perf: Fix race in removing an event
[linux-2.6/btrfs-unstable.git] / drivers / iommu / intel-iommu.c
blobf256ffc02e29df18ce8c43266fafe68b1971beb0
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/cacheflush.h>
44 #include <asm/iommu.h>
46 #include "irq_remapping.h"
47 #include "pci.h"
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
74 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
78 /* page table handling */
79 #define LEVEL_STRIDE (9)
80 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
83 * This bitmap is used to advertise the page sizes our hardware support
84 * to the IOMMU core, which will then use this information to split
85 * physically contiguous memory regions it is mapping into page sizes
86 * that we support.
88 * Traditionally the IOMMU core just handed us the mappings directly,
89 * after making sure the size is an order of a 4KiB page and that the
90 * mapping has natural alignment.
92 * To retain this behavior, we currently advertise that we support
93 * all page sizes that are an order of 4KiB.
95 * If at some point we'd like to utilize the IOMMU core's new behavior,
96 * we could change this to advertise the real page sizes we support.
98 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
100 static inline int agaw_to_level(int agaw)
102 return agaw + 2;
105 static inline int agaw_to_width(int agaw)
107 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
110 static inline int width_to_agaw(int width)
112 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
115 static inline unsigned int level_to_offset_bits(int level)
117 return (level - 1) * LEVEL_STRIDE;
120 static inline int pfn_level_offset(unsigned long pfn, int level)
122 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
125 static inline unsigned long level_mask(int level)
127 return -1UL << level_to_offset_bits(level);
130 static inline unsigned long level_size(int level)
132 return 1UL << level_to_offset_bits(level);
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
137 return (pfn + level_size(level) - 1) & level_mask(level);
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
142 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146 are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
149 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
154 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
158 return mm_to_dma_pfn(page_to_pfn(pg));
160 static inline unsigned long virt_to_dma_pfn(void *p)
162 return page_to_dma_pfn(virt_to_page(p));
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
172 * set to 1 to panic kernel if can't successfully enable VT-d
173 * (used when kernel is launched w/ TXT)
175 static int force_on = 0;
178 * 0: Present
179 * 1-11: Reserved
180 * 12-63: Context Ptr (12 - (haw-1))
181 * 64-127: Reserved
183 struct root_entry {
184 u64 val;
185 u64 rsvd1;
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
190 return (root->val & 1);
192 static inline void set_root_present(struct root_entry *root)
194 root->val |= 1;
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
198 root->val |= value & VTD_PAGE_MASK;
201 static inline struct context_entry *
202 get_context_addr_from_root(struct root_entry *root)
204 return (struct context_entry *)
205 (root_present(root)?phys_to_virt(
206 root->val & VTD_PAGE_MASK) :
207 NULL);
211 * low 64 bits:
212 * 0: present
213 * 1: fault processing disable
214 * 2-3: translation type
215 * 12-63: address space root
216 * high 64 bits:
217 * 0-2: address width
218 * 3-6: aval
219 * 8-23: domain id
221 struct context_entry {
222 u64 lo;
223 u64 hi;
226 static inline bool context_present(struct context_entry *context)
228 return (context->lo & 1);
230 static inline void context_set_present(struct context_entry *context)
232 context->lo |= 1;
235 static inline void context_set_fault_enable(struct context_entry *context)
237 context->lo &= (((u64)-1) << 2) | 1;
240 static inline void context_set_translation_type(struct context_entry *context,
241 unsigned long value)
243 context->lo &= (((u64)-1) << 4) | 3;
244 context->lo |= (value & 3) << 2;
247 static inline void context_set_address_root(struct context_entry *context,
248 unsigned long value)
250 context->lo |= value & VTD_PAGE_MASK;
253 static inline void context_set_address_width(struct context_entry *context,
254 unsigned long value)
256 context->hi |= value & 7;
259 static inline void context_set_domain_id(struct context_entry *context,
260 unsigned long value)
262 context->hi |= (value & ((1 << 16) - 1)) << 8;
265 static inline void context_clear_entry(struct context_entry *context)
267 context->lo = 0;
268 context->hi = 0;
272 * 0: readable
273 * 1: writable
274 * 2-6: reserved
275 * 7: super page
276 * 8-10: available
277 * 11: snoop behavior
278 * 12-63: Host physcial address
280 struct dma_pte {
281 u64 val;
284 static inline void dma_clear_pte(struct dma_pte *pte)
286 pte->val = 0;
289 static inline u64 dma_pte_addr(struct dma_pte *pte)
291 #ifdef CONFIG_64BIT
292 return pte->val & VTD_PAGE_MASK;
293 #else
294 /* Must have a full atomic 64-bit read */
295 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
296 #endif
299 static inline bool dma_pte_present(struct dma_pte *pte)
301 return (pte->val & 3) != 0;
304 static inline bool dma_pte_superpage(struct dma_pte *pte)
306 return (pte->val & (1 << 7));
309 static inline int first_pte_in_page(struct dma_pte *pte)
311 return !((unsigned long)pte & ~VTD_PAGE_MASK);
315 * This domain is a statically identity mapping domain.
316 * 1. This domain creats a static 1:1 mapping to all usable memory.
317 * 2. It maps to each iommu if successful.
318 * 3. Each iommu mapps to this domain if successful.
320 static struct dmar_domain *si_domain;
321 static int hw_pass_through = 1;
323 /* devices under the same p2p bridge are owned in one domain */
324 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
326 /* domain represents a virtual machine, more than one devices
327 * across iommus may be owned in one domain, e.g. kvm guest.
329 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
331 /* si_domain contains mulitple devices */
332 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
334 /* define the limit of IOMMUs supported in each domain */
335 #ifdef CONFIG_X86
336 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
337 #else
338 # define IOMMU_UNITS_SUPPORTED 64
339 #endif
341 struct dmar_domain {
342 int id; /* domain id */
343 int nid; /* node id */
344 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
345 /* bitmap of iommus this domain uses*/
347 struct list_head devices; /* all devices' list */
348 struct iova_domain iovad; /* iova's that belong to this domain */
350 struct dma_pte *pgd; /* virtual address */
351 int gaw; /* max guest address width */
353 /* adjusted guest address width, 0 is level 2 30-bit */
354 int agaw;
356 int flags; /* flags to find out type of domain */
358 int iommu_coherency;/* indicate coherency of iommu access */
359 int iommu_snooping; /* indicate snooping control feature*/
360 int iommu_count; /* reference count of iommu */
361 int iommu_superpage;/* Level of superpages supported:
362 0 == 4KiB (no superpages), 1 == 2MiB,
363 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
364 spinlock_t iommu_lock; /* protect iommu set in domain */
365 u64 max_addr; /* maximum mapped address */
368 /* PCI domain-device relationship */
369 struct device_domain_info {
370 struct list_head link; /* link to domain siblings */
371 struct list_head global; /* link to global list */
372 u8 bus; /* PCI bus number */
373 u8 devfn; /* PCI devfn number */
374 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
375 struct intel_iommu *iommu; /* IOMMU used by this device */
376 struct dmar_domain *domain; /* pointer to domain */
379 struct dmar_rmrr_unit {
380 struct list_head list; /* list of rmrr units */
381 struct acpi_dmar_header *hdr; /* ACPI header */
382 u64 base_address; /* reserved base address*/
383 u64 end_address; /* reserved end address */
384 struct dmar_dev_scope *devices; /* target devices */
385 int devices_cnt; /* target device count */
388 struct dmar_atsr_unit {
389 struct list_head list; /* list of ATSR units */
390 struct acpi_dmar_header *hdr; /* ACPI header */
391 struct dmar_dev_scope *devices; /* target devices */
392 int devices_cnt; /* target device count */
393 u8 include_all:1; /* include all ports */
396 static LIST_HEAD(dmar_atsr_units);
397 static LIST_HEAD(dmar_rmrr_units);
399 #define for_each_rmrr_units(rmrr) \
400 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
402 static void flush_unmaps_timeout(unsigned long data);
404 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
406 #define HIGH_WATER_MARK 250
407 struct deferred_flush_tables {
408 int next;
409 struct iova *iova[HIGH_WATER_MARK];
410 struct dmar_domain *domain[HIGH_WATER_MARK];
411 struct page *freelist[HIGH_WATER_MARK];
414 static struct deferred_flush_tables *deferred_flush;
416 /* bitmap for indexing intel_iommus */
417 static int g_num_of_iommus;
419 static DEFINE_SPINLOCK(async_umap_flush_lock);
420 static LIST_HEAD(unmaps_to_do);
422 static int timer_on;
423 static long list_size;
425 static void domain_exit(struct dmar_domain *domain);
426 static void domain_remove_dev_info(struct dmar_domain *domain);
427 static void domain_remove_one_dev_info(struct dmar_domain *domain,
428 struct device *dev);
429 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
430 struct device *dev);
432 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
433 int dmar_disabled = 0;
434 #else
435 int dmar_disabled = 1;
436 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
438 int intel_iommu_enabled = 0;
439 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
441 static int dmar_map_gfx = 1;
442 static int dmar_forcedac;
443 static int intel_iommu_strict;
444 static int intel_iommu_superpage = 1;
446 int intel_iommu_gfx_mapped;
447 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
449 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
450 static DEFINE_SPINLOCK(device_domain_lock);
451 static LIST_HEAD(device_domain_list);
453 static struct iommu_ops intel_iommu_ops;
455 static int __init intel_iommu_setup(char *str)
457 if (!str)
458 return -EINVAL;
459 while (*str) {
460 if (!strncmp(str, "on", 2)) {
461 dmar_disabled = 0;
462 printk(KERN_INFO "Intel-IOMMU: enabled\n");
463 } else if (!strncmp(str, "off", 3)) {
464 dmar_disabled = 1;
465 printk(KERN_INFO "Intel-IOMMU: disabled\n");
466 } else if (!strncmp(str, "igfx_off", 8)) {
467 dmar_map_gfx = 0;
468 printk(KERN_INFO
469 "Intel-IOMMU: disable GFX device mapping\n");
470 } else if (!strncmp(str, "forcedac", 8)) {
471 printk(KERN_INFO
472 "Intel-IOMMU: Forcing DAC for PCI devices\n");
473 dmar_forcedac = 1;
474 } else if (!strncmp(str, "strict", 6)) {
475 printk(KERN_INFO
476 "Intel-IOMMU: disable batched IOTLB flush\n");
477 intel_iommu_strict = 1;
478 } else if (!strncmp(str, "sp_off", 6)) {
479 printk(KERN_INFO
480 "Intel-IOMMU: disable supported super page\n");
481 intel_iommu_superpage = 0;
484 str += strcspn(str, ",");
485 while (*str == ',')
486 str++;
488 return 0;
490 __setup("intel_iommu=", intel_iommu_setup);
492 static struct kmem_cache *iommu_domain_cache;
493 static struct kmem_cache *iommu_devinfo_cache;
494 static struct kmem_cache *iommu_iova_cache;
496 static inline void *alloc_pgtable_page(int node)
498 struct page *page;
499 void *vaddr = NULL;
501 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
502 if (page)
503 vaddr = page_address(page);
504 return vaddr;
507 static inline void free_pgtable_page(void *vaddr)
509 free_page((unsigned long)vaddr);
512 static inline void *alloc_domain_mem(void)
514 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
517 static void free_domain_mem(void *vaddr)
519 kmem_cache_free(iommu_domain_cache, vaddr);
522 static inline void * alloc_devinfo_mem(void)
524 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
527 static inline void free_devinfo_mem(void *vaddr)
529 kmem_cache_free(iommu_devinfo_cache, vaddr);
532 struct iova *alloc_iova_mem(void)
534 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
537 void free_iova_mem(struct iova *iova)
539 kmem_cache_free(iommu_iova_cache, iova);
543 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
545 unsigned long sagaw;
546 int agaw = -1;
548 sagaw = cap_sagaw(iommu->cap);
549 for (agaw = width_to_agaw(max_gaw);
550 agaw >= 0; agaw--) {
551 if (test_bit(agaw, &sagaw))
552 break;
555 return agaw;
559 * Calculate max SAGAW for each iommu.
561 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
563 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
567 * calculate agaw for each iommu.
568 * "SAGAW" may be different across iommus, use a default agaw, and
569 * get a supported less agaw for iommus that don't support the default agaw.
