shmem: use monotonic time for i_generation
[linux-2.6/btrfs-unstable.git] / block / blk-core.c
blob12550340418d950dccc3e27b615a6dace19b8b48
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57 DEFINE_IDA(blk_queue_ida);
60 * For the allocated request tables
62 struct kmem_cache *request_cachep;
65 * For queue allocation
67 struct kmem_cache *blk_requestq_cachep;
70 * Controlling structure to kblockd
72 static struct workqueue_struct *kblockd_workqueue;
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 unsigned long flags;
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
87 EXPORT_SYMBOL(blk_queue_flag_set);
89 /**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96 unsigned long flags;
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
102 EXPORT_SYMBOL(blk_queue_flag_clear);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114 unsigned long flags;
115 bool res;
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
121 return res;
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135 unsigned long flags;
136 bool res;
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
142 return res;
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146 static void blk_clear_congested(struct request_list *rl, int sync)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl == &rl->q->root_rl)
156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
160 static void blk_set_congested(struct request_list *rl, int sync)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
171 void blk_queue_congestion_threshold(struct request_queue *q)
173 int nr;
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
186 void blk_rq_init(struct request_queue *q, struct request *rq)
188 memset(rq, 0, sizeof(*rq));
190 INIT_LIST_HEAD(&rq->queuelist);
191 INIT_LIST_HEAD(&rq->timeout_list);
192 rq->cpu = -1;
193 rq->q = q;
194 rq->__sector = (sector_t) -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->tag = -1;
198 rq->internal_tag = -1;
199 rq->start_time_ns = ktime_get_ns();
200 rq->part = NULL;
202 EXPORT_SYMBOL(blk_rq_init);
204 static const struct {
205 int errno;
206 const char *name;
207 } blk_errors[] = {
208 [BLK_STS_OK] = { 0, "" },
209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224 /* everything else not covered above: */
225 [BLK_STS_IOERR] = { -EIO, "I/O" },
228 blk_status_t errno_to_blk_status(int errno)
230 int i;
232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 if (blk_errors[i].errno == errno)
234 return (__force blk_status_t)i;
237 return BLK_STS_IOERR;
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241 int blk_status_to_errno(blk_status_t status)
243 int idx = (__force int)status;
245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 return -EIO;
247 return blk_errors[idx].errno;
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251 static void print_req_error(struct request *req, blk_status_t status)
253 int idx = (__force int)status;
255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 return;
258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 __func__, blk_errors[idx].name, req->rq_disk ?
260 req->rq_disk->disk_name : "?",
261 (unsigned long long)blk_rq_pos(req));
264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 unsigned int nbytes, blk_status_t error)
267 if (error)
268 bio->bi_status = error;
270 if (unlikely(rq->rq_flags & RQF_QUIET))
271 bio_set_flag(bio, BIO_QUIET);
273 bio_advance(bio, nbytes);
275 /* don't actually finish bio if it's part of flush sequence */
276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
277 bio_endio(bio);
280 void blk_dump_rq_flags(struct request *rq, char *msg)
282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 rq->rq_disk ? rq->rq_disk->disk_name : "?",
284 (unsigned long long) rq->cmd_flags);
286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
287 (unsigned long long)blk_rq_pos(rq),
288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
289 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
290 rq->bio, rq->biotail, blk_rq_bytes(rq));
292 EXPORT_SYMBOL(blk_dump_rq_flags);
294 static void blk_delay_work(struct work_struct *work)
296 struct request_queue *q;
298 q = container_of(work, struct request_queue, delay_work.work);
299 spin_lock_irq(q->queue_lock);
300 __blk_run_queue(q);
301 spin_unlock_irq(q->queue_lock);
305 * blk_delay_queue - restart queueing after defined interval
306 * @q: The &struct request_queue in question
307 * @msecs: Delay in msecs
309 * Description:
310 * Sometimes queueing needs to be postponed for a little while, to allow
311 * resources to come back. This function will make sure that queueing is
312 * restarted around the specified time.
314 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 lockdep_assert_held(q->queue_lock);
317 WARN_ON_ONCE(q->mq_ops);
319 if (likely(!blk_queue_dead(q)))
320 queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 msecs_to_jiffies(msecs));
323 EXPORT_SYMBOL(blk_delay_queue);
326 * blk_start_queue_async - asynchronously restart a previously stopped queue
327 * @q: The &struct request_queue in question
329 * Description:
330 * blk_start_queue_async() will clear the stop flag on the queue, and
331 * ensure that the request_fn for the queue is run from an async
332 * context.
334 void blk_start_queue_async(struct request_queue *q)
336 lockdep_assert_held(q->queue_lock);
337 WARN_ON_ONCE(q->mq_ops);
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 blk_run_queue_async(q);
342 EXPORT_SYMBOL(blk_start_queue_async);
345 * blk_start_queue - restart a previously stopped queue
346 * @q: The &struct request_queue in question
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
351 * entered. Also see blk_stop_queue().
353 void blk_start_queue(struct request_queue *q)
355 lockdep_assert_held(q->queue_lock);
356 WARN_ON_ONCE(q->mq_ops);
358 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
359 __blk_run_queue(q);
361 EXPORT_SYMBOL(blk_start_queue);
364 * blk_stop_queue - stop a queue
365 * @q: The &struct request_queue in question
367 * Description:
368 * The Linux block layer assumes that a block driver will consume all
369 * entries on the request queue when the request_fn strategy is called.
