 int nid
= pgdat
->node_id
;
1534 unsigned long start
= jiffies
;
1535 unsigned long nr_pages
= 0;
1536 unsigned long spfn
, epfn
, first_init_pfn
, flags
;
1537 phys_addr_t spa
, epa
;
1540 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1543 /* Bind memory initialisation thread to a local node if possible */
1544 if (!cpumask_empty(cpumask
))
1545 set_cpus_allowed_ptr(current
, cpumask
);
1547 pgdat_resize_lock(pgdat
, &flags
);
1548 first_init_pfn
= pgdat
->first_deferred_pfn
;
1549 if (first_init_pfn
== ULONG_MAX
) {
1550 pgdat_resize_unlock(pgdat
, &flags
);
1551 pgdat_init_report_one_done();
1555 /* Sanity check boundaries */
1556 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1557 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1558 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1560 /* Only the highest zone is deferred so find it */
1561 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1562 zone
= pgdat
->node_zones
+ zid
;
1563 if (first_init_pfn
< zone_end_pfn(zone
))
1566 first_init_pfn
= max(zone
->zone_start_pfn
, first_init_pfn
);
1569 * Initialize and free pages. We do it in two loops: first we initialize
1570 * struct page, than free to buddy allocator, because while we are
1571 * freeing pages we can access pages that are ahead (computing buddy
1572 * page in __free_one_page()).
1574 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1575 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1576 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1577 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
, epfn
);
1579 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1580 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1581 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1582 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1584 pgdat_resize_unlock(pgdat
, &flags
);
1586 /* Sanity check that the next zone really is unpopulated */
1587 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1589 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1590 jiffies_to_msecs(jiffies
- start
));
1592 pgdat_init_report_one_done();
1597 * During boot we initialize deferred pages on-demand, as needed, but once
1598 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1599 * and we can permanently disable that path.
1601 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
1604 * If this zone has deferred pages, try to grow it by initializing enough
1605 * deferred pages to satisfy the allocation specified by order, rounded up to
1606 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1607 * of SECTION_SIZE bytes by initializing struct pages in increments of
1608 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1610 * Return true when zone was grown, otherwise return false. We return true even
1611 * when we grow less than requested, to let the caller decide if there are
1612 * enough pages to satisfy the allocation.
1614 * Note: We use noinline because this function is needed only during boot, and
1615 * it is called from a __ref function _deferred_grow_zone. This way we are
1616 * making sure that it is not inlined into permanent text section.
1618 static noinline
bool __init
1619 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1621 int zid
= zone_idx(zone
);
1622 int nid
= zone_to_nid(zone
);
1623 pg_data_t
*pgdat
= NODE_DATA(nid
);
1624 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1625 unsigned long nr_pages
= 0;
1626 unsigned long first_init_pfn
, spfn
, epfn
, t
, flags
;
1627 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1628 phys_addr_t spa
, epa
;
1631 /* Only the last zone may have deferred pages */
1632 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1635 pgdat_resize_lock(pgdat
, &flags
);
1638 * If deferred pages have been initialized while we were waiting for
1639 * the lock, return true, as the zone was grown. The caller will retry
1640 * this zone. We won't return to this function since the caller also
1641 * has this static branch.
1643 if (!static_branch_unlikely(&deferred_pages
)) {
1644 pgdat_resize_unlock(pgdat
, &flags
);
1649 * If someone grew this zone while we were waiting for spinlock, return
1650 * true, as there might be enough pages already.
1652 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1653 pgdat_resize_unlock(pgdat
, &flags
);
1657 first_init_pfn
= max(zone
->zone_start_pfn
, first_deferred_pfn
);
1659 if (first_init_pfn
>= pgdat_end_pfn(pgdat
)) {
1660 pgdat_resize_unlock(pgdat
, &flags
);
1664 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1665 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1666 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1668 while (spfn
< epfn
&& nr_pages
< nr_pages_needed
) {
1669 t
= ALIGN(spfn
+ PAGES_PER_SECTION
, PAGES_PER_SECTION
);
1670 first_deferred_pfn
= min(t
, epfn
);
1671 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
,
1672 first_deferred_pfn
);
1673 spfn
= first_deferred_pfn
;
1676 if (nr_pages
>= nr_pages_needed
)
1680 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1681 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1682 epfn
= min_t(unsigned long, first_deferred_pfn
, PFN_DOWN(epa
));
1683 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1685 if (first_deferred_pfn
== epfn
)
1688 pgdat
->first_deferred_pfn
= first_deferred_pfn
;
1689 pgdat_resize_unlock(pgdat
, &flags
);
1691 return nr_pages
> 0;
1695 * deferred_grow_zone() is __init, but it is called from
1696 * get_page_from_freelist() during early boot until deferred_pages permanently
1697 * disables this call. This is why we have refdata wrapper to avoid warning,
1698 * and to ensure that the function body gets unloaded.
1701 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1703 return deferred_grow_zone(zone
, order
);
1706 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1708 void __init
page_alloc_init_late(void)
1712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1715 /* There will be num_node_state(N_MEMORY) threads */
1716 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1717 for_each_node_state(nid
, N_MEMORY
) {
1718 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1721 /* Block until all are initialised */
1722 wait_for_completion(&pgdat_init_all_done_comp
);
1725 * We initialized the rest of the deferred pages. Permanently disable
1726 * on-demand struct page initialization.
1728 static_branch_disable(&deferred_pages
);
1730 /* Reinit limits that are based on free pages after the kernel is up */
1731 files_maxfiles_init();
1733 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1734 /* Discard memblock private memory */
1738 for_each_populated_zone(zone
)
1739 set_zone_contiguous(zone
);
1743 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1744 void __init
init_cma_reserved_pageblock(struct page
*page
)
1746 unsigned i
= pageblock_nr_pages
;
1747 struct page
*p
= page
;
1750 __ClearPageReserved(p
);
1751 set_page_count(p
, 0);
1754 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1756 if (pageblock_order
>= MAX_ORDER
) {
1757 i
= pageblock_nr_pages
;
1760 set_page_refcounted(p
);
1761 __free_pages(p
, MAX_ORDER
- 1);
1762 p
+= MAX_ORDER_NR_PAGES
;
1763 } while (i
-= MAX_ORDER_NR_PAGES
);
1765 set_page_refcounted(page
);
1766 __free_pages(page
, pageblock_order
);
1769 adjust_managed_page_count(page
, pageblock_nr_pages
);
1774 * The order of subdivision here is critical for the IO subsystem.
1775 * Please do not alter this order without good reasons and regression
1776 * testing. Specifically, as large blocks of memory are subdivided,
1777 * the order in which smaller blocks are delivered depends on the order
1778 * they're subdivided in this function. This is the primary factor
1779 * influencing the order in which pages are delivered to the IO
1780 * subsystem according to empirical testing, and this is also justified
1781 * by considering the behavior of a buddy system containing a single
1782 * large block of memory acted on by a series of small allocations.
1783 * This behavior is a critical factor in sglist merging's success.
1787 static inline void expand(struct zone
*zone
, struct page
*page
,
1788 int low
, int high
, struct free_area
*area
,
1791 unsigned long size
= 1 << high
;
1793 while (high
> low
) {
1797 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1800 * Mark as guard pages (or page), that will allow to
1801 * merge back to allocator when buddy will be freed.
1802 * Corresponding page table entries will not be touched,
1803 * pages will stay not present in virtual address space
1805 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1808 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1810 set_page_order(&page
[size
], high
);
1814 static void check_new_page_bad(struct page
*page
)
1816 const char *bad_reason
= NULL
;
1817 unsigned long bad_flags
= 0;
1819 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1820 bad_reason
= "nonzero mapcount";
1821 if (unlikely(page
->mapping
!= NULL
))
1822 bad_reason
= "non-NULL mapping";
1823 if (unlikely(page_ref_count(page
) != 0))
1824 bad_reason
= "nonzero _count";
1825 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1826 bad_reason
= "HWPoisoned (hardware-corrupted)";
1827 bad_flags
= __PG_HWPOISON
;
1828 /* Don't complain about hwpoisoned pages */
1829 page_mapcount_reset(page
); /* remove PageBuddy */
1832 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1833 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1834 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1837 if (unlikely(page
->mem_cgroup
))
1838 bad_reason
= "page still charged to cgroup";
1840 bad_page(page
, bad_reason
, bad_flags
);
1844 * This page is about to be returned from the page allocator
1846 static inline int check_new_page(struct page
*page
)
1848 if (likely(page_expected_state(page
,
1849 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1852 check_new_page_bad(page
);
1856 static inline bool free_pages_prezeroed(void)
1858 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1859 page_poisoning_enabled();
1862 #ifdef CONFIG_DEBUG_VM
1863 static bool check_pcp_refill(struct page
*page
)
1868 static bool check_new_pcp(struct page
*page
)
1870 return check_new_page(page
);
1873 static bool check_pcp_refill(struct page
*page
)
1875 return check_new_page(page
);
1877 static bool check_new_pcp(struct page
*page
)
1881 #endif /* CONFIG_DEBUG_VM */
1883 static bool check_new_pages(struct page
*page
, unsigned int order
)
1886 for (i
= 0; i
< (1 << order
); i
++) {
1887 struct page
*p
= page
+ i
;
1889 if (unlikely(check_new_page(p
)))
1896 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1899 set_page_private(page
, 0);
1900 set_page_refcounted(page
);
1902 arch_alloc_page(page
, order
);
1903 kernel_map_pages(page
, 1 << order
, 1);
1904 kernel_poison_pages(page
, 1 << order
, 1);
1905 kasan_alloc_pages(page
, order
);
1906 set_page_owner(page
, order
, gfp_flags
);
1909 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1910 unsigned int alloc_flags
)
1914 post_alloc_hook(page
, order
, gfp_flags
);
1916 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1917 for (i
= 0; i
< (1 << order
); i
++)
1918 clear_highpage(page
+ i
);
1920 if (order
&& (gfp_flags
& __GFP_COMP
))
1921 prep_compound_page(page
, order
);
1924 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1925 * allocate the page. The expectation is that the caller is taking
1926 * steps that will free more memory. The caller should avoid the page
1927 * being used for !PFMEMALLOC purposes.
1929 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1930 set_page_pfmemalloc(page
);
1932 clear_page_pfmemalloc(page
);
1936 * Go through the free lists for the given migratetype and remove
1937 * the smallest available page from the freelists
1939 static __always_inline
1940 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1943 unsigned int current_order
;
1944 struct free_area
*area
;
1947 /* Find a page of the appropriate size in the preferred list */
1948 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1949 area
= &(zone
->free_area
[current_order
]);
1950 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1954 list_del(&page
->lru
);
1955 rmv_page_order(page
);
1957 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1958 set_pcppage_migratetype(page
, migratetype
);
1967 * This array describes the order lists are fallen back to when
1968 * the free lists for the desirable migrate type are depleted
1970 static int fallbacks
[MIGRATE_TYPES
][4] = {
1971 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1972 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1973 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1975 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1977 #ifdef CONFIG_MEMORY_ISOLATION
1978 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1983 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1986 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1989 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1990 unsigned int order
) { return NULL
; }
1994 * Move the free pages in a range to the free lists of the requested type.
1995 * Note that start_page and end_pages are not aligned on a pageblock
1996 * boundary. If alignment is required, use move_freepages_block()
1998 static int move_freepages(struct zone
*zone
,
1999 struct page
*start_page
, struct page
*end_page
,
2000 int migratetype
, int *num_movable
)
2004 int pages_moved
= 0;
2006 #ifndef CONFIG_HOLES_IN_ZONE
2008 * page_zone is not safe to call in this context when
2009 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2010 * anyway as we check zone boundaries in move_freepages_block().
2011 * Remove at a later date when no bug reports exist related to
2012 * grouping pages by mobility
2014 VM_BUG_ON(pfn_valid(page_to_pfn(start_page
)) &&
2015 pfn_valid(page_to_pfn(end_page
)) &&
2016 page_zone(start_page
) != page_zone(end_page
));
2022 for (page
= start_page
; page
<= end_page
;) {
2023 if (!pfn_valid_within(page_to_pfn(page
))) {
2028 /* Make sure we are not inadvertently changing nodes */
2029 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2031 if (!PageBuddy(page
)) {
2033 * We assume that pages that could be isolated for
2034 * migration are movable. But we don't actually try
2035 * isolating, as that would be expensive.
2038 (PageLRU(page
) || __PageMovable(page
)))
2045 order
= page_order(page
);
2046 list_move(&page
->lru
,
2047 &zone
->free_area
[order
].free_list
[migratetype
]);
2049 pages_moved
+= 1 << order
;
2055 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2056 int migratetype
, int *num_movable
)
2058 unsigned long start_pfn
, end_pfn
;
2059 struct page
*start_page
, *end_page
;
2061 start_pfn
= page_to_pfn(page
);
2062 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2063 start_page
= pfn_to_page(start_pfn
);
2064 end_page
= start_page
+ pageblock_nr_pages
- 1;
2065 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2067 /* Do not cross zone boundaries */
2068 if (!zone_spans_pfn(zone
, start_pfn
))
2070 if (!zone_spans_pfn(zone
, end_pfn
))
2073 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2077 static void change_pageblock_range(struct page
*pageblock_page
,
2078 int start_order
, int migratetype
)
2080 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2082 while (nr_pageblocks
--) {
2083 set_pageblock_migratetype(pageblock_page
, migratetype
);
2084 pageblock_page
+= pageblock_nr_pages
;
2089 * When we are falling back to another migratetype during allocation, try to
2090 * steal extra free pages from the same pageblocks to satisfy further
2091 * allocations, instead of polluting multiple pageblocks.
2093 * If we are stealing a relatively large buddy page, it is likely there will
2094 * be more free pages in the pageblock, so try to steal them all. For
2095 * reclaimable and unmovable allocations, we steal regardless of page size,
2096 * as fragmentation caused by those allocations polluting movable pageblocks
2097 * is worse than movable allocations stealing from unmovable and reclaimable
2100 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2103 * Leaving this order check is intended, although there is
2104 * relaxed order check in next check. The reason is that
2105 * we can actually steal whole pageblock if this condition met,
2106 * but, below check doesn't guarantee it and that is just heuristic
2107 * so could be changed anytime.
2109 if (order
>= pageblock_order
)
2112 if (order
>= pageblock_order
/ 2 ||
2113 start_mt
== MIGRATE_RECLAIMABLE
||
2114 start_mt
== MIGRATE_UNMOVABLE
||
2115 page_group_by_mobility_disabled
)
2122 * This function implements actual steal behaviour. If order is large enough,
2123 * we can steal whole pageblock. If not, we first move freepages in this
2124 * pageblock to our migratetype and determine how many already-allocated pages
2125 * are there in the pageblock with a compatible migratetype. If at least half
2126 * of pages are free or compatible, we can change migratetype of the pageblock
2127 * itself, so pages freed in the future will be put on the correct free list.
2129 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2130 int start_type
, bool whole_block
)
2132 unsigned int current_order
= page_order(page
);
2133 struct free_area
*area
;
2134 int free_pages
, movable_pages
, alike_pages
;
2137 old_block_type
= get_pageblock_migratetype(page
);
2140 * This can happen due to races and we want to prevent broken
2141 * highatomic accounting.
2143 if (is_migrate_highatomic(old_block_type
))
2146 /* Take ownership for orders >= pageblock_order */
2147 if (current_order
>= pageblock_order
) {
2148 change_pageblock_range(page
, current_order
, start_type
);
2152 /* We are not allowed to try stealing from the whole block */
2156 free_pages
= move_freepages_block(zone
, page
, start_type
,
2159 * Determine how many pages are compatible with our allocation.
2160 * For movable allocation, it's the number of movable pages which
2161 * we just obtained. For other types it's a bit more tricky.
2163 if (start_type
== MIGRATE_MOVABLE
) {
2164 alike_pages
= movable_pages
;
2167 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2168 * to MOVABLE pageblock, consider all non-movable pages as
2169 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2170 * vice versa, be conservative since we can't distinguish the
2171 * exact migratetype of non-movable pages.
2173 if (old_block_type
== MIGRATE_MOVABLE
)
2174 alike_pages
= pageblock_nr_pages
2175 - (free_pages
+ movable_pages
);
2180 /* moving whole block can fail due to zone boundary conditions */
2185 * If a sufficient number of pages in the block are either free or of
2186 * comparable migratability as our allocation, claim the whole block.
2188 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2189 page_group_by_mobility_disabled
)
2190 set_pageblock_migratetype(page
, start_type
);
2195 area
= &zone
->free_area
[current_order
];
2196 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2200 * Check whether there is a suitable fallback freepage with requested order.
2201 * If only_stealable is true, this function returns fallback_mt only if
2202 * we can steal other freepages all together. This would help to reduce
2203 * fragmentation due to mixed migratetype pages in one pageblock.
2205 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2206 int migratetype
, bool only_stealable
, bool *can_steal
)
2211 if (area
->nr_free
== 0)
2216 fallback_mt
= fallbacks
[migratetype
][i
];
2217 if (fallback_mt
== MIGRATE_TYPES
)
2220 if (list_empty(&area
->free_list
[fallback_mt
]))
2223 if (can_steal_fallback(order
, migratetype
))
2226 if (!only_stealable
)
2237 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2238 * there are no empty page blocks that contain a page with a suitable order
2240 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2241 unsigned int alloc_order
)
2244 unsigned long max_managed
, flags
;
2247 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2248 * Check is race-prone but harmless.
2250 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2251 if (zone
->nr_reserved_highatomic
>= max_managed
)
2254 spin_lock_irqsave(&zone
->lock
, flags
);
2256 /* Recheck the nr_reserved_highatomic limit under the lock */
2257 if (zone
->nr_reserved_highatomic
>= max_managed
)
2261 mt
= get_pageblock_migratetype(page
);
2262 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2263 && !is_migrate_cma(mt
)) {
2264 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2265 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2266 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2270 spin_unlock_irqrestore(&zone
->lock
, flags
);
2274 * Used when an allocation is about to fail under memory pressure. This
2275 * potentially hurts the reliability of high-order allocations when under
2276 * intense memory pressure but failed atomic allocations should be easier
2277 * to recover from than an OOM.
2279 * If @force is true, try to unreserve a pageblock even though highatomic
2280 * pageblock is exhausted.
2282 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2285 struct zonelist
*zonelist
= ac
->zonelist
;
2286 unsigned long flags
;
2293 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2296 * Preserve at least one pageblock unless memory pressure
2299 if (!force
&& zone
->nr_reserved_highatomic
<=
2303 spin_lock_irqsave(&zone
->lock
, flags
);
2304 for (order
= 0; order
< MAX_ORDER
; order
++) {
2305 struct free_area
*area
= &(zone
->free_area
[order
]);
2307 page
= list_first_entry_or_null(
2308 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2314 * In page freeing path, migratetype change is racy so
2315 * we can counter several free pages in a pageblock
2316 * in this loop althoug we changed the pageblock type
2317 * from highatomic to ac->migratetype. So we should
2318 * adjust the count once.