571 int iommu_calculate_agaw(struct intel_iommu *iommu)
573 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
576 /* This functionin only returns single iommu in a domain */
577 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
579 int iommu_id;
581 /* si_domain and vm domain should not get here. */
582 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
583 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
585 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
586 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
587 return NULL;
589 return g_iommus[iommu_id];
592 static void domain_update_iommu_coherency(struct dmar_domain *domain)
594 struct dmar_drhd_unit *drhd;
595 struct intel_iommu *iommu;
596 int i, found = 0;
598 domain->iommu_coherency = 1;
600 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
601 found = 1;
602 if (!ecap_coherent(g_iommus[i]->ecap)) {
603 domain->iommu_coherency = 0;
604 break;
607 if (found)
608 return;
610 /* No hardware attached; use lowest common denominator */
611 rcu_read_lock();
612 for_each_active_iommu(iommu, drhd) {
613 if (!ecap_coherent(iommu->ecap)) {
614 domain->iommu_coherency = 0;
615 break;
618 rcu_read_unlock();
621 static void domain_update_iommu_snooping(struct dmar_domain *domain)
623 int i;
625 domain->iommu_snooping = 1;
627 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
628 if (!ecap_sc_support(g_iommus[i]->ecap)) {
629 domain->iommu_snooping = 0;
630 break;
635 static void domain_update_iommu_superpage(struct dmar_domain *domain)
637 struct dmar_drhd_unit *drhd;
638 struct intel_iommu *iommu = NULL;
639 int mask = 0xf;
641 if (!intel_iommu_superpage) {
642 domain->iommu_superpage = 0;
643 return;
646 /* set iommu_superpage to the smallest common denominator */
647 rcu_read_lock();
648 for_each_active_iommu(iommu, drhd) {
649 mask &= cap_super_page_val(iommu->cap);
650 if (!mask) {
651 break;
654 rcu_read_unlock();
656 domain->iommu_superpage = fls(mask);
659 /* Some capabilities may be different across iommus */
660 static void domain_update_iommu_cap(struct dmar_domain *domain)
662 domain_update_iommu_coherency(domain);
663 domain_update_iommu_snooping(domain);
664 domain_update_iommu_superpage(domain);
667 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
669 struct dmar_drhd_unit *drhd = NULL;
670 struct intel_iommu *iommu;
671 struct device *tmp;
672 struct pci_dev *ptmp, *pdev = NULL;
673 u16 segment;
674 int i;
676 if (dev_is_pci(dev)) {
677 pdev = to_pci_dev(dev);
678 segment = pci_domain_nr(pdev->bus);
679 } else if (ACPI_COMPANION(dev))
680 dev = &ACPI_COMPANION(dev)->dev;
682 rcu_read_lock();
683 for_each_active_iommu(iommu, drhd) {
684 if (pdev && segment != drhd->segment)
685 continue;
687 for_each_active_dev_scope(drhd->devices,
688 drhd->devices_cnt, i, tmp) {
689 if (tmp == dev) {
690 *bus = drhd->devices[i].bus;
691 *devfn = drhd->devices[i].devfn;
692 goto out;
695 if (!pdev || !dev_is_pci(tmp))
696 continue;
698 ptmp = to_pci_dev(tmp);
699 if (ptmp->subordinate &&
700 ptmp->subordinate->number <= pdev->bus->number &&
701 ptmp->subordinate->busn_res.end >= pdev->bus->number)
702 goto got_pdev;
705 if (pdev && drhd->include_all) {
706 got_pdev:
707 *bus = pdev->bus->number;
708 *devfn = pdev->devfn;
709 goto out;
712 iommu = NULL;
713 out:
714 rcu_read_unlock();
716 return iommu;
719 static void domain_flush_cache(struct dmar_domain *domain,
720 void *addr, int size)
722 if (!domain->iommu_coherency)
723 clflush_cache_range(addr, size);
726 /* Gets context entry for a given bus and devfn */
727 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
728 u8 bus, u8 devfn)
730 struct root_entry *root;
731 struct context_entry *context;
732 unsigned long phy_addr;
733 unsigned long flags;
735 spin_lock_irqsave(&iommu->lock, flags);
736 root = &iommu->root_entry[bus];
737 context = get_context_addr_from_root(root);
738 if (!context) {
739 context = (struct context_entry *)
740 alloc_pgtable_page(iommu->node);
741 if (!context) {
742 spin_unlock_irqrestore(&iommu->lock, flags);
743 return NULL;
745 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
746 phy_addr = virt_to_phys((void *)context);
747 set_root_value(root, phy_addr);
748 set_root_present(root);
749 __iommu_flush_cache(iommu, root, sizeof(*root));
751 spin_unlock_irqrestore(&iommu->lock, flags);
752 return &context[devfn];
755 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
757 struct root_entry *root;
758 struct context_entry *context;
759 int ret;
760 unsigned long flags;
762 spin_lock_irqsave(&iommu->lock, flags);
763 root = &iommu->root_entry[bus];
764 context = get_context_addr_from_root(root);
765 if (!context) {
766 ret = 0;
767 goto out;
769 ret = context_present(&context[devfn]);
770 out:
771 spin_unlock_irqrestore(&iommu->lock, flags);
772 return ret;
775 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
777 struct root_entry *root;
778 struct context_entry *context;
779 unsigned long flags;
781 spin_lock_irqsave(&iommu->lock, flags);
782 root = &iommu->root_entry[bus];
783 context = get_context_addr_from_root(root);
784 if (context) {
785 context_clear_entry(&context[devfn]);
786 __iommu_flush_cache(iommu, &context[devfn], \
787 sizeof(*context));
789 spin_unlock_irqrestore(&iommu->lock, flags);
792 static void free_context_table(struct intel_iommu *iommu)
794 struct root_entry *root;
795 int i;
796 unsigned long flags;
797 struct context_entry *context;
799 spin_lock_irqsave(&iommu->lock, flags);
800 if (!iommu->root_entry) {
801 goto out;
803 for (i = 0; i < ROOT_ENTRY_NR; i++) {
804 root = &iommu->root_entry[i];
805 context = get_context_addr_from_root(root);
806 if (context)
807 free_pgtable_page(context);
809 free_pgtable_page(iommu->root_entry);
810 iommu->root_entry = NULL;
811 out:
812 spin_unlock_irqrestore(&iommu->lock, flags);
815 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
816 unsigned long pfn, int *target_level)
818 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
819 struct dma_pte *parent, *pte = NULL;
820 int level = agaw_to_level(domain->agaw);
821 int offset;
823 BUG_ON(!domain->pgd);
825 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
826 /* Address beyond IOMMU's addressing capabilities. */
827 return NULL;
829 parent = domain->pgd;
831 while (1) {
832 void *tmp_page;
834 offset = pfn_level_offset(pfn, level);
835 pte = &parent[offset];
836 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
837 break;
838 if (level == *target_level)
839 break;
841 if (!dma_pte_present(pte)) {
842 uint64_t pteval;
844 tmp_page = alloc_pgtable_page(domain->nid);
846 if (!tmp_page)
847 return NULL;
849 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
850 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
851 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
852 /* Someone else set it while we were thinking; use theirs. */
853 free_pgtable_page(tmp_page);
854 } else {
855 dma_pte_addr(pte);
856 domain_flush_cache(domain, pte, sizeof(*pte));
859 if (level == 1)
860 break;
862 parent = phys_to_virt(dma_pte_addr(pte));
863 level--;
866 if (!*target_level)
867 *target_level = level;
869 return pte;
873 /* return address's pte at specific level */
874 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
875 unsigned long pfn,
876 int level, int *large_page)
878 struct dma_pte *parent, *pte = NULL;
879 int total = agaw_to_level(domain->agaw);
880 int offset;
882 parent = domain->pgd;
883 while (level <= total) {
884 offset = pfn_level_offset(pfn, total);
885 pte = &parent[offset];
886 if (level == total)
887 return pte;
889 if (!dma_pte_present(pte)) {
890 *large_page = total;
891 break;
894 if (pte->val & DMA_PTE_LARGE_PAGE) {
895 *large_page = total;
896 return pte;
899 parent = phys_to_virt(dma_pte_addr(pte));
900 total--;
902 return NULL;
905 /* clear last level pte, a tlb flush should be followed */
906 static void dma_pte_clear_range(struct dmar_domain *domain,
907 unsigned long start_pfn,
908 unsigned long last_pfn)
910 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
911 unsigned int large_page = 1;
912 struct dma_pte *first_pte, *pte;
914 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
915 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
916 BUG_ON(start_pfn > last_pfn);
918 /* we don't need lock here; nobody else touches the iova range */
919 do {
920 large_page = 1;
921 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
922 if (!pte) {
923 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
924 continue;
926 do {
927 dma_clear_pte(pte);
928 start_pfn += lvl_to_nr_pages(large_page);
929 pte++;
930 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
932 domain_flush_cache(domain, first_pte,
933 (void *)pte - (void *)first_pte);
935 } while (start_pfn && start_pfn <= last_pfn);
938 static void dma_pte_free_level(struct dmar_domain *domain, int level,
939 struct dma_pte *pte, unsigned long pfn,
940 unsigned long start_pfn, unsigned long last_pfn)
942 pfn = max(start_pfn, pfn);
943 pte = &pte[pfn_level_offset(pfn, level)];
945 do {
946 unsigned long level_pfn;
947 struct dma_pte *level_pte;
949 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
950 goto next;
952 level_pfn = pfn & level_mask(level - 1);
953 level_pte = phys_to_virt(dma_pte_addr(pte));
955 if (level > 2)
956 dma_pte_free_level(domain, level - 1, level_pte,
957 level_pfn, start_pfn, last_pfn);
959 /* If range covers entire pagetable, free it */
960 if (!(start_pfn > level_pfn ||
961 last_pfn < level_pfn + level_size(level) - 1)) {
962 dma_clear_pte(pte);
963 domain_flush_cache(domain, pte, sizeof(*pte));
964 free_pgtable_page(level_pte);
966 next:
967 pfn += level_size(level);
968 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
971 /* free page table pages. last level pte should already be cleared */
972 static void dma_pte_free_pagetable(struct dmar_domain *domain,
973 unsigned long start_pfn,
974 unsigned long last_pfn)
976 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
978 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
979 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
980 BUG_ON(start_pfn > last_pfn);
982 /* We don't need lock here; nobody else touches the iova range */
983 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
984 domain->pgd, 0, start_pfn, last_pfn);
986 /* free pgd */
987 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
988 free_pgtable_page(domain->pgd);
989 domain->pgd = NULL;
993 /* When a page at a given level is being unlinked from its parent, we don't
994 need to *modify* it at all. All we need to do is make a list of all the
995 pages which can be freed just as soon as we've flushed the IOTLB and we
996 know the hardware page-walk will no longer touch them.
997 The 'pte' argument is the *parent* PTE, pointing to the page that is to
998 be freed. */
999 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1000 int level, struct dma_pte *pte,
1001 struct page *freelist)
1003 struct page *pg;
1005 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1006 pg->freelist = freelist;
1007 freelist = pg;
1009 if (level == 1)
1010 return freelist;
1012 pte = page_address(pg);
1013 do {
1014 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1015 freelist = dma_pte_list_pagetables(domain, level - 1,
1016 pte, freelist);
1017 pte++;
1018 } while (!first_pte_in_page(pte));
1020 return freelist;
1023 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1024 struct dma_pte *pte, unsigned long pfn,
1025 unsigned long start_pfn,
1026 unsigned long last_pfn,
1027 struct page *freelist)
1029 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1031 pfn = max(start_pfn, pfn);
1032 pte = &pte[pfn_level_offset(pfn, level)];
1034 do {
1035 unsigned long level_pfn;
1037 if (!dma_pte_present(pte))
1038 goto next;
1040 level_pfn = pfn & level_mask(level);
1042 /* If range covers entire pagetable, free it */
1043 if (start_pfn <= level_pfn &&
1044 last_pfn >= level_pfn + level_size(level) - 1) {
1045 /* These suborbinate page tables are going away entirely. Don't
1046 bother to clear them; we're just going to *free* them. */
1047 if (level > 1 && !dma_pte_superpage(pte))
1048 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1050 dma_clear_pte(pte);
1051 if (!first_pte)
1052 first_pte = pte;
1053 last_pte = pte;
1054 } else if (level > 1) {
1055 /* Recurse down into a level that isn't *entirely* obsolete */
1056 freelist = dma_pte_clear_level(domain, level - 1,
1057 phys_to_virt(dma_pte_addr(pte)),
1058 level_pfn, start_pfn, last_pfn,
1059 freelist);
1061 next:
1062 pfn += level_size(level);
1063 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1065 if (first_pte)
1066 domain_flush_cache(domain, first_pte,
1067 (void *)++last_pte - (void *)first_pte);
1069 return freelist;
1072 /* We can't just free the pages because the IOMMU may still be walking
1073 the page tables, and may have cached the intermediate levels. The
1074 pages can only be freed after the IOTLB flush has been done. */
1075 struct page *domain_unmap(struct dmar_domain *domain,
1076 unsigned long start_pfn,
1077 unsigned long last_pfn)
1079 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1080 struct page *freelist = NULL;
1082 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
1083 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
1084 BUG_ON(start_pfn > last_pfn);
1086 /* we don't need lock here; nobody else touches the iova range */
1087 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1088 domain->pgd, 0, start_pfn, last_pfn, NULL);
1090 /* free pgd */
1091 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1092 struct page *pgd_page = virt_to_page(domain->pgd);
1093 pgd_page->freelist = freelist;
1094 freelist = pgd_page;
1096 domain->pgd = NULL;
1099 return freelist;
1102 void dma_free_pagelist(struct page *freelist)
1104 struct page *pg;
1106 while ((pg = freelist)) {
1107 freelist = pg->freelist;
1108 free_pgtable_page(page_address(pg));
1112 /* iommu handling */
1113 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1115 struct root_entry *root;
1116 unsigned long flags;
1118 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1119 if (!root)
1120 return -ENOMEM;
1122 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1124 spin_lock_irqsave(&iommu->lock, flags);
1125 iommu->root_entry = root;
1126 spin_unlock_irqrestore(&iommu->lock, flags);
1128 return 0;
1131 static void iommu_set_root_entry(struct intel_iommu *iommu)
1133 void *addr;
1134 u32 sts;
1135 unsigned long flag;
1137 addr = iommu->root_entry;
1139 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1140 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1142 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1144 /* Make sure hardware complete it */
1145 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1146 readl, (sts & DMA_GSTS_RTPS), sts);
1148 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1151 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1153 u32 val;
1154 unsigned long flag;
1156 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1157 return;
1159 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1160 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1162 /* Make sure hardware complete it */
1163 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1164 readl, (!(val & DMA_GSTS_WBFS)), val);
1166 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1169 /* return value determine if we need a write buffer flush */
1170 static void __iommu_flush_context(struct intel_iommu *iommu,
1171 u16 did, u16 source_id, u8 function_mask,
1172 u64 type)
1174 u64 val = 0;
1175 unsigned long flag;
1177 switch (type) {
1178 case DMA_CCMD_GLOBAL_INVL:
1179 val = DMA_CCMD_GLOBAL_INVL;
1180 break;
1181 case DMA_CCMD_DOMAIN_INVL:
1182 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1183 break;
1184 case DMA_CCMD_DEVICE_INVL:
1185 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1186 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1187 break;
1188 default:
1189 BUG();
1191 val |= DMA_CCMD_ICC;
1193 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1194 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1196 /* Make sure hardware complete it */
1197 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1198 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1200 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1203 /* return value determine if we need a write buffer flush */
1204 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1205 u64 addr, unsigned int size_order, u64 type)
1207 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1208 u64 val = 0, val_iva = 0;
1209 unsigned long flag;
1211 switch (type) {
1212 case DMA_TLB_GLOBAL_FLUSH:
1213 /* global flush doesn't need set IVA_REG */
1214 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1215 break;
1216 case DMA_TLB_DSI_FLUSH:
1217 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1218 break;
1219 case DMA_TLB_PSI_FLUSH:
1220 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1221 /* IH bit is passed in as part of address */
1222 val_iva = size_order | addr;
1223 break;
1224 default:
1225 BUG();
1227 /* Note: set drain read/write */
1228 #if 0
1230 * This is probably to be super secure.. Looks like we can
1231 * ignore it without any impact.