370 * Often this will not happen, because of hardware limitations (queue
371 * depth settings). If a device driver gets a 'queue full' response,
372 * or if it simply chooses not to queue more I/O at one point, it can
373 * call this function to prevent the request_fn from being called until
374 * the driver has signalled it's ready to go again. This happens by calling
375 * blk_start_queue() to restart queue operations.
377 void blk_stop_queue(struct request_queue *q)
379 lockdep_assert_held(q->queue_lock);
380 WARN_ON_ONCE(q->mq_ops);
382 cancel_delayed_work(&q->delay_work);
383 queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 EXPORT_SYMBOL(blk_stop_queue);
388 * blk_sync_queue - cancel any pending callbacks on a queue
389 * @q: the queue
391 * Description:
392 * The block layer may perform asynchronous callback activity
393 * on a queue, such as calling the unplug function after a timeout.
394 * A block device may call blk_sync_queue to ensure that any
395 * such activity is cancelled, thus allowing it to release resources
396 * that the callbacks might use. The caller must already have made sure
397 * that its ->make_request_fn will not re-add plugging prior to calling
398 * this function.
400 * This function does not cancel any asynchronous activity arising
401 * out of elevator or throttling code. That would require elevator_exit()
402 * and blkcg_exit_queue() to be called with queue lock initialized.
405 void blk_sync_queue(struct request_queue *q)
407 del_timer_sync(&q->timeout);
408 cancel_work_sync(&q->timeout_work);
410 if (q->mq_ops) {
411 struct blk_mq_hw_ctx *hctx;
412 int i;
414 cancel_delayed_work_sync(&q->requeue_work);
415 queue_for_each_hw_ctx(q, hctx, i)
416 cancel_delayed_work_sync(&hctx->run_work);
417 } else {
418 cancel_delayed_work_sync(&q->delay_work);
421 EXPORT_SYMBOL(blk_sync_queue);
424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425 * @q: request queue pointer
427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428 * set and 1 if the flag was already set.
430 int blk_set_preempt_only(struct request_queue *q)
432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
434 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
436 void blk_clear_preempt_only(struct request_queue *q)
438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
439 wake_up_all(&q->mq_freeze_wq);
441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445 * @q: The queue to run
447 * Description:
448 * Invoke request handling on a queue if there are any pending requests.
449 * May be used to restart request handling after a request has completed.
450 * This variant runs the queue whether or not the queue has been
451 * stopped. Must be called with the queue lock held and interrupts
452 * disabled. See also @blk_run_queue.
454 inline void __blk_run_queue_uncond(struct request_queue *q)
456 lockdep_assert_held(q->queue_lock);
457 WARN_ON_ONCE(q->mq_ops);
459 if (unlikely(blk_queue_dead(q)))
460 return;
463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 * the queue lock internally. As a result multiple threads may be
465 * running such a request function concurrently. Keep track of the
466 * number of active request_fn invocations such that blk_drain_queue()
467 * can wait until all these request_fn calls have finished.
469 q->request_fn_active++;
470 q->request_fn(q);
471 q->request_fn_active--;
473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
476 * __blk_run_queue - run a single device queue
477 * @q: The queue to run
479 * Description:
480 * See @blk_run_queue.
482 void __blk_run_queue(struct request_queue *q)
484 lockdep_assert_held(q->queue_lock);
485 WARN_ON_ONCE(q->mq_ops);
487 if (unlikely(blk_queue_stopped(q)))
488 return;
490 __blk_run_queue_uncond(q);
492 EXPORT_SYMBOL(__blk_run_queue);
495 * blk_run_queue_async - run a single device queue in workqueue context
496 * @q: The queue to run
498 * Description:
499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
500 * of us.
502 * Note:
503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504 * has canceled q->delay_work, callers must hold the queue lock to avoid
505 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
507 void blk_run_queue_async(struct request_queue *q)
509 lockdep_assert_held(q->queue_lock);
510 WARN_ON_ONCE(q->mq_ops);
512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
515 EXPORT_SYMBOL(blk_run_queue_async);
518 * blk_run_queue - run a single device queue
519 * @q: The queue to run
521 * Description:
522 * Invoke request handling on this queue, if it has pending work to do.
523 * May be used to restart queueing when a request has completed.
525 void blk_run_queue(struct request_queue *q)
527 unsigned long flags;
529 WARN_ON_ONCE(q->mq_ops);
531 spin_lock_irqsave(q->queue_lock, flags);
532 __blk_run_queue(q);
533 spin_unlock_irqrestore(q->queue_lock, flags);
535 EXPORT_SYMBOL(blk_run_queue);
537 void blk_put_queue(struct request_queue *q)
539 kobject_put(&q->kobj);
541 EXPORT_SYMBOL(blk_put_queue);
544 * __blk_drain_queue - drain requests from request_queue
545 * @q: queue to drain
546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
548 * Drain requests from @q. If @drain_all is set, all requests are drained.
549 * If not, only ELVPRIV requests are drained. The caller is responsible
550 * for ensuring that no new requests which need to be drained are queued.