2320 if (is_migrate_highatomic_page(page
)) {
2322 * It should never happen but changes to
2323 * locking could inadvertently allow a per-cpu
2324 * drain to add pages to MIGRATE_HIGHATOMIC
2325 * while unreserving so be safe and watch for
2328 zone
->nr_reserved_highatomic
-= min(
2330 zone
->nr_reserved_highatomic
);
2334 * Convert to ac->migratetype and avoid the normal
2335 * pageblock stealing heuristics. Minimally, the caller
2336 * is doing the work and needs the pages. More
2337 * importantly, if the block was always converted to
2338 * MIGRATE_UNMOVABLE or another type then the number
2339 * of pageblocks that cannot be completely freed
2342 set_pageblock_migratetype(page
, ac
->migratetype
);
2343 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2346 spin_unlock_irqrestore(&zone
->lock
, flags
);
2350 spin_unlock_irqrestore(&zone
->lock
, flags
);
2357 * Try finding a free buddy page on the fallback list and put it on the free
2358 * list of requested migratetype, possibly along with other pages from the same
2359 * block, depending on fragmentation avoidance heuristics. Returns true if
2360 * fallback was found so that __rmqueue_smallest() can grab it.
2362 * The use of signed ints for order and current_order is a deliberate
2363 * deviation from the rest of this file, to make the for loop
2364 * condition simpler.
2366 static __always_inline
bool
2367 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2369 struct free_area
*area
;
2376 * Find the largest available free page in the other list. This roughly
2377 * approximates finding the pageblock with the most free pages, which
2378 * would be too costly to do exactly.
2380 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2382 area
= &(zone
->free_area
[current_order
]);
2383 fallback_mt
= find_suitable_fallback(area
, current_order
,
2384 start_migratetype
, false, &can_steal
);
2385 if (fallback_mt
== -1)
2389 * We cannot steal all free pages from the pageblock and the
2390 * requested migratetype is movable. In that case it's better to
2391 * steal and split the smallest available page instead of the
2392 * largest available page, because even if the next movable
2393 * allocation falls back into a different pageblock than this
2394 * one, it won't cause permanent fragmentation.
2396 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2397 && current_order
> order
)
2406 for (current_order
= order
; current_order
< MAX_ORDER
;
2408 area
= &(zone
->free_area
[current_order
]);
2409 fallback_mt
= find_suitable_fallback(area
, current_order
,
2410 start_migratetype
, false, &can_steal
);
2411 if (fallback_mt
!= -1)
2416 * This should not happen - we already found a suitable fallback
2417 * when looking for the largest page.
2419 VM_BUG_ON(current_order
== MAX_ORDER
);
2422 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2425 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2427 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2428 start_migratetype
, fallback_mt
);
2435 * Do the hard work of removing an element from the buddy allocator.
2436 * Call me with the zone->lock already held.
2438 static __always_inline
struct page
*
2439 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
)
2444 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2445 if (unlikely(!page
)) {
2446 if (migratetype
== MIGRATE_MOVABLE
)
2447 page
= __rmqueue_cma_fallback(zone
, order
);
2449 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2453 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2458 * Obtain a specified number of elements from the buddy allocator, all under
2459 * a single hold of the lock, for efficiency. Add them to the supplied list.
2460 * Returns the number of new pages which were placed at *list.
2462 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2463 unsigned long count
, struct list_head
*list
,
2468 spin_lock(&zone
->lock
);
2469 for (i
= 0; i
< count
; ++i
) {
2470 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2471 if (unlikely(page
== NULL
))
2474 if (unlikely(check_pcp_refill(page
)))
2478 * Split buddy pages returned by expand() are received here in
2479 * physical page order. The page is added to the tail of
2480 * caller's list. From the callers perspective, the linked list
2481 * is ordered by page number under some conditions. This is
2482 * useful for IO devices that can forward direction from the
2483 * head, thus also in the physical page order. This is useful
2484 * for IO devices that can merge IO requests if the physical
2485 * pages are ordered properly.
2487 list_add_tail(&page
->lru
, list
);
2489 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2490 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2495 * i pages were removed from the buddy list even if some leak due
2496 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2497 * on i. Do not confuse with 'alloced' which is the number of
2498 * pages added to the pcp list.
2500 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2501 spin_unlock(&zone
->lock
);
2507 * Called from the vmstat counter updater to drain pagesets of this
2508 * currently executing processor on remote nodes after they have
2511 * Note that this function must be called with the thread pinned to
2512 * a single processor.
2514 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2516 unsigned long flags
;
2517 int to_drain
, batch
;
2519 local_irq_save(flags
);
2520 batch
= READ_ONCE(pcp
->batch
);
2521 to_drain
= min(pcp
->count
, batch
);
2523 free_pcppages_bulk(zone
, to_drain
, pcp
);
2524 local_irq_restore(flags
);
2529 * Drain pcplists of the indicated processor and zone.
2531 * The processor must either be the current processor and the
2532 * thread pinned to the current processor or a processor that
2535 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2537 unsigned long flags
;
2538 struct per_cpu_pageset
*pset
;
2539 struct per_cpu_pages
*pcp
;
2541 local_irq_save(flags
);
2542 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2546 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2547 local_irq_restore(flags
);
2551 * Drain pcplists of all zones on the indicated processor.
2553 * The processor must either be the current processor and the
2554 * thread pinned to the current processor or a processor that
2557 static void drain_pages(unsigned int cpu
)
2561 for_each_populated_zone(zone
) {
2562 drain_pages_zone(cpu
, zone
);
2567 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2569 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2570 * the single zone's pages.
2572 void drain_local_pages(struct zone
*zone
)
2574 int cpu
= smp_processor_id();
2577 drain_pages_zone(cpu
, zone
);
2582 static void drain_local_pages_wq(struct work_struct
*work
)
2585 * drain_all_pages doesn't use proper cpu hotplug protection so
2586 * we can race with cpu offline when the WQ can move this from
2587 * a cpu pinned worker to an unbound one. We can operate on a different
2588 * cpu which is allright but we also have to make sure to not move to
2592 drain_local_pages(NULL
);
2597 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2599 * When zone parameter is non-NULL, spill just the single zone's pages.
2601 * Note that this can be extremely slow as the draining happens in a workqueue.
2603 void drain_all_pages(struct zone
*zone
)
2608 * Allocate in the BSS so we wont require allocation in
2609 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2611 static cpumask_t cpus_with_pcps
;
2614 * Make sure nobody triggers this path before mm_percpu_wq is fully
2617 if (WARN_ON_ONCE(!mm_percpu_wq
))
2621 * Do not drain if one is already in progress unless it's specific to
2622 * a zone. Such callers are primarily CMA and memory hotplug and need
2623 * the drain to be complete when the call returns.
2625 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2628 mutex_lock(&pcpu_drain_mutex
);
2632 * We don't care about racing with CPU hotplug event
2633 * as offline notification will cause the notified
2634 * cpu to drain that CPU pcps and on_each_cpu_mask
2635 * disables preemption as part of its processing
2637 for_each_online_cpu(cpu
) {
2638 struct per_cpu_pageset
*pcp
;
2640 bool has_pcps
= false;
2643 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2647 for_each_populated_zone(z
) {
2648 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2649 if (pcp
->pcp
.count
) {
2657 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2659 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2662 for_each_cpu(cpu
, &cpus_with_pcps
) {
2663 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2664 INIT_WORK(work
, drain_local_pages_wq
);
2665 queue_work_on(cpu
, mm_percpu_wq
, work
);
2667 for_each_cpu(cpu
, &cpus_with_pcps
)
2668 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2670 mutex_unlock(&pcpu_drain_mutex
);
2673 #ifdef CONFIG_HIBERNATION
2676 * Touch the watchdog for every WD_PAGE_COUNT pages.
2678 #define WD_PAGE_COUNT (128*1024)
2680 void mark_free_pages(struct zone
*zone
)
2682 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2683 unsigned long flags
;
2684 unsigned int order
, t
;
2687 if (zone_is_empty(zone
))
2690 spin_lock_irqsave(&zone
->lock
, flags
);
2692 max_zone_pfn
= zone_end_pfn(zone
);
2693 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2694 if (pfn_valid(pfn
)) {
2695 page
= pfn_to_page(pfn
);
2697 if (!--page_count
) {
2698 touch_nmi_watchdog();
2699 page_count
= WD_PAGE_COUNT
;
2702 if (page_zone(page
) != zone
)
2705 if (!swsusp_page_is_forbidden(page
))
2706 swsusp_unset_page_free(page
);
2709 for_each_migratetype_order(order
, t
) {
2710 list_for_each_entry(page
,
2711 &zone
->free_area
[order
].free_list
[t
], lru
) {
2714 pfn
= page_to_pfn(page
);
2715 for (i
= 0; i
< (1UL << order
); i
++) {
2716 if (!--page_count
) {
2717 touch_nmi_watchdog();
2718 page_count
= WD_PAGE_COUNT
;
2720 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2724 spin_unlock_irqrestore(&zone
->lock
, flags
);
2726 #endif /* CONFIG_PM */
2728 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
2732 if (!free_pcp_prepare(page
))
2735 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2736 set_pcppage_migratetype(page
, migratetype
);
2740 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
2742 struct zone
*zone
= page_zone(page
);
2743 struct per_cpu_pages
*pcp
;
2746 migratetype
= get_pcppage_migratetype(page
);
2747 __count_vm_event(PGFREE
);
2750 * We only track unmovable, reclaimable and movable on pcp lists.
2751 * Free ISOLATE pages back to the allocator because they are being
2752 * offlined but treat HIGHATOMIC as movable pages so we can get those
2753 * areas back if necessary. Otherwise, we may have to free
2754 * excessively into the page allocator
2756 if (migratetype
>= MIGRATE_PCPTYPES
) {
2757 if (unlikely(is_migrate_isolate(migratetype
))) {
2758 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2761 migratetype
= MIGRATE_MOVABLE
;
2764 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2765 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2767 if (pcp
->count
>= pcp
->high
) {
2768 unsigned long batch
= READ_ONCE(pcp
->batch
);
2769 free_pcppages_bulk(zone
, batch
, pcp
);
2774 * Free a 0-order page
2776 void free_unref_page(struct page
*page
)
2778 unsigned long flags
;
2779 unsigned long pfn
= page_to_pfn(page
);
2781 if (!free_unref_page_prepare(page
, pfn
))
2784 local_irq_save(flags
);
2785 free_unref_page_commit(page
, pfn
);
2786 local_irq_restore(flags
);
2790 * Free a list of 0-order pages
2792 void free_unref_page_list(struct list_head
*list
)
2794 struct page
*page
, *next
;
2795 unsigned long flags
, pfn
;
2796 int batch_count
= 0;
2798 /* Prepare pages for freeing */
2799 list_for_each_entry_safe(page
, next
, list
, lru
) {
2800 pfn
= page_to_pfn(page
);
2801 if (!free_unref_page_prepare(page
, pfn
))
2802 list_del(&page
->lru
);
2803 set_page_private(page
, pfn
);
2806 local_irq_save(flags
);
2807 list_for_each_entry_safe(page
, next
, list
, lru
) {
2808 unsigned long pfn
= page_private(page
);
2810 set_page_private(page
, 0);
2811 trace_mm_page_free_batched(page
);
2812 free_unref_page_commit(page
, pfn
);
2815 * Guard against excessive IRQ disabled times when we get
2816 * a large list of pages to free.
2818 if (++batch_count
== SWAP_CLUSTER_MAX
) {
2819 local_irq_restore(flags
);
2821 local_irq_save(flags
);
2824 local_irq_restore(flags
);
2828 * split_page takes a non-compound higher-order page, and splits it into
2829 * n (1<<order) sub-pages: page[0..n]
2830 * Each sub-page must be freed individually.
2832 * Note: this is probably too low level an operation for use in drivers.
2833 * Please consult with lkml before using this in your driver.
2835 void split_page(struct page
*page
, unsigned int order
)
2839 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2840 VM_BUG_ON_PAGE(!page_count(page
), page
);
2842 for (i
= 1; i
< (1 << order
); i
++)
2843 set_page_refcounted(page
+ i
);
2844 split_page_owner(page
, order
);
2846 EXPORT_SYMBOL_GPL(split_page
);
2848 int __isolate_free_page(struct page
*page
, unsigned int order
)
2850 unsigned long watermark
;
2854 BUG_ON(!PageBuddy(page
));
2856 zone
= page_zone(page
);
2857 mt
= get_pageblock_migratetype(page
);
2859 if (!is_migrate_isolate(mt
)) {
2861 * Obey watermarks as if the page was being allocated. We can
2862 * emulate a high-order watermark check with a raised order-0
2863 * watermark, because we already know our high-order page
2866 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2867 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2870 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2873 /* Remove page from free list */
2874 list_del(&page
->lru
);
2875 zone
->free_area
[order
].nr_free
--;
2876 rmv_page_order(page
);
2879 * Set the pageblock if the isolated page is at least half of a
2882 if (order
>= pageblock_order
- 1) {
2883 struct page
*endpage
= page
+ (1 << order
) - 1;
2884 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2885 int mt
= get_pageblock_migratetype(page
);
2886 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2887 && !is_migrate_highatomic(mt
))
2888 set_pageblock_migratetype(page
,
2894 return 1UL << order
;
2898 * Update NUMA hit/miss statistics
2900 * Must be called with interrupts disabled.
2902 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2905 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2907 /* skip numa counters update if numa stats is disabled */
2908 if (!static_branch_likely(&vm_numa_stat_key
))
2911 if (zone_to_nid(z
) != numa_node_id())
2912 local_stat
= NUMA_OTHER
;
2914 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
2915 __inc_numa_state(z
, NUMA_HIT
);
2917 __inc_numa_state(z
, NUMA_MISS
);
2918 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2920 __inc_numa_state(z
, local_stat
);
2924 /* Remove page from the per-cpu list, caller must protect the list */
2925 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2926 struct per_cpu_pages
*pcp
,
2927 struct list_head
*list
)
2932 if (list_empty(list
)) {
2933 pcp
->count
+= rmqueue_bulk(zone
, 0,
2936 if (unlikely(list_empty(list
)))
2940 page
= list_first_entry(list
, struct page
, lru
);
2941 list_del(&page
->lru
);
2943 } while (check_new_pcp(page
));
2948 /* Lock and remove page from the per-cpu list */
2949 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2950 struct zone
*zone
, unsigned int order
,
2951 gfp_t gfp_flags
, int migratetype
)
2953 struct per_cpu_pages
*pcp
;
2954 struct list_head
*list
;
2956 unsigned long flags
;
2958 local_irq_save(flags
);
2959 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2960 list
= &pcp
->lists
[migratetype
];
2961 page
= __rmqueue_pcplist(zone
, migratetype
, pcp
, list
);
2963 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2964 zone_statistics(preferred_zone
, zone
);
2966 local_irq_restore(flags
);
2971 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2974 struct page
*rmqueue(struct zone
*preferred_zone
,
2975 struct zone
*zone
, unsigned int order
,
2976 gfp_t gfp_flags
, unsigned int alloc_flags
,
2979 unsigned long flags
;
2982 if (likely(order
== 0)) {
2983 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2984 gfp_flags
, migratetype
);
2989 * We most definitely don't want callers attempting to
2990 * allocate greater than order-1 page units with __GFP_NOFAIL.
2992 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2993 spin_lock_irqsave(&zone
->lock
, flags
);
2997 if (alloc_flags
& ALLOC_HARDER
) {
2998 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3000 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3003 page
= __rmqueue(zone
, order
, migratetype
);
3004 } while (page
&& check_new_pages(page
, order
));
3005 spin_unlock(&zone
->lock
);
3008 __mod_zone_freepage_state(zone
, -(1 << order
),
3009 get_pcppage_migratetype(page
));
3011 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3012 zone_statistics(preferred_zone
, zone
);
3013 local_irq_restore(flags
);
3016 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3020 local_irq_restore(flags
);
3024 #ifdef CONFIG_FAIL_PAGE_ALLOC
3027 struct fault_attr attr
;
3029 bool ignore_gfp_highmem
;
3030 bool ignore_gfp_reclaim
;
3032 } fail_page_alloc
= {
3033 .attr
= FAULT_ATTR_INITIALIZER
,
3034 .ignore_gfp_reclaim
= true,
3035 .ignore_gfp_highmem
= true,
3039 static int __init
setup_fail_page_alloc(char *str
)
3041 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3043 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3045 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3047 if (order
< fail_page_alloc
.min_order
)
3049 if (gfp_mask
& __GFP_NOFAIL
)
3051 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3053 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3054 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3057 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3060 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3062 static int __init
fail_page_alloc_debugfs(void)
3064 umode_t mode
= S_IFREG
| 0600;
3067 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3068 &fail_page_alloc
.attr
);
3070 return PTR_ERR(dir
);
3072 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3073 &fail_page_alloc
.ignore_gfp_reclaim
))
3075 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3076 &fail_page_alloc
.ignore_gfp_highmem
))
3078 if (!debugfs_create_u32("min-order", mode
, dir
,
3079 &fail_page_alloc
.min_order
))
3084 debugfs_remove_recursive(dir
);
3089 late_initcall(fail_page_alloc_debugfs
);
3091 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3093 #else /* CONFIG_FAIL_PAGE_ALLOC */
3095 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3100 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3103 * Return true if free base pages are above 'mark'. For high-order checks it
3104 * will return true of the order-0 watermark is reached and there is at least
3105 * one free page of a suitable size. Checking now avoids taking the zone lock
3106 * to check in the allocation paths if no pages are free.
3108 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3109 int classzone_idx
, unsigned int alloc_flags
,
3114 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3116 /* free_pages may go negative - that's OK */
3117 free_pages
-= (1 << order
) - 1;
3119 if (alloc_flags
& ALLOC_HIGH
)
3123 * If the caller does not have rights to ALLOC_HARDER then subtract
3124 * the high-atomic reserves. This will over-estimate the size of the
3125 * atomic reserve but it avoids a search.
3127 if (likely(!alloc_harder
)) {
3128 free_pages
-= z
->nr_reserved_highatomic
;
3131 * OOM victims can try even harder than normal ALLOC_HARDER
3132 * users on the grounds that it's definitely going to be in
3133 * the exit path shortly and free memory. Any allocation it
3134 * makes during the free path will be small and short-lived.
3136 if (alloc_flags
& ALLOC_OOM
)
3144 /* If allocation can't use CMA areas don't use free CMA pages */
3145 if (!(alloc_flags
& ALLOC_CMA
))
3146 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3150 * Check watermarks for an order-0 allocation request. If these
3151 * are not met, then a high-order request also cannot go ahead
3152 * even if a suitable page happened to be free.