1233 if (cap_read_drain(iommu->cap))
1234 val |= DMA_TLB_READ_DRAIN;
1235 #endif
1236 if (cap_write_drain(iommu->cap))
1237 val |= DMA_TLB_WRITE_DRAIN;
1239 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1240 /* Note: Only uses first TLB reg currently */
1241 if (val_iva)
1242 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1243 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1245 /* Make sure hardware complete it */
1246 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1247 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1249 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1251 /* check IOTLB invalidation granularity */
1252 if (DMA_TLB_IAIG(val) == 0)
1253 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1254 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1255 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1256 (unsigned long long)DMA_TLB_IIRG(type),
1257 (unsigned long long)DMA_TLB_IAIG(val));
1260 static struct device_domain_info *
1261 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1262 u8 bus, u8 devfn)
1264 int found = 0;
1265 unsigned long flags;
1266 struct device_domain_info *info;
1267 struct pci_dev *pdev;
1269 if (!ecap_dev_iotlb_support(iommu->ecap))
1270 return NULL;
1272 if (!iommu->qi)
1273 return NULL;
1275 spin_lock_irqsave(&device_domain_lock, flags);
1276 list_for_each_entry(info, &domain->devices, link)
1277 if (info->bus == bus && info->devfn == devfn) {
1278 found = 1;
1279 break;
1281 spin_unlock_irqrestore(&device_domain_lock, flags);
1283 if (!found || !info->dev || !dev_is_pci(info->dev))
1284 return NULL;
1286 pdev = to_pci_dev(info->dev);
1288 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1289 return NULL;
1291 if (!dmar_find_matched_atsr_unit(pdev))
1292 return NULL;
1294 return info;
1297 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1299 if (!info || !dev_is_pci(info->dev))
1300 return;
1302 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1305 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1307 if (!info->dev || !dev_is_pci(info->dev) ||
1308 !pci_ats_enabled(to_pci_dev(info->dev)))
1309 return;
1311 pci_disable_ats(to_pci_dev(info->dev));
1314 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1315 u64 addr, unsigned mask)
1317 u16 sid, qdep;
1318 unsigned long flags;
1319 struct device_domain_info *info;
1321 spin_lock_irqsave(&device_domain_lock, flags);
1322 list_for_each_entry(info, &domain->devices, link) {
1323 struct pci_dev *pdev;
1324 if (!info->dev || !dev_is_pci(info->dev))
1325 continue;
1327 pdev = to_pci_dev(info->dev);
1328 if (!pci_ats_enabled(pdev))
1329 continue;
1331 sid = info->bus << 8 | info->devfn;
1332 qdep = pci_ats_queue_depth(pdev);
1333 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1335 spin_unlock_irqrestore(&device_domain_lock, flags);
1338 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1339 unsigned long pfn, unsigned int pages, int ih, int map)
1341 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1342 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1344 BUG_ON(pages == 0);
1346 if (ih)
1347 ih = 1 << 6;
1349 * Fallback to domain selective flush if no PSI support or the size is
1350 * too big.
1351 * PSI requires page size to be 2 ^ x, and the base address is naturally
1352 * aligned to the size
1354 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1355 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1356 DMA_TLB_DSI_FLUSH);
1357 else
1358 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1359 DMA_TLB_PSI_FLUSH);
1362 * In caching mode, changes of pages from non-present to present require
1363 * flush. However, device IOTLB doesn't need to be flushed in this case.
1365 if (!cap_caching_mode(iommu->cap) || !map)
1366 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1369 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1371 u32 pmen;
1372 unsigned long flags;
1374 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1375 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1376 pmen &= ~DMA_PMEN_EPM;
1377 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1379 /* wait for the protected region status bit to clear */
1380 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1381 readl, !(pmen & DMA_PMEN_PRS), pmen);
1383 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1386 static int iommu_enable_translation(struct intel_iommu *iommu)
1388 u32 sts;
1389 unsigned long flags;
1391 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1392 iommu->gcmd |= DMA_GCMD_TE;
1393 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1395 /* Make sure hardware complete it */
1396 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1397 readl, (sts & DMA_GSTS_TES), sts);
1399 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1400 return 0;
1403 static int iommu_disable_translation(struct intel_iommu *iommu)
1405 u32 sts;
1406 unsigned long flag;
1408 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1409 iommu->gcmd &= ~DMA_GCMD_TE;
1410 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1412 /* Make sure hardware complete it */
1413 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1414 readl, (!(sts & DMA_GSTS_TES)), sts);
1416 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1417 return 0;
1421 static int iommu_init_domains(struct intel_iommu *iommu)
1423 unsigned long ndomains;
1424 unsigned long nlongs;
1426 ndomains = cap_ndoms(iommu->cap);
1427 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1428 iommu->seq_id, ndomains);
1429 nlongs = BITS_TO_LONGS(ndomains);
1431 spin_lock_init(&iommu->lock);
1433 /* TBD: there might be 64K domains,
1434 * consider other allocation for future chip
1436 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1437 if (!iommu->domain_ids) {
1438 pr_err("IOMMU%d: allocating domain id array failed\n",
1439 iommu->seq_id);
1440 return -ENOMEM;
1442 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1443 GFP_KERNEL);
1444 if (!iommu->domains) {
1445 pr_err("IOMMU%d: allocating domain array failed\n",
1446 iommu->seq_id);
1447 kfree(iommu->domain_ids);
1448 iommu->domain_ids = NULL;
1449 return -ENOMEM;
1453 * if Caching mode is set, then invalid translations are tagged
1454 * with domainid 0. Hence we need to pre-allocate it.
1456 if (cap_caching_mode(iommu->cap))
1457 set_bit(0, iommu->domain_ids);
1458 return 0;
1461 static void free_dmar_iommu(struct intel_iommu *iommu)
1463 struct dmar_domain *domain;
1464 int i, count;
1465 unsigned long flags;
1467 if ((iommu->domains) && (iommu->domain_ids)) {
1468 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1470 * Domain id 0 is reserved for invalid translation
1471 * if hardware supports caching mode.
1473 if (cap_caching_mode(iommu->cap) && i == 0)
1474 continue;
1476 domain = iommu->domains[i];
1477 clear_bit(i, iommu->domain_ids);
1479 spin_lock_irqsave(&domain->iommu_lock, flags);
1480 count = --domain->iommu_count;
1481 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1482 if (count == 0)
1483 domain_exit(domain);
1487 if (iommu->gcmd & DMA_GCMD_TE)
1488 iommu_disable_translation(iommu);
1490 kfree(iommu->domains);
1491 kfree(iommu->domain_ids);
1492 iommu->domains = NULL;
1493 iommu->domain_ids = NULL;
1495 g_iommus[iommu->seq_id] = NULL;
1497 /* free context mapping */
1498 free_context_table(iommu);
1501 static struct dmar_domain *alloc_domain(bool vm)
1503 /* domain id for virtual machine, it won't be set in context */
1504 static atomic_t vm_domid = ATOMIC_INIT(0);
1505 struct dmar_domain *domain;
1507 domain = alloc_domain_mem();
1508 if (!domain)
1509 return NULL;
1511 domain->nid = -1;
1512 domain->iommu_count = 0;
1513 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1514 domain->flags = 0;
1515 spin_lock_init(&domain->iommu_lock);
1516 INIT_LIST_HEAD(&domain->devices);
1517 if (vm) {
1518 domain->id = atomic_inc_return(&vm_domid);
1519 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
1522 return domain;
1525 static int iommu_attach_domain(struct dmar_domain *domain,
1526 struct intel_iommu *iommu)
1528 int num;
1529 unsigned long ndomains;
1530 unsigned long flags;
1532 ndomains = cap_ndoms(iommu->cap);
1534 spin_lock_irqsave(&iommu->lock, flags);
1536 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1537 if (num >= ndomains) {
1538 spin_unlock_irqrestore(&iommu->lock, flags);
1539 printk(KERN_ERR "IOMMU: no free domain ids\n");
1540 return -ENOMEM;
1543 domain->id = num;
1544 domain->iommu_count++;
1545 set_bit(num, iommu->domain_ids);
1546 set_bit(iommu->seq_id, domain->iommu_bmp);
1547 iommu->domains[num] = domain;
1548 spin_unlock_irqrestore(&iommu->lock, flags);
1550 return 0;
1553 static void iommu_detach_domain(struct dmar_domain *domain,
1554 struct intel_iommu *iommu)
1556 unsigned long flags;
1557 int num, ndomains;
1559 spin_lock_irqsave(&iommu->lock, flags);
1560 ndomains = cap_ndoms(iommu->cap);
1561 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1562 if (iommu->domains[num] == domain) {
1563 clear_bit(num, iommu->domain_ids);
1564 iommu->domains[num] = NULL;
1565 break;
1568 spin_unlock_irqrestore(&iommu->lock, flags);
1571 static struct iova_domain reserved_iova_list;
1572 static struct lock_class_key reserved_rbtree_key;
1574 static int dmar_init_reserved_ranges(void)
1576 struct pci_dev *pdev = NULL;
1577 struct iova *iova;
1578 int i;
1580 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1582 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1583 &reserved_rbtree_key);
1585 /* IOAPIC ranges shouldn't be accessed by DMA */
1586 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1587 IOVA_PFN(IOAPIC_RANGE_END));
1588 if (!iova) {
1589 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1590 return -ENODEV;
1593 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1594 for_each_pci_dev(pdev) {
1595 struct resource *r;
1597 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1598 r = &pdev->resource[i];
1599 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1600 continue;
1601 iova = reserve_iova(&reserved_iova_list,
1602 IOVA_PFN(r->start),
1603 IOVA_PFN(r->end));
1604 if (!iova) {
1605 printk(KERN_ERR "Reserve iova failed\n");
1606 return -ENODEV;
1610 return 0;
1613 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1615 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1618 static inline int guestwidth_to_adjustwidth(int gaw)
1620 int agaw;
1621 int r = (gaw - 12) % 9;
1623 if (r == 0)
1624 agaw = gaw;
1625 else
1626 agaw = gaw + 9 - r;
1627 if (agaw > 64)
1628 agaw = 64;
1629 return agaw;
1632 static int domain_init(struct dmar_domain *domain, int guest_width)
1634 struct intel_iommu *iommu;
1635 int adjust_width, agaw;
1636 unsigned long sagaw;
1638 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1639 domain_reserve_special_ranges(domain);
1641 /* calculate AGAW */
1642 iommu = domain_get_iommu(domain);
1643 if (guest_width > cap_mgaw(iommu->cap))
1644 guest_width = cap_mgaw(iommu->cap);
1645 domain->gaw = guest_width;
1646 adjust_width = guestwidth_to_adjustwidth(guest_width);
1647 agaw = width_to_agaw(adjust_width);
1648 sagaw = cap_sagaw(iommu->cap);
1649 if (!test_bit(agaw, &sagaw)) {
1650 /* hardware doesn't support it, choose a bigger one */
1651 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1652 agaw = find_next_bit(&sagaw, 5, agaw);
1653 if (agaw >= 5)
1654 return -ENODEV;
1656 domain->agaw = agaw;
1658 if (ecap_coherent(iommu->ecap))
1659 domain->iommu_coherency = 1;
1660 else
1661 domain->iommu_coherency = 0;
1663 if (ecap_sc_support(iommu->ecap))
1664 domain->iommu_snooping = 1;
1665 else
1666 domain->iommu_snooping = 0;
1668 if (intel_iommu_superpage)
1669 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1670 else
1671 domain->iommu_superpage = 0;
1673 domain->nid = iommu->node;
1675 /* always allocate the top pgd */
1676 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1677 if (!domain->pgd)
1678 return -ENOMEM;
1679 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1680 return 0;
1683 static void domain_exit(struct dmar_domain *domain)
1685 struct dmar_drhd_unit *drhd;
1686 struct intel_iommu *iommu;
1687 struct page *freelist = NULL;
1689 /* Domain 0 is reserved, so dont process it */
1690 if (!domain)
1691 return;
1693 /* Flush any lazy unmaps that may reference this domain */
1694 if (!intel_iommu_strict)
1695 flush_unmaps_timeout(0);
1697 /* remove associated devices */
1698 domain_remove_dev_info(domain);
1700 /* destroy iovas */
1701 put_iova_domain(&domain->iovad);
1703 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1705 /* clear attached or cached domains */
1706 rcu_read_lock();
1707 for_each_active_iommu(iommu, drhd)
1708 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1709 test_bit(iommu->seq_id, domain->iommu_bmp))
1710 iommu_detach_domain(domain, iommu);
1711 rcu_read_unlock();
1713 dma_free_pagelist(freelist);
1715 free_domain_mem(domain);
1718 static int domain_context_mapping_one(struct dmar_domain *domain,
1719 struct intel_iommu *iommu,
1720 u8 bus, u8 devfn, int translation)
1722 struct context_entry *context;
1723 unsigned long flags;
1724 struct dma_pte *pgd;
1725 unsigned long num;
1726 unsigned long ndomains;
1727 int id;
1728 int agaw;
1729 struct device_domain_info *info = NULL;
1731 pr_debug("Set context mapping for %02x:%02x.%d\n",
1732 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1734 BUG_ON(!domain->pgd);
1735 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1736 translation != CONTEXT_TT_MULTI_LEVEL);
1738 context = device_to_context_entry(iommu, bus, devfn);
1739 if (!context)
1740 return -ENOMEM;
1741 spin_lock_irqsave(&iommu->lock, flags);
1742 if (context_present(context)) {
1743 spin_unlock_irqrestore(&iommu->lock, flags);
1744 return 0;
1747 id = domain->id;
1748 pgd = domain->pgd;
1750 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1751 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1752 int found = 0;
1754 /* find an available domain id for this device in iommu */
1755 ndomains = cap_ndoms(iommu->cap);
1756 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1757 if (iommu->domains[num] == domain) {
1758 id = num;
1759 found = 1;
1760 break;
1764 if (found == 0) {
1765 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1766 if (num >= ndomains) {
1767 spin_unlock_irqrestore(&iommu->lock, flags);
1768 printk(KERN_ERR "IOMMU: no free domain ids\n");
1769 return -EFAULT;
1772 set_bit(num, iommu->domain_ids);
1773 iommu->domains[num] = domain;
1774 id = num;
1777 /* Skip top levels of page tables for
1778 * iommu which has less agaw than default.
1779 * Unnecessary for PT mode.
1781 if (translation != CONTEXT_TT_PASS_THROUGH) {
1782 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1783 pgd = phys_to_virt(dma_pte_addr(pgd));
1784 if (!dma_pte_present(pgd)) {
1785 spin_unlock_irqrestore(&iommu->lock, flags);
1786 return -ENOMEM;
1792 context_set_domain_id(context, id);
1794 if (translation != CONTEXT_TT_PASS_THROUGH) {
1795 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1796 translation = info ? CONTEXT_TT_DEV_IOTLB :
1797 CONTEXT_TT_MULTI_LEVEL;
1800 * In pass through mode, AW must be programmed to indicate the largest
1801 * AGAW value supported by hardware. And ASR is ignored by hardware.