552 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
553 __releases(q->queue_lock)
554 __acquires(q->queue_lock)
556 int i;
558 lockdep_assert_held(q->queue_lock);
559 WARN_ON_ONCE(q->mq_ops);
561 while (true) {
562 bool drain = false;
565 * The caller might be trying to drain @q before its
566 * elevator is initialized.
568 if (q->elevator)
569 elv_drain_elevator(q);
571 blkcg_drain_queue(q);
574 * This function might be called on a queue which failed
575 * driver init after queue creation or is not yet fully
576 * active yet. Some drivers (e.g. fd and loop) get unhappy
577 * in such cases. Kick queue iff dispatch queue has
578 * something on it and @q has request_fn set.
580 if (!list_empty(&q->queue_head) && q->request_fn)
581 __blk_run_queue(q);
583 drain |= q->nr_rqs_elvpriv;
584 drain |= q->request_fn_active;
587 * Unfortunately, requests are queued at and tracked from
588 * multiple places and there's no single counter which can
589 * be drained. Check all the queues and counters.
591 if (drain_all) {
592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
593 drain |= !list_empty(&q->queue_head);
594 for (i = 0; i < 2; i++) {
595 drain |= q->nr_rqs[i];
596 drain |= q->in_flight[i];
597 if (fq)
598 drain |= !list_empty(&fq->flush_queue[i]);
602 if (!drain)
603 break;
605 spin_unlock_irq(q->queue_lock);
607 msleep(10);
609 spin_lock_irq(q->queue_lock);
613 * With queue marked dead, any woken up waiter will fail the
614 * allocation path, so the wakeup chaining is lost and we're
615 * left with hung waiters. We need to wake up those waiters.
617 if (q->request_fn) {
618 struct request_list *rl;
620 blk_queue_for_each_rl(rl, q)
621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
622 wake_up_all(&rl->wait[i]);
626 void blk_drain_queue(struct request_queue *q)
628 spin_lock_irq(q->queue_lock);
629 __blk_drain_queue(q, true);
630 spin_unlock_irq(q->queue_lock);
634 * blk_queue_bypass_start - enter queue bypass mode
635 * @q: queue of interest
637 * In bypass mode, only the dispatch FIFO queue of @q is used. This
638 * function makes @q enter bypass mode and drains all requests which were
639 * throttled or issued before. On return, it's guaranteed that no request
640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641 * inside queue or RCU read lock.
643 void blk_queue_bypass_start(struct request_queue *q)
645 WARN_ON_ONCE(q->mq_ops);
647 spin_lock_irq(q->queue_lock);
648 q->bypass_depth++;
649 queue_flag_set(QUEUE_FLAG_BYPASS, q);
650 spin_unlock_irq(q->queue_lock);
653 * Queues start drained. Skip actual draining till init is
654 * complete. This avoids lenghty delays during queue init which
655 * can happen many times during boot.
657 if (blk_queue_init_done(q)) {
658 spin_lock_irq(q->queue_lock);
659 __blk_drain_queue(q, false);
660 spin_unlock_irq(q->queue_lock);
662 /* ensure blk_queue_bypass() is %true inside RCU read lock */
663 synchronize_rcu();
666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
669 * blk_queue_bypass_end - leave queue bypass mode
670 * @q: queue of interest
672 * Leave bypass mode and restore the normal queueing behavior.
674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675 * this function is called for both blk-sq and blk-mq queues.
677 void blk_queue_bypass_end(struct request_queue *q)
679 spin_lock_irq(q->queue_lock);
680 if (!--q->bypass_depth)
681 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
682 WARN_ON_ONCE(q->bypass_depth < 0);
683 spin_unlock_irq(q->queue_lock);
685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
687 void blk_set_queue_dying(struct request_queue *q)
689 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
692 * When queue DYING flag is set, we need to block new req
693 * entering queue, so we call blk_freeze_queue_start() to
694 * prevent I/O from crossing blk_queue_enter().
696 blk_freeze_queue_start(q);
698 if (q->mq_ops)
699 blk_mq_wake_waiters(q);
700 else {
701 struct request_list *rl;
703 spin_lock_irq(q->queue_lock);
704 blk_queue_for_each_rl(rl, q) {
705 if (rl->rq_pool) {
706 wake_up_all(&rl->wait[BLK_RW_SYNC]);
707 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
710 spin_unlock_irq(q->queue_lock);
713 /* Make blk_queue_enter() reexamine the DYING flag. */
714 wake_up_all(&q->mq_freeze_wq);
716 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
718 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
719 void blk_exit_queue(struct request_queue *q)
722 * Since the I/O scheduler exit code may access cgroup information,
723 * perform I/O scheduler exit before disassociating from the block
724 * cgroup controller.
726 if (q->elevator) {
727 ioc_clear_queue(q);
728 elevator_exit(q, q->elevator);
729 q->elevator = NULL;
733 * Remove all references to @q from the block cgroup controller before
734 * restoring @q->queue_lock to avoid that restoring this pointer causes
735 * e.g. blkcg_print_blkgs() to crash.
737 blkcg_exit_queue(q);
740 * Since the cgroup code may dereference the @q->backing_dev_info
741 * pointer, only decrease its reference count after having removed the
742 * association with the block cgroup controller.