3154 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3157 /* If this is an order-0 request then the watermark is fine */
3161 /* For a high-order request, check at least one suitable page is free */
3162 for (o
= order
; o
< MAX_ORDER
; o
++) {
3163 struct free_area
*area
= &z
->free_area
[o
];
3169 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3170 if (!list_empty(&area
->free_list
[mt
]))
3175 if ((alloc_flags
& ALLOC_CMA
) &&
3176 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3181 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3187 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3188 int classzone_idx
, unsigned int alloc_flags
)
3190 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3191 zone_page_state(z
, NR_FREE_PAGES
));
3194 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3195 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3197 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3201 /* If allocation can't use CMA areas don't use free CMA pages */
3202 if (!(alloc_flags
& ALLOC_CMA
))
3203 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3207 * Fast check for order-0 only. If this fails then the reserves
3208 * need to be calculated. There is a corner case where the check
3209 * passes but only the high-order atomic reserve are free. If
3210 * the caller is !atomic then it'll uselessly search the free
3211 * list. That corner case is then slower but it is harmless.
3213 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3216 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3220 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3221 unsigned long mark
, int classzone_idx
)
3223 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3225 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3226 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3228 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3233 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3235 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3238 #else /* CONFIG_NUMA */
3239 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3243 #endif /* CONFIG_NUMA */
3246 * get_page_from_freelist goes through the zonelist trying to allocate
3249 static struct page
*
3250 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3251 const struct alloc_context
*ac
)
3253 struct zoneref
*z
= ac
->preferred_zoneref
;
3255 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3258 * Scan zonelist, looking for a zone with enough free.
3259 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3261 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3266 if (cpusets_enabled() &&
3267 (alloc_flags
& ALLOC_CPUSET
) &&
3268 !__cpuset_zone_allowed(zone
, gfp_mask
))
3271 * When allocating a page cache page for writing, we
3272 * want to get it from a node that is within its dirty
3273 * limit, such that no single node holds more than its
3274 * proportional share of globally allowed dirty pages.
3275 * The dirty limits take into account the node's
3276 * lowmem reserves and high watermark so that kswapd
3277 * should be able to balance it without having to
3278 * write pages from its LRU list.
3280 * XXX: For now, allow allocations to potentially
3281 * exceed the per-node dirty limit in the slowpath
3282 * (spread_dirty_pages unset) before going into reclaim,
3283 * which is important when on a NUMA setup the allowed
3284 * nodes are together not big enough to reach the
3285 * global limit. The proper fix for these situations
3286 * will require awareness of nodes in the
3287 * dirty-throttling and the flusher threads.
3289 if (ac
->spread_dirty_pages
) {
3290 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3293 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3294 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3299 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3300 if (!zone_watermark_fast(zone
, order
, mark
,
3301 ac_classzone_idx(ac
), alloc_flags
)) {
3304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3306 * Watermark failed for this zone, but see if we can
3307 * grow this zone if it contains deferred pages.
3309 if (static_branch_unlikely(&deferred_pages
)) {
3310 if (_deferred_grow_zone(zone
, order
))
3314 /* Checked here to keep the fast path fast */
3315 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3316 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3319 if (node_reclaim_mode
== 0 ||
3320 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3323 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3325 case NODE_RECLAIM_NOSCAN
:
3328 case NODE_RECLAIM_FULL
:
3329 /* scanned but unreclaimable */
3332 /* did we reclaim enough */
3333 if (zone_watermark_ok(zone
, order
, mark
,
3334 ac_classzone_idx(ac
), alloc_flags
))
3342 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3343 gfp_mask
, alloc_flags
, ac
->migratetype
);
3345 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3348 * If this is a high-order atomic allocation then check
3349 * if the pageblock should be reserved for the future
3351 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3352 reserve_highatomic_pageblock(page
, zone
, order
);
3356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3357 /* Try again if zone has deferred pages */
3358 if (static_branch_unlikely(&deferred_pages
)) {
3359 if (_deferred_grow_zone(zone
, order
))
3370 * Large machines with many possible nodes should not always dump per-node
3371 * meminfo in irq context.
3373 static inline bool should_suppress_show_mem(void)
3378 ret
= in_interrupt();
3383 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3385 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3386 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3388 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3392 * This documents exceptions given to allocations in certain
3393 * contexts that are allowed to allocate outside current's set
3396 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3397 if (tsk_is_oom_victim(current
) ||
3398 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3399 filter
&= ~SHOW_MEM_FILTER_NODES
;
3400 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3401 filter
&= ~SHOW_MEM_FILTER_NODES
;
3403 show_mem(filter
, nodemask
);
3406 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3408 struct va_format vaf
;
3410 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3411 DEFAULT_RATELIMIT_BURST
);
3413 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3416 va_start(args
, fmt
);
3419 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3420 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3421 nodemask_pr_args(nodemask
));
3424 cpuset_print_current_mems_allowed();
3427 warn_alloc_show_mem(gfp_mask
, nodemask
);
3430 static inline struct page
*
3431 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3432 unsigned int alloc_flags
,
3433 const struct alloc_context
*ac
)
3437 page
= get_page_from_freelist(gfp_mask
, order
,
3438 alloc_flags
|ALLOC_CPUSET
, ac
);
3440 * fallback to ignore cpuset restriction if our nodes
3444 page
= get_page_from_freelist(gfp_mask
, order
,
3450 static inline struct page
*
3451 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3452 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3454 struct oom_control oc
= {
3455 .zonelist
= ac
->zonelist
,
3456 .nodemask
= ac
->nodemask
,
3458 .gfp_mask
= gfp_mask
,
3463 *did_some_progress
= 0;
3466 * Acquire the oom lock. If that fails, somebody else is
3467 * making progress for us.
3469 if (!mutex_trylock(&oom_lock
)) {
3470 *did_some_progress
= 1;
3471 schedule_timeout_uninterruptible(1);
3476 * Go through the zonelist yet one more time, keep very high watermark
3477 * here, this is only to catch a parallel oom killing, we must fail if
3478 * we're still under heavy pressure. But make sure that this reclaim
3479 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3480 * allocation which will never fail due to oom_lock already held.
3482 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3483 ~__GFP_DIRECT_RECLAIM
, order
,
3484 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3488 /* Coredumps can quickly deplete all memory reserves */
3489 if (current
->flags
& PF_DUMPCORE
)
3491 /* The OOM killer will not help higher order allocs */
3492 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3495 * We have already exhausted all our reclaim opportunities without any
3496 * success so it is time to admit defeat. We will skip the OOM killer
3497 * because it is very likely that the caller has a more reasonable
3498 * fallback than shooting a random task.
3500 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3502 /* The OOM killer does not needlessly kill tasks for lowmem */
3503 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3505 if (pm_suspended_storage())
3508 * XXX: GFP_NOFS allocations should rather fail than rely on
3509 * other request to make a forward progress.
3510 * We are in an unfortunate situation where out_of_memory cannot
3511 * do much for this context but let's try it to at least get
3512 * access to memory reserved if the current task is killed (see
3513 * out_of_memory). Once filesystems are ready to handle allocation
3514 * failures more gracefully we should just bail out here.
3517 /* The OOM killer may not free memory on a specific node */
3518 if (gfp_mask
& __GFP_THISNODE
)
3521 /* Exhausted what can be done so it's blame time */
3522 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3523 *did_some_progress
= 1;
3526 * Help non-failing allocations by giving them access to memory
3529 if (gfp_mask
& __GFP_NOFAIL
)
3530 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3531 ALLOC_NO_WATERMARKS
, ac
);
3534 mutex_unlock(&oom_lock
);
3539 * Maximum number of compaction retries wit a progress before OOM
3540 * killer is consider as the only way to move forward.
3542 #define MAX_COMPACT_RETRIES 16
3544 #ifdef CONFIG_COMPACTION
3545 /* Try memory compaction for high-order allocations before reclaim */
3546 static struct page
*
3547 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3548 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3549 enum compact_priority prio
, enum compact_result
*compact_result
)
3552 unsigned int noreclaim_flag
;
3557 noreclaim_flag
= memalloc_noreclaim_save();
3558 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3560 memalloc_noreclaim_restore(noreclaim_flag
);
3562 if (*compact_result
<= COMPACT_INACTIVE
)
3566 * At least in one zone compaction wasn't deferred or skipped, so let's
3567 * count a compaction stall
3569 count_vm_event(COMPACTSTALL
);
3571 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3574 struct zone
*zone
= page_zone(page
);
3576 zone
->compact_blockskip_flush
= false;
3577 compaction_defer_reset(zone
, order
, true);
3578 count_vm_event(COMPACTSUCCESS
);
3583 * It's bad if compaction run occurs and fails. The most likely reason
3584 * is that pages exist, but not enough to satisfy watermarks.
3586 count_vm_event(COMPACTFAIL
);
3594 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3595 enum compact_result compact_result
,
3596 enum compact_priority
*compact_priority
,
3597 int *compaction_retries
)
3599 int max_retries
= MAX_COMPACT_RETRIES
;
3602 int retries
= *compaction_retries
;
3603 enum compact_priority priority
= *compact_priority
;
3608 if (compaction_made_progress(compact_result
))
3609 (*compaction_retries
)++;
3612 * compaction considers all the zone as desperately out of memory
3613 * so it doesn't really make much sense to retry except when the
3614 * failure could be caused by insufficient priority
3616 if (compaction_failed(compact_result
))
3617 goto check_priority
;
3620 * make sure the compaction wasn't deferred or didn't bail out early
3621 * due to locks contention before we declare that we should give up.
3622 * But do not retry if the given zonelist is not suitable for
3625 if (compaction_withdrawn(compact_result
)) {
3626 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3631 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3632 * costly ones because they are de facto nofail and invoke OOM
3633 * killer to move on while costly can fail and users are ready
3634 * to cope with that. 1/4 retries is rather arbitrary but we
3635 * would need much more detailed feedback from compaction to
3636 * make a better decision.
3638 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3640 if (*compaction_retries
<= max_retries
) {
3646 * Make sure there are attempts at the highest priority if we exhausted
3647 * all retries or failed at the lower priorities.
3650 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3651 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3653 if (*compact_priority
> min_priority
) {
3654 (*compact_priority
)--;
3655 *compaction_retries
= 0;
3659 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3663 static inline struct page
*
3664 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3665 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3666 enum compact_priority prio
, enum compact_result
*compact_result
)
3668 *compact_result
= COMPACT_SKIPPED
;
3673 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3674 enum compact_result compact_result
,
3675 enum compact_priority
*compact_priority
,
3676 int *compaction_retries
)
3681 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3685 * There are setups with compaction disabled which would prefer to loop
3686 * inside the allocator rather than hit the oom killer prematurely.
3687 * Let's give them a good hope and keep retrying while the order-0
3688 * watermarks are OK.
3690 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3692 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3693 ac_classzone_idx(ac
), alloc_flags
))
3698 #endif /* CONFIG_COMPACTION */
3700 #ifdef CONFIG_LOCKDEP
3701 static struct lockdep_map __fs_reclaim_map
=
3702 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3704 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3706 gfp_mask
= current_gfp_context(gfp_mask
);
3708 /* no reclaim without waiting on it */
3709 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3712 /* this guy won't enter reclaim */
3713 if (current
->flags
& PF_MEMALLOC
)
3716 /* We're only interested __GFP_FS allocations for now */
3717 if (!(gfp_mask
& __GFP_FS
))
3720 if (gfp_mask
& __GFP_NOLOCKDEP
)
3726 void __fs_reclaim_acquire(void)
3728 lock_map_acquire(&__fs_reclaim_map
);
3731 void __fs_reclaim_release(void)
3733 lock_map_release(&__fs_reclaim_map
);
3736 void fs_reclaim_acquire(gfp_t gfp_mask
)
3738 if (__need_fs_reclaim(gfp_mask
))
3739 __fs_reclaim_acquire();
3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3743 void fs_reclaim_release(gfp_t gfp_mask
)
3745 if (__need_fs_reclaim(gfp_mask
))
3746 __fs_reclaim_release();
3748 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3751 /* Perform direct synchronous page reclaim */
3753 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3754 const struct alloc_context
*ac
)
3756 struct reclaim_state reclaim_state
;
3758 unsigned int noreclaim_flag
;
3762 /* We now go into synchronous reclaim */
3763 cpuset_memory_pressure_bump();
3764 fs_reclaim_acquire(gfp_mask
);
3765 noreclaim_flag
= memalloc_noreclaim_save();
3766 reclaim_state
.reclaimed_slab
= 0;
3767 current
->reclaim_state
= &reclaim_state
;
3769 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3772 current
->reclaim_state
= NULL
;
3773 memalloc_noreclaim_restore(noreclaim_flag
);
3774 fs_reclaim_release(gfp_mask
);
3781 /* The really slow allocator path where we enter direct reclaim */
3782 static inline struct page
*
3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3784 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3785 unsigned long *did_some_progress
)
3787 struct page
*page
= NULL
;
3788 bool drained
= false;
3790 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3791 if (unlikely(!(*did_some_progress
)))
3795 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3798 * If an allocation failed after direct reclaim, it could be because
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them them and try again
3802 if (!page
&& !drained
) {
3803 unreserve_highatomic_pageblock(ac
, false);
3804 drain_all_pages(NULL
);
3812 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
3813 const struct alloc_context
*ac
)
3817 pg_data_t
*last_pgdat
= NULL
;
3818 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
3820 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
3822 if (last_pgdat
!= zone
->zone_pgdat
)
3823 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
3824 last_pgdat
= zone
->zone_pgdat
;
3828 static inline unsigned int
3829 gfp_to_alloc_flags(gfp_t gfp_mask
)
3831 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3837 * The caller may dip into page reserves a bit more if the caller
3838 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3842 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3844 if (gfp_mask
& __GFP_ATOMIC
) {
3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 * if it can't schedule.
3849 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3850 alloc_flags
|= ALLOC_HARDER
;
3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853 * comment for __cpuset_node_allowed().
3855 alloc_flags
&= ~ALLOC_CPUSET
;
3856 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3857 alloc_flags
|= ALLOC_HARDER
;
3860 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3861 alloc_flags
|= ALLOC_CMA
;
3866 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3868 if (!tsk_is_oom_victim(tsk
))
3872 * !MMU doesn't have oom reaper so give access to memory reserves
3873 * only to the thread with TIF_MEMDIE set
3875 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3882 * Distinguish requests which really need access to full memory
3883 * reserves from oom victims which can live with a portion of it
3885 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3887 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3889 if (gfp_mask
& __GFP_MEMALLOC
)
3890 return ALLOC_NO_WATERMARKS
;
3891 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3892 return ALLOC_NO_WATERMARKS
;
3893 if (!in_interrupt()) {
3894 if (current
->flags
& PF_MEMALLOC
)
3895 return ALLOC_NO_WATERMARKS
;
3896 else if (oom_reserves_allowed(current
))
3903 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3905 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3909 * Checks whether it makes sense to retry the reclaim to make a forward progress
3910 * for the given allocation request.
3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913 * without success, or when we couldn't even meet the watermark if we
3914 * reclaimed all remaining pages on the LRU lists.
3916 * Returns true if a retry is viable or false to enter the oom path.
3919 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3920 struct alloc_context
*ac
, int alloc_flags
,
3921 bool did_some_progress
, int *no_progress_loops
)
3927 * Costly allocations might have made a progress but this doesn't mean
3928 * their order will become available due to high fragmentation so
3929 * always increment the no progress counter for them
3931 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3932 *no_progress_loops
= 0;
3934 (*no_progress_loops
)++;
3937 * Make sure we converge to OOM if we cannot make any progress
3938 * several times in the row.
3940 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3941 /* Before OOM, exhaust highatomic_reserve */
3942 return unreserve_highatomic_pageblock(ac
, true);
3946 * Keep reclaiming pages while there is a chance this will lead
3947 * somewhere. If none of the target zones can satisfy our allocation
3948 * request even if all reclaimable pages are considered then we are
3949 * screwed and have to go OOM.
3951 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3953 unsigned long available
;
3954 unsigned long reclaimable
;
3955 unsigned long min_wmark
= min_wmark_pages(zone
);
3958 available
= reclaimable
= zone_reclaimable_pages(zone
);
3959 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3962 * Would the allocation succeed if we reclaimed all
3963 * reclaimable pages?
3965 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3966 ac_classzone_idx(ac
), alloc_flags
, available
);
3967 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3968 available
, min_wmark
, *no_progress_loops
, wmark
);
3971 * If we didn't make any progress and have a lot of
3972 * dirty + writeback pages then we should wait for
3973 * an IO to complete to slow down the reclaim and
3974 * prevent from pre mature OOM
3976 if (!did_some_progress
) {
3977 unsigned long write_pending
;
3979 write_pending
= zone_page_state_snapshot(zone
,
3980 NR_ZONE_WRITE_PENDING
);
3982 if (2 * write_pending
> reclaimable
) {
3983 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3989 * Memory allocation/reclaim might be called from a WQ
3990 * context and the current implementation of the WQ
3991 * concurrency control doesn't recognize that
3992 * a particular WQ is congested if the worker thread is
3993 * looping without ever sleeping. Therefore we have to
3994 * do a short sleep here rather than calling
3997 if (current
->flags
& PF_WQ_WORKER
)
3998 schedule_timeout_uninterruptible(1);
4010 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4013 * It's possible that cpuset's mems_allowed and the nodemask from
4014 * mempolicy don't intersect. This should be normally dealt with by
4015 * policy_nodemask(), but it's possible to race with cpuset update in
4016 * such a way the check therein was true, and then it became false
4017 * before we got our cpuset_mems_cookie here.
4018 * This assumes that for all allocations, ac->nodemask can come only
4019 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020 * when it does not intersect with the cpuset restrictions) or the
4021 * caller can deal with a violated nodemask.
4023 if (cpusets_enabled() && ac
->nodemask
&&
4024 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4025 ac
->nodemask
= NULL
;
4030 * When updating a task's mems_allowed or mempolicy nodemask, it is
4031 * possible to race with parallel threads in such a way that our
4032 * allocation can fail while the mask is being updated. If we are about
4033 * to fail, check if the cpuset changed during allocation and if so,
4036 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4042 static inline struct page
*
4043 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4044 struct alloc_context
*ac
)
4046 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4047 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4048 struct page
*page
= NULL
;
4049 unsigned int alloc_flags
;
4050 unsigned long did_some_progress
;
4051 enum compact_priority compact_priority
;
4052 enum compact_result compact_result
;
4053 int compaction_retries
;
4054 int no_progress_loops
;
4055 unsigned int cpuset_mems_cookie
;
4059 * In the slowpath, we sanity check order to avoid ever trying to
4060 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061 * be using allocators in order of preference for an area that is
4064 if (order
>= MAX_ORDER
) {
4065 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4070 * We also sanity check to catch abuse of atomic reserves being used by
4071 * callers that are not in atomic context.
