timekeeping; Use ktime based data for ktime_get_update_offsets_tick()
[linux-2.6/btrfs-unstable.git] / kernel / time / timekeeping.c
blobe99350319eec4b231c5d8d43ca30ac54cada72cb
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
47 /* flag for if timekeeping is suspended */
48 int __read_mostly timekeeping_suspended;
50 /* Flag for if there is a persistent clock on this platform */
51 bool __read_mostly persistent_clock_exist = false;
53 static inline void tk_normalize_xtime(struct timekeeper *tk)
55 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
56 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
57 tk->xtime_sec++;
61 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
63 struct timespec64 ts;
65 ts.tv_sec = tk->xtime_sec;
66 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
67 return ts;
70 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
72 tk->xtime_sec = ts->tv_sec;
73 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
76 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
78 tk->xtime_sec += ts->tv_sec;
79 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
80 tk_normalize_xtime(tk);
83 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
85 struct timespec64 tmp;
88 * Verify consistency of: offset_real = -wall_to_monotonic
89 * before modifying anything
91 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
92 -tk->wall_to_monotonic.tv_nsec);
93 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
94 tk->wall_to_monotonic = wtm;
95 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
96 tk->offs_real = timespec64_to_ktime(tmp);
97 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
100 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec64 t)
102 /* Verify consistency before modifying */
103 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec64_to_ktime(tk->total_sleep_time).tv64);
105 tk->total_sleep_time = t;
106 tk->offs_boot = timespec64_to_ktime(t);
110 * tk_setup_internals - Set up internals to use clocksource clock.
112 * @tk: The target timekeeper to setup.
113 * @clock: Pointer to clocksource.
115 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
116 * pair and interval request.
118 * Unless you're the timekeeping code, you should not be using this!
120 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
122 cycle_t interval;
123 u64 tmp, ntpinterval;
124 struct clocksource *old_clock;
126 old_clock = tk->clock;
127 tk->clock = clock;
128 tk->cycle_last = clock->cycle_last = clock->read(clock);
130 /* Do the ns -> cycle conversion first, using original mult */
131 tmp = NTP_INTERVAL_LENGTH;
132 tmp <<= clock->shift;
133 ntpinterval = tmp;
134 tmp += clock->mult/2;
135 do_div(tmp, clock->mult);
136 if (tmp == 0)
137 tmp = 1;
139 interval = (cycle_t) tmp;
140 tk->cycle_interval = interval;
142 /* Go back from cycles -> shifted ns */
143 tk->xtime_interval = (u64) interval * clock->mult;
144 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
145 tk->raw_interval =
146 ((u64) interval * clock->mult) >> clock->shift;
148 /* if changing clocks, convert xtime_nsec shift units */
149 if (old_clock) {
150 int shift_change = clock->shift - old_clock->shift;
151 if (shift_change < 0)
152 tk->xtime_nsec >>= -shift_change;
153 else
154 tk->xtime_nsec <<= shift_change;
156 tk->shift = clock->shift;
158 tk->ntp_error = 0;
159 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
162 * The timekeeper keeps its own mult values for the currently
163 * active clocksource. These value will be adjusted via NTP
164 * to counteract clock drifting.
166 tk->mult = clock->mult;
169 /* Timekeeper helper functions. */
171 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
172 static u32 default_arch_gettimeoffset(void) { return 0; }
173 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
174 #else
175 static inline u32 arch_gettimeoffset(void) { return 0; }
176 #endif
178 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
180 cycle_t cycle_now, cycle_delta;
181 struct clocksource *clock;
182 s64 nsec;
184 /* read clocksource: */
185 clock = tk->clock;
186 cycle_now = clock->read(clock);
188 /* calculate the delta since the last update_wall_time: */
189 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
191 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
192 nsec >>= tk->shift;
194 /* If arch requires, add in get_arch_timeoffset() */
195 return nsec + arch_gettimeoffset();
198 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
200 cycle_t cycle_now, cycle_delta;
201 struct clocksource *clock;
202 s64 nsec;
204 /* read clocksource: */
205 clock = tk->clock;
206 cycle_now = clock->read(clock);
208 /* calculate the delta since the last update_wall_time: */
209 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
211 /* convert delta to nanoseconds. */
212 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
214 /* If arch requires, add in get_arch_timeoffset() */
215 return nsec + arch_gettimeoffset();
218 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
220 static inline void update_vsyscall(struct timekeeper *tk)
222 struct timespec xt;
224 xt = tk_xtime(tk);
225 update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
228 static inline void old_vsyscall_fixup(struct timekeeper *tk)
230 s64 remainder;
233 * Store only full nanoseconds into xtime_nsec after rounding
234 * it up and add the remainder to the error difference.
235 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
236 * by truncating the remainder in vsyscalls. However, it causes
237 * additional work to be done in timekeeping_adjust(). Once
238 * the vsyscall implementations are converted to use xtime_nsec
239 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
240 * users are removed, this can be killed.
242 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
243 tk->xtime_nsec -= remainder;
244 tk->xtime_nsec += 1ULL << tk->shift;
245 tk->ntp_error += remainder << tk->ntp_error_shift;
246 tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
248 #else
249 #define old_vsyscall_fixup(tk)
250 #endif
252 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
254 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
256 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
260 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
262 int pvclock_gtod_register_notifier(struct notifier_block *nb)
264 struct timekeeper *tk = &tk_core.timekeeper;
265 unsigned long flags;
266 int ret;
268 raw_spin_lock_irqsave(&timekeeper_lock, flags);
269 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
270 update_pvclock_gtod(tk, true);
271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
273 return ret;
275 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
278 * pvclock_gtod_unregister_notifier - unregister a pvclock
279 * timedata update listener
281 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
283 unsigned long flags;
284 int ret;
286 raw_spin_lock_irqsave(&timekeeper_lock, flags);
287 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
290 return ret;
292 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
295 * Update the ktime_t based scalar nsec members of the timekeeper
297 static inline void tk_update_ktime_data(struct timekeeper *tk)
299 s64 nsec;
302 * The xtime based monotonic readout is:
303 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
304 * The ktime based monotonic readout is:
305 * nsec = base_mono + now();
306 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
308 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
309 nsec *= NSEC_PER_SEC;
310 nsec += tk->wall_to_monotonic.tv_nsec;
311 tk->base_mono = ns_to_ktime(nsec);
314 /* must hold timekeeper_lock */
315 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
317 if (action & TK_CLEAR_NTP) {
318 tk->ntp_error = 0;
319 ntp_clear();
321 update_vsyscall(tk);
322 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
324 tk_update_ktime_data(tk);
326 if (action & TK_MIRROR)
327 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
328 sizeof(tk_core.timekeeper));
332 * timekeeping_forward_now - update clock to the current time
334 * Forward the current clock to update its state since the last call to
335 * update_wall_time(). This is useful before significant clock changes,
336 * as it avoids having to deal with this time offset explicitly.