744 bdi_put(q->backing_dev_info);
748 * blk_cleanup_queue - shutdown a request queue
749 * @q: request queue to shutdown
751 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
752 * put it. All future requests will be failed immediately with -ENODEV.
754 void blk_cleanup_queue(struct request_queue *q)
756 spinlock_t *lock = q->queue_lock;
758 /* mark @q DYING, no new request or merges will be allowed afterwards */
759 mutex_lock(&q->sysfs_lock);
760 blk_set_queue_dying(q);
761 spin_lock_irq(lock);
764 * A dying queue is permanently in bypass mode till released. Note
765 * that, unlike blk_queue_bypass_start(), we aren't performing
766 * synchronize_rcu() after entering bypass mode to avoid the delay
767 * as some drivers create and destroy a lot of queues while
768 * probing. This is still safe because blk_release_queue() will be
769 * called only after the queue refcnt drops to zero and nothing,
770 * RCU or not, would be traversing the queue by then.
772 q->bypass_depth++;
773 queue_flag_set(QUEUE_FLAG_BYPASS, q);
775 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
776 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
777 queue_flag_set(QUEUE_FLAG_DYING, q);
778 spin_unlock_irq(lock);
779 mutex_unlock(&q->sysfs_lock);
782 * Drain all requests queued before DYING marking. Set DEAD flag to
783 * prevent that q->request_fn() gets invoked after draining finished.
785 blk_freeze_queue(q);
786 spin_lock_irq(lock);
787 queue_flag_set(QUEUE_FLAG_DEAD, q);
788 spin_unlock_irq(lock);
791 * make sure all in-progress dispatch are completed because
792 * blk_freeze_queue() can only complete all requests, and
793 * dispatch may still be in-progress since we dispatch requests
794 * from more than one contexts.
796 * No need to quiesce queue if it isn't initialized yet since
797 * blk_freeze_queue() should be enough for cases of passthrough
798 * request.
800 if (q->mq_ops && blk_queue_init_done(q))
801 blk_mq_quiesce_queue(q);
803 /* for synchronous bio-based driver finish in-flight integrity i/o */
804 blk_flush_integrity();
806 /* @q won't process any more request, flush async actions */
807 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
808 blk_sync_queue(q);
811 * I/O scheduler exit is only safe after the sysfs scheduler attribute
812 * has been removed.
814 WARN_ON_ONCE(q->kobj.state_in_sysfs);
816 blk_exit_queue(q);
818 if (q->mq_ops)
819 blk_mq_free_queue(q);
820 percpu_ref_exit(&q->q_usage_counter);
822 spin_lock_irq(lock);
823 if (q->queue_lock != &q->__queue_lock)
824 q->queue_lock = &q->__queue_lock;
825 spin_unlock_irq(lock);
827 /* @q is and will stay empty, shutdown and put */
828 blk_put_queue(q);
830 EXPORT_SYMBOL(blk_cleanup_queue);
832 /* Allocate memory local to the request queue */
833 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
835 struct request_queue *q = data;
837 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
840 static void free_request_simple(void *element, void *data)
842 kmem_cache_free(request_cachep, element);
845 static void *alloc_request_size(gfp_t gfp_mask, void *data)
847 struct request_queue *q = data;
848 struct request *rq;
850 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
851 q->node);
852 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
853 kfree(rq);
854 rq = NULL;
856 return rq;
859 static void free_request_size(void *element, void *data)
861 struct request_queue *q = data;
863 if (q->exit_rq_fn)
864 q->exit_rq_fn(q, element);
865 kfree(element);
868 int blk_init_rl(struct request_list *rl, struct request_queue *q,
869 gfp_t gfp_mask)
871 if (unlikely(rl->rq_pool) || q->mq_ops)
872 return 0;
874 rl->q = q;
875 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
876 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
877 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
878 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
880 if (q->cmd_size) {
881 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
882 alloc_request_size, free_request_size,
883 q, gfp_mask, q->node);
884 } else {
885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 alloc_request_simple, free_request_simple,
887 q, gfp_mask, q->node);
889 if (!rl->rq_pool)
890 return -ENOMEM;
892 if (rl != &q->root_rl)
893 WARN_ON_ONCE(!blk_get_queue(q));
895 return 0;
898 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
900 if (rl->rq_pool) {
901 mempool_destroy(rl->rq_pool);
902 if (rl != &q->root_rl)
903 blk_put_queue(q);
907 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
909 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
911 EXPORT_SYMBOL(blk_alloc_queue);
914 * blk_queue_enter() - try to increase q->q_usage_counter
915 * @q: request queue pointer
916 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
918 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
920 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
922 while (true) {
923 bool success = false;
925 rcu_read_lock();
926 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
928 * The code that sets the PREEMPT_ONLY flag is
929 * responsible for ensuring that that flag is globally
930 * visible before the queue is unfrozen.
932 if (preempt || !blk_queue_preempt_only(q)) {
933 success = true;
934 } else {
935 percpu_ref_put(&q->q_usage_counter);
938 rcu_read_unlock();
940 if (success)
941 return 0;
943 if (flags & BLK_MQ_REQ_NOWAIT)
944 return -EBUSY;
947 * read pair of barrier in blk_freeze_queue_start(),
948 * we need to order reading __PERCPU_REF_DEAD flag of
949 * .q_usage_counter and reading .mq_freeze_depth or
950 * queue dying flag, otherwise the following wait may
951 * never return if the two reads are reordered.