4073 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4074 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4075 gfp_mask
&= ~__GFP_ATOMIC
;
4078 compaction_retries
= 0;
4079 no_progress_loops
= 0;
4080 compact_priority
= DEF_COMPACT_PRIORITY
;
4081 cpuset_mems_cookie
= read_mems_allowed_begin();
4084 * The fast path uses conservative alloc_flags to succeed only until
4085 * kswapd needs to be woken up, and to avoid the cost of setting up
4086 * alloc_flags precisely. So we do that now.
4088 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4091 * We need to recalculate the starting point for the zonelist iterator
4092 * because we might have used different nodemask in the fast path, or
4093 * there was a cpuset modification and we are retrying - otherwise we
4094 * could end up iterating over non-eligible zones endlessly.
4096 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4097 ac
->high_zoneidx
, ac
->nodemask
);
4098 if (!ac
->preferred_zoneref
->zone
)
4101 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4102 wake_all_kswapds(order
, gfp_mask
, ac
);
4105 * The adjusted alloc_flags might result in immediate success, so try
4108 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4113 * For costly allocations, try direct compaction first, as it's likely
4114 * that we have enough base pages and don't need to reclaim. For non-
4115 * movable high-order allocations, do that as well, as compaction will
4116 * try prevent permanent fragmentation by migrating from blocks of the
4118 * Don't try this for allocations that are allowed to ignore
4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4121 if (can_direct_reclaim
&&
4123 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4124 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4125 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4127 INIT_COMPACT_PRIORITY
,
4133 * Checks for costly allocations with __GFP_NORETRY, which
4134 * includes THP page fault allocations
4136 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4138 * If compaction is deferred for high-order allocations,
4139 * it is because sync compaction recently failed. If
4140 * this is the case and the caller requested a THP
4141 * allocation, we do not want to heavily disrupt the
4142 * system, so we fail the allocation instead of entering
4145 if (compact_result
== COMPACT_DEFERRED
)
4149 * Looks like reclaim/compaction is worth trying, but
4150 * sync compaction could be very expensive, so keep
4151 * using async compaction.
4153 compact_priority
= INIT_COMPACT_PRIORITY
;
4158 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4159 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4160 wake_all_kswapds(order
, gfp_mask
, ac
);
4162 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4164 alloc_flags
= reserve_flags
;
4167 * Reset the nodemask and zonelist iterators if memory policies can be
4168 * ignored. These allocations are high priority and system rather than
4171 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4172 ac
->nodemask
= NULL
;
4173 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4174 ac
->high_zoneidx
, ac
->nodemask
);
4177 /* Attempt with potentially adjusted zonelist and alloc_flags */
4178 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4182 /* Caller is not willing to reclaim, we can't balance anything */
4183 if (!can_direct_reclaim
)
4186 /* Avoid recursion of direct reclaim */
4187 if (current
->flags
& PF_MEMALLOC
)
4190 /* Try direct reclaim and then allocating */
4191 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4192 &did_some_progress
);
4196 /* Try direct compaction and then allocating */
4197 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4198 compact_priority
, &compact_result
);
4202 /* Do not loop if specifically requested */
4203 if (gfp_mask
& __GFP_NORETRY
)
4207 * Do not retry costly high order allocations unless they are
4208 * __GFP_RETRY_MAYFAIL
4210 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4213 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4214 did_some_progress
> 0, &no_progress_loops
))
4218 * It doesn't make any sense to retry for the compaction if the order-0
4219 * reclaim is not able to make any progress because the current
4220 * implementation of the compaction depends on the sufficient amount
4221 * of free memory (see __compaction_suitable)
4223 if (did_some_progress
> 0 &&
4224 should_compact_retry(ac
, order
, alloc_flags
,
4225 compact_result
, &compact_priority
,
4226 &compaction_retries
))
4230 /* Deal with possible cpuset update races before we start OOM killing */
4231 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4234 /* Reclaim has failed us, start killing things */
4235 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4239 /* Avoid allocations with no watermarks from looping endlessly */
4240 if (tsk_is_oom_victim(current
) &&
4241 (alloc_flags
== ALLOC_OOM
||
4242 (gfp_mask
& __GFP_NOMEMALLOC
)))
4245 /* Retry as long as the OOM killer is making progress */
4246 if (did_some_progress
) {
4247 no_progress_loops
= 0;
4252 /* Deal with possible cpuset update races before we fail */
4253 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4257 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4260 if (gfp_mask
& __GFP_NOFAIL
) {
4262 * All existing users of the __GFP_NOFAIL are blockable, so warn
4263 * of any new users that actually require GFP_NOWAIT
4265 if (WARN_ON_ONCE(!can_direct_reclaim
))
4269 * PF_MEMALLOC request from this context is rather bizarre
4270 * because we cannot reclaim anything and only can loop waiting
4271 * for somebody to do a work for us
4273 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4276 * non failing costly orders are a hard requirement which we
4277 * are not prepared for much so let's warn about these users
4278 * so that we can identify them and convert them to something
4281 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4284 * Help non-failing allocations by giving them access to memory
4285 * reserves but do not use ALLOC_NO_WATERMARKS because this
4286 * could deplete whole memory reserves which would just make
4287 * the situation worse
4289 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4297 warn_alloc(gfp_mask
, ac
->nodemask
,
4298 "page allocation failure: order:%u", order
);
4303 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4304 int preferred_nid
, nodemask_t
*nodemask
,
4305 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4306 unsigned int *alloc_flags
)
4308 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4309 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4310 ac
->nodemask
= nodemask
;
4311 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4313 if (cpusets_enabled()) {
4314 *alloc_mask
|= __GFP_HARDWALL
;
4316 ac
->nodemask
= &cpuset_current_mems_allowed
;
4318 *alloc_flags
|= ALLOC_CPUSET
;
4321 fs_reclaim_acquire(gfp_mask
);
4322 fs_reclaim_release(gfp_mask
);
4324 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4326 if (should_fail_alloc_page(gfp_mask
, order
))
4329 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4330 *alloc_flags
|= ALLOC_CMA
;
4335 /* Determine whether to spread dirty pages and what the first usable zone */
4336 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4338 /* Dirty zone balancing only done in the fast path */
4339 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4342 * The preferred zone is used for statistics but crucially it is
4343 * also used as the starting point for the zonelist iterator. It
4344 * may get reset for allocations that ignore memory policies.
4346 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4347 ac
->high_zoneidx
, ac
->nodemask
);
4351 * This is the 'heart' of the zoned buddy allocator.
4354 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4355 nodemask_t
*nodemask
)
4358 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4359 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4360 struct alloc_context ac
= { };
4362 gfp_mask
&= gfp_allowed_mask
;
4363 alloc_mask
= gfp_mask
;
4364 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4367 finalise_ac(gfp_mask
, &ac
);
4369 /* First allocation attempt */
4370 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4375 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4376 * resp. GFP_NOIO which has to be inherited for all allocation requests
4377 * from a particular context which has been marked by
4378 * memalloc_no{fs,io}_{save,restore}.
4380 alloc_mask
= current_gfp_context(gfp_mask
);
4381 ac
.spread_dirty_pages
= false;
4384 * Restore the original nodemask if it was potentially replaced with
4385 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4387 if (unlikely(ac
.nodemask
!= nodemask
))
4388 ac
.nodemask
= nodemask
;
4390 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4393 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4394 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4395 __free_pages(page
, order
);
4399 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4403 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4406 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4407 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4408 * you need to access high mem.
4410 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4414 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4417 return (unsigned long) page_address(page
);
4419 EXPORT_SYMBOL(__get_free_pages
);
4421 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4423 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4425 EXPORT_SYMBOL(get_zeroed_page
);
4427 void __free_pages(struct page
*page
, unsigned int order
)
4429 if (put_page_testzero(page
)) {
4431 free_unref_page(page
);
4433 __free_pages_ok(page
, order
);
4437 EXPORT_SYMBOL(__free_pages
);
4439 void free_pages(unsigned long addr
, unsigned int order
)
4442 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4443 __free_pages(virt_to_page((void *)addr
), order
);
4447 EXPORT_SYMBOL(free_pages
);
4451 * An arbitrary-length arbitrary-offset area of memory which resides
4452 * within a 0 or higher order page. Multiple fragments within that page
4453 * are individually refcounted, in the page's reference counter.
4455 * The page_frag functions below provide a simple allocation framework for
4456 * page fragments. This is used by the network stack and network device
4457 * drivers to provide a backing region of memory for use as either an
4458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4460 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4463 struct page
*page
= NULL
;
4464 gfp_t gfp
= gfp_mask
;
4466 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4467 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4469 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4470 PAGE_FRAG_CACHE_MAX_ORDER
);
4471 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4473 if (unlikely(!page
))
4474 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4476 nc
->va
= page
? page_address(page
) : NULL
;
4481 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4483 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4485 if (page_ref_sub_and_test(page
, count
)) {
4486 unsigned int order
= compound_order(page
);
4489 free_unref_page(page
);
4491 __free_pages_ok(page
, order
);
4494 EXPORT_SYMBOL(__page_frag_cache_drain
);
4496 void *page_frag_alloc(struct page_frag_cache
*nc
,
4497 unsigned int fragsz
, gfp_t gfp_mask
)
4499 unsigned int size
= PAGE_SIZE
;
4503 if (unlikely(!nc
->va
)) {
4505 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4509 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4510 /* if size can vary use size else just use PAGE_SIZE */
4513 /* Even if we own the page, we do not use atomic_set().
4514 * This would break get_page_unless_zero() users.
4516 page_ref_add(page
, size
- 1);
4518 /* reset page count bias and offset to start of new frag */
4519 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4520 nc
->pagecnt_bias
= size
;
4524 offset
= nc
->offset
- fragsz
;
4525 if (unlikely(offset
< 0)) {
4526 page
= virt_to_page(nc
->va
);
4528 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4531 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4532 /* if size can vary use size else just use PAGE_SIZE */
4535 /* OK, page count is 0, we can safely set it */
4536 set_page_count(page
, size
);
4538 /* reset page count bias and offset to start of new frag */
4539 nc
->pagecnt_bias
= size
;
4540 offset
= size
- fragsz
;
4544 nc
->offset
= offset
;
4546 return nc
->va
+ offset
;
4548 EXPORT_SYMBOL(page_frag_alloc
);
4551 * Frees a page fragment allocated out of either a compound or order 0 page.
4553 void page_frag_free(void *addr
)
4555 struct page
*page
= virt_to_head_page(addr
);
4557 if (unlikely(put_page_testzero(page
)))
4558 __free_pages_ok(page
, compound_order(page
));
4560 EXPORT_SYMBOL(page_frag_free
);
4562 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4566 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4567 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4569 split_page(virt_to_page((void *)addr
), order
);
4570 while (used
< alloc_end
) {
4575 return (void *)addr
;
4579 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4580 * @size: the number of bytes to allocate
4581 * @gfp_mask: GFP flags for the allocation
4583 * This function is similar to alloc_pages(), except that it allocates the
4584 * minimum number of pages to satisfy the request. alloc_pages() can only
4585 * allocate memory in power-of-two pages.
4587 * This function is also limited by MAX_ORDER.
4589 * Memory allocated by this function must be released by free_pages_exact().
4591 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4593 unsigned int order
= get_order(size
);
4596 addr
= __get_free_pages(gfp_mask
, order
);
4597 return make_alloc_exact(addr
, order
, size
);
4599 EXPORT_SYMBOL(alloc_pages_exact
);
4602 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4604 * @nid: the preferred node ID where memory should be allocated
4605 * @size: the number of bytes to allocate
4606 * @gfp_mask: GFP flags for the allocation
4608 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4611 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4613 unsigned int order
= get_order(size
);
4614 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4617 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4621 * free_pages_exact - release memory allocated via alloc_pages_exact()
4622 * @virt: the value returned by alloc_pages_exact.
4623 * @size: size of allocation, same value as passed to alloc_pages_exact().
4625 * Release the memory allocated by a previous call to alloc_pages_exact.
4627 void free_pages_exact(void *virt
, size_t size
)
4629 unsigned long addr
= (unsigned long)virt
;
4630 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4632 while (addr
< end
) {
4637 EXPORT_SYMBOL(free_pages_exact
);
4640 * nr_free_zone_pages - count number of pages beyond high watermark
4641 * @offset: The zone index of the highest zone
4643 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4644 * high watermark within all zones at or below a given zone index. For each
4645 * zone, the number of pages is calculated as:
4647 * nr_free_zone_pages = managed_pages - high_pages
4649 static unsigned long nr_free_zone_pages(int offset
)
4654 /* Just pick one node, since fallback list is circular */
4655 unsigned long sum
= 0;
4657 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4659 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4660 unsigned long size
= zone
->managed_pages
;
4661 unsigned long high
= high_wmark_pages(zone
);
4670 * nr_free_buffer_pages - count number of pages beyond high watermark
4672 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4673 * watermark within ZONE_DMA and ZONE_NORMAL.
4675 unsigned long nr_free_buffer_pages(void)
4677 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4679 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4682 * nr_free_pagecache_pages - count number of pages beyond high watermark
4684 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4685 * high watermark within all zones.
4687 unsigned long nr_free_pagecache_pages(void)
4689 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4692 static inline void show_node(struct zone
*zone
)
4694 if (IS_ENABLED(CONFIG_NUMA
))
4695 printk("Node %d ", zone_to_nid(zone
));
4698 long si_mem_available(void)
4701 unsigned long pagecache
;
4702 unsigned long wmark_low
= 0;
4703 unsigned long pages
[NR_LRU_LISTS
];
4707 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4708 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4711 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4714 * Estimate the amount of memory available for userspace allocations,
4715 * without causing swapping.
4717 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4720 * Not all the page cache can be freed, otherwise the system will
4721 * start swapping. Assume at least half of the page cache, or the
4722 * low watermark worth of cache, needs to stay.
4724 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4725 pagecache
-= min(pagecache
/ 2, wmark_low
);
4726 available
+= pagecache
;
4729 * Part of the reclaimable slab consists of items that are in use,
4730 * and cannot be freed. Cap this estimate at the low watermark.
4732 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4733 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4737 * Part of the kernel memory, which can be released under memory
4740 available
+= global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES
) >>
4747 EXPORT_SYMBOL_GPL(si_mem_available
);
4749 void si_meminfo(struct sysinfo
*val
)
4751 val
->totalram
= totalram_pages
;
4752 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4753 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4754 val
->bufferram
= nr_blockdev_pages();
4755 val
->totalhigh
= totalhigh_pages
;
4756 val
->freehigh
= nr_free_highpages();
4757 val
->mem_unit
= PAGE_SIZE
;
4760 EXPORT_SYMBOL(si_meminfo
);
4763 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4765 int zone_type
; /* needs to be signed */
4766 unsigned long managed_pages
= 0;
4767 unsigned long managed_highpages
= 0;
4768 unsigned long free_highpages
= 0;
4769 pg_data_t
*pgdat
= NODE_DATA(nid
);
4771 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4772 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4773 val
->totalram
= managed_pages
;
4774 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4775 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4776 #ifdef CONFIG_HIGHMEM
4777 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4778 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4780 if (is_highmem(zone
)) {
4781 managed_highpages
+= zone
->managed_pages
;
4782 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4785 val
->totalhigh
= managed_highpages
;
4786 val
->freehigh
= free_highpages
;
4788 val
->totalhigh
= managed_highpages
;
4789 val
->freehigh
= free_highpages
;
4791 val
->mem_unit
= PAGE_SIZE
;
4796 * Determine whether the node should be displayed or not, depending on whether
4797 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4799 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4801 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4805 * no node mask - aka implicit memory numa policy. Do not bother with
4806 * the synchronization - read_mems_allowed_begin - because we do not
4807 * have to be precise here.
4810 nodemask
= &cpuset_current_mems_allowed
;
4812 return !node_isset(nid
, *nodemask
);
4815 #define K(x) ((x) << (PAGE_SHIFT-10))
4817 static void show_migration_types(unsigned char type
)
4819 static const char types
[MIGRATE_TYPES
] = {
4820 [MIGRATE_UNMOVABLE
] = 'U',
4821 [MIGRATE_MOVABLE
] = 'M',
4822 [MIGRATE_RECLAIMABLE
] = 'E',
4823 [MIGRATE_HIGHATOMIC
] = 'H',
4825 [MIGRATE_CMA
] = 'C',
4827 #ifdef CONFIG_MEMORY_ISOLATION
4828 [MIGRATE_ISOLATE
] = 'I',
4831 char tmp
[MIGRATE_TYPES
+ 1];
4835 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4836 if (type
& (1 << i
))
4841 printk(KERN_CONT
"(%s) ", tmp
);
4845 * Show free area list (used inside shift_scroll-lock stuff)
4846 * We also calculate the percentage fragmentation. We do this by counting the
4847 * memory on each free list with the exception of the first item on the list.