338 static void timekeeping_forward_now(struct timekeeper *tk)
340 cycle_t cycle_now, cycle_delta;
341 struct clocksource *clock;
342 s64 nsec;
344 clock = tk->clock;
345 cycle_now = clock->read(clock);
346 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
347 tk->cycle_last = clock->cycle_last = cycle_now;
349 tk->xtime_nsec += cycle_delta * tk->mult;
351 /* If arch requires, add in get_arch_timeoffset() */
352 tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
354 tk_normalize_xtime(tk);
356 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
357 timespec64_add_ns(&tk->raw_time, nsec);
361 * __getnstimeofday64 - Returns the time of day in a timespec64.
362 * @ts: pointer to the timespec to be set
364 * Updates the time of day in the timespec.
365 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
367 int __getnstimeofday64(struct timespec64 *ts)
369 struct timekeeper *tk = &tk_core.timekeeper;
370 unsigned long seq;
371 s64 nsecs = 0;
373 do {
374 seq = read_seqcount_begin(&tk_core.seq);
376 ts->tv_sec = tk->xtime_sec;
377 nsecs = timekeeping_get_ns(tk);
379 } while (read_seqcount_retry(&tk_core.seq, seq));
381 ts->tv_nsec = 0;
382 timespec64_add_ns(ts, nsecs);
385 * Do not bail out early, in case there were callers still using
386 * the value, even in the face of the WARN_ON.
388 if (unlikely(timekeeping_suspended))
389 return -EAGAIN;
390 return 0;
392 EXPORT_SYMBOL(__getnstimeofday64);
395 * getnstimeofday64 - Returns the time of day in a timespec64.
396 * @ts: pointer to the timespec to be set
398 * Returns the time of day in a timespec (WARN if suspended).
400 void getnstimeofday64(struct timespec64 *ts)
402 WARN_ON(__getnstimeofday64(ts));
404 EXPORT_SYMBOL(getnstimeofday64);
406 ktime_t ktime_get(void)
408 struct timekeeper *tk = &tk_core.timekeeper;
409 unsigned int seq;
410 ktime_t base;
411 s64 nsecs;
413 WARN_ON(timekeeping_suspended);
415 do {
416 seq = read_seqcount_begin(&tk_core.seq);
417 base = tk->base_mono;
418 nsecs = timekeeping_get_ns(tk);
420 } while (read_seqcount_retry(&tk_core.seq, seq));
422 return ktime_add_ns(base, nsecs);
424 EXPORT_SYMBOL_GPL(ktime_get);
426 static ktime_t *offsets[TK_OFFS_MAX] = {
427 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
428 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
429 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
432 ktime_t ktime_get_with_offset(enum tk_offsets offs)
434 struct timekeeper *tk = &tk_core.timekeeper;
435 unsigned int seq;
436 ktime_t base, *offset = offsets[offs];
437 s64 nsecs;
439 WARN_ON(timekeeping_suspended);
441 do {
442 seq = read_seqcount_begin(&tk_core.seq);
443 base = ktime_add(tk->base_mono, *offset);
444 nsecs = timekeeping_get_ns(tk);
446 } while (read_seqcount_retry(&tk_core.seq, seq));
448 return ktime_add_ns(base, nsecs);
451 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
454 * ktime_get_ts64 - get the monotonic clock in timespec64 format
455 * @ts: pointer to timespec variable
457 * The function calculates the monotonic clock from the realtime
458 * clock and the wall_to_monotonic offset and stores the result
459 * in normalized timespec format in the variable pointed to by @ts.
461 void ktime_get_ts64(struct timespec64 *ts)
463 struct timekeeper *tk = &tk_core.timekeeper;
464 struct timespec64 tomono;
465 s64 nsec;
466 unsigned int seq;
468 WARN_ON(timekeeping_suspended);
470 do {
471 seq = read_seqcount_begin(&tk_core.seq);
472 ts->tv_sec = tk->xtime_sec;
473 nsec = timekeeping_get_ns(tk);
474 tomono = tk->wall_to_monotonic;
476 } while (read_seqcount_retry(&tk_core.seq, seq));
478 ts->tv_sec += tomono.tv_sec;
479 ts->tv_nsec = 0;
480 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
482 EXPORT_SYMBOL_GPL(ktime_get_ts64);
486 * timekeeping_clocktai - Returns the TAI time of day in a timespec
487 * @ts: pointer to the timespec to be set
489 * Returns the time of day in a timespec.
491 void timekeeping_clocktai(struct timespec *ts)
493 struct timekeeper *tk = &tk_core.timekeeper;
494 struct timespec64 ts64;
495 unsigned long seq;
496 u64 nsecs;
498 WARN_ON(timekeeping_suspended);
500 do {
501 seq = read_seqcount_begin(&tk_core.seq);
503 ts64.tv_sec = tk->xtime_sec + tk->tai_offset;
504 nsecs = timekeeping_get_ns(tk);
506 } while (read_seqcount_retry(&tk_core.seq, seq));
508 ts64.tv_nsec = 0;
509 timespec64_add_ns(&ts64, nsecs);
510 *ts = timespec64_to_timespec(ts64);
513 EXPORT_SYMBOL(timekeeping_clocktai);
515 #ifdef CONFIG_NTP_PPS
518 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
519 * @ts_raw: pointer to the timespec to be set to raw monotonic time
520 * @ts_real: pointer to the timespec to be set to the time of day
522 * This function reads both the time of day and raw monotonic time at the
523 * same time atomically and stores the resulting timestamps in timespec
524 * format.