1803 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1804 context_set_address_width(context, iommu->msagaw);
1805 else {
1806 context_set_address_root(context, virt_to_phys(pgd));
1807 context_set_address_width(context, iommu->agaw);
1810 context_set_translation_type(context, translation);
1811 context_set_fault_enable(context);
1812 context_set_present(context);
1813 domain_flush_cache(domain, context, sizeof(*context));
1816 * It's a non-present to present mapping. If hardware doesn't cache
1817 * non-present entry we only need to flush the write-buffer. If the
1818 * _does_ cache non-present entries, then it does so in the special
1819 * domain #0, which we have to flush:
1821 if (cap_caching_mode(iommu->cap)) {
1822 iommu->flush.flush_context(iommu, 0,
1823 (((u16)bus) << 8) | devfn,
1824 DMA_CCMD_MASK_NOBIT,
1825 DMA_CCMD_DEVICE_INVL);
1826 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1827 } else {
1828 iommu_flush_write_buffer(iommu);
1830 iommu_enable_dev_iotlb(info);
1831 spin_unlock_irqrestore(&iommu->lock, flags);
1833 spin_lock_irqsave(&domain->iommu_lock, flags);
1834 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1835 domain->iommu_count++;
1836 if (domain->iommu_count == 1)
1837 domain->nid = iommu->node;
1838 domain_update_iommu_cap(domain);
1840 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1841 return 0;
1844 static int
1845 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1846 int translation)
1848 int ret;
1849 struct pci_dev *pdev, *tmp, *parent;
1850 struct intel_iommu *iommu;
1851 u8 bus, devfn;
1853 iommu = device_to_iommu(dev, &bus, &devfn);
1854 if (!iommu)
1855 return -ENODEV;
1857 ret = domain_context_mapping_one(domain, iommu, bus, devfn,
1858 translation);
1859 if (ret || !dev_is_pci(dev))
1860 return ret;
1862 /* dependent device mapping */
1863 pdev = to_pci_dev(dev);
1864 tmp = pci_find_upstream_pcie_bridge(pdev);
1865 if (!tmp)
1866 return 0;
1867 /* Secondary interface's bus number and devfn 0 */
1868 parent = pdev->bus->self;
1869 while (parent != tmp) {
1870 ret = domain_context_mapping_one(domain, iommu,
1871 parent->bus->number,
1872 parent->devfn, translation);
1873 if (ret)
1874 return ret;
1875 parent = parent->bus->self;
1877 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1878 return domain_context_mapping_one(domain, iommu,
1879 tmp->subordinate->number, 0,
1880 translation);
1881 else /* this is a legacy PCI bridge */
1882 return domain_context_mapping_one(domain, iommu,
1883 tmp->bus->number,
1884 tmp->devfn,
1885 translation);
1888 static int domain_context_mapped(struct device *dev)
1890 int ret;
1891 struct pci_dev *pdev, *tmp, *parent;
1892 struct intel_iommu *iommu;
1893 u8 bus, devfn;
1895 iommu = device_to_iommu(dev, &bus, &devfn);
1896 if (!iommu)
1897 return -ENODEV;
1899 ret = device_context_mapped(iommu, bus, devfn);
1900 if (!ret || !dev_is_pci(dev))
1901 return ret;
1903 /* dependent device mapping */
1904 pdev = to_pci_dev(dev);
1905 tmp = pci_find_upstream_pcie_bridge(pdev);
1906 if (!tmp)
1907 return ret;
1908 /* Secondary interface's bus number and devfn 0 */
1909 parent = pdev->bus->self;
1910 while (parent != tmp) {
1911 ret = device_context_mapped(iommu, parent->bus->number,
1912 parent->devfn);
1913 if (!ret)
1914 return ret;
1915 parent = parent->bus->self;
1917 if (pci_is_pcie(tmp))
1918 return device_context_mapped(iommu, tmp->subordinate->number,
1920 else
1921 return device_context_mapped(iommu, tmp->bus->number,
1922 tmp->devfn);
1925 /* Returns a number of VTD pages, but aligned to MM page size */
1926 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1927 size_t size)
1929 host_addr &= ~PAGE_MASK;
1930 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1933 /* Return largest possible superpage level for a given mapping */
1934 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1935 unsigned long iov_pfn,
1936 unsigned long phy_pfn,
1937 unsigned long pages)
1939 int support, level = 1;
1940 unsigned long pfnmerge;
1942 support = domain->iommu_superpage;
1944 /* To use a large page, the virtual *and* physical addresses
1945 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1946 of them will mean we have to use smaller pages. So just
1947 merge them and check both at once. */
1948 pfnmerge = iov_pfn | phy_pfn;
1950 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1951 pages >>= VTD_STRIDE_SHIFT;
1952 if (!pages)
1953 break;
1954 pfnmerge >>= VTD_STRIDE_SHIFT;
1955 level++;
1956 support--;
1958 return level;
1961 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1962 struct scatterlist *sg, unsigned long phys_pfn,
1963 unsigned long nr_pages, int prot)
1965 struct dma_pte *first_pte = NULL, *pte = NULL;
1966 phys_addr_t uninitialized_var(pteval);
1967 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1968 unsigned long sg_res;
1969 unsigned int largepage_lvl = 0;
1970 unsigned long lvl_pages = 0;
1972 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1974 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1975 return -EINVAL;
1977 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1979 if (sg)
1980 sg_res = 0;
1981 else {
1982 sg_res = nr_pages + 1;
1983 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1986 while (nr_pages > 0) {
1987 uint64_t tmp;
1989 if (!sg_res) {
1990 sg_res = aligned_nrpages(sg->offset, sg->length);
1991 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1992 sg->dma_length = sg->length;
1993 pteval = page_to_phys(sg_page(sg)) | prot;
1994 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1997 if (!pte) {
1998 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2000 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2001 if (!pte)
2002 return -ENOMEM;
2003 /* It is large page*/
2004 if (largepage_lvl > 1) {
2005 pteval |= DMA_PTE_LARGE_PAGE;
2006 /* Ensure that old small page tables are removed to make room
2007 for superpage, if they exist. */
2008 dma_pte_clear_range(domain, iov_pfn,
2009 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
2010 dma_pte_free_pagetable(domain, iov_pfn,
2011 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
2012 } else {
2013 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2017 /* We don't need lock here, nobody else
2018 * touches the iova range
2020 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2021 if (tmp) {
2022 static int dumps = 5;
2023 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2024 iov_pfn, tmp, (unsigned long long)pteval);
2025 if (dumps) {
2026 dumps--;
2027 debug_dma_dump_mappings(NULL);
2029 WARN_ON(1);
2032 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2034 BUG_ON(nr_pages < lvl_pages);
2035 BUG_ON(sg_res < lvl_pages);
2037 nr_pages -= lvl_pages;
2038 iov_pfn += lvl_pages;
2039 phys_pfn += lvl_pages;
2040 pteval += lvl_pages * VTD_PAGE_SIZE;
2041 sg_res -= lvl_pages;
2043 /* If the next PTE would be the first in a new page, then we
2044 need to flush the cache on the entries we've just written.
2045 And then we'll need to recalculate 'pte', so clear it and
2046 let it get set again in the if (!pte) block above.
2048 If we're done (!nr_pages) we need to flush the cache too.
2050 Also if we've been setting superpages, we may need to
2051 recalculate 'pte' and switch back to smaller pages for the
2052 end of the mapping, if the trailing size is not enough to
2053 use another superpage (i.e. sg_res < lvl_pages). */
2054 pte++;
2055 if (!nr_pages || first_pte_in_page(pte) ||
2056 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2057 domain_flush_cache(domain, first_pte,
2058 (void *)pte - (void *)first_pte);
2059 pte = NULL;
2062 if (!sg_res && nr_pages)
2063 sg = sg_next(sg);
2065 return 0;
2068 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2069 struct scatterlist *sg, unsigned long nr_pages,
2070 int prot)
2072 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2075 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2076 unsigned long phys_pfn, unsigned long nr_pages,
2077 int prot)
2079 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2082 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2084 if (!iommu)
2085 return;
2087 clear_context_table(iommu, bus, devfn);
2088 iommu->flush.flush_context(iommu, 0, 0, 0,
2089 DMA_CCMD_GLOBAL_INVL);
2090 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2093 static inline void unlink_domain_info(struct device_domain_info *info)
2095 assert_spin_locked(&device_domain_lock);
2096 list_del(&info->link);
2097 list_del(&info->global);
2098 if (info->dev)
2099 info->dev->archdata.iommu = NULL;
2102 static void domain_remove_dev_info(struct dmar_domain *domain)
2104 struct device_domain_info *info;
2105 unsigned long flags, flags2;
2107 spin_lock_irqsave(&device_domain_lock, flags);
2108 while (!list_empty(&domain->devices)) {
2109 info = list_entry(domain->devices.next,
2110 struct device_domain_info, link);
2111 unlink_domain_info(info);
2112 spin_unlock_irqrestore(&device_domain_lock, flags);
2114 iommu_disable_dev_iotlb(info);
2115 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2117 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
2118 iommu_detach_dependent_devices(info->iommu, info->dev);
2119 /* clear this iommu in iommu_bmp, update iommu count
2120 * and capabilities
2122 spin_lock_irqsave(&domain->iommu_lock, flags2);
2123 if (test_and_clear_bit(info->iommu->seq_id,
2124 domain->iommu_bmp)) {
2125 domain->iommu_count--;
2126 domain_update_iommu_cap(domain);
2128 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2131 free_devinfo_mem(info);
2132 spin_lock_irqsave(&device_domain_lock, flags);
2134 spin_unlock_irqrestore(&device_domain_lock, flags);
2138 * find_domain
2139 * Note: we use struct device->archdata.iommu stores the info
2141 static struct dmar_domain *find_domain(struct device *dev)
2143 struct device_domain_info *info;
2145 /* No lock here, assumes no domain exit in normal case */
2146 info = dev->archdata.iommu;
2147 if (info)
2148 return info->domain;
2149 return NULL;
2152 static inline struct device_domain_info *
2153 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2155 struct device_domain_info *info;
2157 list_for_each_entry(info, &device_domain_list, global)
2158 if (info->iommu->segment == segment && info->bus == bus &&
2159 info->devfn == devfn)
2160 return info;
2162 return NULL;
2165 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2166 int bus, int devfn,
2167 struct device *dev,
2168 struct dmar_domain *domain)
2170 struct dmar_domain *found = NULL;
2171 struct device_domain_info *info;
2172 unsigned long flags;
2174 info = alloc_devinfo_mem();
2175 if (!info)
2176 return NULL;
2178 info->bus = bus;
2179 info->devfn = devfn;
2180 info->dev = dev;
2181 info->domain = domain;
2182 info->iommu = iommu;
2183 if (!dev)
2184 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2186 spin_lock_irqsave(&device_domain_lock, flags);
2187 if (dev)
2188 found = find_domain(dev);
2189 else {
2190 struct device_domain_info *info2;
2191 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2192 if (info2)
2193 found = info2->domain;
2195 if (found) {
2196 spin_unlock_irqrestore(&device_domain_lock, flags);
2197 free_devinfo_mem(info);
2198 /* Caller must free the original domain */
2199 return found;
2202 list_add(&info->link, &domain->devices);
2203 list_add(&info->global, &device_domain_list);
2204 if (dev)
2205 dev->archdata.iommu = info;
2206 spin_unlock_irqrestore(&device_domain_lock, flags);
2208 return domain;
2211 /* domain is initialized */
2212 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2214 struct dmar_domain *domain, *free = NULL;
2215 struct intel_iommu *iommu = NULL;
2216 struct device_domain_info *info;
2217 struct pci_dev *dev_tmp = NULL;
2218 unsigned long flags;
2219 u8 bus, devfn, bridge_bus, bridge_devfn;
2221 domain = find_domain(dev);
2222 if (domain)
2223 return domain;
2225 if (dev_is_pci(dev)) {
2226 struct pci_dev *pdev = to_pci_dev(dev);
2227 u16 segment;
2229 segment = pci_domain_nr(pdev->bus);
2230 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
2231 if (dev_tmp) {
2232 if (pci_is_pcie(dev_tmp)) {
2233 bridge_bus = dev_tmp->subordinate->number;
2234 bridge_devfn = 0;
2235 } else {
2236 bridge_bus = dev_tmp->bus->number;
2237 bridge_devfn = dev_tmp->devfn;
2239 spin_lock_irqsave(&device_domain_lock, flags);
2240 info = dmar_search_domain_by_dev_info(segment,
2241 bridge_bus,
2242 bridge_devfn);
2243 if (info) {
2244 iommu = info->iommu;
2245 domain = info->domain;
2247 spin_unlock_irqrestore(&device_domain_lock, flags);
2248 /* pcie-pci bridge already has a domain, uses it */
2249 if (info)
2250 goto found_domain;
2254 iommu = device_to_iommu(dev, &bus, &devfn);
2255 if (!iommu)
2256 goto error;
2258 /* Allocate and initialize new domain for the device */
2259 domain = alloc_domain(false);
2260 if (!domain)
2261 goto error;
2262 if (iommu_attach_domain(domain, iommu)) {
2263 free_domain_mem(domain);
2264 domain = NULL;
2265 goto error;
2267 free = domain;
2268 if (domain_init(domain, gaw))
2269 goto error;
2271 /* register pcie-to-pci device */
2272 if (dev_tmp) {
2273 domain = dmar_insert_dev_info(iommu, bridge_bus, bridge_devfn,
2274 NULL, domain);
2275 if (!domain)
2276 goto error;
2279 found_domain:
2280 domain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2281 error:
2282 if (free != domain)
2283 domain_exit(free);
2285 return domain;
2288 static int iommu_identity_mapping;
2289 #define IDENTMAP_ALL 1
2290 #define IDENTMAP_GFX 2
2291 #define IDENTMAP_AZALIA 4
2293 static int iommu_domain_identity_map(struct dmar_domain *domain,
2294 unsigned long long start,
2295 unsigned long long end)
2297 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2298 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2300 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2301 dma_to_mm_pfn(last_vpfn))) {
2302 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2303 return -ENOMEM;
2306 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2307 start, end, domain->id);
2309 * RMRR range might have overlap with physical memory range,
2310 * clear it first
2312 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2314 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2315 last_vpfn - first_vpfn + 1,
2316 DMA_PTE_READ|DMA_PTE_WRITE);
2319 static int iommu_prepare_identity_map(struct device *dev,
2320 unsigned long long start,
2321 unsigned long long end)
2323 struct dmar_domain *domain;
2324 int ret;
2326 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2327 if (!domain)
2328 return -ENOMEM;
2330 /* For _hardware_ passthrough, don't bother. But for software
2331 passthrough, we do it anyway -- it may indicate a memory
2332 range which is reserved in E820, so which didn't get set
2333 up to start with in si_domain */
2334 if (domain == si_domain && hw_pass_through) {
2335 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2336 dev_name(dev), start, end);
2337 return 0;
2340 printk(KERN_INFO
2341 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2342 dev_name(dev), start, end);
2344 if (end < start) {
2345 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2346 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2347 dmi_get_system_info(DMI_BIOS_VENDOR),
2348 dmi_get_system_info(DMI_BIOS_VERSION),
2349 dmi_get_system_info(DMI_PRODUCT_VERSION));
2350 ret = -EIO;
2351 goto error;
2354 if (end >> agaw_to_width(domain->agaw)) {
2355 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2356 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2357 agaw_to_width(domain->agaw),
2358 dmi_get_system_info(DMI_BIOS_VENDOR),
2359 dmi_get_system_info(DMI_BIOS_VERSION),
2360 dmi_get_system_info(DMI_PRODUCT_VERSION));
2361 ret = -EIO;
2362 goto error;
2365 ret = iommu_domain_identity_map(domain, start, end);
2366 if (ret)
2367 goto error;
2369 /* context entry init */
2370 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2371 if (ret)
2372 goto error;
2374 return 0;
2376 error:
2377 domain_exit(domain);
2378 return ret;
2381 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2382 struct device *dev)
2384 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2385 return 0;
2386 return iommu_prepare_identity_map(dev, rmrr->base_address,
2387 rmrr->end_address);
2390 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2391 static inline void iommu_prepare_isa(void)
2393 struct pci_dev *pdev;
2394 int ret;
2396 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2397 if (!pdev)
2398 return;
2400 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2401 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2403 if (ret)
2404 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2405 "floppy might not work\n");
2408 #else
2409 static inline void iommu_prepare_isa(void)
2411 return;
2413 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2415 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2417 static int __init si_domain_init(int hw)
2419 struct dmar_drhd_unit *drhd;
2420 struct intel_iommu *iommu;
2421 int nid, ret = 0;
2423 si_domain = alloc_domain(false);
2424 if (!si_domain)
2425 return -EFAULT;
2427 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2429 for_each_active_iommu(iommu, drhd) {
2430 ret = iommu_attach_domain(si_domain, iommu);
2431 if (ret) {
2432 domain_exit(si_domain);
2433 return -EFAULT;
2437 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2438 domain_exit(si_domain);
2439 return -EFAULT;
2442 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2443 si_domain->id);
2445 if (hw)
2446 return 0;
2448 for_each_online_node(nid) {
2449 unsigned long start_pfn, end_pfn;
2450 int i;
2452 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2453 ret = iommu_domain_identity_map(si_domain,
2454 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2455 if (ret)
2456 return ret;
2460 return 0;
2463 static int identity_mapping(struct device *dev)
2465 struct device_domain_info *info;
2467 if (likely(!iommu_identity_mapping))
2468 return 0;
2470 info = dev->archdata.iommu;
2471 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2472 return (info->domain == si_domain);
2474 return 0;
2477 static int domain_add_dev_info(struct dmar_domain *domain,
2478 struct device *dev, int translation)
2480 struct dmar_domain *ndomain;
2481 struct intel_iommu *iommu;
2482 u8 bus, devfn;
2483 int ret;
2485 iommu = device_to_iommu(dev, &bus, &devfn);
2486 if (!iommu)
2487 return -ENODEV;
2489 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2490 if (ndomain != domain)
2491 return -EBUSY;
2493 ret = domain_context_mapping(domain, dev, translation);
2494 if (ret) {
2495 domain_remove_one_dev_info(domain, dev);
2496 return ret;
2499 return 0;
2502 static bool device_has_rmrr(struct device *dev)
2504 struct dmar_rmrr_unit *rmrr;
2505 struct device *tmp;
2506 int i;
2508 rcu_read_lock();
2509 for_each_rmrr_units(rmrr) {
2511 * Return TRUE if this RMRR contains the device that
2512 * is passed in.
