fs/affs/amigaffs.c: remove unneeded initialization
[linux-2.6/btrfs-unstable.git] / kernel / time / time.c
blob85d5bb1d67ebc777e9dab638d3988b2fdaedf172
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
51 struct timezone sys_tz;
53 EXPORT_SYMBOL(sys_tz);
55 #ifdef __ARCH_WANT_SYS_TIME
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 time_t i = get_seconds();
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
71 force_successful_syscall_return();
72 return i;
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 struct timespec tv;
85 int err;
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
90 tv.tv_nsec = 0;
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
96 do_settimeofday(&tv);
97 return 0;
100 #endif /* __ARCH_WANT_SYS_TIME */
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
115 return 0;
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
122 int persistent_clock_is_local;
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
134 * - TYT, 1992-01-01
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
140 static inline void warp_clock(void)
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
165 static int firsttime = 1;
166 int error = 0;
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
175 if (tz) {
176 /* Verify we're witin the +-15 hrs range */
177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 return -EINVAL;
180 sys_tz = *tz;
181 update_vsyscall_tz();
182 if (firsttime) {
183 firsttime = 0;
184 if (!tv)
185 warp_clock();
188 if (tv)
189 return do_settimeofday(tv);
190 return 0;
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 struct timezone __user *, tz)
196 struct timeval user_tv;
197 struct timespec new_ts;
198 struct timezone new_tz;
200 if (tv) {
201 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 return -EFAULT;
204 if (!timeval_valid(&user_tv))
205 return -EINVAL;
207 new_ts.tv_sec = user_tv.tv_sec;
208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
210 if (tz) {
211 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 return -EFAULT;
215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
220 struct timex txc; /* Local copy of parameter */
221 int ret;
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
225 * may change
227 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 return -EFAULT;
229 ret = do_adjtimex(&txc);
230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
240 struct timespec current_fs_time(struct super_block *sb)
242 struct timespec now = current_kernel_time();
243 return timespec_trunc(now, sb->s_time_gran);
245 EXPORT_SYMBOL(current_fs_time);
248 * Convert jiffies to milliseconds and back.
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
253 unsigned int jiffies_to_msecs(const unsigned long j)
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
267 EXPORT_SYMBOL(jiffies_to_msecs);
269 unsigned int jiffies_to_usecs(const unsigned long j)
271 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
272 return (USEC_PER_SEC / HZ) * j;
273 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
274 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
275 #else
276 # if BITS_PER_LONG == 32
277 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
278 # else
279 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
280 # endif
281 #endif
283 EXPORT_SYMBOL(jiffies_to_usecs);
286 * timespec_trunc - Truncate timespec to a granularity
287 * @t: Timespec
288 * @gran: Granularity in ns.
290 * Truncate a timespec to a granularity. gran must be smaller than a second.
291 * Always rounds down.
293 * This function should be only used for timestamps returned by
294 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
295 * it doesn't handle the better resolution of the latter.
297 struct timespec timespec_trunc(struct timespec t, unsigned gran)
300 * Division is pretty slow so avoid it for common cases.
301 * Currently current_kernel_time() never returns better than
302 * jiffies resolution. Exploit that.
304 if (gran <= jiffies_to_usecs(1) * 1000) {
305 /* nothing */
306 } else if (gran == 1000000000) {
307 t.tv_nsec = 0;
308 } else {
309 t.tv_nsec -= t.tv_nsec % gran;
311 return t;
313 EXPORT_SYMBOL(timespec_trunc);
316 * mktime64 - Converts date to seconds.
317 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
321 * [For the Julian calendar (which was used in Russia before 1917,
322 * Britain & colonies before 1752, anywhere else before 1582,
323 * and is still in use by some communities) leave out the
324 * -year/100+year/400 terms, and add 10.]
326 * This algorithm was first published by Gauss (I think).
328 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
329 const unsigned int day, const unsigned int hour,
330 const unsigned int min, const unsigned int sec)
332 unsigned int mon = mon0, year = year0;
334 /* 1..12 -> 11,12,1..10 */
335 if (0 >= (int) (mon -= 2)) {
336 mon += 12; /* Puts Feb last since it has leap day */
337 year -= 1;
340 return ((((time64_t)
341 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
342 year*365 - 719499
343 )*24 + hour /* now have hours */
344 )*60 + min /* now have minutes */
345 )*60 + sec; /* finally seconds */
347 EXPORT_SYMBOL(mktime64);
350 * set_normalized_timespec - set timespec sec and nsec parts and normalize
352 * @ts: pointer to timespec variable to be set
353 * @sec: seconds to set
354 * @nsec: nanoseconds to set
356 * Set seconds and nanoseconds field of a timespec variable and
357 * normalize to the timespec storage format
359 * Note: The tv_nsec part is always in the range of
360 * 0 <= tv_nsec < NSEC_PER_SEC
361 * For negative values only the tv_sec field is negative !