4850 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4853 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4855 unsigned long free_pcp
= 0;
4860 for_each_populated_zone(zone
) {
4861 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4864 for_each_online_cpu(cpu
)
4865 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4868 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4869 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4870 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4871 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4872 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4873 " free:%lu free_pcp:%lu free_cma:%lu\n",
4874 global_node_page_state(NR_ACTIVE_ANON
),
4875 global_node_page_state(NR_INACTIVE_ANON
),
4876 global_node_page_state(NR_ISOLATED_ANON
),
4877 global_node_page_state(NR_ACTIVE_FILE
),
4878 global_node_page_state(NR_INACTIVE_FILE
),
4879 global_node_page_state(NR_ISOLATED_FILE
),
4880 global_node_page_state(NR_UNEVICTABLE
),
4881 global_node_page_state(NR_FILE_DIRTY
),
4882 global_node_page_state(NR_WRITEBACK
),
4883 global_node_page_state(NR_UNSTABLE_NFS
),
4884 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4885 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4886 global_node_page_state(NR_FILE_MAPPED
),
4887 global_node_page_state(NR_SHMEM
),
4888 global_zone_page_state(NR_PAGETABLE
),
4889 global_zone_page_state(NR_BOUNCE
),
4890 global_zone_page_state(NR_FREE_PAGES
),
4892 global_zone_page_state(NR_FREE_CMA_PAGES
));
4894 for_each_online_pgdat(pgdat
) {
4895 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4899 " active_anon:%lukB"
4900 " inactive_anon:%lukB"
4901 " active_file:%lukB"
4902 " inactive_file:%lukB"
4903 " unevictable:%lukB"
4904 " isolated(anon):%lukB"
4905 " isolated(file):%lukB"
4910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4912 " shmem_pmdmapped: %lukB"
4915 " writeback_tmp:%lukB"
4917 " all_unreclaimable? %s"
4920 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4921 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4922 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4923 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4924 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4925 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4926 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4927 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4928 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4929 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4930 K(node_page_state(pgdat
, NR_SHMEM
)),
4931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4932 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4933 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4935 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4937 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4938 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4939 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4943 for_each_populated_zone(zone
) {
4946 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4950 for_each_online_cpu(cpu
)
4951 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4960 " active_anon:%lukB"
4961 " inactive_anon:%lukB"
4962 " active_file:%lukB"
4963 " inactive_file:%lukB"
4964 " unevictable:%lukB"
4965 " writepending:%lukB"
4969 " kernel_stack:%lukB"
4977 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4978 K(min_wmark_pages(zone
)),
4979 K(low_wmark_pages(zone
)),
4980 K(high_wmark_pages(zone
)),
4981 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4982 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4983 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4984 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4985 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4986 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4987 K(zone
->present_pages
),
4988 K(zone
->managed_pages
),
4989 K(zone_page_state(zone
, NR_MLOCK
)),
4990 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4991 K(zone_page_state(zone
, NR_PAGETABLE
)),
4992 K(zone_page_state(zone
, NR_BOUNCE
)),
4994 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4995 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4996 printk("lowmem_reserve[]:");
4997 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4998 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4999 printk(KERN_CONT
"\n");
5002 for_each_populated_zone(zone
) {
5004 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5005 unsigned char types
[MAX_ORDER
];
5007 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5010 printk(KERN_CONT
"%s: ", zone
->name
);
5012 spin_lock_irqsave(&zone
->lock
, flags
);
5013 for (order
= 0; order
< MAX_ORDER
; order
++) {
5014 struct free_area
*area
= &zone
->free_area
[order
];
5017 nr
[order
] = area
->nr_free
;
5018 total
+= nr
[order
] << order
;
5021 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5022 if (!list_empty(&area
->free_list
[type
]))
5023 types
[order
] |= 1 << type
;
5026 spin_unlock_irqrestore(&zone
->lock
, flags
);
5027 for (order
= 0; order
< MAX_ORDER
; order
++) {
5028 printk(KERN_CONT
"%lu*%lukB ",
5029 nr
[order
], K(1UL) << order
);
5031 show_migration_types(types
[order
]);
5033 printk(KERN_CONT
"= %lukB\n", K(total
));
5036 hugetlb_show_meminfo();
5038 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5040 show_swap_cache_info();
5043 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5045 zoneref
->zone
= zone
;
5046 zoneref
->zone_idx
= zone_idx(zone
);
5050 * Builds allocation fallback zone lists.
5052 * Add all populated zones of a node to the zonelist.
5054 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5057 enum zone_type zone_type
= MAX_NR_ZONES
;
5062 zone
= pgdat
->node_zones
+ zone_type
;
5063 if (managed_zone(zone
)) {
5064 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5065 check_highest_zone(zone_type
);
5067 } while (zone_type
);
5074 static int __parse_numa_zonelist_order(char *s
)
5077 * We used to support different zonlists modes but they turned
5078 * out to be just not useful. Let's keep the warning in place
5079 * if somebody still use the cmd line parameter so that we do
5080 * not fail it silently
5082 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5083 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5089 static __init
int setup_numa_zonelist_order(char *s
)
5094 return __parse_numa_zonelist_order(s
);
5096 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5098 char numa_zonelist_order
[] = "Node";
5101 * sysctl handler for numa_zonelist_order
5103 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5104 void __user
*buffer
, size_t *length
,
5111 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5112 str
= memdup_user_nul(buffer
, 16);
5114 return PTR_ERR(str
);
5116 ret
= __parse_numa_zonelist_order(str
);
5122 #define MAX_NODE_LOAD (nr_online_nodes)
5123 static int node_load
[MAX_NUMNODES
];
5126 * find_next_best_node - find the next node that should appear in a given node's fallback list
5127 * @node: node whose fallback list we're appending
5128 * @used_node_mask: nodemask_t of already used nodes
5130 * We use a number of factors to determine which is the next node that should
5131 * appear on a given node's fallback list. The node should not have appeared
5132 * already in @node's fallback list, and it should be the next closest node
5133 * according to the distance array (which contains arbitrary distance values
5134 * from each node to each node in the system), and should also prefer nodes
5135 * with no CPUs, since presumably they'll have very little allocation pressure
5136 * on them otherwise.
5137 * It returns -1 if no node is found.
5139 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5142 int min_val
= INT_MAX
;
5143 int best_node
= NUMA_NO_NODE
;
5144 const struct cpumask
*tmp
= cpumask_of_node(0);
5146 /* Use the local node if we haven't already */
5147 if (!node_isset(node
, *used_node_mask
)) {
5148 node_set(node
, *used_node_mask
);
5152 for_each_node_state(n
, N_MEMORY
) {
5154 /* Don't want a node to appear more than once */
5155 if (node_isset(n
, *used_node_mask
))
5158 /* Use the distance array to find the distance */
5159 val
= node_distance(node
, n
);
5161 /* Penalize nodes under us ("prefer the next node") */
5164 /* Give preference to headless and unused nodes */
5165 tmp
= cpumask_of_node(n
);
5166 if (!cpumask_empty(tmp
))
5167 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5169 /* Slight preference for less loaded node */
5170 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5171 val
+= node_load
[n
];
5173 if (val
< min_val
) {
5180 node_set(best_node
, *used_node_mask
);
5187 * Build zonelists ordered by node and zones within node.
5188 * This results in maximum locality--normal zone overflows into local
5189 * DMA zone, if any--but risks exhausting DMA zone.
5191 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5194 struct zoneref
*zonerefs
;
5197 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5199 for (i
= 0; i
< nr_nodes
; i
++) {
5202 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5204 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5205 zonerefs
+= nr_zones
;
5207 zonerefs
->zone
= NULL
;
5208 zonerefs
->zone_idx
= 0;
5212 * Build gfp_thisnode zonelists
5214 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5216 struct zoneref
*zonerefs
;
5219 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5220 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5221 zonerefs
+= nr_zones
;
5222 zonerefs
->zone
= NULL
;
5223 zonerefs
->zone_idx
= 0;
5227 * Build zonelists ordered by zone and nodes within zones.
5228 * This results in conserving DMA zone[s] until all Normal memory is
5229 * exhausted, but results in overflowing to remote node while memory
5230 * may still exist in local DMA zone.
5233 static void build_zonelists(pg_data_t
*pgdat
)
5235 static int node_order
[MAX_NUMNODES
];
5236 int node
, load
, nr_nodes
= 0;
5237 nodemask_t used_mask
;
5238 int local_node
, prev_node
;
5240 /* NUMA-aware ordering of nodes */
5241 local_node
= pgdat
->node_id
;
5242 load
= nr_online_nodes
;
5243 prev_node
= local_node
;
5244 nodes_clear(used_mask
);
5246 memset(node_order
, 0, sizeof(node_order
));
5247 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5249 * We don't want to pressure a particular node.
5250 * So adding penalty to the first node in same
5251 * distance group to make it round-robin.
5253 if (node_distance(local_node
, node
) !=
5254 node_distance(local_node
, prev_node
))
5255 node_load
[node
] = load
;
5257 node_order
[nr_nodes
++] = node
;
5262 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5263 build_thisnode_zonelists(pgdat
);
5266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5268 * Return node id of node used for "local" allocations.
5269 * I.e., first node id of first zone in arg node's generic zonelist.
5270 * Used for initializing percpu 'numa_mem', which is used primarily
5271 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5273 int local_memory_node(int node
)
5277 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5278 gfp_zone(GFP_KERNEL
),
5280 return zone_to_nid(z
->zone
);
5284 static void setup_min_unmapped_ratio(void);
5285 static void setup_min_slab_ratio(void);
5286 #else /* CONFIG_NUMA */
5288 static void build_zonelists(pg_data_t
*pgdat
)
5290 int node
, local_node
;
5291 struct zoneref
*zonerefs
;
5294 local_node
= pgdat
->node_id
;
5296 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5297 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5298 zonerefs
+= nr_zones
;
5301 * Now we build the zonelist so that it contains the zones
5302 * of all the other nodes.
5303 * We don't want to pressure a particular node, so when
5304 * building the zones for node N, we make sure that the
5305 * zones coming right after the local ones are those from
5306 * node N+1 (modulo N)
5308 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5309 if (!node_online(node
))
5311 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5312 zonerefs
+= nr_zones
;
5314 for (node
= 0; node
< local_node
; node
++) {
5315 if (!node_online(node
))
5317 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5318 zonerefs
+= nr_zones
;
5321 zonerefs
->zone
= NULL
;
5322 zonerefs
->zone_idx
= 0;
5325 #endif /* CONFIG_NUMA */
5328 * Boot pageset table. One per cpu which is going to be used for all
5329 * zones and all nodes. The parameters will be set in such a way
5330 * that an item put on a list will immediately be handed over to
5331 * the buddy list. This is safe since pageset manipulation is done
5332 * with interrupts disabled.
5334 * The boot_pagesets must be kept even after bootup is complete for
5335 * unused processors and/or zones. They do play a role for bootstrapping
5336 * hotplugged processors.
5338 * zoneinfo_show() and maybe other functions do
5339 * not check if the processor is online before following the pageset pointer.
5340 * Other parts of the kernel may not check if the zone is available.
5342 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5343 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5344 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5346 static void __build_all_zonelists(void *data
)
5349 int __maybe_unused cpu
;
5350 pg_data_t
*self
= data
;
5351 static DEFINE_SPINLOCK(lock
);
5356 memset(node_load
, 0, sizeof(node_load
));
5360 * This node is hotadded and no memory is yet present. So just
5361 * building zonelists is fine - no need to touch other nodes.
5363 if (self
&& !node_online(self
->node_id
)) {
5364 build_zonelists(self
);
5366 for_each_online_node(nid
) {
5367 pg_data_t
*pgdat
= NODE_DATA(nid
);
5369 build_zonelists(pgdat
);
5372 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5374 * We now know the "local memory node" for each node--
5375 * i.e., the node of the first zone in the generic zonelist.
5376 * Set up numa_mem percpu variable for on-line cpus. During
5377 * boot, only the boot cpu should be on-line; we'll init the
5378 * secondary cpus' numa_mem as they come on-line. During
5379 * node/memory hotplug, we'll fixup all on-line cpus.
5381 for_each_online_cpu(cpu
)
5382 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5389 static noinline
void __init
5390 build_all_zonelists_init(void)
5394 __build_all_zonelists(NULL
);
5397 * Initialize the boot_pagesets that are going to be used
5398 * for bootstrapping processors. The real pagesets for
5399 * each zone will be allocated later when the per cpu
5400 * allocator is available.
5402 * boot_pagesets are used also for bootstrapping offline
5403 * cpus if the system is already booted because the pagesets
5404 * are needed to initialize allocators on a specific cpu too.
5405 * F.e. the percpu allocator needs the page allocator which
5406 * needs the percpu allocator in order to allocate its pagesets
5407 * (a chicken-egg dilemma).
5409 for_each_possible_cpu(cpu
)
5410 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5412 mminit_verify_zonelist();
5413 cpuset_init_current_mems_allowed();
5417 * unless system_state == SYSTEM_BOOTING.
5419 * __ref due to call of __init annotated helper build_all_zonelists_init
5420 * [protected by SYSTEM_BOOTING].
5422 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5424 if (system_state
== SYSTEM_BOOTING
) {
5425 build_all_zonelists_init();
5427 __build_all_zonelists(pgdat
);
5428 /* cpuset refresh routine should be here */
5430 vm_total_pages
= nr_free_pagecache_pages();
5432 * Disable grouping by mobility if the number of pages in the
5433 * system is too low to allow the mechanism to work. It would be
5434 * more accurate, but expensive to check per-zone. This check is
5435 * made on memory-hotadd so a system can start with mobility
5436 * disabled and enable it later
5438 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5439 page_group_by_mobility_disabled
= 1;
5441 page_group_by_mobility_disabled
= 0;
5443 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5445 page_group_by_mobility_disabled
? "off" : "on",
5448 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5453 * Initially all pages are reserved - free ones are freed
5454 * up by free_all_bootmem() once the early boot process is
5455 * done. Non-atomic initialization, single-pass.
5457 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5458 unsigned long start_pfn
, enum memmap_context context
,
5459 struct vmem_altmap
*altmap
)
5461 unsigned long end_pfn
= start_pfn
+ size
;
5462 pg_data_t
*pgdat
= NODE_DATA(nid
);
5464 unsigned long nr_initialised
= 0;
5466 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5467 struct memblock_region
*r
= NULL
, *tmp
;
5470 if (highest_memmap_pfn
< end_pfn
- 1)
5471 highest_memmap_pfn
= end_pfn
- 1;
5474 * Honor reservation requested by the driver for this ZONE_DEVICE
5477 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5478 start_pfn
+= altmap
->reserve
;
5480 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5482 * There can be holes in boot-time mem_map[]s handed to this
5483 * function. They do not exist on hotplugged memory.
5485 if (context
!= MEMMAP_EARLY
)
5488 if (!early_pfn_valid(pfn
))
5490 if (!early_pfn_in_nid(pfn
, nid
))
5492 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5495 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5497 * Check given memblock attribute by firmware which can affect
5498 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5499 * mirrored, it's an overlapped memmap init. skip it.
5501 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5502 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5503 for_each_memblock(memory
, tmp
)
5504 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5508 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5509 memblock_is_mirror(r
)) {
5510 /* already initialized as NORMAL */
5511 pfn
= memblock_region_memory_end_pfn(r
);
5518 page
= pfn_to_page(pfn
);
5519 __init_single_page(page
, pfn
, zone
, nid
);
5520 if (context
== MEMMAP_HOTPLUG
)
5521 SetPageReserved(page
);
5524 * Mark the block movable so that blocks are reserved for
5525 * movable at startup. This will force kernel allocations
5526 * to reserve their blocks rather than leaking throughout
5527 * the address space during boot when many long-lived
5528 * kernel allocations are made.
5530 * bitmap is created for zone's valid pfn range. but memmap
5531 * can be created for invalid pages (for alignment)
5532 * check here not to call set_pageblock_migratetype() against
5535 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5536 * because this is done early in sparse_add_one_section
5538 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5539 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5545 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5547 unsigned int order
, t
;
5548 for_each_migratetype_order(order
, t
) {
5549 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5550 zone
->free_area
[order
].nr_free
= 0;
5554 #ifndef __HAVE_ARCH_MEMMAP_INIT
5555 #define memmap_init(size, nid, zone, start_pfn) \
5556 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5559 static int zone_batchsize(struct zone
*zone
)
5565 * The per-cpu-pages pools are set to around 1000th of the
5568 batch
= zone
->managed_pages
/ 1024;
5569 /* But no more than a meg. */
5570 if (batch
* PAGE_SIZE
> 1024 * 1024)
5571 batch
= (1024 * 1024) / PAGE_SIZE
;
5572 batch
/= 4; /* We effectively *= 4 below */
5577 * Clamp the batch to a 2^n - 1 value. Having a power
5578 * of 2 value was found to be more likely to have
5579 * suboptimal cache aliasing properties in some cases.
5581 * For example if 2 tasks are alternately allocating
5582 * batches of pages, one task can end up with a lot
5583 * of pages of one half of the possible page colors
5584 * and the other with pages of the other colors.
5586 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5591 /* The deferral and batching of frees should be suppressed under NOMMU
5594 * The problem is that NOMMU needs to be able to allocate large chunks
5595 * of contiguous memory as there's no hardware page translation to
5596 * assemble apparent contiguous memory from discontiguous pages.
5598 * Queueing large contiguous runs of pages for batching, however,
5599 * causes the pages to actually be freed in smaller chunks. As there
5600 * can be a significant delay between the individual batches being
5601 * recycled, this leads to the once large chunks of space being
5602 * fragmented and becoming unavailable for high-order allocations.
5609 * pcp->high and pcp->batch values are related and dependent on one another:
5610 * ->batch must never be higher then ->high.
5611 * The following function updates them in a safe manner without read side
5614 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5615 * those fields changing asynchronously (acording the the above rule).
5617 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5618 * outside of boot time (or some other assurance that no concurrent updaters
5621 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5622 unsigned long batch
)
5624 /* start with a fail safe value for batch */
5628 /* Update high, then batch, in order */
5635 /* a companion to pageset_set_high() */
5636 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5638 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5641 static void pageset_init(struct per_cpu_pageset
*p
)
5643 struct per_cpu_pages
*pcp
;
5646 memset(p
, 0, sizeof(*p
));
5650 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5651 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5654 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5657 pageset_set_batch(p
, batch
);
5661 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5662 * to the value high for the pageset p.
5664 static void pageset_set_high(struct per_cpu_pageset
*p
,
5667 unsigned long batch
= max(1UL, high
/ 4);
5668 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5669 batch
= PAGE_SHIFT
* 8;
5671 pageset_update(&p
->pcp
, high
, batch
);
5674 static void pageset_set_high_and_batch(struct zone
*zone
,
5675 struct per_cpu_pageset
*pcp
)
5677 if (percpu_pagelist_fraction
)
5678 pageset_set_high(pcp
,
5679 (zone
->managed_pages
/
5680 percpu_pagelist_fraction
));
5682 pageset_set_batch(pcp
, zone_batchsize(zone
));
5685 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5687 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5690 pageset_set_high_and_batch(zone
, pcp
);
5693 void __meminit
setup_zone_pageset(struct zone
*zone
)
5696 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5697 for_each_possible_cpu(cpu
)
5698 zone_pageset_init(zone
, cpu
);
5702 * Allocate per cpu pagesets and initialize them.
5703 * Before this call only boot pagesets were available.
5705 void __init
setup_per_cpu_pageset(void)
5707 struct pglist_data
*pgdat
;
5710 for_each_populated_zone(zone
)
5711 setup_zone_pageset(zone
);
5713 for_each_online_pgdat(pgdat
)
5714 pgdat
->per_cpu_nodestats
=
5715 alloc_percpu(struct per_cpu_nodestat
);
5718 static __meminit
void zone_pcp_init(struct zone
*zone
)
5721 * per cpu subsystem is not up at this point. The following code
5722 * relies on the ability of the linker to provide the
5723 * offset of a (static) per cpu variable into the per cpu area.
5725 zone
->pageset
= &boot_pageset
;
5727 if (populated_zone(zone
))
5728 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5729 zone
->name
, zone
->present_pages
,
5730 zone_batchsize(zone
));
5733 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5734 unsigned long zone_start_pfn
,
5737 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5739 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5741 zone
->zone_start_pfn
= zone_start_pfn
;
5743 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5744 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5746 (unsigned long)zone_idx(zone
),
5747 zone_start_pfn
, (zone_start_pfn
+ size
));
5749 zone_init_free_lists(zone
);
5750 zone
->initialized
= 1;
5753 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5754 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5757 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5759 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5760 struct mminit_pfnnid_cache
*state
)
5762 unsigned long start_pfn
, end_pfn
;
5765 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5766 return state
->last_nid
;
5768 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5770 state
->last_start
= start_pfn
;
5771 state
->last_end
= end_pfn
;
5772 state
->last_nid
= nid
;
5777 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5780 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5781 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5782 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5784 * If an architecture guarantees that all ranges registered contain no holes
5785 * and may be freed, this this function may be used instead of calling
5786 * memblock_free_early_nid() manually.