2514 for_each_active_dev_scope(rmrr->devices,
2515 rmrr->devices_cnt, i, tmp)
2516 if (tmp == dev) {
2517 rcu_read_unlock();
2518 return true;
2521 rcu_read_unlock();
2522 return false;
2525 static int iommu_should_identity_map(struct device *dev, int startup)
2528 if (dev_is_pci(dev)) {
2529 struct pci_dev *pdev = to_pci_dev(dev);
2532 * We want to prevent any device associated with an RMRR from
2533 * getting placed into the SI Domain. This is done because
2534 * problems exist when devices are moved in and out of domains
2535 * and their respective RMRR info is lost. We exempt USB devices
2536 * from this process due to their usage of RMRRs that are known
2537 * to not be needed after BIOS hand-off to OS.
2539 if (device_has_rmrr(dev) &&
2540 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2541 return 0;
2543 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2544 return 1;
2546 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2547 return 1;
2549 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2550 return 0;
2553 * We want to start off with all devices in the 1:1 domain, and
2554 * take them out later if we find they can't access all of memory.
2556 * However, we can't do this for PCI devices behind bridges,
2557 * because all PCI devices behind the same bridge will end up
2558 * with the same source-id on their transactions.
2560 * Practically speaking, we can't change things around for these
2561 * devices at run-time, because we can't be sure there'll be no
2562 * DMA transactions in flight for any of their siblings.
2564 * So PCI devices (unless they're on the root bus) as well as
2565 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2566 * the 1:1 domain, just in _case_ one of their siblings turns out
2567 * not to be able to map all of memory.
2569 if (!pci_is_pcie(pdev)) {
2570 if (!pci_is_root_bus(pdev->bus))
2571 return 0;
2572 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2573 return 0;
2574 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2575 return 0;
2576 } else {
2577 if (device_has_rmrr(dev))
2578 return 0;
2582 * At boot time, we don't yet know if devices will be 64-bit capable.
2583 * Assume that they will — if they turn out not to be, then we can
2584 * take them out of the 1:1 domain later.
2586 if (!startup) {
2588 * If the device's dma_mask is less than the system's memory
2589 * size then this is not a candidate for identity mapping.
2591 u64 dma_mask = *dev->dma_mask;
2593 if (dev->coherent_dma_mask &&
2594 dev->coherent_dma_mask < dma_mask)
2595 dma_mask = dev->coherent_dma_mask;
2597 return dma_mask >= dma_get_required_mask(dev);
2600 return 1;
2603 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2605 int ret;
2607 if (!iommu_should_identity_map(dev, 1))
2608 return 0;
2610 ret = domain_add_dev_info(si_domain, dev,
2611 hw ? CONTEXT_TT_PASS_THROUGH :
2612 CONTEXT_TT_MULTI_LEVEL);
2613 if (!ret)
2614 pr_info("IOMMU: %s identity mapping for device %s\n",
2615 hw ? "hardware" : "software", dev_name(dev));
2616 else if (ret == -ENODEV)
2617 /* device not associated with an iommu */
2618 ret = 0;
2620 return ret;
2624 static int __init iommu_prepare_static_identity_mapping(int hw)
2626 struct pci_dev *pdev = NULL;
2627 struct dmar_drhd_unit *drhd;
2628 struct intel_iommu *iommu;
2629 struct device *dev;
2630 int i;
2631 int ret = 0;
2633 ret = si_domain_init(hw);
2634 if (ret)
2635 return -EFAULT;
2637 for_each_pci_dev(pdev) {
2638 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2639 if (ret)
2640 return ret;
2643 for_each_active_iommu(iommu, drhd)
2644 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2645 struct acpi_device_physical_node *pn;
2646 struct acpi_device *adev;
2648 if (dev->bus != &acpi_bus_type)
2649 continue;
2651 adev= to_acpi_device(dev);
2652 mutex_lock(&adev->physical_node_lock);
2653 list_for_each_entry(pn, &adev->physical_node_list, node) {
2654 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2655 if (ret)
2656 break;
2658 mutex_unlock(&adev->physical_node_lock);
2659 if (ret)
2660 return ret;
2663 return 0;
2666 static int __init init_dmars(void)
2668 struct dmar_drhd_unit *drhd;
2669 struct dmar_rmrr_unit *rmrr;
2670 struct device *dev;
2671 struct intel_iommu *iommu;
2672 int i, ret;
2675 * for each drhd
2676 * allocate root
2677 * initialize and program root entry to not present
2678 * endfor
2680 for_each_drhd_unit(drhd) {
2682 * lock not needed as this is only incremented in the single
2683 * threaded kernel __init code path all other access are read
2684 * only
2686 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2687 g_num_of_iommus++;
2688 continue;
2690 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2691 IOMMU_UNITS_SUPPORTED);
2694 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2695 GFP_KERNEL);
2696 if (!g_iommus) {
2697 printk(KERN_ERR "Allocating global iommu array failed\n");
2698 ret = -ENOMEM;
2699 goto error;
2702 deferred_flush = kzalloc(g_num_of_iommus *
2703 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2704 if (!deferred_flush) {
2705 ret = -ENOMEM;
2706 goto free_g_iommus;
2709 for_each_active_iommu(iommu, drhd) {
2710 g_iommus[iommu->seq_id] = iommu;
2712 ret = iommu_init_domains(iommu);
2713 if (ret)
2714 goto free_iommu;
2717 * TBD:
2718 * we could share the same root & context tables
2719 * among all IOMMU's. Need to Split it later.
2721 ret = iommu_alloc_root_entry(iommu);
2722 if (ret) {
2723 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2724 goto free_iommu;
2726 if (!ecap_pass_through(iommu->ecap))
2727 hw_pass_through = 0;
2731 * Start from the sane iommu hardware state.
2733 for_each_active_iommu(iommu, drhd) {
2735 * If the queued invalidation is already initialized by us
2736 * (for example, while enabling interrupt-remapping) then
2737 * we got the things already rolling from a sane state.
2739 if (iommu->qi)
2740 continue;
2743 * Clear any previous faults.
2745 dmar_fault(-1, iommu);
2747 * Disable queued invalidation if supported and already enabled
2748 * before OS handover.
2750 dmar_disable_qi(iommu);
2753 for_each_active_iommu(iommu, drhd) {
2754 if (dmar_enable_qi(iommu)) {
2756 * Queued Invalidate not enabled, use Register Based
2757 * Invalidate
2759 iommu->flush.flush_context = __iommu_flush_context;
2760 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2761 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2762 "invalidation\n",
2763 iommu->seq_id,
2764 (unsigned long long)drhd->reg_base_addr);
2765 } else {
2766 iommu->flush.flush_context = qi_flush_context;
2767 iommu->flush.flush_iotlb = qi_flush_iotlb;
2768 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2769 "invalidation\n",
2770 iommu->seq_id,
2771 (unsigned long long)drhd->reg_base_addr);
2775 if (iommu_pass_through)
2776 iommu_identity_mapping |= IDENTMAP_ALL;
2778 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2779 iommu_identity_mapping |= IDENTMAP_GFX;
2780 #endif
2782 check_tylersburg_isoch();
2785 * If pass through is not set or not enabled, setup context entries for
2786 * identity mappings for rmrr, gfx, and isa and may fall back to static
2787 * identity mapping if iommu_identity_mapping is set.
2789 if (iommu_identity_mapping) {
2790 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2791 if (ret) {
2792 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2793 goto free_iommu;
2797 * For each rmrr
2798 * for each dev attached to rmrr
2799 * do
2800 * locate drhd for dev, alloc domain for dev
2801 * allocate free domain
2802 * allocate page table entries for rmrr
2803 * if context not allocated for bus
2804 * allocate and init context
2805 * set present in root table for this bus
2806 * init context with domain, translation etc
2807 * endfor
2808 * endfor
2810 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2811 for_each_rmrr_units(rmrr) {
2812 /* some BIOS lists non-exist devices in DMAR table. */
2813 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2814 i, dev) {
2815 ret = iommu_prepare_rmrr_dev(rmrr, dev);
2816 if (ret)
2817 printk(KERN_ERR
2818 "IOMMU: mapping reserved region failed\n");
2822 iommu_prepare_isa();
2825 * for each drhd
2826 * enable fault log
2827 * global invalidate context cache
2828 * global invalidate iotlb
2829 * enable translation
2831 for_each_iommu(iommu, drhd) {
2832 if (drhd->ignored) {
2834 * we always have to disable PMRs or DMA may fail on
2835 * this device
2837 if (force_on)
2838 iommu_disable_protect_mem_regions(iommu);
2839 continue;
2842 iommu_flush_write_buffer(iommu);
2844 ret = dmar_set_interrupt(iommu);
2845 if (ret)
2846 goto free_iommu;
2848 iommu_set_root_entry(iommu);
2850 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2851 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2853 ret = iommu_enable_translation(iommu);
2854 if (ret)
2855 goto free_iommu;
2857 iommu_disable_protect_mem_regions(iommu);
2860 return 0;
2862 free_iommu:
2863 for_each_active_iommu(iommu, drhd)
2864 free_dmar_iommu(iommu);
2865 kfree(deferred_flush);
2866 free_g_iommus:
2867 kfree(g_iommus);
2868 error:
2869 return ret;
2872 /* This takes a number of _MM_ pages, not VTD pages */
2873 static struct iova *intel_alloc_iova(struct device *dev,
2874 struct dmar_domain *domain,
2875 unsigned long nrpages, uint64_t dma_mask)
2877 struct iova *iova = NULL;
2879 /* Restrict dma_mask to the width that the iommu can handle */
2880 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2882 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2884 * First try to allocate an io virtual address in
2885 * DMA_BIT_MASK(32) and if that fails then try allocating
2886 * from higher range
2888 iova = alloc_iova(&domain->iovad, nrpages,
2889 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2890 if (iova)
2891 return iova;
2893 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2894 if (unlikely(!iova)) {
2895 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2896 nrpages, dev_name(dev));
2897 return NULL;
2900 return iova;
2903 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2905 struct dmar_domain *domain;
2906 int ret;
2908 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2909 if (!domain) {
2910 printk(KERN_ERR "Allocating domain for %s failed",
2911 dev_name(dev));
2912 return NULL;
2915 /* make sure context mapping is ok */
2916 if (unlikely(!domain_context_mapped(dev))) {
2917 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2918 if (ret) {
2919 printk(KERN_ERR "Domain context map for %s failed",
2920 dev_name(dev));
2921 return NULL;
2925 return domain;
2928 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2930 struct device_domain_info *info;
2932 /* No lock here, assumes no domain exit in normal case */
2933 info = dev->archdata.iommu;
2934 if (likely(info))
2935 return info->domain;
2937 return __get_valid_domain_for_dev(dev);
2940 static int iommu_dummy(struct device *dev)
2942 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2945 /* Check if the dev needs to go through non-identity map and unmap process.*/
2946 static int iommu_no_mapping(struct device *dev)
2948 int found;
2950 if (iommu_dummy(dev))
2951 return 1;
2953 if (!iommu_identity_mapping)
2954 return 0;
2956 found = identity_mapping(dev);
2957 if (found) {
2958 if (iommu_should_identity_map(dev, 0))
2959 return 1;
2960 else {
2962 * 32 bit DMA is removed from si_domain and fall back
2963 * to non-identity mapping.