953 smp_rmb();
955 wait_event(q->mq_freeze_wq,
956 (atomic_read(&q->mq_freeze_depth) == 0 &&
957 (preempt || !blk_queue_preempt_only(q))) ||
958 blk_queue_dying(q));
959 if (blk_queue_dying(q))
960 return -ENODEV;
964 void blk_queue_exit(struct request_queue *q)
966 percpu_ref_put(&q->q_usage_counter);
969 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
971 struct request_queue *q =
972 container_of(ref, struct request_queue, q_usage_counter);
974 wake_up_all(&q->mq_freeze_wq);
977 static void blk_rq_timed_out_timer(struct timer_list *t)
979 struct request_queue *q = from_timer(q, t, timeout);
981 kblockd_schedule_work(&q->timeout_work);
985 * blk_alloc_queue_node - allocate a request queue
986 * @gfp_mask: memory allocation flags
987 * @node_id: NUMA node to allocate memory from
988 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
989 * serialize calls to the legacy .request_fn() callback. Ignored for
990 * blk-mq request queues.
992 * Note: pass the queue lock as the third argument to this function instead of
993 * setting the queue lock pointer explicitly to avoid triggering a sporadic
994 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
995 * the queue lock pointer must be set before blkcg_init_queue() is called.
997 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
998 spinlock_t *lock)
1000 struct request_queue *q;
1001 int ret;
1003 q = kmem_cache_alloc_node(blk_requestq_cachep,
1004 gfp_mask | __GFP_ZERO, node_id);
1005 if (!q)
1006 return NULL;
1008 INIT_LIST_HEAD(&q->queue_head);
1009 q->last_merge = NULL;
1010 q->end_sector = 0;
1011 q->boundary_rq = NULL;
1013 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1014 if (q->id < 0)
1015 goto fail_q;
1017 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1018 if (ret)
1019 goto fail_id;
1021 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1022 if (!q->backing_dev_info)
1023 goto fail_split;
1025 q->stats = blk_alloc_queue_stats();
1026 if (!q->stats)
1027 goto fail_stats;
1029 q->backing_dev_info->ra_pages =
1030 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1031 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1032 q->backing_dev_info->name = "block";
1033 q->node = node_id;
1035 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1036 laptop_mode_timer_fn, 0);
1037 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1038 INIT_WORK(&q->timeout_work, NULL);
1039 INIT_LIST_HEAD(&q->queue_head);
1040 INIT_LIST_HEAD(&q->timeout_list);
1041 INIT_LIST_HEAD(&q->icq_list);
1042 #ifdef CONFIG_BLK_CGROUP
1043 INIT_LIST_HEAD(&q->blkg_list);
1044 #endif
1045 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1047 kobject_init(&q->kobj, &blk_queue_ktype);
1049 #ifdef CONFIG_BLK_DEV_IO_TRACE
1050 mutex_init(&q->blk_trace_mutex);
1051 #endif
1052 mutex_init(&q->sysfs_lock);
1053 spin_lock_init(&q->__queue_lock);
1055 if (!q->mq_ops)
1056 q->queue_lock = lock ? : &q->__queue_lock;
1059 * A queue starts its life with bypass turned on to avoid
1060 * unnecessary bypass on/off overhead and nasty surprises during
1061 * init. The initial bypass will be finished when the queue is
1062 * registered by blk_register_queue().
1064 q->bypass_depth = 1;
1065 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1067 init_waitqueue_head(&q->mq_freeze_wq);
1070 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1071 * See blk_register_queue() for details.
1073 if (percpu_ref_init(&q->q_usage_counter,
1074 blk_queue_usage_counter_release,
1075 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1076 goto fail_bdi;
1078 if (blkcg_init_queue(q))
1079 goto fail_ref;
1081 return q;
1083 fail_ref:
1084 percpu_ref_exit(&q->q_usage_counter);
1085 fail_bdi:
1086 blk_free_queue_stats(q->stats);
1087 fail_stats:
1088 bdi_put(q->backing_dev_info);
1089 fail_split:
1090 bioset_exit(&q->bio_split);
1091 fail_id:
1092 ida_simple_remove(&blk_queue_ida, q->id);
1093 fail_q:
1094 kmem_cache_free(blk_requestq_cachep, q);
1095 return NULL;
1097 EXPORT_SYMBOL(blk_alloc_queue_node);
1100 * blk_init_queue - prepare a request queue for use with a block device
1101 * @rfn: The function to be called to process requests that have been
1102 * placed on the queue.
1103 * @lock: Request queue spin lock
1105 * Description:
1106 * If a block device wishes to use the standard request handling procedures,
1107 * which sorts requests and coalesces adjacent requests, then it must
1108 * call blk_init_queue(). The function @rfn will be called when there
1109 * are requests on the queue that need to be processed. If the device
1110 * supports plugging, then @rfn may not be called immediately when requests
1111 * are available on the queue, but may be called at some time later instead.
1112 * Plugged queues are generally unplugged when a buffer belonging to one
1113 * of the requests on the queue is needed, or due to memory pressure.