5788 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5790 unsigned long start_pfn
, end_pfn
;
5793 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5794 start_pfn
= min(start_pfn
, max_low_pfn
);
5795 end_pfn
= min(end_pfn
, max_low_pfn
);
5797 if (start_pfn
< end_pfn
)
5798 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5799 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5805 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5806 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5808 * If an architecture guarantees that all ranges registered contain no holes and may
5809 * be freed, this function may be used instead of calling memory_present() manually.
5811 void __init
sparse_memory_present_with_active_regions(int nid
)
5813 unsigned long start_pfn
, end_pfn
;
5816 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5817 memory_present(this_nid
, start_pfn
, end_pfn
);
5821 * get_pfn_range_for_nid - Return the start and end page frames for a node
5822 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5823 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5824 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5826 * It returns the start and end page frame of a node based on information
5827 * provided by memblock_set_node(). If called for a node
5828 * with no available memory, a warning is printed and the start and end
5831 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5832 unsigned long *start_pfn
, unsigned long *end_pfn
)
5834 unsigned long this_start_pfn
, this_end_pfn
;
5840 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5841 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5842 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5845 if (*start_pfn
== -1UL)
5850 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5851 * assumption is made that zones within a node are ordered in monotonic
5852 * increasing memory addresses so that the "highest" populated zone is used
5854 static void __init
find_usable_zone_for_movable(void)
5857 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5858 if (zone_index
== ZONE_MOVABLE
)
5861 if (arch_zone_highest_possible_pfn
[zone_index
] >
5862 arch_zone_lowest_possible_pfn
[zone_index
])
5866 VM_BUG_ON(zone_index
== -1);
5867 movable_zone
= zone_index
;
5871 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5872 * because it is sized independent of architecture. Unlike the other zones,
5873 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5874 * in each node depending on the size of each node and how evenly kernelcore
5875 * is distributed. This helper function adjusts the zone ranges
5876 * provided by the architecture for a given node by using the end of the
5877 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5878 * zones within a node are in order of monotonic increases memory addresses
5880 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5881 unsigned long zone_type
,
5882 unsigned long node_start_pfn
,
5883 unsigned long node_end_pfn
,
5884 unsigned long *zone_start_pfn
,
5885 unsigned long *zone_end_pfn
)
5887 /* Only adjust if ZONE_MOVABLE is on this node */
5888 if (zone_movable_pfn
[nid
]) {
5889 /* Size ZONE_MOVABLE */
5890 if (zone_type
== ZONE_MOVABLE
) {
5891 *zone_start_pfn
= zone_movable_pfn
[nid
];
5892 *zone_end_pfn
= min(node_end_pfn
,
5893 arch_zone_highest_possible_pfn
[movable_zone
]);
5895 /* Adjust for ZONE_MOVABLE starting within this range */
5896 } else if (!mirrored_kernelcore
&&
5897 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5898 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5899 *zone_end_pfn
= zone_movable_pfn
[nid
];
5901 /* Check if this whole range is within ZONE_MOVABLE */
5902 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5903 *zone_start_pfn
= *zone_end_pfn
;
5908 * Return the number of pages a zone spans in a node, including holes
5909 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5911 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5912 unsigned long zone_type
,
5913 unsigned long node_start_pfn
,
5914 unsigned long node_end_pfn
,
5915 unsigned long *zone_start_pfn
,
5916 unsigned long *zone_end_pfn
,
5917 unsigned long *ignored
)
5919 /* When hotadd a new node from cpu_up(), the node should be empty */
5920 if (!node_start_pfn
&& !node_end_pfn
)
5923 /* Get the start and end of the zone */
5924 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5925 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5926 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5927 node_start_pfn
, node_end_pfn
,
5928 zone_start_pfn
, zone_end_pfn
);
5930 /* Check that this node has pages within the zone's required range */
5931 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5934 /* Move the zone boundaries inside the node if necessary */
5935 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5936 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5938 /* Return the spanned pages */
5939 return *zone_end_pfn
- *zone_start_pfn
;
5943 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5944 * then all holes in the requested range will be accounted for.
5946 unsigned long __meminit
__absent_pages_in_range(int nid
,
5947 unsigned long range_start_pfn
,
5948 unsigned long range_end_pfn
)
5950 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5951 unsigned long start_pfn
, end_pfn
;
5954 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5955 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5956 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5957 nr_absent
-= end_pfn
- start_pfn
;
5963 * absent_pages_in_range - Return number of page frames in holes within a range
5964 * @start_pfn: The start PFN to start searching for holes
5965 * @end_pfn: The end PFN to stop searching for holes
5967 * It returns the number of pages frames in memory holes within a range.
5969 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5970 unsigned long end_pfn
)
5972 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5975 /* Return the number of page frames in holes in a zone on a node */
5976 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5977 unsigned long zone_type
,
5978 unsigned long node_start_pfn
,
5979 unsigned long node_end_pfn
,
5980 unsigned long *ignored
)
5982 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5983 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5984 unsigned long zone_start_pfn
, zone_end_pfn
;
5985 unsigned long nr_absent
;
5987 /* When hotadd a new node from cpu_up(), the node should be empty */
5988 if (!node_start_pfn
&& !node_end_pfn
)
5991 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5992 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5994 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5995 node_start_pfn
, node_end_pfn
,
5996 &zone_start_pfn
, &zone_end_pfn
);
5997 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6000 * ZONE_MOVABLE handling.
6001 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6004 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6005 unsigned long start_pfn
, end_pfn
;
6006 struct memblock_region
*r
;
6008 for_each_memblock(memory
, r
) {
6009 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6010 zone_start_pfn
, zone_end_pfn
);
6011 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6012 zone_start_pfn
, zone_end_pfn
);
6014 if (zone_type
== ZONE_MOVABLE
&&
6015 memblock_is_mirror(r
))
6016 nr_absent
+= end_pfn
- start_pfn
;
6018 if (zone_type
== ZONE_NORMAL
&&
6019 !memblock_is_mirror(r
))
6020 nr_absent
+= end_pfn
- start_pfn
;
6027 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6028 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
6029 unsigned long zone_type
,
6030 unsigned long node_start_pfn
,
6031 unsigned long node_end_pfn
,
6032 unsigned long *zone_start_pfn
,
6033 unsigned long *zone_end_pfn
,
6034 unsigned long *zones_size
)
6038 *zone_start_pfn
= node_start_pfn
;
6039 for (zone
= 0; zone
< zone_type
; zone
++)
6040 *zone_start_pfn
+= zones_size
[zone
];
6042 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6044 return zones_size
[zone_type
];
6047 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
6048 unsigned long zone_type
,
6049 unsigned long node_start_pfn
,
6050 unsigned long node_end_pfn
,
6051 unsigned long *zholes_size
)
6056 return zholes_size
[zone_type
];
6059 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6061 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
6062 unsigned long node_start_pfn
,
6063 unsigned long node_end_pfn
,
6064 unsigned long *zones_size
,
6065 unsigned long *zholes_size
)
6067 unsigned long realtotalpages
= 0, totalpages
= 0;
6070 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6071 struct zone
*zone
= pgdat
->node_zones
+ i
;
6072 unsigned long zone_start_pfn
, zone_end_pfn
;
6073 unsigned long size
, real_size
;
6075 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6081 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6082 node_start_pfn
, node_end_pfn
,
6085 zone
->zone_start_pfn
= zone_start_pfn
;
6087 zone
->zone_start_pfn
= 0;
6088 zone
->spanned_pages
= size
;
6089 zone
->present_pages
= real_size
;
6092 realtotalpages
+= real_size
;
6095 pgdat
->node_spanned_pages
= totalpages
;
6096 pgdat
->node_present_pages
= realtotalpages
;
6097 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6101 #ifndef CONFIG_SPARSEMEM
6103 * Calculate the size of the zone->blockflags rounded to an unsigned long
6104 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6105 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6106 * round what is now in bits to nearest long in bits, then return it in
6109 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6111 unsigned long usemapsize
;
6113 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6114 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6115 usemapsize
= usemapsize
>> pageblock_order
;
6116 usemapsize
*= NR_PAGEBLOCK_BITS
;
6117 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6119 return usemapsize
/ 8;
6122 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6124 unsigned long zone_start_pfn
,
6125 unsigned long zonesize
)
6127 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6128 zone
->pageblock_flags
= NULL
;
6130 zone
->pageblock_flags
=
6131 memblock_virt_alloc_node_nopanic(usemapsize
,
6135 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6136 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6137 #endif /* CONFIG_SPARSEMEM */
6139 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6141 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6142 void __init
set_pageblock_order(void)
6146 /* Check that pageblock_nr_pages has not already been setup */
6147 if (pageblock_order
)
6150 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6151 order
= HUGETLB_PAGE_ORDER
;
6153 order
= MAX_ORDER
- 1;
6156 * Assume the largest contiguous order of interest is a huge page.
6157 * This value may be variable depending on boot parameters on IA64 and
6160 pageblock_order
= order
;
6162 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6165 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6166 * is unused as pageblock_order is set at compile-time. See
6167 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6170 void __init
set_pageblock_order(void)
6174 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6176 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6177 unsigned long present_pages
)
6179 unsigned long pages
= spanned_pages
;
6182 * Provide a more accurate estimation if there are holes within
6183 * the zone and SPARSEMEM is in use. If there are holes within the
6184 * zone, each populated memory region may cost us one or two extra
6185 * memmap pages due to alignment because memmap pages for each
6186 * populated regions may not be naturally aligned on page boundary.
6187 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6189 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6190 IS_ENABLED(CONFIG_SPARSEMEM
))
6191 pages
= present_pages
;
6193 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6196 #ifdef CONFIG_NUMA_BALANCING
6197 static void pgdat_init_numabalancing(struct pglist_data
*pgdat
)
6199 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6200 pgdat
->numabalancing_migrate_nr_pages
= 0;
6201 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6204 static void pgdat_init_numabalancing(struct pglist_data
*pgdat
) {}
6207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6208 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6210 spin_lock_init(&pgdat
->split_queue_lock
);
6211 INIT_LIST_HEAD(&pgdat
->split_queue
);
6212 pgdat
->split_queue_len
= 0;
6215 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6218 #ifdef CONFIG_COMPACTION
6219 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6221 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6224 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6227 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6229 pgdat_resize_init(pgdat
);
6231 pgdat_init_numabalancing(pgdat
);
6232 pgdat_init_split_queue(pgdat
);
6233 pgdat_init_kcompactd(pgdat
);
6235 init_waitqueue_head(&pgdat
->kswapd_wait
);
6236 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6238 pgdat_page_ext_init(pgdat
);
6239 spin_lock_init(&pgdat
->lru_lock
);
6240 lruvec_init(node_lruvec(pgdat
));
6243 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6244 unsigned long remaining_pages
)
6246 zone
->managed_pages
= remaining_pages
;
6247 zone_set_nid(zone
, nid
);
6248 zone
->name
= zone_names
[idx
];
6249 zone
->zone_pgdat
= NODE_DATA(nid
);
6250 spin_lock_init(&zone
->lock
);
6251 zone_seqlock_init(zone
);
6252 zone_pcp_init(zone
);
6256 * Set up the zone data structures
6257 * - init pgdat internals
6258 * - init all zones belonging to this node
6260 * NOTE: this function is only called during memory hotplug
6262 #ifdef CONFIG_MEMORY_HOTPLUG
6263 void __ref
free_area_init_core_hotplug(int nid
)
6266 pg_data_t
*pgdat
= NODE_DATA(nid
);
6268 pgdat_init_internals(pgdat
);
6269 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6270 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6275 * Set up the zone data structures:
6276 * - mark all pages reserved
6277 * - mark all memory queues empty
6278 * - clear the memory bitmaps
6280 * NOTE: pgdat should get zeroed by caller.
6281 * NOTE: this function is only called during early init.
6283 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6286 int nid
= pgdat
->node_id
;
6288 pgdat_init_internals(pgdat
);
6289 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6291 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6292 struct zone
*zone
= pgdat
->node_zones
+ j
;
6293 unsigned long size
, freesize
, memmap_pages
;
6294 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6296 size
= zone
->spanned_pages
;
6297 freesize
= zone
->present_pages
;
6300 * Adjust freesize so that it accounts for how much memory
6301 * is used by this zone for memmap. This affects the watermark
6302 * and per-cpu initialisations
6304 memmap_pages
= calc_memmap_size(size
, freesize
);
6305 if (!is_highmem_idx(j
)) {
6306 if (freesize
>= memmap_pages
) {
6307 freesize
-= memmap_pages
;
6310 " %s zone: %lu pages used for memmap\n",
6311 zone_names
[j
], memmap_pages
);
6313 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6314 zone_names
[j
], memmap_pages
, freesize
);
6317 /* Account for reserved pages */
6318 if (j
== 0 && freesize
> dma_reserve
) {
6319 freesize
-= dma_reserve
;
6320 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6321 zone_names
[0], dma_reserve
);
6324 if (!is_highmem_idx(j
))
6325 nr_kernel_pages
+= freesize
;
6326 /* Charge for highmem memmap if there are enough kernel pages */
6327 else if (nr_kernel_pages
> memmap_pages
* 2)
6328 nr_kernel_pages
-= memmap_pages
;
6329 nr_all_pages
+= freesize
;
6332 * Set an approximate value for lowmem here, it will be adjusted
6333 * when the bootmem allocator frees pages into the buddy system.
6334 * And all highmem pages will be managed by the buddy system.
6336 zone_init_internals(zone
, j
, nid
, freesize
);
6341 set_pageblock_order();
6342 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6343 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6344 memmap_init(size
, nid
, j
, zone_start_pfn
);
6348 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6349 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6351 unsigned long __maybe_unused start
= 0;
6352 unsigned long __maybe_unused offset
= 0;
6354 /* Skip empty nodes */
6355 if (!pgdat
->node_spanned_pages
)
6358 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6359 offset
= pgdat
->node_start_pfn
- start
;
6360 /* ia64 gets its own node_mem_map, before this, without bootmem */
6361 if (!pgdat
->node_mem_map
) {
6362 unsigned long size
, end
;
6366 * The zone's endpoints aren't required to be MAX_ORDER
6367 * aligned but the node_mem_map endpoints must be in order
6368 * for the buddy allocator to function correctly.
6370 end
= pgdat_end_pfn(pgdat
);
6371 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6372 size
= (end
- start
) * sizeof(struct page
);
6373 map
= memblock_virt_alloc_node_nopanic(size
, pgdat
->node_id
);
6374 pgdat
->node_mem_map
= map
+ offset
;
6376 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6377 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6378 (unsigned long)pgdat
->node_mem_map
);
6379 #ifndef CONFIG_NEED_MULTIPLE_NODES
6381 * With no DISCONTIG, the global mem_map is just set as node 0's
6383 if (pgdat
== NODE_DATA(0)) {
6384 mem_map
= NODE_DATA(0)->node_mem_map
;
6385 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6386 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6388 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6393 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6394 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6396 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6397 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6400 * We start only with one section of pages, more pages are added as
6401 * needed until the rest of deferred pages are initialized.
6403 pgdat
->static_init_pgcnt
= min_t(unsigned long, PAGES_PER_SECTION
,
6404 pgdat
->node_spanned_pages
);
6405 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6408 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6411 void __init
free_area_init_node(int nid
, unsigned long *zones_size
,
6412 unsigned long node_start_pfn
,
6413 unsigned long *zholes_size
)
6415 pg_data_t
*pgdat
= NODE_DATA(nid
);
6416 unsigned long start_pfn
= 0;
6417 unsigned long end_pfn
= 0;
6419 /* pg_data_t should be reset to zero when it's allocated */
6420 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6422 pgdat
->node_id
= nid
;
6423 pgdat
->node_start_pfn
= node_start_pfn
;
6424 pgdat
->per_cpu_nodestats
= NULL
;
6425 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6426 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6427 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6428 (u64
)start_pfn
<< PAGE_SHIFT
,
6429 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6431 start_pfn
= node_start_pfn
;
6433 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6434 zones_size
, zholes_size
);
6436 alloc_node_mem_map(pgdat
);
6437 pgdat_set_deferred_range(pgdat
);
6439 free_area_init_core(pgdat
);
6442 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6444 * Only struct pages that are backed by physical memory are zeroed and
6445 * initialized by going through __init_single_page(). But, there are some
6446 * struct pages which are reserved in memblock allocator and their fields
6447 * may be accessed (for example page_to_pfn() on some configuration accesses
6448 * flags). We must explicitly zero those struct pages.
6450 void __init
zero_resv_unavail(void)
6452 phys_addr_t start
, end
;
6457 * Loop through ranges that are reserved, but do not have reported
6458 * physical memory backing.
6461 for_each_resv_unavail_range(i
, &start
, &end
) {
6462 for (pfn
= PFN_DOWN(start
); pfn
< PFN_UP(end
); pfn
++) {
6463 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
6464 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
6465 + pageblock_nr_pages
- 1;
6468 mm_zero_struct_page(pfn_to_page(pfn
));
6474 * Struct pages that do not have backing memory. This could be because
6475 * firmware is using some of this memory, or for some other reasons.
6476 * Once memblock is changed so such behaviour is not allowed: i.e.
6477 * list of "reserved" memory must be a subset of list of "memory", then
6478 * this code can be removed.
6481 pr_info("Reserved but unavailable: %lld pages", pgcnt
);
6483 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6485 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6487 #if MAX_NUMNODES > 1
6489 * Figure out the number of possible node ids.
6491 void __init
setup_nr_node_ids(void)
6493 unsigned int highest
;
6495 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6496 nr_node_ids
= highest
+ 1;
6501 * node_map_pfn_alignment - determine the maximum internode alignment
6503 * This function should be called after node map is populated and sorted.
6504 * It calculates the maximum power of two alignment which can distinguish
6507 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6508 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6509 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6510 * shifted, 1GiB is enough and this function will indicate so.
6512 * This is used to test whether pfn -> nid mapping of the chosen memory
6513 * model has fine enough granularity to avoid incorrect mapping for the
6514 * populated node map.
6516 * Returns the determined alignment in pfn's. 0 if there is no alignment
6517 * requirement (single node).
6519 unsigned long __init
node_map_pfn_alignment(void)
6521 unsigned long accl_mask
= 0, last_end
= 0;
6522 unsigned long start
, end
, mask
;
6526 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6527 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6534 * Start with a mask granular enough to pin-point to the
6535 * start pfn and tick off bits one-by-one until it becomes
6536 * too coarse to separate the current node from the last.