363 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
365 while (nsec >= NSEC_PER_SEC) {
367 * The following asm() prevents the compiler from
368 * optimising this loop into a modulo operation. See
369 * also __iter_div_u64_rem() in include/linux/time.h
371 asm("" : "+rm"(nsec));
372 nsec -= NSEC_PER_SEC;
373 ++sec;
375 while (nsec < 0) {
376 asm("" : "+rm"(nsec));
377 nsec += NSEC_PER_SEC;
378 --sec;
380 ts->tv_sec = sec;
381 ts->tv_nsec = nsec;
383 EXPORT_SYMBOL(set_normalized_timespec);
386 * ns_to_timespec - Convert nanoseconds to timespec
387 * @nsec: the nanoseconds value to be converted
389 * Returns the timespec representation of the nsec parameter.
391 struct timespec ns_to_timespec(const s64 nsec)
393 struct timespec ts;
394 s32 rem;
396 if (!nsec)
397 return (struct timespec) {0, 0};
399 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
400 if (unlikely(rem < 0)) {
401 ts.tv_sec--;
402 rem += NSEC_PER_SEC;
404 ts.tv_nsec = rem;
406 return ts;
408 EXPORT_SYMBOL(ns_to_timespec);
411 * ns_to_timeval - Convert nanoseconds to timeval
412 * @nsec: the nanoseconds value to be converted
414 * Returns the timeval representation of the nsec parameter.
416 struct timeval ns_to_timeval(const s64 nsec)
418 struct timespec ts = ns_to_timespec(nsec);
419 struct timeval tv;
421 tv.tv_sec = ts.tv_sec;
422 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
424 return tv;
426 EXPORT_SYMBOL(ns_to_timeval);
428 #if BITS_PER_LONG == 32
430 * set_normalized_timespec - set timespec sec and nsec parts and normalize
432 * @ts: pointer to timespec variable to be set
433 * @sec: seconds to set
434 * @nsec: nanoseconds to set
436 * Set seconds and nanoseconds field of a timespec variable and
437 * normalize to the timespec storage format
439 * Note: The tv_nsec part is always in the range of
440 * 0 <= tv_nsec < NSEC_PER_SEC
441 * For negative values only the tv_sec field is negative !
443 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
445 while (nsec >= NSEC_PER_SEC) {
447 * The following asm() prevents the compiler from
448 * optimising this loop into a modulo operation. See
449 * also __iter_div_u64_rem() in include/linux/time.h
451 asm("" : "+rm"(nsec));
452 nsec -= NSEC_PER_SEC;
453 ++sec;
455 while (nsec < 0) {
456 asm("" : "+rm"(nsec));
457 nsec += NSEC_PER_SEC;
458 --sec;
460 ts->tv_sec = sec;
461 ts->tv_nsec = nsec;
463 EXPORT_SYMBOL(set_normalized_timespec64);
466 * ns_to_timespec64 - Convert nanoseconds to timespec64
467 * @nsec: the nanoseconds value to be converted
469 * Returns the timespec64 representation of the nsec parameter.
471 struct timespec64 ns_to_timespec64(const s64 nsec)
473 struct timespec64 ts;
474 s32 rem;
476 if (!nsec)
477 return (struct timespec64) {0, 0};
479 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
480 if (unlikely(rem < 0)) {
481 ts.tv_sec--;
482 rem += NSEC_PER_SEC;
484 ts.tv_nsec = rem;
486 return ts;
488 EXPORT_SYMBOL(ns_to_timespec64);
489 #endif
491 * msecs_to_jiffies: - convert milliseconds to jiffies
492 * @m: time in milliseconds
494 * conversion is done as follows:
496 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
498 * - 'too large' values [that would result in larger than
499 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
501 * - all other values are converted to jiffies by either multiplying
502 * the input value by a factor or dividing it with a factor and
503 * handling any 32-bit overflows.
504 * for the details see __msecs_to_jiffies()
506 * msecs_to_jiffies() checks for the passed in value being a constant
507 * via __builtin_constant_p() allowing gcc to eliminate most of the
508 * code, __msecs_to_jiffies() is called if the value passed does not
509 * allow constant folding and the actual conversion must be done at
510 * runtime.
511 * the _msecs_to_jiffies helpers are the HZ dependent conversion
512 * routines found in include/linux/jiffies.h
514 unsigned long __msecs_to_jiffies(const unsigned int m)
517 * Negative value, means infinite timeout:
519 if ((int)m < 0)
520 return MAX_JIFFY_OFFSET;
521 return _msecs_to_jiffies(m);
523 EXPORT_SYMBOL(__msecs_to_jiffies);
525 unsigned long __usecs_to_jiffies(const unsigned int u)
527 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
528 return MAX_JIFFY_OFFSET;
529 return _usecs_to_jiffies(u);
531 EXPORT_SYMBOL(__usecs_to_jiffies);
534 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
535 * that a remainder subtract here would not do the right thing as the
536 * resolution values don't fall on second boundries. I.e. the line:
537 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
538 * Note that due to the small error in the multiplier here, this
539 * rounding is incorrect for sufficiently large values of tv_nsec, but
540 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
541 * OK.
543 * Rather, we just shift the bits off the right.
545 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
546 * value to a scaled second value.