526 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
528 struct timekeeper *tk = &tk_core.timekeeper;
529 unsigned long seq;
530 s64 nsecs_raw, nsecs_real;
532 WARN_ON_ONCE(timekeeping_suspended);
534 do {
535 seq = read_seqcount_begin(&tk_core.seq);
537 *ts_raw = timespec64_to_timespec(tk->raw_time);
538 ts_real->tv_sec = tk->xtime_sec;
539 ts_real->tv_nsec = 0;
541 nsecs_raw = timekeeping_get_ns_raw(tk);
542 nsecs_real = timekeeping_get_ns(tk);
544 } while (read_seqcount_retry(&tk_core.seq, seq));
546 timespec_add_ns(ts_raw, nsecs_raw);
547 timespec_add_ns(ts_real, nsecs_real);
549 EXPORT_SYMBOL(getnstime_raw_and_real);
551 #endif /* CONFIG_NTP_PPS */
554 * do_gettimeofday - Returns the time of day in a timeval
555 * @tv: pointer to the timeval to be set
557 * NOTE: Users should be converted to using getnstimeofday()
559 void do_gettimeofday(struct timeval *tv)
561 struct timespec64 now;
563 getnstimeofday64(&now);
564 tv->tv_sec = now.tv_sec;
565 tv->tv_usec = now.tv_nsec/1000;
567 EXPORT_SYMBOL(do_gettimeofday);
570 * do_settimeofday - Sets the time of day
571 * @tv: pointer to the timespec variable containing the new time
573 * Sets the time of day to the new time and update NTP and notify hrtimers
575 int do_settimeofday(const struct timespec *tv)
577 struct timekeeper *tk = &tk_core.timekeeper;
578 struct timespec64 ts_delta, xt, tmp;
579 unsigned long flags;
581 if (!timespec_valid_strict(tv))
582 return -EINVAL;
584 raw_spin_lock_irqsave(&timekeeper_lock, flags);
585 write_seqcount_begin(&tk_core.seq);
587 timekeeping_forward_now(tk);
589 xt = tk_xtime(tk);
590 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
591 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
593 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
595 tmp = timespec_to_timespec64(*tv);
596 tk_set_xtime(tk, &tmp);
598 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
600 write_seqcount_end(&tk_core.seq);
601 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
603 /* signal hrtimers about time change */
604 clock_was_set();
606 return 0;
608 EXPORT_SYMBOL(do_settimeofday);
611 * timekeeping_inject_offset - Adds or subtracts from the current time.
612 * @tv: pointer to the timespec variable containing the offset
614 * Adds or subtracts an offset value from the current time.
616 int timekeeping_inject_offset(struct timespec *ts)
618 struct timekeeper *tk = &tk_core.timekeeper;
619 unsigned long flags;
620 struct timespec64 ts64, tmp;
621 int ret = 0;
623 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
624 return -EINVAL;
626 ts64 = timespec_to_timespec64(*ts);
628 raw_spin_lock_irqsave(&timekeeper_lock, flags);
629 write_seqcount_begin(&tk_core.seq);
631 timekeeping_forward_now(tk);
633 /* Make sure the proposed value is valid */
634 tmp = timespec64_add(tk_xtime(tk), ts64);
635 if (!timespec64_valid_strict(&tmp)) {
636 ret = -EINVAL;
637 goto error;
640 tk_xtime_add(tk, &ts64);
641 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
643 error: /* even if we error out, we forwarded the time, so call update */
644 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
646 write_seqcount_end(&tk_core.seq);
647 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
649 /* signal hrtimers about time change */
650 clock_was_set();
652 return ret;
654 EXPORT_SYMBOL(timekeeping_inject_offset);
658 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
661 s32 timekeeping_get_tai_offset(void)
663 struct timekeeper *tk = &tk_core.timekeeper;
664 unsigned int seq;
665 s32 ret;
667 do {
668 seq = read_seqcount_begin(&tk_core.seq);
669 ret = tk->tai_offset;
670 } while (read_seqcount_retry(&tk_core.seq, seq));
672 return ret;
676 * __timekeeping_set_tai_offset - Lock free worker function
679 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
681 tk->tai_offset = tai_offset;
682 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
686 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
689 void timekeeping_set_tai_offset(s32 tai_offset)
691 struct timekeeper *tk = &tk_core.timekeeper;
692 unsigned long flags;
694 raw_spin_lock_irqsave(&timekeeper_lock, flags);
695 write_seqcount_begin(&tk_core.seq);
696 __timekeeping_set_tai_offset(tk, tai_offset);
697 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
698 write_seqcount_end(&tk_core.seq);
699 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
700 clock_was_set();
704 * change_clocksource - Swaps clocksources if a new one is available
706 * Accumulates current time interval and initializes new clocksource
708 static int change_clocksource(void *data)
710 struct timekeeper *tk = &tk_core.timekeeper;
711 struct clocksource *new, *old;
712 unsigned long flags;
714 new = (struct clocksource *) data;
716 raw_spin_lock_irqsave(&timekeeper_lock, flags);
717 write_seqcount_begin(&tk_core.seq);
719 timekeeping_forward_now(tk);
721 * If the cs is in module, get a module reference. Succeeds
722 * for built-in code (owner == NULL) as well.
724 if (try_module_get(new->owner)) {
725 if (!new->enable || new->enable(new) == 0) {
726 old = tk->clock;
727 tk_setup_internals(tk, new);
728 if (old->disable)
729 old->disable(old);
730 module_put(old->owner);
731 } else {
732 module_put(new->owner);
735 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
737 write_seqcount_end(&tk_core.seq);
738 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
740 return 0;
744 * timekeeping_notify - Install a new clock source
745 * @clock: pointer to the clock source
747 * This function is called from clocksource.c after a new, better clock
748 * source has been registered. The caller holds the clocksource_mutex.