1115 * @rfn is not required, or even expected, to remove all requests off the
1116 * queue, but only as many as it can handle at a time. If it does leave
1117 * requests on the queue, it is responsible for arranging that the requests
1118 * get dealt with eventually.
1120 * The queue spin lock must be held while manipulating the requests on the
1121 * request queue; this lock will be taken also from interrupt context, so irq
1122 * disabling is needed for it.
1124 * Function returns a pointer to the initialized request queue, or %NULL if
1125 * it didn't succeed.
1127 * Note:
1128 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1129 * when the block device is deactivated (such as at module unload).
1132 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1134 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1136 EXPORT_SYMBOL(blk_init_queue);
1138 struct request_queue *
1139 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1141 struct request_queue *q;
1143 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1144 if (!q)
1145 return NULL;
1147 q->request_fn = rfn;
1148 if (blk_init_allocated_queue(q) < 0) {
1149 blk_cleanup_queue(q);
1150 return NULL;
1153 return q;
1155 EXPORT_SYMBOL(blk_init_queue_node);
1157 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1160 int blk_init_allocated_queue(struct request_queue *q)
1162 WARN_ON_ONCE(q->mq_ops);
1164 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1165 if (!q->fq)
1166 return -ENOMEM;
1168 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1169 goto out_free_flush_queue;
1171 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1172 goto out_exit_flush_rq;
1174 INIT_WORK(&q->timeout_work, blk_timeout_work);
1175 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1178 * This also sets hw/phys segments, boundary and size
1180 blk_queue_make_request(q, blk_queue_bio);
1182 q->sg_reserved_size = INT_MAX;
1184 if (elevator_init(q))
1185 goto out_exit_flush_rq;
1186 return 0;
1188 out_exit_flush_rq:
1189 if (q->exit_rq_fn)
1190 q->exit_rq_fn(q, q->fq->flush_rq);
1191 out_free_flush_queue:
1192 blk_free_flush_queue(q->fq);
1193 q->fq = NULL;
1194 return -ENOMEM;
1196 EXPORT_SYMBOL(blk_init_allocated_queue);
1198 bool blk_get_queue(struct request_queue *q)
1200 if (likely(!blk_queue_dying(q))) {
1201 __blk_get_queue(q);
1202 return true;
1205 return false;
1207 EXPORT_SYMBOL(blk_get_queue);
1209 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1211 if (rq->rq_flags & RQF_ELVPRIV) {
1212 elv_put_request(rl->q, rq);
1213 if (rq->elv.icq)
1214 put_io_context(rq->elv.icq->ioc);
1217 mempool_free(rq, rl->rq_pool);
1221 * ioc_batching returns true if the ioc is a valid batching request and
1222 * should be given priority access to a request.
1224 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1226 if (!ioc)
1227 return 0;
1230 * Make sure the process is able to allocate at least 1 request
1231 * even if the batch times out, otherwise we could theoretically
1232 * lose wakeups.
1234 return ioc->nr_batch_requests == q->nr_batching ||
1235 (ioc->nr_batch_requests > 0
1236 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1240 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1241 * will cause the process to be a "batcher" on all queues in the system. This
1242 * is the behaviour we want though - once it gets a wakeup it should be given
1243 * a nice run.
1245 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1247 if (!ioc || ioc_batching(q, ioc))
1248 return;
1250 ioc->nr_batch_requests = q->nr_batching;
1251 ioc->last_waited = jiffies;
1254 static void __freed_request(struct request_list *rl, int sync)
1256 struct request_queue *q = rl->q;
1258 if (rl->count[sync] < queue_congestion_off_threshold(q))
1259 blk_clear_congested(rl, sync);
1261 if (rl->count[sync] + 1 <= q->nr_requests) {
1262 if (waitqueue_active(&rl->wait[sync]))
1263 wake_up(&rl->wait[sync]);
1265 blk_clear_rl_full(rl, sync);
1270 * A request has just been released. Account for it, update the full and
1271 * congestion status, wake up any waiters. Called under q->queue_lock.
1273 static void freed_request(struct request_list *rl, bool sync,
1274 req_flags_t rq_flags)
1276 struct request_queue *q = rl->q;
1278 q->nr_rqs[sync]--;
1279 rl->count[sync]--;
1280 if (rq_flags & RQF_ELVPRIV)
1281 q->nr_rqs_elvpriv--;
1283 __freed_request(rl, sync);
1285 if (unlikely(rl->starved[sync ^ 1]))
1286 __freed_request(rl, sync ^ 1);
1289 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1291 struct request_list *rl;
1292 int on_thresh, off_thresh;
1294 WARN_ON_ONCE(q->mq_ops);
1296 spin_lock_irq(q->queue_lock);
1297 q->nr_requests = nr;
1298 blk_queue_congestion_threshold(q);
1299 on_thresh = queue_congestion_on_threshold(q);
1300 off_thresh = queue_congestion_off_threshold(q);
1302 blk_queue_for_each_rl(rl, q) {
1303 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1304 blk_set_congested(rl, BLK_RW_SYNC);
1305 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1306 blk_clear_congested(rl, BLK_RW_SYNC);
1308 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1309 blk_set_congested(rl, BLK_RW_ASYNC);
1310 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1311 blk_clear_congested(rl, BLK_RW_ASYNC);
1313 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1314 blk_set_rl_full(rl, BLK_RW_SYNC);
1315 } else {
1316 blk_clear_rl_full(rl, BLK_RW_SYNC);
1317 wake_up(&rl->wait[BLK_RW_SYNC]);
1320 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1321 blk_set_rl_full(rl, BLK_RW_ASYNC);
1322 } else {
1323 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1324 wake_up(&rl->wait[BLK_RW_ASYNC]);
1328 spin_unlock_irq(q->queue_lock);
1329 return 0;
1333 * __get_request - get a free request
1334 * @rl: request list to allocate from
1335 * @op: operation and flags
1336 * @bio: bio to allocate request for (can be %NULL)
1337 * @flags: BLQ_MQ_REQ_* flags
1338 * @gfp_mask: allocator flags
1340 * Get a free request from @q. This function may fail under memory
1341 * pressure or if @q is dead.