2965 domain_remove_one_dev_info(si_domain, dev);
2966 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2967 dev_name(dev));
2968 return 0;
2970 } else {
2972 * In case of a detached 64 bit DMA device from vm, the device
2973 * is put into si_domain for identity mapping.
2975 if (iommu_should_identity_map(dev, 0)) {
2976 int ret;
2977 ret = domain_add_dev_info(si_domain, dev,
2978 hw_pass_through ?
2979 CONTEXT_TT_PASS_THROUGH :
2980 CONTEXT_TT_MULTI_LEVEL);
2981 if (!ret) {
2982 printk(KERN_INFO "64bit %s uses identity mapping\n",
2983 dev_name(dev));
2984 return 1;
2989 return 0;
2992 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
2993 size_t size, int dir, u64 dma_mask)
2995 struct dmar_domain *domain;
2996 phys_addr_t start_paddr;
2997 struct iova *iova;
2998 int prot = 0;
2999 int ret;
3000 struct intel_iommu *iommu;
3001 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3003 BUG_ON(dir == DMA_NONE);
3005 if (iommu_no_mapping(dev))
3006 return paddr;
3008 domain = get_valid_domain_for_dev(dev);
3009 if (!domain)
3010 return 0;
3012 iommu = domain_get_iommu(domain);
3013 size = aligned_nrpages(paddr, size);
3015 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3016 if (!iova)
3017 goto error;
3020 * Check if DMAR supports zero-length reads on write only
3021 * mappings..
3023 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3024 !cap_zlr(iommu->cap))
3025 prot |= DMA_PTE_READ;
3026 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3027 prot |= DMA_PTE_WRITE;
3029 * paddr - (paddr + size) might be partial page, we should map the whole
3030 * page. Note: if two part of one page are separately mapped, we
3031 * might have two guest_addr mapping to the same host paddr, but this
3032 * is not a big problem
3034 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3035 mm_to_dma_pfn(paddr_pfn), size, prot);
3036 if (ret)
3037 goto error;
3039 /* it's a non-present to present mapping. Only flush if caching mode */
3040 if (cap_caching_mode(iommu->cap))
3041 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3042 else
3043 iommu_flush_write_buffer(iommu);
3045 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3046 start_paddr += paddr & ~PAGE_MASK;
3047 return start_paddr;
3049 error:
3050 if (iova)
3051 __free_iova(&domain->iovad, iova);
3052 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3053 dev_name(dev), size, (unsigned long long)paddr, dir);
3054 return 0;
3057 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3058 unsigned long offset, size_t size,
3059 enum dma_data_direction dir,
3060 struct dma_attrs *attrs)
3062 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3063 dir, *dev->dma_mask);
3066 static void flush_unmaps(void)
3068 int i, j;
3070 timer_on = 0;
3072 /* just flush them all */
3073 for (i = 0; i < g_num_of_iommus; i++) {
3074 struct intel_iommu *iommu = g_iommus[i];
3075 if (!iommu)
3076 continue;
3078 if (!deferred_flush[i].next)
3079 continue;
3081 /* In caching mode, global flushes turn emulation expensive */
3082 if (!cap_caching_mode(iommu->cap))
3083 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3084 DMA_TLB_GLOBAL_FLUSH);
3085 for (j = 0; j < deferred_flush[i].next; j++) {
3086 unsigned long mask;
3087 struct iova *iova = deferred_flush[i].iova[j];
3088 struct dmar_domain *domain = deferred_flush[i].domain[j];
3090 /* On real hardware multiple invalidations are expensive */
3091 if (cap_caching_mode(iommu->cap))
3092 iommu_flush_iotlb_psi(iommu, domain->id,
3093 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1,
3094 !deferred_flush[i].freelist[j], 0);
3095 else {
3096 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
3097 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3098 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3100 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3101 if (deferred_flush[i].freelist[j])
3102 dma_free_pagelist(deferred_flush[i].freelist[j]);
3104 deferred_flush[i].next = 0;
3107 list_size = 0;
3110 static void flush_unmaps_timeout(unsigned long data)
3112 unsigned long flags;
3114 spin_lock_irqsave(&async_umap_flush_lock, flags);
3115 flush_unmaps();
3116 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3119 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3121 unsigned long flags;
3122 int next, iommu_id;
3123 struct intel_iommu *iommu;
3125 spin_lock_irqsave(&async_umap_flush_lock, flags);
3126 if (list_size == HIGH_WATER_MARK)
3127 flush_unmaps();
3129 iommu = domain_get_iommu(dom);
3130 iommu_id = iommu->seq_id;
3132 next = deferred_flush[iommu_id].next;
3133 deferred_flush[iommu_id].domain[next] = dom;
3134 deferred_flush[iommu_id].iova[next] = iova;
3135 deferred_flush[iommu_id].freelist[next] = freelist;
3136 deferred_flush[iommu_id].next++;
3138 if (!timer_on) {
3139 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3140 timer_on = 1;
3142 list_size++;
3143 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3146 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3147 size_t size, enum dma_data_direction dir,
3148 struct dma_attrs *attrs)
3150 struct dmar_domain *domain;
3151 unsigned long start_pfn, last_pfn;
3152 struct iova *iova;
3153 struct intel_iommu *iommu;
3154 struct page *freelist;
3156 if (iommu_no_mapping(dev))
3157 return;
3159 domain = find_domain(dev);
3160 BUG_ON(!domain);
3162 iommu = domain_get_iommu(domain);
3164 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3165 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3166 (unsigned long long)dev_addr))
3167 return;
3169 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3170 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3172 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3173 dev_name(dev), start_pfn, last_pfn);
3175 freelist = domain_unmap(domain, start_pfn, last_pfn);
3177 if (intel_iommu_strict) {
3178 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3179 last_pfn - start_pfn + 1, !freelist, 0);
3180 /* free iova */
3181 __free_iova(&domain->iovad, iova);
3182 dma_free_pagelist(freelist);
3183 } else {
3184 add_unmap(domain, iova, freelist);
3186 * queue up the release of the unmap to save the 1/6th of the
3187 * cpu used up by the iotlb flush operation...
3192 static void *intel_alloc_coherent(struct device *dev, size_t size,
3193 dma_addr_t *dma_handle, gfp_t flags,
3194 struct dma_attrs *attrs)
3196 void *vaddr;
3197 int order;
3199 size = PAGE_ALIGN(size);
3200 order = get_order(size);
3202 if (!iommu_no_mapping(dev))
3203 flags &= ~(GFP_DMA | GFP_DMA32);
3204 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3205 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3206 flags |= GFP_DMA;
3207 else
3208 flags |= GFP_DMA32;
3211 vaddr = (void *)__get_free_pages(flags, order);
3212 if (!vaddr)
3213 return NULL;
3214 memset(vaddr, 0, size);
3216 *dma_handle = __intel_map_single(dev, virt_to_bus(vaddr), size,
3217 DMA_BIDIRECTIONAL,
3218 dev->coherent_dma_mask);
3219 if (*dma_handle)
3220 return vaddr;
3221 free_pages((unsigned long)vaddr, order);
3222 return NULL;
3225 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3226 dma_addr_t dma_handle, struct dma_attrs *attrs)
3228 int order;
3230 size = PAGE_ALIGN(size);
3231 order = get_order(size);
3233 intel_unmap_page(dev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3234 free_pages((unsigned long)vaddr, order);
3237 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3238 int nelems, enum dma_data_direction dir,
3239 struct dma_attrs *attrs)
3241 struct dmar_domain *domain;
3242 unsigned long start_pfn, last_pfn;
3243 struct iova *iova;
3244 struct intel_iommu *iommu;
3245 struct page *freelist;
3247 if (iommu_no_mapping(dev))
3248 return;
3250 domain = find_domain(dev);
3251 BUG_ON(!domain);
3253 iommu = domain_get_iommu(domain);
3255 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3256 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3257 (unsigned long long)sglist[0].dma_address))
3258 return;
3260 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3261 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3263 freelist = domain_unmap(domain, start_pfn, last_pfn);
3265 if (intel_iommu_strict) {
3266 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3267 last_pfn - start_pfn + 1, !freelist, 0);
3268 /* free iova */
3269 __free_iova(&domain->iovad, iova);
3270 dma_free_pagelist(freelist);
3271 } else {
3272 add_unmap(domain, iova, freelist);
3274 * queue up the release of the unmap to save the 1/6th of the
3275 * cpu used up by the iotlb flush operation...
3280 static int intel_nontranslate_map_sg(struct device *hddev,
3281 struct scatterlist *sglist, int nelems, int dir)
3283 int i;
3284 struct scatterlist *sg;
3286 for_each_sg(sglist, sg, nelems, i) {
3287 BUG_ON(!sg_page(sg));
3288 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3289 sg->dma_length = sg->length;
3291 return nelems;
3294 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3295 enum dma_data_direction dir, struct dma_attrs *attrs)
3297 int i;
3298 struct dmar_domain *domain;
3299 size_t size = 0;
3300 int prot = 0;
3301 struct iova *iova = NULL;
3302 int ret;
3303 struct scatterlist *sg;
3304 unsigned long start_vpfn;
3305 struct intel_iommu *iommu;
3307 BUG_ON(dir == DMA_NONE);
3308 if (iommu_no_mapping(dev))
3309 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3311 domain = get_valid_domain_for_dev(dev);
3312 if (!domain)
3313 return 0;
3315 iommu = domain_get_iommu(domain);
3317 for_each_sg(sglist, sg, nelems, i)
3318 size += aligned_nrpages(sg->offset, sg->length);
3320 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3321 *dev->dma_mask);
3322 if (!iova) {
3323 sglist->dma_length = 0;
3324 return 0;
3328 * Check if DMAR supports zero-length reads on write only
3329 * mappings..
3331 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3332 !cap_zlr(iommu->cap))
3333 prot |= DMA_PTE_READ;
3334 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3335 prot |= DMA_PTE_WRITE;
3337 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3339 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3340 if (unlikely(ret)) {
3341 /* clear the page */
3342 dma_pte_clear_range(domain, start_vpfn,
3343 start_vpfn + size - 1);
3344 /* free page tables */
3345 dma_pte_free_pagetable(domain, start_vpfn,
3346 start_vpfn + size - 1);
3347 /* free iova */
3348 __free_iova(&domain->iovad, iova);
3349 return 0;
3352 /* it's a non-present to present mapping. Only flush if caching mode */
3353 if (cap_caching_mode(iommu->cap))
3354 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3355 else
3356 iommu_flush_write_buffer(iommu);
3358 return nelems;
3361 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3363 return !dma_addr;
3366 struct dma_map_ops intel_dma_ops = {
3367 .alloc = intel_alloc_coherent,
3368 .free = intel_free_coherent,
3369 .map_sg = intel_map_sg,
3370 .unmap_sg = intel_unmap_sg,
3371 .map_page = intel_map_page,
3372 .unmap_page = intel_unmap_page,
3373 .mapping_error = intel_mapping_error,
3376 static inline int iommu_domain_cache_init(void)
3378 int ret = 0;
3380 iommu_domain_cache = kmem_cache_create("iommu_domain",
3381 sizeof(struct dmar_domain),
3383 SLAB_HWCACHE_ALIGN,
3385 NULL);
3386 if (!iommu_domain_cache) {
3387 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3388 ret = -ENOMEM;
3391 return ret;
3394 static inline int iommu_devinfo_cache_init(void)
3396 int ret = 0;
3398 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3399 sizeof(struct device_domain_info),
3401 SLAB_HWCACHE_ALIGN,
3402 NULL);
3403 if (!iommu_devinfo_cache) {
3404 printk(KERN_ERR "Couldn't create devinfo cache\n");
3405 ret = -ENOMEM;
3408 return ret;
3411 static inline int iommu_iova_cache_init(void)
3413 int ret = 0;
3415 iommu_iova_cache = kmem_cache_create("iommu_iova",
3416 sizeof(struct iova),
3418 SLAB_HWCACHE_ALIGN,
3419 NULL);
3420 if (!iommu_iova_cache) {
3421 printk(KERN_ERR "Couldn't create iova cache\n");
3422 ret = -ENOMEM;
3425 return ret;
3428 static int __init iommu_init_mempool(void)
3430 int ret;
3431 ret = iommu_iova_cache_init();
3432 if (ret)
3433 return ret;
3435 ret = iommu_domain_cache_init();
3436 if (ret)
3437 goto domain_error;
3439 ret = iommu_devinfo_cache_init();
3440 if (!ret)
3441 return ret;
3443 kmem_cache_destroy(iommu_domain_cache);
3444 domain_error:
3445 kmem_cache_destroy(iommu_iova_cache);
3447 return -ENOMEM;
3450 static void __init iommu_exit_mempool(void)
3452 kmem_cache_destroy(iommu_devinfo_cache);
3453 kmem_cache_destroy(iommu_domain_cache);
3454 kmem_cache_destroy(iommu_iova_cache);
3458 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3460 struct dmar_drhd_unit *drhd;
3461 u32 vtbar;
3462 int rc;
3464 /* We know that this device on this chipset has its own IOMMU.
3465 * If we find it under a different IOMMU, then the BIOS is lying
3466 * to us. Hope that the IOMMU for this device is actually
3467 * disabled, and it needs no translation...