6538 mask
= ~((1 << __ffs(start
)) - 1);
6539 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6542 /* accumulate all internode masks */
6546 /* convert mask to number of pages */
6547 return ~accl_mask
+ 1;
6550 /* Find the lowest pfn for a node */
6551 static unsigned long __init
find_min_pfn_for_node(int nid
)
6553 unsigned long min_pfn
= ULONG_MAX
;
6554 unsigned long start_pfn
;
6557 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6558 min_pfn
= min(min_pfn
, start_pfn
);
6560 if (min_pfn
== ULONG_MAX
) {
6561 pr_warn("Could not find start_pfn for node %d\n", nid
);
6569 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6571 * It returns the minimum PFN based on information provided via
6572 * memblock_set_node().
6574 unsigned long __init
find_min_pfn_with_active_regions(void)
6576 return find_min_pfn_for_node(MAX_NUMNODES
);
6580 * early_calculate_totalpages()
6581 * Sum pages in active regions for movable zone.
6582 * Populate N_MEMORY for calculating usable_nodes.
6584 static unsigned long __init
early_calculate_totalpages(void)
6586 unsigned long totalpages
= 0;
6587 unsigned long start_pfn
, end_pfn
;
6590 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6591 unsigned long pages
= end_pfn
- start_pfn
;
6593 totalpages
+= pages
;
6595 node_set_state(nid
, N_MEMORY
);
6601 * Find the PFN the Movable zone begins in each node. Kernel memory
6602 * is spread evenly between nodes as long as the nodes have enough
6603 * memory. When they don't, some nodes will have more kernelcore than
6606 static void __init
find_zone_movable_pfns_for_nodes(void)
6609 unsigned long usable_startpfn
;
6610 unsigned long kernelcore_node
, kernelcore_remaining
;
6611 /* save the state before borrow the nodemask */
6612 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6613 unsigned long totalpages
= early_calculate_totalpages();
6614 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6615 struct memblock_region
*r
;
6617 /* Need to find movable_zone earlier when movable_node is specified. */
6618 find_usable_zone_for_movable();
6621 * If movable_node is specified, ignore kernelcore and movablecore
6624 if (movable_node_is_enabled()) {
6625 for_each_memblock(memory
, r
) {
6626 if (!memblock_is_hotpluggable(r
))
6631 usable_startpfn
= PFN_DOWN(r
->base
);
6632 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6633 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6641 * If kernelcore=mirror is specified, ignore movablecore option
6643 if (mirrored_kernelcore
) {
6644 bool mem_below_4gb_not_mirrored
= false;
6646 for_each_memblock(memory
, r
) {
6647 if (memblock_is_mirror(r
))
6652 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6654 if (usable_startpfn
< 0x100000) {
6655 mem_below_4gb_not_mirrored
= true;
6659 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6660 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6664 if (mem_below_4gb_not_mirrored
)
6665 pr_warn("This configuration results in unmirrored kernel memory.");
6671 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6672 * amount of necessary memory.
6674 if (required_kernelcore_percent
)
6675 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
6677 if (required_movablecore_percent
)
6678 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
6682 * If movablecore= was specified, calculate what size of
6683 * kernelcore that corresponds so that memory usable for
6684 * any allocation type is evenly spread. If both kernelcore
6685 * and movablecore are specified, then the value of kernelcore
6686 * will be used for required_kernelcore if it's greater than
6687 * what movablecore would have allowed.
6689 if (required_movablecore
) {
6690 unsigned long corepages
;
6693 * Round-up so that ZONE_MOVABLE is at least as large as what
6694 * was requested by the user
6696 required_movablecore
=
6697 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6698 required_movablecore
= min(totalpages
, required_movablecore
);
6699 corepages
= totalpages
- required_movablecore
;
6701 required_kernelcore
= max(required_kernelcore
, corepages
);
6705 * If kernelcore was not specified or kernelcore size is larger
6706 * than totalpages, there is no ZONE_MOVABLE.
6708 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6711 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6712 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6715 /* Spread kernelcore memory as evenly as possible throughout nodes */
6716 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6717 for_each_node_state(nid
, N_MEMORY
) {
6718 unsigned long start_pfn
, end_pfn
;
6721 * Recalculate kernelcore_node if the division per node
6722 * now exceeds what is necessary to satisfy the requested
6723 * amount of memory for the kernel
6725 if (required_kernelcore
< kernelcore_node
)
6726 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6729 * As the map is walked, we track how much memory is usable
6730 * by the kernel using kernelcore_remaining. When it is
6731 * 0, the rest of the node is usable by ZONE_MOVABLE
6733 kernelcore_remaining
= kernelcore_node
;
6735 /* Go through each range of PFNs within this node */
6736 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6737 unsigned long size_pages
;
6739 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6740 if (start_pfn
>= end_pfn
)
6743 /* Account for what is only usable for kernelcore */
6744 if (start_pfn
< usable_startpfn
) {
6745 unsigned long kernel_pages
;
6746 kernel_pages
= min(end_pfn
, usable_startpfn
)
6749 kernelcore_remaining
-= min(kernel_pages
,
6750 kernelcore_remaining
);
6751 required_kernelcore
-= min(kernel_pages
,
6752 required_kernelcore
);
6754 /* Continue if range is now fully accounted */
6755 if (end_pfn
<= usable_startpfn
) {
6758 * Push zone_movable_pfn to the end so
6759 * that if we have to rebalance
6760 * kernelcore across nodes, we will
6761 * not double account here
6763 zone_movable_pfn
[nid
] = end_pfn
;
6766 start_pfn
= usable_startpfn
;
6770 * The usable PFN range for ZONE_MOVABLE is from
6771 * start_pfn->end_pfn. Calculate size_pages as the
6772 * number of pages used as kernelcore
6774 size_pages
= end_pfn
- start_pfn
;
6775 if (size_pages
> kernelcore_remaining
)
6776 size_pages
= kernelcore_remaining
;
6777 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6780 * Some kernelcore has been met, update counts and
6781 * break if the kernelcore for this node has been
6784 required_kernelcore
-= min(required_kernelcore
,
6786 kernelcore_remaining
-= size_pages
;
6787 if (!kernelcore_remaining
)
6793 * If there is still required_kernelcore, we do another pass with one
6794 * less node in the count. This will push zone_movable_pfn[nid] further
6795 * along on the nodes that still have memory until kernelcore is
6799 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6803 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6804 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6805 zone_movable_pfn
[nid
] =
6806 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6809 /* restore the node_state */
6810 node_states
[N_MEMORY
] = saved_node_state
;
6813 /* Any regular or high memory on that node ? */
6814 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6816 enum zone_type zone_type
;
6818 if (N_MEMORY
== N_NORMAL_MEMORY
)
6821 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6822 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6823 if (populated_zone(zone
)) {
6824 node_set_state(nid
, N_HIGH_MEMORY
);
6825 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6826 zone_type
<= ZONE_NORMAL
)
6827 node_set_state(nid
, N_NORMAL_MEMORY
);
6834 * free_area_init_nodes - Initialise all pg_data_t and zone data
6835 * @max_zone_pfn: an array of max PFNs for each zone
6837 * This will call free_area_init_node() for each active node in the system.
6838 * Using the page ranges provided by memblock_set_node(), the size of each
6839 * zone in each node and their holes is calculated. If the maximum PFN
6840 * between two adjacent zones match, it is assumed that the zone is empty.
6841 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6842 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6843 * starts where the previous one ended. For example, ZONE_DMA32 starts
6844 * at arch_max_dma_pfn.
6846 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6848 unsigned long start_pfn
, end_pfn
;
6851 /* Record where the zone boundaries are */
6852 memset(arch_zone_lowest_possible_pfn
, 0,
6853 sizeof(arch_zone_lowest_possible_pfn
));
6854 memset(arch_zone_highest_possible_pfn
, 0,
6855 sizeof(arch_zone_highest_possible_pfn
));
6857 start_pfn
= find_min_pfn_with_active_regions();
6859 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6860 if (i
== ZONE_MOVABLE
)
6863 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6864 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6865 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6867 start_pfn
= end_pfn
;
6870 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6871 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6872 find_zone_movable_pfns_for_nodes();
6874 /* Print out the zone ranges */
6875 pr_info("Zone ranges:\n");
6876 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6877 if (i
== ZONE_MOVABLE
)
6879 pr_info(" %-8s ", zone_names
[i
]);
6880 if (arch_zone_lowest_possible_pfn
[i
] ==
6881 arch_zone_highest_possible_pfn
[i
])
6884 pr_cont("[mem %#018Lx-%#018Lx]\n",
6885 (u64
)arch_zone_lowest_possible_pfn
[i
]
6887 ((u64
)arch_zone_highest_possible_pfn
[i
]
6888 << PAGE_SHIFT
) - 1);
6891 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6892 pr_info("Movable zone start for each node\n");
6893 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6894 if (zone_movable_pfn
[i
])
6895 pr_info(" Node %d: %#018Lx\n", i
,
6896 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6899 /* Print out the early node map */
6900 pr_info("Early memory node ranges\n");
6901 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6902 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6903 (u64
)start_pfn
<< PAGE_SHIFT
,
6904 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6906 /* Initialise every node */
6907 mminit_verify_pageflags_layout();
6908 setup_nr_node_ids();
6909 zero_resv_unavail();
6910 for_each_online_node(nid
) {
6911 pg_data_t
*pgdat
= NODE_DATA(nid
);
6912 free_area_init_node(nid
, NULL
,
6913 find_min_pfn_for_node(nid
), NULL
);
6915 /* Any memory on that node */
6916 if (pgdat
->node_present_pages
)
6917 node_set_state(nid
, N_MEMORY
);
6918 check_for_memory(pgdat
, nid
);
6922 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
6923 unsigned long *percent
)
6925 unsigned long long coremem
;
6931 /* Value may be a percentage of total memory, otherwise bytes */
6932 coremem
= simple_strtoull(p
, &endptr
, 0);
6933 if (*endptr
== '%') {
6934 /* Paranoid check for percent values greater than 100 */
6935 WARN_ON(coremem
> 100);
6939 coremem
= memparse(p
, &p
);
6940 /* Paranoid check that UL is enough for the coremem value */
6941 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6943 *core
= coremem
>> PAGE_SHIFT
;
6950 * kernelcore=size sets the amount of memory for use for allocations that
6951 * cannot be reclaimed or migrated.
6953 static int __init
cmdline_parse_kernelcore(char *p
)
6955 /* parse kernelcore=mirror */
6956 if (parse_option_str(p
, "mirror")) {
6957 mirrored_kernelcore
= true;
6961 return cmdline_parse_core(p
, &required_kernelcore
,
6962 &required_kernelcore_percent
);
6966 * movablecore=size sets the amount of memory for use for allocations that
6967 * can be reclaimed or migrated.
6969 static int __init
cmdline_parse_movablecore(char *p
)
6971 return cmdline_parse_core(p
, &required_movablecore
,
6972 &required_movablecore_percent
);
6975 early_param("kernelcore", cmdline_parse_kernelcore
);
6976 early_param("movablecore", cmdline_parse_movablecore
);
6978 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6980 void adjust_managed_page_count(struct page
*page
, long count
)
6982 spin_lock(&managed_page_count_lock
);
6983 page_zone(page
)->managed_pages
+= count
;
6984 totalram_pages
+= count
;
6985 #ifdef CONFIG_HIGHMEM
6986 if (PageHighMem(page
))
6987 totalhigh_pages
+= count
;
6989 spin_unlock(&managed_page_count_lock
);
6991 EXPORT_SYMBOL(adjust_managed_page_count
);
6993 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6996 unsigned long pages
= 0;
6998 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6999 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7000 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7001 struct page
*page
= virt_to_page(pos
);
7002 void *direct_map_addr
;
7005 * 'direct_map_addr' might be different from 'pos'
7006 * because some architectures' virt_to_page()
7007 * work with aliases. Getting the direct map
7008 * address ensures that we get a _writeable_
7009 * alias for the memset().
7011 direct_map_addr
= page_address(page
);
7012 if ((unsigned int)poison
<= 0xFF)
7013 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7015 free_reserved_page(page
);
7019 pr_info("Freeing %s memory: %ldK\n",
7020 s
, pages
<< (PAGE_SHIFT
- 10));
7024 EXPORT_SYMBOL(free_reserved_area
);
7026 #ifdef CONFIG_HIGHMEM
7027 void free_highmem_page(struct page
*page
)
7029 __free_reserved_page(page
);
7031 page_zone(page
)->managed_pages
++;
7037 void __init
mem_init_print_info(const char *str
)
7039 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7040 unsigned long init_code_size
, init_data_size
;
7042 physpages
= get_num_physpages();
7043 codesize
= _etext
- _stext
;
7044 datasize
= _edata
- _sdata
;
7045 rosize
= __end_rodata
- __start_rodata
;
7046 bss_size
= __bss_stop
- __bss_start
;
7047 init_data_size
= __init_end
- __init_begin
;
7048 init_code_size
= _einittext
- _sinittext
;
7051 * Detect special cases and adjust section sizes accordingly:
7052 * 1) .init.* may be embedded into .data sections
7053 * 2) .init.text.* may be out of [__init_begin, __init_end],
7054 * please refer to arch/tile/kernel/vmlinux.lds.S.
7055 * 3) .rodata.* may be embedded into .text or .data sections.
7057 #define adj_init_size(start, end, size, pos, adj) \
7059 if (start <= pos && pos < end && size > adj) \
7063 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7064 _sinittext
, init_code_size
);
7065 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7066 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7067 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7068 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7070 #undef adj_init_size
7072 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7073 #ifdef CONFIG_HIGHMEM
7077 nr_free_pages() << (PAGE_SHIFT
- 10),
7078 physpages
<< (PAGE_SHIFT
- 10),
7079 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7080 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7081 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
7082 totalcma_pages
<< (PAGE_SHIFT
- 10),
7083 #ifdef CONFIG_HIGHMEM
7084 totalhigh_pages
<< (PAGE_SHIFT
- 10),
7086 str
? ", " : "", str
? str
: "");
7090 * set_dma_reserve - set the specified number of pages reserved in the first zone
7091 * @new_dma_reserve: The number of pages to mark reserved
7093 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7094 * In the DMA zone, a significant percentage may be consumed by kernel image
7095 * and other unfreeable allocations which can skew the watermarks badly. This
7096 * function may optionally be used to account for unfreeable pages in the
7097 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7098 * smaller per-cpu batchsize.
7100 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7102 dma_reserve
= new_dma_reserve
;
7105 void __init
free_area_init(unsigned long *zones_size
)
7107 zero_resv_unavail();
7108 free_area_init_node(0, zones_size
,
7109 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7112 static int page_alloc_cpu_dead(unsigned int cpu
)
7115 lru_add_drain_cpu(cpu
);
7119 * Spill the event counters of the dead processor
7120 * into the current processors event counters.
7121 * This artificially elevates the count of the current
7124 vm_events_fold_cpu(cpu
);
7127 * Zero the differential counters of the dead processor
7128 * so that the vm statistics are consistent.
7130 * This is only okay since the processor is dead and cannot
7131 * race with what we are doing.
7133 cpu_vm_stats_fold(cpu
);
7137 void __init
page_alloc_init(void)
7141 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7142 "mm/page_alloc:dead", NULL
,
7143 page_alloc_cpu_dead
);
7148 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7149 * or min_free_kbytes changes.
7151 static void calculate_totalreserve_pages(void)
7153 struct pglist_data
*pgdat
;
7154 unsigned long reserve_pages
= 0;
7155 enum zone_type i
, j
;
7157 for_each_online_pgdat(pgdat
) {
7159 pgdat
->totalreserve_pages
= 0;
7161 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7162 struct zone
*zone
= pgdat
->node_zones
+ i
;
7165 /* Find valid and maximum lowmem_reserve in the zone */
7166 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7167 if (zone
->lowmem_reserve
[j
] > max
)
7168 max
= zone
->lowmem_reserve
[j
];
7171 /* we treat the high watermark as reserved pages. */
7172 max
+= high_wmark_pages(zone
);
7174 if (max
> zone
->managed_pages
)
7175 max
= zone
->managed_pages
;
7177 pgdat
->totalreserve_pages
+= max
;
7179 reserve_pages
+= max
;
7182 totalreserve_pages
= reserve_pages
;
7186 * setup_per_zone_lowmem_reserve - called whenever
7187 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7188 * has a correct pages reserved value, so an adequate number of
7189 * pages are left in the zone after a successful __alloc_pages().
7191 static void setup_per_zone_lowmem_reserve(void)
7193 struct pglist_data
*pgdat
;
7194 enum zone_type j
, idx
;
7196 for_each_online_pgdat(pgdat
) {
7197 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7198 struct zone
*zone
= pgdat
->node_zones
+ j
;
7199 unsigned long managed_pages
= zone
->managed_pages
;
7201 zone
->lowmem_reserve
[j
] = 0;
7205 struct zone
*lower_zone
;
7208 lower_zone
= pgdat
->node_zones
+ idx
;
7210 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7211 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7212 lower_zone
->lowmem_reserve
[j
] = 0;
7214 lower_zone
->lowmem_reserve
[j
] =
7215 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7217 managed_pages
+= lower_zone
->managed_pages
;
7222 /* update totalreserve_pages */
7223 calculate_totalreserve_pages();
7226 static void __setup_per_zone_wmarks(void)
7228 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7229 unsigned long lowmem_pages
= 0;
7231 unsigned long flags
;
7233 /* Calculate total number of !ZONE_HIGHMEM pages */
7234 for_each_zone(zone
) {
7235 if (!is_highmem(zone
))
7236 lowmem_pages
+= zone
->managed_pages
;
7239 for_each_zone(zone
) {
7242 spin_lock_irqsave(&zone
->lock
, flags
);
7243 tmp
= (u64
)pages_min
* zone
->managed_pages
;
7244 do_div(tmp
, lowmem_pages
);
7245 if (is_highmem(zone
)) {
7247 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7248 * need highmem pages, so cap pages_min to a small
7251 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7252 * deltas control asynch page reclaim, and so should
7253 * not be capped for highmem.
7255 unsigned long min_pages
;
7257 min_pages
= zone
->managed_pages
/ 1024;
7258 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7259 zone
->watermark
[WMARK_MIN
] = min_pages
;
7262 * If it's a lowmem zone, reserve a number of pages
7263 * proportionate to the zone's size.
7265 zone
->watermark
[WMARK_MIN
] = tmp
;
7269 * Set the kswapd watermarks distance according to the
7270 * scale factor in proportion to available memory, but
7271 * ensure a minimum size on small systems.
7273 tmp
= max_t(u64
, tmp
>> 2,
7274 mult_frac(zone
->managed_pages
,
7275 watermark_scale_factor
, 10000));
7277 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7278 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7280 spin_unlock_irqrestore(&zone
->lock
, flags
);
7283 /* update totalreserve_pages */
7284 calculate_totalreserve_pages();
7288 * setup_per_zone_wmarks - called when min_free_kbytes changes
7289 * or when memory is hot-{added|removed}
7291 * Ensures that the watermark[min,low,high] values for each zone are set
7292 * correctly with respect to min_free_kbytes.