750 int timekeeping_notify(struct clocksource *clock)
752 struct timekeeper *tk = &tk_core.timekeeper;
754 if (tk->clock == clock)
755 return 0;
756 stop_machine(change_clocksource, clock, NULL);
757 tick_clock_notify();
758 return tk->clock == clock ? 0 : -1;
762 * getrawmonotonic - Returns the raw monotonic time in a timespec
763 * @ts: pointer to the timespec to be set
765 * Returns the raw monotonic time (completely un-modified by ntp)
767 void getrawmonotonic(struct timespec *ts)
769 struct timekeeper *tk = &tk_core.timekeeper;
770 struct timespec64 ts64;
771 unsigned long seq;
772 s64 nsecs;
774 do {
775 seq = read_seqcount_begin(&tk_core.seq);
776 nsecs = timekeeping_get_ns_raw(tk);
777 ts64 = tk->raw_time;
779 } while (read_seqcount_retry(&tk_core.seq, seq));
781 timespec64_add_ns(&ts64, nsecs);
782 *ts = timespec64_to_timespec(ts64);
784 EXPORT_SYMBOL(getrawmonotonic);
787 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
789 int timekeeping_valid_for_hres(void)
791 struct timekeeper *tk = &tk_core.timekeeper;
792 unsigned long seq;
793 int ret;
795 do {
796 seq = read_seqcount_begin(&tk_core.seq);
798 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
800 } while (read_seqcount_retry(&tk_core.seq, seq));
802 return ret;
806 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
808 u64 timekeeping_max_deferment(void)
810 struct timekeeper *tk = &tk_core.timekeeper;
811 unsigned long seq;
812 u64 ret;
814 do {
815 seq = read_seqcount_begin(&tk_core.seq);
817 ret = tk->clock->max_idle_ns;
819 } while (read_seqcount_retry(&tk_core.seq, seq));
821 return ret;
825 * read_persistent_clock - Return time from the persistent clock.
827 * Weak dummy function for arches that do not yet support it.
828 * Reads the time from the battery backed persistent clock.
829 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
831 * XXX - Do be sure to remove it once all arches implement it.
833 void __weak read_persistent_clock(struct timespec *ts)
835 ts->tv_sec = 0;
836 ts->tv_nsec = 0;
840 * read_boot_clock - Return time of the system start.
842 * Weak dummy function for arches that do not yet support it.
843 * Function to read the exact time the system has been started.
844 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
846 * XXX - Do be sure to remove it once all arches implement it.
848 void __weak read_boot_clock(struct timespec *ts)
850 ts->tv_sec = 0;
851 ts->tv_nsec = 0;
855 * timekeeping_init - Initializes the clocksource and common timekeeping values
857 void __init timekeeping_init(void)
859 struct timekeeper *tk = &tk_core.timekeeper;
860 struct clocksource *clock;
861 unsigned long flags;
862 struct timespec64 now, boot, tmp;
863 struct timespec ts;
865 read_persistent_clock(&ts);
866 now = timespec_to_timespec64(ts);
867 if (!timespec64_valid_strict(&now)) {
868 pr_warn("WARNING: Persistent clock returned invalid value!\n"
869 " Check your CMOS/BIOS settings.\n");
870 now.tv_sec = 0;
871 now.tv_nsec = 0;
872 } else if (now.tv_sec || now.tv_nsec)
873 persistent_clock_exist = true;
875 read_boot_clock(&ts);
876 boot = timespec_to_timespec64(ts);
877 if (!timespec64_valid_strict(&boot)) {
878 pr_warn("WARNING: Boot clock returned invalid value!\n"
879 " Check your CMOS/BIOS settings.\n");
880 boot.tv_sec = 0;
881 boot.tv_nsec = 0;
884 raw_spin_lock_irqsave(&timekeeper_lock, flags);
885 write_seqcount_begin(&tk_core.seq);
886 ntp_init();
888 clock = clocksource_default_clock();
889 if (clock->enable)
890 clock->enable(clock);
891 tk_setup_internals(tk, clock);
893 tk_set_xtime(tk, &now);
894 tk->raw_time.tv_sec = 0;
895 tk->raw_time.tv_nsec = 0;
896 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
897 boot = tk_xtime(tk);
899 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
900 tk_set_wall_to_mono(tk, tmp);
902 tmp.tv_sec = 0;
903 tmp.tv_nsec = 0;
904 tk_set_sleep_time(tk, tmp);
906 timekeeping_update(tk, TK_MIRROR);
908 write_seqcount_end(&tk_core.seq);
909 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
912 /* time in seconds when suspend began */
913 static struct timespec64 timekeeping_suspend_time;
916 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
917 * @delta: pointer to a timespec delta value
919 * Takes a timespec offset measuring a suspend interval and properly
920 * adds the sleep offset to the timekeeping variables.
922 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
923 struct timespec64 *delta)
925 if (!timespec64_valid_strict(delta)) {
926 printk_deferred(KERN_WARNING
927 "__timekeeping_inject_sleeptime: Invalid "
928 "sleep delta value!\n");
929 return;
931 tk_xtime_add(tk, delta);
932 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
933 tk_set_sleep_time(tk, timespec64_add(tk->total_sleep_time, *delta));
934 tk_debug_account_sleep_time(delta);
938 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
939 * @delta: pointer to a timespec delta value
941 * This hook is for architectures that cannot support read_persistent_clock
942 * because their RTC/persistent clock is only accessible when irqs are enabled.
944 * This function should only be called by rtc_resume(), and allows
945 * a suspend offset to be injected into the timekeeping values.
947 void timekeeping_inject_sleeptime(struct timespec *delta)
949 struct timekeeper *tk = &tk_core.timekeeper;
950 struct timespec64 tmp;
951 unsigned long flags;
954 * Make sure we don't set the clock twice, as timekeeping_resume()
955 * already did it
957 if (has_persistent_clock())
958 return;
960 raw_spin_lock_irqsave(&timekeeper_lock, flags);
961 write_seqcount_begin(&tk_core.seq);
963 timekeeping_forward_now(tk);
965 tmp = timespec_to_timespec64(*delta);
966 __timekeeping_inject_sleeptime(tk, &tmp);
968 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
970 write_seqcount_end(&tk_core.seq);
971 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
973 /* signal hrtimers about time change */
974 clock_was_set();
978 * timekeeping_resume - Resumes the generic timekeeping subsystem.