3469 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3470 if (rc) {
3471 /* "can't" happen */
3472 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3473 return;
3475 vtbar &= 0xffff0000;
3477 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3478 drhd = dmar_find_matched_drhd_unit(pdev);
3479 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3480 TAINT_FIRMWARE_WORKAROUND,
3481 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3482 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3484 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3486 static void __init init_no_remapping_devices(void)
3488 struct dmar_drhd_unit *drhd;
3489 struct device *dev;
3490 int i;
3492 for_each_drhd_unit(drhd) {
3493 if (!drhd->include_all) {
3494 for_each_active_dev_scope(drhd->devices,
3495 drhd->devices_cnt, i, dev)
3496 break;
3497 /* ignore DMAR unit if no devices exist */
3498 if (i == drhd->devices_cnt)
3499 drhd->ignored = 1;
3503 for_each_active_drhd_unit(drhd) {
3504 if (drhd->include_all)
3505 continue;
3507 for_each_active_dev_scope(drhd->devices,
3508 drhd->devices_cnt, i, dev)
3509 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3510 break;
3511 if (i < drhd->devices_cnt)
3512 continue;
3514 /* This IOMMU has *only* gfx devices. Either bypass it or
3515 set the gfx_mapped flag, as appropriate */
3516 if (dmar_map_gfx) {
3517 intel_iommu_gfx_mapped = 1;
3518 } else {
3519 drhd->ignored = 1;
3520 for_each_active_dev_scope(drhd->devices,
3521 drhd->devices_cnt, i, dev)
3522 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3527 #ifdef CONFIG_SUSPEND
3528 static int init_iommu_hw(void)
3530 struct dmar_drhd_unit *drhd;
3531 struct intel_iommu *iommu = NULL;
3533 for_each_active_iommu(iommu, drhd)
3534 if (iommu->qi)
3535 dmar_reenable_qi(iommu);
3537 for_each_iommu(iommu, drhd) {
3538 if (drhd->ignored) {
3540 * we always have to disable PMRs or DMA may fail on
3541 * this device
3543 if (force_on)
3544 iommu_disable_protect_mem_regions(iommu);
3545 continue;
3548 iommu_flush_write_buffer(iommu);
3550 iommu_set_root_entry(iommu);
3552 iommu->flush.flush_context(iommu, 0, 0, 0,
3553 DMA_CCMD_GLOBAL_INVL);
3554 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3555 DMA_TLB_GLOBAL_FLUSH);
3556 if (iommu_enable_translation(iommu))
3557 return 1;
3558 iommu_disable_protect_mem_regions(iommu);
3561 return 0;
3564 static void iommu_flush_all(void)
3566 struct dmar_drhd_unit *drhd;
3567 struct intel_iommu *iommu;
3569 for_each_active_iommu(iommu, drhd) {
3570 iommu->flush.flush_context(iommu, 0, 0, 0,
3571 DMA_CCMD_GLOBAL_INVL);
3572 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3573 DMA_TLB_GLOBAL_FLUSH);
3577 static int iommu_suspend(void)
3579 struct dmar_drhd_unit *drhd;
3580 struct intel_iommu *iommu = NULL;
3581 unsigned long flag;
3583 for_each_active_iommu(iommu, drhd) {
3584 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3585 GFP_ATOMIC);
3586 if (!iommu->iommu_state)
3587 goto nomem;
3590 iommu_flush_all();
3592 for_each_active_iommu(iommu, drhd) {
3593 iommu_disable_translation(iommu);
3595 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3597 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3598 readl(iommu->reg + DMAR_FECTL_REG);
3599 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3600 readl(iommu->reg + DMAR_FEDATA_REG);
3601 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3602 readl(iommu->reg + DMAR_FEADDR_REG);
3603 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3604 readl(iommu->reg + DMAR_FEUADDR_REG);
3606 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3608 return 0;
3610 nomem:
3611 for_each_active_iommu(iommu, drhd)
3612 kfree(iommu->iommu_state);
3614 return -ENOMEM;
3617 static void iommu_resume(void)
3619 struct dmar_drhd_unit *drhd;
3620 struct intel_iommu *iommu = NULL;
3621 unsigned long flag;
3623 if (init_iommu_hw()) {
3624 if (force_on)
3625 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3626 else
3627 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3628 return;
3631 for_each_active_iommu(iommu, drhd) {
3633 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3635 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3636 iommu->reg + DMAR_FECTL_REG);
3637 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3638 iommu->reg + DMAR_FEDATA_REG);
3639 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3640 iommu->reg + DMAR_FEADDR_REG);
3641 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3642 iommu->reg + DMAR_FEUADDR_REG);
3644 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3647 for_each_active_iommu(iommu, drhd)
3648 kfree(iommu->iommu_state);
3651 static struct syscore_ops iommu_syscore_ops = {
3652 .resume = iommu_resume,
3653 .suspend = iommu_suspend,
3656 static void __init init_iommu_pm_ops(void)
3658 register_syscore_ops(&iommu_syscore_ops);
3661 #else
3662 static inline void init_iommu_pm_ops(void) {}
3663 #endif /* CONFIG_PM */
3666 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3668 struct acpi_dmar_reserved_memory *rmrr;
3669 struct dmar_rmrr_unit *rmrru;
3671 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3672 if (!rmrru)
3673 return -ENOMEM;
3675 rmrru->hdr = header;
3676 rmrr = (struct acpi_dmar_reserved_memory *)header;
3677 rmrru->base_address = rmrr->base_address;
3678 rmrru->end_address = rmrr->end_address;
3679 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3680 ((void *)rmrr) + rmrr->header.length,
3681 &rmrru->devices_cnt);
3682 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3683 kfree(rmrru);
3684 return -ENOMEM;
3687 list_add(&rmrru->list, &dmar_rmrr_units);
3689 return 0;
3692 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3694 struct acpi_dmar_atsr *atsr;
3695 struct dmar_atsr_unit *atsru;
3697 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3698 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3699 if (!atsru)
3700 return -ENOMEM;
3702 atsru->hdr = hdr;
3703 atsru->include_all = atsr->flags & 0x1;
3704 if (!atsru->include_all) {
3705 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3706 (void *)atsr + atsr->header.length,
3707 &atsru->devices_cnt);
3708 if (atsru->devices_cnt && atsru->devices == NULL) {
3709 kfree(atsru);
3710 return -ENOMEM;
3714 list_add_rcu(&atsru->list, &dmar_atsr_units);
3716 return 0;
3719 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3721 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3722 kfree(atsru);
3725 static void intel_iommu_free_dmars(void)
3727 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3728 struct dmar_atsr_unit *atsru, *atsr_n;
3730 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3731 list_del(&rmrru->list);
3732 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3733 kfree(rmrru);
3736 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3737 list_del(&atsru->list);
3738 intel_iommu_free_atsr(atsru);
3742 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3744 int i, ret = 1;
3745 struct pci_bus *bus;
3746 struct pci_dev *bridge = NULL;
3747 struct device *tmp;
3748 struct acpi_dmar_atsr *atsr;
3749 struct dmar_atsr_unit *atsru;
3751 dev = pci_physfn(dev);
3752 for (bus = dev->bus; bus; bus = bus->parent) {
3753 bridge = bus->self;
3754 if (!bridge || !pci_is_pcie(bridge) ||
3755 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3756 return 0;
3757 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3758 break;
3760 if (!bridge)
3761 return 0;
3763 rcu_read_lock();
3764 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3765 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3766 if (atsr->segment != pci_domain_nr(dev->bus))
3767 continue;
3769 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3770 if (tmp == &bridge->dev)
3771 goto out;
3773 if (atsru->include_all)
3774 goto out;
3776 ret = 0;
3777 out:
3778 rcu_read_unlock();
3780 return ret;
3783 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3785 int ret = 0;
3786 struct dmar_rmrr_unit *rmrru;
3787 struct dmar_atsr_unit *atsru;
3788 struct acpi_dmar_atsr *atsr;
3789 struct acpi_dmar_reserved_memory *rmrr;
3791 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3792 return 0;
3794 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3795 rmrr = container_of(rmrru->hdr,
3796 struct acpi_dmar_reserved_memory, header);
3797 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3798 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3799 ((void *)rmrr) + rmrr->header.length,
3800 rmrr->segment, rmrru->devices,
3801 rmrru->devices_cnt);
3802 if (ret > 0)
3803 break;
3804 else if(ret < 0)
3805 return ret;
3806 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3807 if (dmar_remove_dev_scope(info, rmrr->segment,
3808 rmrru->devices, rmrru->devices_cnt))
3809 break;
3813 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3814 if (atsru->include_all)
3815 continue;
3817 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3818 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3819 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3820 (void *)atsr + atsr->header.length,
3821 atsr->segment, atsru->devices,
3822 atsru->devices_cnt);
3823 if (ret > 0)
3824 break;
3825 else if(ret < 0)
3826 return ret;
3827 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3828 if (dmar_remove_dev_scope(info, atsr->segment,
3829 atsru->devices, atsru->devices_cnt))
3830 break;
3834 return 0;
3838 * Here we only respond to action of unbound device from driver.
3840 * Added device is not attached to its DMAR domain here yet. That will happen
3841 * when mapping the device to iova.
3843 static int device_notifier(struct notifier_block *nb,
3844 unsigned long action, void *data)
3846 struct device *dev = data;
3847 struct dmar_domain *domain;
3849 if (iommu_dummy(dev))
3850 return 0;
3852 if (action != BUS_NOTIFY_UNBOUND_DRIVER &&
3853 action != BUS_NOTIFY_DEL_DEVICE)
3854 return 0;
3856 domain = find_domain(dev);
3857 if (!domain)
3858 return 0;
3860 down_read(&dmar_global_lock);
3861 domain_remove_one_dev_info(domain, dev);
3862 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3863 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3864 list_empty(&domain->devices))
3865 domain_exit(domain);
3866 up_read(&dmar_global_lock);
3868 return 0;
3871 static struct notifier_block device_nb = {
3872 .notifier_call = device_notifier,
3875 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3876 unsigned long val, void *v)
3878 struct memory_notify *mhp = v;
3879 unsigned long long start, end;
3880 unsigned long start_vpfn, last_vpfn;
3882 switch (val) {
3883 case MEM_GOING_ONLINE:
3884 start = mhp->start_pfn << PAGE_SHIFT;
3885 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
3886 if (iommu_domain_identity_map(si_domain, start, end)) {
3887 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
3888 start, end);
3889 return NOTIFY_BAD;
3891 break;
3893 case MEM_OFFLINE:
3894 case MEM_CANCEL_ONLINE:
3895 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3896 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
3897 while (start_vpfn <= last_vpfn) {
3898 struct iova *iova;
3899 struct dmar_drhd_unit *drhd;
3900 struct intel_iommu *iommu;
3901 struct page *freelist;
3903 iova = find_iova(&si_domain->iovad, start_vpfn);
3904 if (iova == NULL) {
3905 pr_debug("dmar: failed get IOVA for PFN %lx\n",
3906 start_vpfn);
3907 break;
3910 iova = split_and_remove_iova(&si_domain->iovad, iova,
3911 start_vpfn, last_vpfn);
3912 if (iova == NULL) {
3913 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
3914 start_vpfn, last_vpfn);
3915 return NOTIFY_BAD;
3918 freelist = domain_unmap(si_domain, iova->pfn_lo,
3919 iova->pfn_hi);
3921 rcu_read_lock();
3922 for_each_active_iommu(iommu, drhd)
3923 iommu_flush_iotlb_psi(iommu, si_domain->id,
3924 iova->pfn_lo,
3925 iova->pfn_hi - iova->pfn_lo + 1,
3926 !freelist, 0);
3927 rcu_read_unlock();
3928 dma_free_pagelist(freelist);
3930 start_vpfn = iova->pfn_hi + 1;
3931 free_iova_mem(iova);
3933 break;
3936 return NOTIFY_OK;
3939 static struct notifier_block intel_iommu_memory_nb = {
3940 .notifier_call = intel_iommu_memory_notifier,
3941 .priority = 0
3944 int __init intel_iommu_init(void)
3946 int ret = -ENODEV;
3947 struct dmar_drhd_unit *drhd;
3948 struct intel_iommu *iommu;
3950 /* VT-d is required for a TXT/tboot launch, so enforce that */
3951 force_on = tboot_force_iommu();
3953 if (iommu_init_mempool()) {
3954 if (force_on)
3955 panic("tboot: Failed to initialize iommu memory\n");
3956 return -ENOMEM;
3959 down_write(&dmar_global_lock);
3960 if (dmar_table_init()) {
3961 if (force_on)
3962 panic("tboot: Failed to initialize DMAR table\n");
3963 goto out_free_dmar;
3967 * Disable translation if already enabled prior to OS handover.