1343 * Must be called with @q->queue_lock held and,
1344 * Returns ERR_PTR on failure, with @q->queue_lock held.
1345 * Returns request pointer on success, with @q->queue_lock *not held*.
1347 static struct request *__get_request(struct request_list *rl, unsigned int op,
1348 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1350 struct request_queue *q = rl->q;
1351 struct request *rq;
1352 struct elevator_type *et = q->elevator->type;
1353 struct io_context *ioc = rq_ioc(bio);
1354 struct io_cq *icq = NULL;
1355 const bool is_sync = op_is_sync(op);
1356 int may_queue;
1357 req_flags_t rq_flags = RQF_ALLOCED;
1359 lockdep_assert_held(q->queue_lock);
1361 if (unlikely(blk_queue_dying(q)))
1362 return ERR_PTR(-ENODEV);
1364 may_queue = elv_may_queue(q, op);
1365 if (may_queue == ELV_MQUEUE_NO)
1366 goto rq_starved;
1368 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1369 if (rl->count[is_sync]+1 >= q->nr_requests) {
1371 * The queue will fill after this allocation, so set
1372 * it as full, and mark this process as "batching".
1373 * This process will be allowed to complete a batch of
1374 * requests, others will be blocked.
1376 if (!blk_rl_full(rl, is_sync)) {
1377 ioc_set_batching(q, ioc);
1378 blk_set_rl_full(rl, is_sync);
1379 } else {
1380 if (may_queue != ELV_MQUEUE_MUST
1381 && !ioc_batching(q, ioc)) {
1383 * The queue is full and the allocating
1384 * process is not a "batcher", and not
1385 * exempted by the IO scheduler
1387 return ERR_PTR(-ENOMEM);
1391 blk_set_congested(rl, is_sync);
1395 * Only allow batching queuers to allocate up to 50% over the defined
1396 * limit of requests, otherwise we could have thousands of requests
1397 * allocated with any setting of ->nr_requests
1399 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1400 return ERR_PTR(-ENOMEM);
1402 q->nr_rqs[is_sync]++;
1403 rl->count[is_sync]++;
1404 rl->starved[is_sync] = 0;
1407 * Decide whether the new request will be managed by elevator. If
1408 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1409 * prevent the current elevator from being destroyed until the new
1410 * request is freed. This guarantees icq's won't be destroyed and
1411 * makes creating new ones safe.
1413 * Flush requests do not use the elevator so skip initialization.
1414 * This allows a request to share the flush and elevator data.
1416 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1417 * it will be created after releasing queue_lock.
1419 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1420 rq_flags |= RQF_ELVPRIV;
1421 q->nr_rqs_elvpriv++;
1422 if (et->icq_cache && ioc)
1423 icq = ioc_lookup_icq(ioc, q);
1426 if (blk_queue_io_stat(q))
1427 rq_flags |= RQF_IO_STAT;
1428 spin_unlock_irq(q->queue_lock);
1430 /* allocate and init request */
1431 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1432 if (!rq)
1433 goto fail_alloc;
1435 blk_rq_init(q, rq);
1436 blk_rq_set_rl(rq, rl);
1437 rq->cmd_flags = op;
1438 rq->rq_flags = rq_flags;
1439 if (flags & BLK_MQ_REQ_PREEMPT)
1440 rq->rq_flags |= RQF_PREEMPT;
1442 /* init elvpriv */
1443 if (rq_flags & RQF_ELVPRIV) {
1444 if (unlikely(et->icq_cache && !icq)) {
1445 if (ioc)
1446 icq = ioc_create_icq(ioc, q, gfp_mask);
1447 if (!icq)
1448 goto fail_elvpriv;
1451 rq->elv.icq = icq;
1452 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1453 goto fail_elvpriv;
1455 /* @rq->elv.icq holds io_context until @rq is freed */
1456 if (icq)
1457 get_io_context(icq->ioc);
1459 out:
1461 * ioc may be NULL here, and ioc_batching will be false. That's
1462 * OK, if the queue is under the request limit then requests need
1463 * not count toward the nr_batch_requests limit. There will always
1464 * be some limit enforced by BLK_BATCH_TIME.
1466 if (ioc_batching(q, ioc))
1467 ioc->nr_batch_requests--;
1469 trace_block_getrq(q, bio, op);
1470 return rq;
1472 fail_elvpriv:
1474 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1475 * and may fail indefinitely under memory pressure and thus
1476 * shouldn't stall IO. Treat this request as !elvpriv. This will
1477 * disturb iosched and blkcg but weird is bettern than dead.