980 * This is for the generic clocksource timekeeping.
981 * xtime/wall_to_monotonic/jiffies/etc are
982 * still managed by arch specific suspend/resume code.
984 static void timekeeping_resume(void)
986 struct timekeeper *tk = &tk_core.timekeeper;
987 struct clocksource *clock = tk->clock;
988 unsigned long flags;
989 struct timespec64 ts_new, ts_delta;
990 struct timespec tmp;
991 cycle_t cycle_now, cycle_delta;
992 bool suspendtime_found = false;
994 read_persistent_clock(&tmp);
995 ts_new = timespec_to_timespec64(tmp);
997 clockevents_resume();
998 clocksource_resume();
1000 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1001 write_seqcount_begin(&tk_core.seq);
1004 * After system resumes, we need to calculate the suspended time and
1005 * compensate it for the OS time. There are 3 sources that could be
1006 * used: Nonstop clocksource during suspend, persistent clock and rtc
1007 * device.
1009 * One specific platform may have 1 or 2 or all of them, and the
1010 * preference will be:
1011 * suspend-nonstop clocksource -> persistent clock -> rtc
1012 * The less preferred source will only be tried if there is no better
1013 * usable source. The rtc part is handled separately in rtc core code.
1015 cycle_now = clock->read(clock);
1016 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1017 cycle_now > clock->cycle_last) {
1018 u64 num, max = ULLONG_MAX;
1019 u32 mult = clock->mult;
1020 u32 shift = clock->shift;
1021 s64 nsec = 0;
1023 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
1026 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1027 * suspended time is too long. In that case we need do the
1028 * 64 bits math carefully
1030 do_div(max, mult);
1031 if (cycle_delta > max) {
1032 num = div64_u64(cycle_delta, max);
1033 nsec = (((u64) max * mult) >> shift) * num;
1034 cycle_delta -= num * max;
1036 nsec += ((u64) cycle_delta * mult) >> shift;
1038 ts_delta = ns_to_timespec64(nsec);
1039 suspendtime_found = true;
1040 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1041 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1042 suspendtime_found = true;
1045 if (suspendtime_found)
1046 __timekeeping_inject_sleeptime(tk, &ts_delta);
1048 /* Re-base the last cycle value */
1049 tk->cycle_last = clock->cycle_last = cycle_now;
1050 tk->ntp_error = 0;
1051 timekeeping_suspended = 0;
1052 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1053 write_seqcount_end(&tk_core.seq);
1054 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1056 touch_softlockup_watchdog();
1058 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1060 /* Resume hrtimers */
1061 hrtimers_resume();
1064 static int timekeeping_suspend(void)
1066 struct timekeeper *tk = &tk_core.timekeeper;
1067 unsigned long flags;
1068 struct timespec64 delta, delta_delta;
1069 static struct timespec64 old_delta;
1070 struct timespec tmp;
1072 read_persistent_clock(&tmp);
1073 timekeeping_suspend_time = timespec_to_timespec64(tmp);
1076 * On some systems the persistent_clock can not be detected at
1077 * timekeeping_init by its return value, so if we see a valid
1078 * value returned, update the persistent_clock_exists flag.
1080 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1081 persistent_clock_exist = true;
1083 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1084 write_seqcount_begin(&tk_core.seq);
1085 timekeeping_forward_now(tk);
1086 timekeeping_suspended = 1;
1089 * To avoid drift caused by repeated suspend/resumes,
1090 * which each can add ~1 second drift error,
1091 * try to compensate so the difference in system time
1092 * and persistent_clock time stays close to constant.
1094 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1095 delta_delta = timespec64_sub(delta, old_delta);
1096 if (abs(delta_delta.tv_sec) >= 2) {
1098 * if delta_delta is too large, assume time correction
1099 * has occured and set old_delta to the current delta.
1101 old_delta = delta;
1102 } else {
1103 /* Otherwise try to adjust old_system to compensate */
1104 timekeeping_suspend_time =
1105 timespec64_add(timekeeping_suspend_time, delta_delta);
1108 timekeeping_update(tk, TK_MIRROR);
1109 write_seqcount_end(&tk_core.seq);
1110 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1112 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1113 clocksource_suspend();
1114 clockevents_suspend();
1116 return 0;
1119 /* sysfs resume/suspend bits for timekeeping */
1120 static struct syscore_ops timekeeping_syscore_ops = {
1121 .resume = timekeeping_resume,
1122 .suspend = timekeeping_suspend,
1125 static int __init timekeeping_init_ops(void)
1127 register_syscore_ops(&timekeeping_syscore_ops);
1128 return 0;
1131 device_initcall(timekeeping_init_ops);
1134 * If the error is already larger, we look ahead even further
1135 * to compensate for late or lost adjustments.
1137 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1138 s64 error, s64 *interval,
1139 s64 *offset)
1141 s64 tick_error, i;
1142 u32 look_ahead, adj;
1143 s32 error2, mult;
1146 * Use the current error value to determine how much to look ahead.
1147 * The larger the error the slower we adjust for it to avoid problems
1148 * with losing too many ticks, otherwise we would overadjust and
1149 * produce an even larger error. The smaller the adjustment the
1150 * faster we try to adjust for it, as lost ticks can do less harm
1151 * here. This is tuned so that an error of about 1 msec is adjusted
1152 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1154 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1155 error2 = abs(error2);
1156 for (look_ahead = 0; error2 > 0; look_ahead++)
1157 error2 >>= 2;
1160 * Now calculate the error in (1 << look_ahead) ticks, but first
1161 * remove the single look ahead already included in the error.
1163 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1164 tick_error -= tk->xtime_interval >> 1;
1165 error = ((error - tick_error) >> look_ahead) + tick_error;
1167 /* Finally calculate the adjustment shift value. */
1168 i = *interval;
1169 mult = 1;
1170 if (error < 0) {
1171 error = -error;
1172 *interval = -*interval;
1173 *offset = -*offset;
1174 mult = -1;
1176 for (adj = 0; error > i; adj++)
1177 error >>= 1;
1179 *interval <<= adj;
1180 *offset <<= adj;
1181 return mult << adj;
1185 * Adjust the multiplier to reduce the error value,
1186 * this is optimized for the most common adjustments of -1,0,1,
1187 * for other values we can do a bit more work.