3969 for_each_active_iommu(iommu, drhd)
3970 if (iommu->gcmd & DMA_GCMD_TE)
3971 iommu_disable_translation(iommu);
3973 if (dmar_dev_scope_init() < 0) {
3974 if (force_on)
3975 panic("tboot: Failed to initialize DMAR device scope\n");
3976 goto out_free_dmar;
3979 if (no_iommu || dmar_disabled)
3980 goto out_free_dmar;
3982 if (list_empty(&dmar_rmrr_units))
3983 printk(KERN_INFO "DMAR: No RMRR found\n");
3985 if (list_empty(&dmar_atsr_units))
3986 printk(KERN_INFO "DMAR: No ATSR found\n");
3988 if (dmar_init_reserved_ranges()) {
3989 if (force_on)
3990 panic("tboot: Failed to reserve iommu ranges\n");
3991 goto out_free_reserved_range;
3994 init_no_remapping_devices();
3996 ret = init_dmars();
3997 if (ret) {
3998 if (force_on)
3999 panic("tboot: Failed to initialize DMARs\n");
4000 printk(KERN_ERR "IOMMU: dmar init failed\n");
4001 goto out_free_reserved_range;
4003 up_write(&dmar_global_lock);
4004 printk(KERN_INFO
4005 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4007 init_timer(&unmap_timer);
4008 #ifdef CONFIG_SWIOTLB
4009 swiotlb = 0;
4010 #endif
4011 dma_ops = &intel_dma_ops;
4013 init_iommu_pm_ops();
4015 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4016 bus_register_notifier(&pci_bus_type, &device_nb);
4017 if (si_domain && !hw_pass_through)
4018 register_memory_notifier(&intel_iommu_memory_nb);
4020 intel_iommu_enabled = 1;
4022 return 0;
4024 out_free_reserved_range:
4025 put_iova_domain(&reserved_iova_list);
4026 out_free_dmar:
4027 intel_iommu_free_dmars();
4028 up_write(&dmar_global_lock);
4029 iommu_exit_mempool();
4030 return ret;
4033 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4034 struct device *dev)
4036 struct pci_dev *tmp, *parent, *pdev;
4038 if (!iommu || !dev || !dev_is_pci(dev))
4039 return;
4041 pdev = to_pci_dev(dev);
4043 /* dependent device detach */
4044 tmp = pci_find_upstream_pcie_bridge(pdev);
4045 /* Secondary interface's bus number and devfn 0 */
4046 if (tmp) {
4047 parent = pdev->bus->self;
4048 while (parent != tmp) {
4049 iommu_detach_dev(iommu, parent->bus->number,
4050 parent->devfn);
4051 parent = parent->bus->self;
4053 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
4054 iommu_detach_dev(iommu,
4055 tmp->subordinate->number, 0);
4056 else /* this is a legacy PCI bridge */
4057 iommu_detach_dev(iommu, tmp->bus->number,
4058 tmp->devfn);
4062 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4063 struct device *dev)
4065 struct device_domain_info *info, *tmp;
4066 struct intel_iommu *iommu;
4067 unsigned long flags;
4068 int found = 0;
4069 u8 bus, devfn;
4071 iommu = device_to_iommu(dev, &bus, &devfn);
4072 if (!iommu)
4073 return;
4075 spin_lock_irqsave(&device_domain_lock, flags);
4076 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4077 if (info->iommu == iommu && info->bus == bus &&
4078 info->devfn == devfn) {
4079 unlink_domain_info(info);
4080 spin_unlock_irqrestore(&device_domain_lock, flags);
4082 iommu_disable_dev_iotlb(info);
4083 iommu_detach_dev(iommu, info->bus, info->devfn);
4084 iommu_detach_dependent_devices(iommu, dev);
4085 free_devinfo_mem(info);
4087 spin_lock_irqsave(&device_domain_lock, flags);
4089 if (found)
4090 break;
4091 else
4092 continue;
4095 /* if there is no other devices under the same iommu
4096 * owned by this domain, clear this iommu in iommu_bmp
4097 * update iommu count and coherency
4099 if (info->iommu == iommu)
4100 found = 1;
4103 spin_unlock_irqrestore(&device_domain_lock, flags);
4105 if (found == 0) {
4106 unsigned long tmp_flags;
4107 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
4108 clear_bit(iommu->seq_id, domain->iommu_bmp);
4109 domain->iommu_count--;
4110 domain_update_iommu_cap(domain);
4111 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
4113 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
4114 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
4115 spin_lock_irqsave(&iommu->lock, tmp_flags);
4116 clear_bit(domain->id, iommu->domain_ids);
4117 iommu->domains[domain->id] = NULL;
4118 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
4123 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4125 int adjust_width;
4127 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4128 domain_reserve_special_ranges(domain);
4130 /* calculate AGAW */
4131 domain->gaw = guest_width;
4132 adjust_width = guestwidth_to_adjustwidth(guest_width);
4133 domain->agaw = width_to_agaw(adjust_width);
4135 domain->iommu_coherency = 0;
4136 domain->iommu_snooping = 0;
4137 domain->iommu_superpage = 0;
4138 domain->max_addr = 0;
4139 domain->nid = -1;
4141 /* always allocate the top pgd */
4142 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4143 if (!domain->pgd)
4144 return -ENOMEM;
4145 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4146 return 0;
4149 static int intel_iommu_domain_init(struct iommu_domain *domain)
4151 struct dmar_domain *dmar_domain;
4153 dmar_domain = alloc_domain(true);
4154 if (!dmar_domain) {
4155 printk(KERN_ERR
4156 "intel_iommu_domain_init: dmar_domain == NULL\n");
4157 return -ENOMEM;
4159 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4160 printk(KERN_ERR
4161 "intel_iommu_domain_init() failed\n");
4162 domain_exit(dmar_domain);
4163 return -ENOMEM;
4165 domain_update_iommu_cap(dmar_domain);
4166 domain->priv = dmar_domain;
4168 domain->geometry.aperture_start = 0;
4169 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4170 domain->geometry.force_aperture = true;
4172 return 0;
4175 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4177 struct dmar_domain *dmar_domain = domain->priv;
4179 domain->priv = NULL;
4180 domain_exit(dmar_domain);
4183 static int intel_iommu_attach_device(struct iommu_domain *domain,
4184 struct device *dev)
4186 struct dmar_domain *dmar_domain = domain->priv;
4187 struct intel_iommu *iommu;
4188 int addr_width;
4189 u8 bus, devfn;
4191 /* normally dev is not mapped */
4192 if (unlikely(domain_context_mapped(dev))) {
4193 struct dmar_domain *old_domain;
4195 old_domain = find_domain(dev);
4196 if (old_domain) {
4197 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4198 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4199 domain_remove_one_dev_info(old_domain, dev);
4200 else
4201 domain_remove_dev_info(old_domain);
4205 iommu = device_to_iommu(dev, &bus, &devfn);
4206 if (!iommu)
4207 return -ENODEV;
4209 /* check if this iommu agaw is sufficient for max mapped address */
4210 addr_width = agaw_to_width(iommu->agaw);
4211 if (addr_width > cap_mgaw(iommu->cap))
4212 addr_width = cap_mgaw(iommu->cap);
4214 if (dmar_domain->max_addr > (1LL << addr_width)) {
4215 printk(KERN_ERR "%s: iommu width (%d) is not "
4216 "sufficient for the mapped address (%llx)\n",
4217 __func__, addr_width, dmar_domain->max_addr);
4218 return -EFAULT;
4220 dmar_domain->gaw = addr_width;
4223 * Knock out extra levels of page tables if necessary
4225 while (iommu->agaw < dmar_domain->agaw) {
4226 struct dma_pte *pte;
4228 pte = dmar_domain->pgd;
4229 if (dma_pte_present(pte)) {
4230 dmar_domain->pgd = (struct dma_pte *)
4231 phys_to_virt(dma_pte_addr(pte));
4232 free_pgtable_page(pte);
4234 dmar_domain->agaw--;
4237 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4240 static void intel_iommu_detach_device(struct iommu_domain *domain,
4241 struct device *dev)
4243 struct dmar_domain *dmar_domain = domain->priv;
4245 domain_remove_one_dev_info(dmar_domain, dev);
4248 static int intel_iommu_map(struct iommu_domain *domain,
4249 unsigned long iova, phys_addr_t hpa,
4250 size_t size, int iommu_prot)
4252 struct dmar_domain *dmar_domain = domain->priv;
4253 u64 max_addr;
4254 int prot = 0;
4255 int ret;
4257 if (iommu_prot & IOMMU_READ)
4258 prot |= DMA_PTE_READ;
4259 if (iommu_prot & IOMMU_WRITE)
4260 prot |= DMA_PTE_WRITE;
4261 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4262 prot |= DMA_PTE_SNP;
4264 max_addr = iova + size;
4265 if (dmar_domain->max_addr < max_addr) {
4266 u64 end;
4268 /* check if minimum agaw is sufficient for mapped address */
4269 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4270 if (end < max_addr) {
4271 printk(KERN_ERR "%s: iommu width (%d) is not "
4272 "sufficient for the mapped address (%llx)\n",
4273 __func__, dmar_domain->gaw, max_addr);
4274 return -EFAULT;
4276 dmar_domain->max_addr = max_addr;
4278 /* Round up size to next multiple of PAGE_SIZE, if it and
4279 the low bits of hpa would take us onto the next page */
4280 size = aligned_nrpages(hpa, size);
4281 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4282 hpa >> VTD_PAGE_SHIFT, size, prot);
4283 return ret;
4286 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4287 unsigned long iova, size_t size)
4289 struct dmar_domain *dmar_domain = domain->priv;
4290 struct page *freelist = NULL;
4291 struct intel_iommu *iommu;
4292 unsigned long start_pfn, last_pfn;
4293 unsigned int npages;
4294 int iommu_id, num, ndomains, level = 0;
4296 /* Cope with horrid API which requires us to unmap more than the
4297 size argument if it happens to be a large-page mapping. */
4298 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4299 BUG();
4301 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4302 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4304 start_pfn = iova >> VTD_PAGE_SHIFT;
4305 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4307 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4309 npages = last_pfn - start_pfn + 1;
4311 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4312 iommu = g_iommus[iommu_id];
4315 * find bit position of dmar_domain
4317 ndomains = cap_ndoms(iommu->cap);
4318 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4319 if (iommu->domains[num] == dmar_domain)
4320 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4321 npages, !freelist, 0);
4326 dma_free_pagelist(freelist);
4328 if (dmar_domain->max_addr == iova + size)
4329 dmar_domain->max_addr = iova;
4331 return size;
4334 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4335 dma_addr_t iova)
4337 struct dmar_domain *dmar_domain = domain->priv;
4338 struct dma_pte *pte;
4339 int level = 0;
4340 u64 phys = 0;
4342 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4343 if (pte)
4344 phys = dma_pte_addr(pte);
4346 return phys;
4349 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4350 unsigned long cap)
4352 struct dmar_domain *dmar_domain = domain->priv;
4354 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4355 return dmar_domain->iommu_snooping;
4356 if (cap == IOMMU_CAP_INTR_REMAP)
4357 return irq_remapping_enabled;
4359 return 0;
4362 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4364 static int intel_iommu_add_device(struct device *dev)
4366 struct pci_dev *pdev = to_pci_dev(dev);
4367 struct pci_dev *bridge, *dma_pdev = NULL;
4368 struct iommu_group *group;
4369 int ret;
4370 u8 bus, devfn;
4372 if (!device_to_iommu(dev, &bus, &devfn))
4373 return -ENODEV;
4375 bridge = pci_find_upstream_pcie_bridge(pdev);
4376 if (bridge) {
4377 if (pci_is_pcie(bridge))
4378 dma_pdev = pci_get_domain_bus_and_slot(
4379 pci_domain_nr(pdev->bus),
4380 bridge->subordinate->number, 0);
4381 if (!dma_pdev)
4382 dma_pdev = pci_dev_get(bridge);
4383 } else
4384 dma_pdev = pci_dev_get(pdev);
4386 /* Account for quirked devices */
4387 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4390 * If it's a multifunction device that does not support our
4391 * required ACS flags, add to the same group as lowest numbered
4392 * function that also does not suport the required ACS flags.
4394 if (dma_pdev->multifunction &&
4395 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4396 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4398 for (i = 0; i < 8; i++) {
4399 struct pci_dev *tmp;
4401 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4402 if (!tmp)
4403 continue;
4405 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4406 swap_pci_ref(&dma_pdev, tmp);
4407 break;
4409 pci_dev_put(tmp);
4414 * Devices on the root bus go through the iommu. If that's not us,
4415 * find the next upstream device and test ACS up to the root bus.
4416 * Finding the next device may require skipping virtual buses.
4418 while (!pci_is_root_bus(dma_pdev->bus)) {
4419 struct pci_bus *bus = dma_pdev->bus;
4421 while (!bus->self) {
4422 if (!pci_is_root_bus(bus))
4423 bus = bus->parent;
4424 else
4425 goto root_bus;
4428 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4429 break;
4431 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4434 root_bus:
4435 group = iommu_group_get(&dma_pdev->dev);
4436 pci_dev_put(dma_pdev);
4437 if (!group) {
4438 group = iommu_group_alloc();
4439 if (IS_ERR(group))
4440 return PTR_ERR(group);
4443 ret = iommu_group_add_device(group, dev);
4445 iommu_group_put(group);
4446 return ret;
4449 static void intel_iommu_remove_device(struct device *dev)
4451 iommu_group_remove_device(dev);
4454 static struct iommu_ops intel_iommu_ops = {
4455 .domain_init = intel_iommu_domain_init,
4456 .domain_destroy = intel_iommu_domain_destroy,
4457 .attach_dev = intel_iommu_attach_device,
4458 .detach_dev = intel_iommu_detach_device,
4459 .map = intel_iommu_map,
4460 .unmap = intel_iommu_unmap,
4461 .iova_to_phys = intel_iommu_iova_to_phys,
4462 .domain_has_cap = intel_iommu_domain_has_cap,
4463 .add_device = intel_iommu_add_device,
4464 .remove_device = intel_iommu_remove_device,
4465 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4468 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4470 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4471 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4472 dmar_map_gfx = 0;
4475 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4476 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4477 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4478 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4479 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4480 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4481 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4483 static void quirk_iommu_rwbf(struct pci_dev *dev)
4486 * Mobile 4 Series Chipset neglects to set RWBF capability,
4487 * but needs it. Same seems to hold for the desktop versions.
4489 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4490 rwbf_quirk = 1;
4493 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4494 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4495 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4496 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4497 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4498 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4499 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4501 #define GGC 0x52
4502 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4503 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4504 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4505 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4506 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4507 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4508 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4509 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4511 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4513 unsigned short ggc;
4515 if (pci_read_config_word(dev, GGC, &ggc))
4516 return;
4518 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4519 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4520 dmar_map_gfx = 0;
4521 } else if (dmar_map_gfx) {
4522 /* we have to ensure the gfx device is idle before we flush */
4523 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4524 intel_iommu_strict = 1;
4527 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4528 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4529 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4530 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4532 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4533 ISOCH DMAR unit for the Azalia sound device, but not give it any
4534 TLB entries, which causes it to deadlock. Check for that. We do
4535 this in a function called from init_dmars(), instead of in a PCI
4536 quirk, because we don't want to print the obnoxious "BIOS broken"
4537 message if VT-d is actually disabled.
4539 static void __init check_tylersburg_isoch(void)
4541 struct pci_dev *pdev;
4542 uint32_t vtisochctrl;
4544 /* If there's no Azalia in the system anyway, forget it. */
4545 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4546 if (!pdev)
4547 return;
4548 pci_dev_put(pdev);
4550 /* System Management Registers. Might be hidden, in which case
4551 we can't do the sanity check. But that's OK, because the
4552 known-broken BIOSes _don't_ actually hide it, so far. */
4553 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4554 if (!pdev)
4555 return;
4557 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4558 pci_dev_put(pdev);
4559 return;
4562 pci_dev_put(pdev);
4564 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4565 if (vtisochctrl & 1)
4566 return;
4568 /* Drop all bits other than the number of TLB entries */
4569 vtisochctrl &= 0x1c;
4571 /* If we have the recommended number of TLB entries (16), fine. */
4572 if (vtisochctrl == 0x10)
4573 return;
4575 /* Zero TLB entries? You get to ride the short bus to school. */
4576 if (!vtisochctrl) {
4577 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4578 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4579 dmi_get_system_info(DMI_BIOS_VENDOR),
4580 dmi_get_system_info(DMI_BIOS_VERSION),
4581 dmi_get_system_info(DMI_PRODUCT_VERSION));
4582 iommu_identity_mapping |= IDENTMAP_AZALIA;
4583 return;
4586 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4587 vtisochctrl);