7294 void setup_per_zone_wmarks(void)
7296 static DEFINE_SPINLOCK(lock
);
7299 __setup_per_zone_wmarks();
7304 * Initialise min_free_kbytes.
7306 * For small machines we want it small (128k min). For large machines
7307 * we want it large (64MB max). But it is not linear, because network
7308 * bandwidth does not increase linearly with machine size. We use
7310 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7311 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7327 int __meminit
init_per_zone_wmark_min(void)
7329 unsigned long lowmem_kbytes
;
7330 int new_min_free_kbytes
;
7332 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7333 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7335 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7336 min_free_kbytes
= new_min_free_kbytes
;
7337 if (min_free_kbytes
< 128)
7338 min_free_kbytes
= 128;
7339 if (min_free_kbytes
> 65536)
7340 min_free_kbytes
= 65536;
7342 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7343 new_min_free_kbytes
, user_min_free_kbytes
);
7345 setup_per_zone_wmarks();
7346 refresh_zone_stat_thresholds();
7347 setup_per_zone_lowmem_reserve();
7350 setup_min_unmapped_ratio();
7351 setup_min_slab_ratio();
7356 core_initcall(init_per_zone_wmark_min
)
7359 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7360 * that we can call two helper functions whenever min_free_kbytes
7363 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7364 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7368 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7373 user_min_free_kbytes
= min_free_kbytes
;
7374 setup_per_zone_wmarks();
7379 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7380 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7384 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7389 setup_per_zone_wmarks();
7395 static void setup_min_unmapped_ratio(void)
7400 for_each_online_pgdat(pgdat
)
7401 pgdat
->min_unmapped_pages
= 0;
7404 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7405 sysctl_min_unmapped_ratio
) / 100;
7409 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7410 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7414 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7418 setup_min_unmapped_ratio();
7423 static void setup_min_slab_ratio(void)
7428 for_each_online_pgdat(pgdat
)
7429 pgdat
->min_slab_pages
= 0;
7432 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7433 sysctl_min_slab_ratio
) / 100;
7436 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7437 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7441 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7445 setup_min_slab_ratio();
7452 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7453 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7454 * whenever sysctl_lowmem_reserve_ratio changes.
7456 * The reserve ratio obviously has absolutely no relation with the
7457 * minimum watermarks. The lowmem reserve ratio can only make sense
7458 * if in function of the boot time zone sizes.
7460 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7461 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7463 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7464 setup_per_zone_lowmem_reserve();
7469 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7470 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7471 * pagelist can have before it gets flushed back to buddy allocator.
7473 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7474 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7477 int old_percpu_pagelist_fraction
;
7480 mutex_lock(&pcp_batch_high_lock
);
7481 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7483 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7484 if (!write
|| ret
< 0)
7487 /* Sanity checking to avoid pcp imbalance */
7488 if (percpu_pagelist_fraction
&&
7489 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7490 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7496 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7499 for_each_populated_zone(zone
) {
7502 for_each_possible_cpu(cpu
)
7503 pageset_set_high_and_batch(zone
,
7504 per_cpu_ptr(zone
->pageset
, cpu
));
7507 mutex_unlock(&pcp_batch_high_lock
);
7512 int hashdist
= HASHDIST_DEFAULT
;
7514 static int __init
set_hashdist(char *str
)
7518 hashdist
= simple_strtoul(str
, &str
, 0);
7521 __setup("hashdist=", set_hashdist
);
7524 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7526 * Returns the number of pages that arch has reserved but
7527 * is not known to alloc_large_system_hash().
7529 static unsigned long __init
arch_reserved_kernel_pages(void)
7536 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7537 * machines. As memory size is increased the scale is also increased but at
7538 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7539 * quadruples the scale is increased by one, which means the size of hash table
7540 * only doubles, instead of quadrupling as well.
7541 * Because 32-bit systems cannot have large physical memory, where this scaling
7542 * makes sense, it is disabled on such platforms.
7544 #if __BITS_PER_LONG > 32
7545 #define ADAPT_SCALE_BASE (64ul << 30)
7546 #define ADAPT_SCALE_SHIFT 2
7547 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7551 * allocate a large system hash table from bootmem
7552 * - it is assumed that the hash table must contain an exact power-of-2
7553 * quantity of entries
7554 * - limit is the number of hash buckets, not the total allocation size
7556 void *__init
alloc_large_system_hash(const char *tablename
,
7557 unsigned long bucketsize
,
7558 unsigned long numentries
,
7561 unsigned int *_hash_shift
,
7562 unsigned int *_hash_mask
,
7563 unsigned long low_limit
,
7564 unsigned long high_limit
)
7566 unsigned long long max
= high_limit
;
7567 unsigned long log2qty
, size
;
7571 /* allow the kernel cmdline to have a say */
7573 /* round applicable memory size up to nearest megabyte */
7574 numentries
= nr_kernel_pages
;
7575 numentries
-= arch_reserved_kernel_pages();
7577 /* It isn't necessary when PAGE_SIZE >= 1MB */
7578 if (PAGE_SHIFT
< 20)
7579 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7581 #if __BITS_PER_LONG > 32
7583 unsigned long adapt
;
7585 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7586 adapt
<<= ADAPT_SCALE_SHIFT
)
7591 /* limit to 1 bucket per 2^scale bytes of low memory */
7592 if (scale
> PAGE_SHIFT
)
7593 numentries
>>= (scale
- PAGE_SHIFT
);
7595 numentries
<<= (PAGE_SHIFT
- scale
);
7597 /* Make sure we've got at least a 0-order allocation.. */
7598 if (unlikely(flags
& HASH_SMALL
)) {
7599 /* Makes no sense without HASH_EARLY */
7600 WARN_ON(!(flags
& HASH_EARLY
));
7601 if (!(numentries
>> *_hash_shift
)) {
7602 numentries
= 1UL << *_hash_shift
;
7603 BUG_ON(!numentries
);
7605 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7606 numentries
= PAGE_SIZE
/ bucketsize
;
7608 numentries
= roundup_pow_of_two(numentries
);
7610 /* limit allocation size to 1/16 total memory by default */
7612 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7613 do_div(max
, bucketsize
);
7615 max
= min(max
, 0x80000000ULL
);
7617 if (numentries
< low_limit
)
7618 numentries
= low_limit
;
7619 if (numentries
> max
)
7622 log2qty
= ilog2(numentries
);
7624 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7626 size
= bucketsize
<< log2qty
;
7627 if (flags
& HASH_EARLY
) {
7628 if (flags
& HASH_ZERO
)
7629 table
= memblock_virt_alloc_nopanic(size
, 0);
7631 table
= memblock_virt_alloc_raw(size
, 0);
7632 } else if (hashdist
) {
7633 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7636 * If bucketsize is not a power-of-two, we may free
7637 * some pages at the end of hash table which
7638 * alloc_pages_exact() automatically does
7640 if (get_order(size
) < MAX_ORDER
) {
7641 table
= alloc_pages_exact(size
, gfp_flags
);
7642 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7645 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7648 panic("Failed to allocate %s hash table\n", tablename
);
7650 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7651 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7654 *_hash_shift
= log2qty
;
7656 *_hash_mask
= (1 << log2qty
) - 1;
7662 * This function checks whether pageblock includes unmovable pages or not.
7663 * If @count is not zero, it is okay to include less @count unmovable pages
7665 * PageLRU check without isolation or lru_lock could race so that
7666 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7667 * check without lock_page also may miss some movable non-lru pages at
7668 * race condition. So you can't expect this function should be exact.
7670 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7672 bool skip_hwpoisoned_pages
)
7674 unsigned long pfn
, iter
, found
;
7677 * TODO we could make this much more efficient by not checking every
7678 * page in the range if we know all of them are in MOVABLE_ZONE and
7679 * that the movable zone guarantees that pages are migratable but
7680 * the later is not the case right now unfortunatelly. E.g. movablecore
7681 * can still lead to having bootmem allocations in zone_movable.
7685 * CMA allocations (alloc_contig_range) really need to mark isolate
7686 * CMA pageblocks even when they are not movable in fact so consider
7687 * them movable here.
7689 if (is_migrate_cma(migratetype
) &&
7690 is_migrate_cma(get_pageblock_migratetype(page
)))
7693 pfn
= page_to_pfn(page
);
7694 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7695 unsigned long check
= pfn
+ iter
;
7697 if (!pfn_valid_within(check
))
7700 page
= pfn_to_page(check
);
7702 if (PageReserved(page
))
7706 * Hugepages are not in LRU lists, but they're movable.
7707 * We need not scan over tail pages bacause we don't
7708 * handle each tail page individually in migration.
7710 if (PageHuge(page
)) {
7712 if (!hugepage_migration_supported(page_hstate(page
)))
7715 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7720 * We can't use page_count without pin a page
7721 * because another CPU can free compound page.
7722 * This check already skips compound tails of THP
7723 * because their page->_refcount is zero at all time.
7725 if (!page_ref_count(page
)) {
7726 if (PageBuddy(page
))
7727 iter
+= (1 << page_order(page
)) - 1;
7732 * The HWPoisoned page may be not in buddy system, and
7733 * page_count() is not 0.
7735 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7738 if (__PageMovable(page
))
7744 * If there are RECLAIMABLE pages, we need to check
7745 * it. But now, memory offline itself doesn't call
7746 * shrink_node_slabs() and it still to be fixed.
7749 * If the page is not RAM, page_count()should be 0.
7750 * we don't need more check. This is an _used_ not-movable page.
7752 * The problematic thing here is PG_reserved pages. PG_reserved
7753 * is set to both of a memory hole page and a _used_ kernel
7761 WARN_ON_ONCE(zone_idx(zone
) == ZONE_MOVABLE
);
7765 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7767 static unsigned long pfn_max_align_down(unsigned long pfn
)
7769 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7770 pageblock_nr_pages
) - 1);
7773 static unsigned long pfn_max_align_up(unsigned long pfn
)
7775 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7776 pageblock_nr_pages
));
7779 /* [start, end) must belong to a single zone. */
7780 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7781 unsigned long start
, unsigned long end
)
7783 /* This function is based on compact_zone() from compaction.c. */
7784 unsigned long nr_reclaimed
;
7785 unsigned long pfn
= start
;
7786 unsigned int tries
= 0;
7791 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7792 if (fatal_signal_pending(current
)) {
7797 if (list_empty(&cc
->migratepages
)) {
7798 cc
->nr_migratepages
= 0;
7799 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7805 } else if (++tries
== 5) {
7806 ret
= ret
< 0 ? ret
: -EBUSY
;
7810 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7812 cc
->nr_migratepages
-= nr_reclaimed
;
7814 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7815 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
7818 putback_movable_pages(&cc
->migratepages
);
7825 * alloc_contig_range() -- tries to allocate given range of pages
7826 * @start: start PFN to allocate
7827 * @end: one-past-the-last PFN to allocate
7828 * @migratetype: migratetype of the underlaying pageblocks (either
7829 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7830 * in range must have the same migratetype and it must
7831 * be either of the two.
7832 * @gfp_mask: GFP mask to use during compaction
7834 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7835 * aligned. The PFN range must belong to a single zone.
7837 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7838 * pageblocks in the range. Once isolated, the pageblocks should not
7839 * be modified by others.
7841 * Returns zero on success or negative error code. On success all
7842 * pages which PFN is in [start, end) are allocated for the caller and
7843 * need to be freed with free_contig_range().
7845 int alloc_contig_range(unsigned long start
, unsigned long end
,
7846 unsigned migratetype
, gfp_t gfp_mask
)
7848 unsigned long outer_start
, outer_end
;
7852 struct compact_control cc
= {
7853 .nr_migratepages
= 0,
7855 .zone
= page_zone(pfn_to_page(start
)),
7856 .mode
= MIGRATE_SYNC
,
7857 .ignore_skip_hint
= true,
7858 .no_set_skip_hint
= true,
7859 .gfp_mask
= current_gfp_context(gfp_mask
),
7861 INIT_LIST_HEAD(&cc
.migratepages
);
7864 * What we do here is we mark all pageblocks in range as
7865 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7866 * have different sizes, and due to the way page allocator
7867 * work, we align the range to biggest of the two pages so
7868 * that page allocator won't try to merge buddies from
7869 * different pageblocks and change MIGRATE_ISOLATE to some
7870 * other migration type.
7872 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7873 * migrate the pages from an unaligned range (ie. pages that
7874 * we are interested in). This will put all the pages in
7875 * range back to page allocator as MIGRATE_ISOLATE.
7877 * When this is done, we take the pages in range from page
7878 * allocator removing them from the buddy system. This way
7879 * page allocator will never consider using them.
7881 * This lets us mark the pageblocks back as
7882 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7883 * aligned range but not in the unaligned, original range are
7884 * put back to page allocator so that buddy can use them.
7887 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7888 pfn_max_align_up(end
), migratetype
,
7894 * In case of -EBUSY, we'd like to know which page causes problem.
7895 * So, just fall through. test_pages_isolated() has a tracepoint
7896 * which will report the busy page.
7898 * It is possible that busy pages could become available before
7899 * the call to test_pages_isolated, and the range will actually be
7900 * allocated. So, if we fall through be sure to clear ret so that
7901 * -EBUSY is not accidentally used or returned to caller.
7903 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7904 if (ret
&& ret
!= -EBUSY
)
7909 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7910 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7911 * more, all pages in [start, end) are free in page allocator.
7912 * What we are going to do is to allocate all pages from
7913 * [start, end) (that is remove them from page allocator).
7915 * The only problem is that pages at the beginning and at the
7916 * end of interesting range may be not aligned with pages that
7917 * page allocator holds, ie. they can be part of higher order
7918 * pages. Because of this, we reserve the bigger range and
7919 * once this is done free the pages we are not interested in.
7921 * We don't have to hold zone->lock here because the pages are
7922 * isolated thus they won't get removed from buddy.
7925 lru_add_drain_all();
7926 drain_all_pages(cc
.zone
);
7929 outer_start
= start
;
7930 while (!PageBuddy(pfn_to_page(outer_start
))) {
7931 if (++order
>= MAX_ORDER
) {
7932 outer_start
= start
;
7935 outer_start
&= ~0UL << order
;
7938 if (outer_start
!= start
) {
7939 order
= page_order(pfn_to_page(outer_start
));
7942 * outer_start page could be small order buddy page and
7943 * it doesn't include start page. Adjust outer_start
7944 * in this case to report failed page properly
7945 * on tracepoint in test_pages_isolated()
7947 if (outer_start
+ (1UL << order
) <= start
)
7948 outer_start
= start
;
7951 /* Make sure the range is really isolated. */
7952 if (test_pages_isolated(outer_start
, end
, false)) {
7953 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7954 __func__
, outer_start
, end
);
7959 /* Grab isolated pages from freelists. */
7960 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7966 /* Free head and tail (if any) */
7967 if (start
!= outer_start
)
7968 free_contig_range(outer_start
, start
- outer_start
);
7969 if (end
!= outer_end
)
7970 free_contig_range(end
, outer_end
- end
);
7973 undo_isolate_page_range(pfn_max_align_down(start
),
7974 pfn_max_align_up(end
), migratetype
);
7978 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7980 unsigned int count
= 0;
7982 for (; nr_pages
--; pfn
++) {
7983 struct page
*page
= pfn_to_page(pfn
);
7985 count
+= page_count(page
) != 1;
7988 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7992 #ifdef CONFIG_MEMORY_HOTPLUG
7994 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7995 * page high values need to be recalulated.
7997 void __meminit
zone_pcp_update(struct zone
*zone
)
8000 mutex_lock(&pcp_batch_high_lock
);
8001 for_each_possible_cpu(cpu
)
8002 pageset_set_high_and_batch(zone
,
8003 per_cpu_ptr(zone
->pageset
, cpu
));
8004 mutex_unlock(&pcp_batch_high_lock
);
8008 void zone_pcp_reset(struct zone
*zone
)
8010 unsigned long flags
;
8012 struct per_cpu_pageset
*pset
;
8014 /* avoid races with drain_pages() */
8015 local_irq_save(flags
);
8016 if (zone
->pageset
!= &boot_pageset
) {
8017 for_each_online_cpu(cpu
) {
8018 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8019 drain_zonestat(zone
, pset
);
8021 free_percpu(zone
->pageset
);
8022 zone
->pageset
= &boot_pageset
;
8024 local_irq_restore(flags
);
8027 #ifdef CONFIG_MEMORY_HOTREMOVE
8029 * All pages in the range must be in a single zone and isolated
8030 * before calling this.
8033 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8037 unsigned int order
, i
;
8039 unsigned long flags
;
8040 /* find the first valid pfn */
8041 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8046 offline_mem_sections(pfn
, end_pfn
);
8047 zone
= page_zone(pfn_to_page(pfn
));
8048 spin_lock_irqsave(&zone
->lock
, flags
);
8050 while (pfn
< end_pfn
) {
8051 if (!pfn_valid(pfn
)) {
8055 page
= pfn_to_page(pfn
);
8057 * The HWPoisoned page may be not in buddy system, and
8058 * page_count() is not 0.
8060 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8062 SetPageReserved(page
);
8066 BUG_ON(page_count(page
));
8067 BUG_ON(!PageBuddy(page
));
8068 order
= page_order(page
);
8069 #ifdef CONFIG_DEBUG_VM
8070 pr_info("remove from free list %lx %d %lx\n",
8071 pfn
, 1 << order
, end_pfn
);
8073 list_del(&page
->lru
);
8074 rmv_page_order(page
);
8075 zone
->free_area
[order
].nr_free
--;
8076 for (i
= 0; i
< (1 << order
); i
++)
8077 SetPageReserved((page
+i
));
8078 pfn
+= (1 << order
);
8080 spin_unlock_irqrestore(&zone
->lock
, flags
);
8084 bool is_free_buddy_page(struct page
*page
)
8086 struct zone
*zone
= page_zone(page
);
8087 unsigned long pfn
= page_to_pfn(page
);
8088 unsigned long flags
;
8091 spin_lock_irqsave(&zone
->lock
, flags
);
8092 for (order
= 0; order
< MAX_ORDER
; order
++) {
8093 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8095 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8098 spin_unlock_irqrestore(&zone
->lock
, flags
);
8100 return order
< MAX_ORDER
;
8103 #ifdef CONFIG_MEMORY_FAILURE
8105 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8106 * test is performed under the zone lock to prevent a race against page
8109 bool set_hwpoison_free_buddy_page(struct page
*page
)
8111 struct zone
*zone
= page_zone(page
);
8112 unsigned long pfn
= page_to_pfn(page
);
8113 unsigned long flags
;
8115 bool hwpoisoned
= false;
8117 spin_lock_irqsave(&zone
->lock
, flags
);
8118 for (order
= 0; order
< MAX_ORDER
; order
++) {
8119 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8121 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8122 if (!TestSetPageHWPoison(page
))
8127 spin_unlock_irqrestore(&zone
->lock
, flags
);