1189 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1191 s64 error, interval = tk->cycle_interval;
1192 int adj;
1195 * The point of this is to check if the error is greater than half
1196 * an interval.
1198 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1200 * Note we subtract one in the shift, so that error is really error*2.
1201 * This "saves" dividing(shifting) interval twice, but keeps the
1202 * (error > interval) comparison as still measuring if error is
1203 * larger than half an interval.
1205 * Note: It does not "save" on aggravation when reading the code.
1207 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1208 if (error > interval) {
1210 * We now divide error by 4(via shift), which checks if
1211 * the error is greater than twice the interval.
1212 * If it is greater, we need a bigadjust, if its smaller,
1213 * we can adjust by 1.
1215 error >>= 2;
1216 if (likely(error <= interval))
1217 adj = 1;
1218 else
1219 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1220 } else {
1221 if (error < -interval) {
1222 /* See comment above, this is just switched for the negative */
1223 error >>= 2;
1224 if (likely(error >= -interval)) {
1225 adj = -1;
1226 interval = -interval;
1227 offset = -offset;
1228 } else {
1229 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1231 } else {
1232 goto out_adjust;
1236 if (unlikely(tk->clock->maxadj &&
1237 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1238 printk_deferred_once(KERN_WARNING
1239 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1240 tk->clock->name, (long)tk->mult + adj,
1241 (long)tk->clock->mult + tk->clock->maxadj);
1244 * So the following can be confusing.
1246 * To keep things simple, lets assume adj == 1 for now.
1248 * When adj != 1, remember that the interval and offset values
1249 * have been appropriately scaled so the math is the same.
1251 * The basic idea here is that we're increasing the multiplier
1252 * by one, this causes the xtime_interval to be incremented by
1253 * one cycle_interval. This is because:
1254 * xtime_interval = cycle_interval * mult
1255 * So if mult is being incremented by one:
1256 * xtime_interval = cycle_interval * (mult + 1)
1257 * Its the same as:
1258 * xtime_interval = (cycle_interval * mult) + cycle_interval
1259 * Which can be shortened to:
1260 * xtime_interval += cycle_interval
1262 * So offset stores the non-accumulated cycles. Thus the current
1263 * time (in shifted nanoseconds) is:
1264 * now = (offset * adj) + xtime_nsec
1265 * Now, even though we're adjusting the clock frequency, we have
1266 * to keep time consistent. In other words, we can't jump back
1267 * in time, and we also want to avoid jumping forward in time.
1269 * So given the same offset value, we need the time to be the same
1270 * both before and after the freq adjustment.
1271 * now = (offset * adj_1) + xtime_nsec_1
1272 * now = (offset * adj_2) + xtime_nsec_2
1273 * So:
1274 * (offset * adj_1) + xtime_nsec_1 =
1275 * (offset * adj_2) + xtime_nsec_2
1276 * And we know:
1277 * adj_2 = adj_1 + 1
1278 * So:
1279 * (offset * adj_1) + xtime_nsec_1 =
1280 * (offset * (adj_1+1)) + xtime_nsec_2
1281 * (offset * adj_1) + xtime_nsec_1 =
1282 * (offset * adj_1) + offset + xtime_nsec_2
1283 * Canceling the sides:
1284 * xtime_nsec_1 = offset + xtime_nsec_2
1285 * Which gives us:
1286 * xtime_nsec_2 = xtime_nsec_1 - offset
1287 * Which simplfies to:
1288 * xtime_nsec -= offset
1290 * XXX - TODO: Doc ntp_error calculation.
1292 tk->mult += adj;
1293 tk->xtime_interval += interval;
1294 tk->xtime_nsec -= offset;
1295 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1297 out_adjust:
1299 * It may be possible that when we entered this function, xtime_nsec
1300 * was very small. Further, if we're slightly speeding the clocksource
1301 * in the code above, its possible the required corrective factor to
1302 * xtime_nsec could cause it to underflow.
1304 * Now, since we already accumulated the second, cannot simply roll
1305 * the accumulated second back, since the NTP subsystem has been
1306 * notified via second_overflow. So instead we push xtime_nsec forward
1307 * by the amount we underflowed, and add that amount into the error.
1309 * We'll correct this error next time through this function, when
1310 * xtime_nsec is not as small.
1312 if (unlikely((s64)tk->xtime_nsec < 0)) {
1313 s64 neg = -(s64)tk->xtime_nsec;
1314 tk->xtime_nsec = 0;
1315 tk->ntp_error += neg << tk->ntp_error_shift;
1321 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1323 * Helper function that accumulates a the nsecs greater then a second
1324 * from the xtime_nsec field to the xtime_secs field.
1325 * It also calls into the NTP code to handle leapsecond processing.
1328 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1330 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1331 unsigned int clock_set = 0;
1333 while (tk->xtime_nsec >= nsecps) {
1334 int leap;
1336 tk->xtime_nsec -= nsecps;
1337 tk->xtime_sec++;
1339 /* Figure out if its a leap sec and apply if needed */
1340 leap = second_overflow(tk->xtime_sec);
1341 if (unlikely(leap)) {
1342 struct timespec64 ts;
1344 tk->xtime_sec += leap;
1346 ts.tv_sec = leap;
1347 ts.tv_nsec = 0;
1348 tk_set_wall_to_mono(tk,
1349 timespec64_sub(tk->wall_to_monotonic, ts));
1351 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1353 clock_set = TK_CLOCK_WAS_SET;
1356 return clock_set;
1360 * logarithmic_accumulation - shifted accumulation of cycles
1362 * This functions accumulates a shifted interval of cycles into
1363 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1364 * loop.
1366 * Returns the unconsumed cycles.