548 static unsigned long
549 __timespec_to_jiffies(unsigned long sec, long nsec)
551 nsec = nsec + TICK_NSEC - 1;
553 if (sec >= MAX_SEC_IN_JIFFIES){
554 sec = MAX_SEC_IN_JIFFIES;
555 nsec = 0;
557 return (((u64)sec * SEC_CONVERSION) +
558 (((u64)nsec * NSEC_CONVERSION) >>
559 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
563 unsigned long
564 timespec_to_jiffies(const struct timespec *value)
566 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
569 EXPORT_SYMBOL(timespec_to_jiffies);
571 void
572 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
575 * Convert jiffies to nanoseconds and separate with
576 * one divide.
578 u32 rem;
579 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
580 NSEC_PER_SEC, &rem);
581 value->tv_nsec = rem;
583 EXPORT_SYMBOL(jiffies_to_timespec);
586 * We could use a similar algorithm to timespec_to_jiffies (with a
587 * different multiplier for usec instead of nsec). But this has a
588 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
589 * usec value, since it's not necessarily integral.
591 * We could instead round in the intermediate scaled representation
592 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
593 * perilous: the scaling introduces a small positive error, which
594 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
595 * units to the intermediate before shifting) leads to accidental
596 * overflow and overestimates.
598 * At the cost of one additional multiplication by a constant, just
599 * use the timespec implementation.
601 unsigned long
602 timeval_to_jiffies(const struct timeval *value)
604 return __timespec_to_jiffies(value->tv_sec,
605 value->tv_usec * NSEC_PER_USEC);
607 EXPORT_SYMBOL(timeval_to_jiffies);
609 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
612 * Convert jiffies to nanoseconds and separate with
613 * one divide.
615 u32 rem;
617 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
618 NSEC_PER_SEC, &rem);
619 value->tv_usec = rem / NSEC_PER_USEC;
621 EXPORT_SYMBOL(jiffies_to_timeval);
624 * Convert jiffies/jiffies_64 to clock_t and back.
626 clock_t jiffies_to_clock_t(unsigned long x)
628 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
629 # if HZ < USER_HZ
630 return x * (USER_HZ / HZ);
631 # else
632 return x / (HZ / USER_HZ);
633 # endif
634 #else
635 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
636 #endif
638 EXPORT_SYMBOL(jiffies_to_clock_t);
640 unsigned long clock_t_to_jiffies(unsigned long x)
642 #if (HZ % USER_HZ)==0
643 if (x >= ~0UL / (HZ / USER_HZ))
644 return ~0UL;
645 return x * (HZ / USER_HZ);
646 #else
647 /* Don't worry about loss of precision here .. */
648 if (x >= ~0UL / HZ * USER_HZ)
649 return ~0UL;
651 /* .. but do try to contain it here */
652 return div_u64((u64)x * HZ, USER_HZ);
653 #endif
655 EXPORT_SYMBOL(clock_t_to_jiffies);
657 u64 jiffies_64_to_clock_t(u64 x)
659 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
660 # if HZ < USER_HZ
661 x = div_u64(x * USER_HZ, HZ);
662 # elif HZ > USER_HZ
663 x = div_u64(x, HZ / USER_HZ);
664 # else
665 /* Nothing to do */
666 # endif
667 #else
669 * There are better ways that don't overflow early,
670 * but even this doesn't overflow in hundreds of years
671 * in 64 bits, so..
673 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
674 #endif
675 return x;
677 EXPORT_SYMBOL(jiffies_64_to_clock_t);
679 u64 nsec_to_clock_t(u64 x)
681 #if (NSEC_PER_SEC % USER_HZ) == 0
682 return div_u64(x, NSEC_PER_SEC / USER_HZ);
683 #elif (USER_HZ % 512) == 0
684 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
685 #else
687 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
688 * overflow after 64.99 years.
689 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
691 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
692 #endif
696 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
698 * @n: nsecs in u64
700 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
701 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
702 * for scheduler, not for use in device drivers to calculate timeout value.
704 * note:
705 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
706 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
708 u64 nsecs_to_jiffies64(u64 n)
710 #if (NSEC_PER_SEC % HZ) == 0
711 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
712 return div_u64(n, NSEC_PER_SEC / HZ);
713 #elif (HZ % 512) == 0
714 /* overflow after 292 years if HZ = 1024 */
715 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
716 #else
718 * Generic case - optimized for cases where HZ is a multiple of 3.
719 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
721 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
722 #endif
724 EXPORT_SYMBOL(nsecs_to_jiffies64);
727 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
729 * @n: nsecs in u64
731 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
732 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
733 * for scheduler, not for use in device drivers to calculate timeout value.
735 * note:
736 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
737 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
739 unsigned long nsecs_to_jiffies(u64 n)
741 return (unsigned long)nsecs_to_jiffies64(n);
743 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
746 * Add two timespec values and do a safety check for overflow.
747 * It's assumed that both values are valid (>= 0)
749 struct timespec timespec_add_safe(const struct timespec lhs,
750 const struct timespec rhs)
752 struct timespec res;
754 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
755 lhs.tv_nsec + rhs.tv_nsec);
757 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
758 res.tv_sec = TIME_T_MAX;
760 return res;