1368 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1369 u32 shift,
1370 unsigned int *clock_set)
1372 cycle_t interval = tk->cycle_interval << shift;
1373 u64 raw_nsecs;
1375 /* If the offset is smaller then a shifted interval, do nothing */
1376 if (offset < interval)
1377 return offset;
1379 /* Accumulate one shifted interval */
1380 offset -= interval;
1381 tk->cycle_last += interval;
1383 tk->xtime_nsec += tk->xtime_interval << shift;
1384 *clock_set |= accumulate_nsecs_to_secs(tk);
1386 /* Accumulate raw time */
1387 raw_nsecs = (u64)tk->raw_interval << shift;
1388 raw_nsecs += tk->raw_time.tv_nsec;
1389 if (raw_nsecs >= NSEC_PER_SEC) {
1390 u64 raw_secs = raw_nsecs;
1391 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1392 tk->raw_time.tv_sec += raw_secs;
1394 tk->raw_time.tv_nsec = raw_nsecs;
1396 /* Accumulate error between NTP and clock interval */
1397 tk->ntp_error += ntp_tick_length() << shift;
1398 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1399 (tk->ntp_error_shift + shift);
1401 return offset;
1405 * update_wall_time - Uses the current clocksource to increment the wall time
1408 void update_wall_time(void)
1410 struct clocksource *clock;
1411 struct timekeeper *real_tk = &tk_core.timekeeper;
1412 struct timekeeper *tk = &shadow_timekeeper;
1413 cycle_t offset;
1414 int shift = 0, maxshift;
1415 unsigned int clock_set = 0;
1416 unsigned long flags;
1418 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1420 /* Make sure we're fully resumed: */
1421 if (unlikely(timekeeping_suspended))
1422 goto out;
1424 clock = real_tk->clock;
1426 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1427 offset = real_tk->cycle_interval;
1428 #else
1429 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1430 #endif
1432 /* Check if there's really nothing to do */
1433 if (offset < real_tk->cycle_interval)
1434 goto out;
1437 * With NO_HZ we may have to accumulate many cycle_intervals
1438 * (think "ticks") worth of time at once. To do this efficiently,
1439 * we calculate the largest doubling multiple of cycle_intervals
1440 * that is smaller than the offset. We then accumulate that
1441 * chunk in one go, and then try to consume the next smaller
1442 * doubled multiple.
1444 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1445 shift = max(0, shift);
1446 /* Bound shift to one less than what overflows tick_length */
1447 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1448 shift = min(shift, maxshift);
1449 while (offset >= tk->cycle_interval) {
1450 offset = logarithmic_accumulation(tk, offset, shift,
1451 &clock_set);
1452 if (offset < tk->cycle_interval<<shift)
1453 shift--;
1456 /* correct the clock when NTP error is too big */
1457 timekeeping_adjust(tk, offset);
1460 * XXX This can be killed once everyone converts
1461 * to the new update_vsyscall.
1463 old_vsyscall_fixup(tk);
1466 * Finally, make sure that after the rounding
1467 * xtime_nsec isn't larger than NSEC_PER_SEC
1469 clock_set |= accumulate_nsecs_to_secs(tk);
1471 write_seqcount_begin(&tk_core.seq);
1472 /* Update clock->cycle_last with the new value */
1473 clock->cycle_last = tk->cycle_last;
1475 * Update the real timekeeper.
1477 * We could avoid this memcpy by switching pointers, but that
1478 * requires changes to all other timekeeper usage sites as
1479 * well, i.e. move the timekeeper pointer getter into the
1480 * spinlocked/seqcount protected sections. And we trade this
1481 * memcpy under the tk_core.seq against one before we start
1482 * updating.
1484 memcpy(real_tk, tk, sizeof(*tk));
1485 timekeeping_update(real_tk, clock_set);
1486 write_seqcount_end(&tk_core.seq);
1487 out:
1488 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1489 if (clock_set)
1490 /* Have to call _delayed version, since in irq context*/
1491 clock_was_set_delayed();
1495 * getboottime - Return the real time of system boot.
1496 * @ts: pointer to the timespec to be set
1498 * Returns the wall-time of boot in a timespec.
1500 * This is based on the wall_to_monotonic offset and the total suspend
1501 * time. Calls to settimeofday will affect the value returned (which
1502 * basically means that however wrong your real time clock is at boot time,
1503 * you get the right time here).
1505 void getboottime(struct timespec *ts)
1507 struct timekeeper *tk = &tk_core.timekeeper;
1508 struct timespec boottime = {
1509 .tv_sec = tk->wall_to_monotonic.tv_sec +
1510 tk->total_sleep_time.tv_sec,
1511 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1512 tk->total_sleep_time.tv_nsec
1515 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1517 EXPORT_SYMBOL_GPL(getboottime);
1520 * get_monotonic_boottime - Returns monotonic time since boot
1521 * @ts: pointer to the timespec to be set
1523 * Returns the monotonic time since boot in a timespec.
1525 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1526 * includes the time spent in suspend.
1528 void get_monotonic_boottime(struct timespec *ts)
1530 struct timekeeper *tk = &tk_core.timekeeper;
1531 struct timespec64 tomono, sleep, ret;
1532 s64 nsec;
1533 unsigned int seq;
1535 WARN_ON(timekeeping_suspended);
1537 do {
1538 seq = read_seqcount_begin(&tk_core.seq);
1539 ret.tv_sec = tk->xtime_sec;
1540 nsec = timekeeping_get_ns(tk);
1541 tomono = tk->wall_to_monotonic;
1542 sleep = tk->total_sleep_time;
1544 } while (read_seqcount_retry(&tk_core.seq, seq));
1546 ret.tv_sec += tomono.tv_sec + sleep.tv_sec;
1547 ret.tv_nsec = 0;
1548 timespec64_add_ns(&ret, nsec + tomono.tv_nsec + sleep.tv_nsec);
1549 *ts = timespec64_to_timespec(ret);
1551 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1554 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1555 * @ts: pointer to the timespec to be converted
1557 void monotonic_to_bootbased(struct timespec *ts)
1559 struct timekeeper *tk = &tk_core.timekeeper;
1560 struct timespec64 ts64;
1562 ts64 = timespec_to_timespec64(*ts);
1563 ts64 = timespec64_add(ts64, tk->total_sleep_time);
1564 *ts = timespec64_to_timespec(ts64);
1566 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1568 unsigned long get_seconds(void)
1570 struct timekeeper *tk = &tk_core.timekeeper;
1572 return tk->xtime_sec;
1574 EXPORT_SYMBOL(get_seconds);
1576 struct timespec __current_kernel_time(void)
1578 struct timekeeper *tk = &tk_core.timekeeper;
1580 return timespec64_to_timespec(tk_xtime(tk));
1583 struct timespec current_kernel_time(void)
1585 struct timekeeper *tk = &tk_core.timekeeper;
1586 struct timespec64 now;
1587 unsigned long seq;
1589 do {
1590 seq = read_seqcount_begin(&tk_core.seq);
1592 now = tk_xtime(tk);
1593 } while (read_seqcount_retry(&tk_core.seq, seq));
1595 return timespec64_to_timespec(now);
1597 EXPORT_SYMBOL(current_kernel_time);
1599 struct timespec get_monotonic_coarse(void)
1601 struct timekeeper *tk = &tk_core.timekeeper;
1602 struct timespec64 now, mono;
1603 unsigned long seq;
1605 do {
1606 seq = read_seqcount_begin(&tk_core.seq);
1608 now = tk_xtime(tk);
1609 mono = tk->wall_to_monotonic;
1610 } while (read_seqcount_retry(&tk_core.seq, seq));
1612 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1613 now.tv_nsec + mono.tv_nsec);
1615 return timespec64_to_timespec(now);
1619 * Must hold jiffies_lock
1621 void do_timer(unsigned long ticks)
1623 jiffies_64 += ticks;
1624 calc_global_load(ticks);
1628 * ktime_get_update_offsets_tick - hrtimer helper
1629 * @offs_real: pointer to storage for monotonic -> realtime offset
1630 * @offs_boot: pointer to storage for monotonic -> boottime offset
1631 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1633 * Returns monotonic time at last tick and various offsets
1635 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1636 ktime_t *offs_tai)
1638 struct timekeeper *tk = &tk_core.timekeeper;
1639 unsigned int seq;
1640 ktime_t base;
1641 u64 nsecs;
1643 do {
1644 seq = read_seqcount_begin(&tk_core.seq);
1646 base = tk->base_mono;
1647 nsecs = tk->xtime_nsec >> tk->shift;
1649 *offs_real = tk->offs_real;
1650 *offs_boot = tk->offs_boot;
1651 *offs_tai = tk->offs_tai;
1652 } while (read_seqcount_retry(&tk_core.seq, seq));
1654 return ktime_add_ns(base, nsecs);
1657 #ifdef CONFIG_HIGH_RES_TIMERS
1659 * ktime_get_update_offsets_now - hrtimer helper
1660 * @offs_real: pointer to storage for monotonic -> realtime offset
1661 * @offs_boot: pointer to storage for monotonic -> boottime offset
1662 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1664 * Returns current monotonic time and updates the offsets
1665 * Called from hrtimer_interrupt() or retrigger_next_event()
1667 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1668 ktime_t *offs_tai)
1670 struct timekeeper *tk = &tk_core.timekeeper;
1671 unsigned int seq;
1672 ktime_t base;
1673 u64 nsecs;
1675 do {
1676 seq = read_seqcount_begin(&tk_core.seq);
1678 base = tk->base_mono;
1679 nsecs = timekeeping_get_ns(tk);
1681 *offs_real = tk->offs_real;
1682 *offs_boot = tk->offs_boot;
1683 *offs_tai = tk->offs_tai;
1684 } while (read_seqcount_retry(&tk_core.seq, seq));
1686 return ktime_add_ns(base, nsecs);
1688 #endif
1691 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1693 ktime_t ktime_get_monotonic_offset(void)
1695 struct timekeeper *tk = &tk_core.timekeeper;
1696 unsigned long seq;
1697 struct timespec64 wtom;
1699 do {
1700 seq = read_seqcount_begin(&tk_core.seq);
1701 wtom = tk->wall_to_monotonic;
1702 } while (read_seqcount_retry(&tk_core.seq, seq));
1704 return timespec64_to_ktime(wtom);
1706 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1709 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1711 int do_adjtimex(struct timex *txc)
1713 struct timekeeper *tk = &tk_core.timekeeper;
1714 unsigned long flags;
1715 struct timespec64 ts;
1716 s32 orig_tai, tai;
1717 int ret;
1719 /* Validate the data before disabling interrupts */
1720 ret = ntp_validate_timex(txc);
1721 if (ret)
1722 return ret;
1724 if (txc->modes & ADJ_SETOFFSET) {
1725 struct timespec delta;
1726 delta.tv_sec = txc->time.tv_sec;
1727 delta.tv_nsec = txc->time.tv_usec;
1728 if (!(txc->modes & ADJ_NANO))
1729 delta.tv_nsec *= 1000;
1730 ret = timekeeping_inject_offset(&delta);
1731 if (ret)
1732 return ret;
1735 getnstimeofday64(&ts);
1737 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1738 write_seqcount_begin(&tk_core.seq);
1740 orig_tai = tai = tk->tai_offset;
1741 ret = __do_adjtimex(txc, &ts, &tai);
1743 if (tai != orig_tai) {
1744 __timekeeping_set_tai_offset(tk, tai);
1745 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1747 write_seqcount_end(&tk_core.seq);
1748 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1750 if (tai != orig_tai)
1751 clock_was_set();
1753 ntp_notify_cmos_timer();
1755 return ret;
1758 #ifdef CONFIG_NTP_PPS
1760 * hardpps() - Accessor function to NTP __hardpps function
1762 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1764 unsigned long flags;
1766 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1767 write_seqcount_begin(&tk_core.seq);
1769 __hardpps(phase_ts, raw_ts);
1771 write_seqcount_end(&tk_core.seq);
1772 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1774 EXPORT_SYMBOL(hardpps);
1775 #endif
1778 * xtime_update() - advances the timekeeping infrastructure
1779 * @ticks: number of ticks, that have elapsed since the last call.
1781 * Must be called with interrupts disabled.
1783 void xtime_update(unsigned long ticks)
1785 write_seqlock(&jiffies_lock);
1786 do_timer(ticks);
1787 write_sequnlock(&jiffies_lock);
1788 update_wall_time();