1479 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1480 __func__, dev_name(q->backing_dev_info->dev));
1482 rq->rq_flags &= ~RQF_ELVPRIV;
1483 rq->elv.icq = NULL;
1485 spin_lock_irq(q->queue_lock);
1486 q->nr_rqs_elvpriv--;
1487 spin_unlock_irq(q->queue_lock);
1488 goto out;
1490 fail_alloc:
1492 * Allocation failed presumably due to memory. Undo anything we
1493 * might have messed up.
1495 * Allocating task should really be put onto the front of the wait
1496 * queue, but this is pretty rare.
1498 spin_lock_irq(q->queue_lock);
1499 freed_request(rl, is_sync, rq_flags);
1502 * in the very unlikely event that allocation failed and no
1503 * requests for this direction was pending, mark us starved so that
1504 * freeing of a request in the other direction will notice
1505 * us. another possible fix would be to split the rq mempool into
1506 * READ and WRITE
1508 rq_starved:
1509 if (unlikely(rl->count[is_sync] == 0))
1510 rl->starved[is_sync] = 1;
1511 return ERR_PTR(-ENOMEM);
1515 * get_request - get a free request
1516 * @q: request_queue to allocate request from
1517 * @op: operation and flags
1518 * @bio: bio to allocate request for (can be %NULL)
1519 * @flags: BLK_MQ_REQ_* flags.
1520 * @gfp: allocator flags
1522 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1523 * this function keeps retrying under memory pressure and fails iff @q is dead.
1525 * Must be called with @q->queue_lock held and,
1526 * Returns ERR_PTR on failure, with @q->queue_lock held.
1527 * Returns request pointer on success, with @q->queue_lock *not held*.
1529 static struct request *get_request(struct request_queue *q, unsigned int op,
1530 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1532 const bool is_sync = op_is_sync(op);
1533 DEFINE_WAIT(wait);
1534 struct request_list *rl;
1535 struct request *rq;
1537 lockdep_assert_held(q->queue_lock);
1538 WARN_ON_ONCE(q->mq_ops);
1540 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1541 retry:
1542 rq = __get_request(rl, op, bio, flags, gfp);
1543 if (!IS_ERR(rq))
1544 return rq;
1546 if (op & REQ_NOWAIT) {
1547 blk_put_rl(rl);
1548 return ERR_PTR(-EAGAIN);
1551 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1552 blk_put_rl(rl);
1553 return rq;
1556 /* wait on @rl and retry */
1557 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1558 TASK_UNINTERRUPTIBLE);
1560 trace_block_sleeprq(q, bio, op);
1562 spin_unlock_irq(q->queue_lock);
1563 io_schedule();
1566 * After sleeping, we become a "batching" process and will be able
1567 * to allocate at least one request, and up to a big batch of them
1568 * for a small period time. See ioc_batching, ioc_set_batching
1570 ioc_set_batching(q, current->io_context);
1572 spin_lock_irq(q->queue_lock);
1573 finish_wait(&rl->wait[is_sync], &wait);
1575 goto retry;
1578 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1579 static struct request *blk_old_get_request(struct request_queue *q,
1580 unsigned int op, blk_mq_req_flags_t flags)
1582 struct request *rq;
1583 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1584 int ret = 0;
1586 WARN_ON_ONCE(q->mq_ops);
1588 /* create ioc upfront */
1589 create_io_context(gfp_mask, q->node);
1591 ret = blk_queue_enter(q, flags);
1592 if (ret)
1593 return ERR_PTR(ret);
1594 spin_lock_irq(q->queue_lock);
1595 rq = get_request(q, op, NULL, flags, gfp_mask);
1596 if (IS_ERR(rq)) {
1597 spin_unlock_irq(q->queue_lock);
1598 blk_queue_exit(q);
1599 return rq;
1602 /* q->queue_lock is unlocked at this point */
1603 rq->__data_len = 0;
1604 rq->__sector = (sector_t) -1;
1605 rq->bio = rq->biotail = NULL;
1606 return rq;
1610 * blk_get_request - allocate a request
1611 * @q: request queue to allocate a request for
1612 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1613 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1615 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1616 blk_mq_req_flags_t flags)
1618 struct request *req;
1620 WARN_ON_ONCE(op & REQ_NOWAIT);
1621 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1623 if (q->mq_ops) {
1624 req = blk_mq_alloc_request(q, op, flags);
1625 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1626 q->mq_ops->initialize_rq_fn(req);
1627 } else {
1628 req = blk_old_get_request(q, op, flags);
1629 if (!IS_ERR(req) && q->initialize_rq_fn)
1630 q->initialize_rq_fn(req);
1633 return req;
1635 EXPORT_SYMBOL(blk_get_request);
1638 * blk_requeue_request - put a request back on queue
1639 * @q: request queue where request should be inserted
1640 * @rq: request to be inserted
1642 * Description:
1643 * Drivers often keep queueing requests until the hardware cannot accept
1644 * more, when that condition happens we need to put the request back
1645 * on the queue. Must be called with queue lock held.
1647 void blk_requeue_request(struct request_queue *q, struct request *rq)
1649 lockdep_assert_held(q->queue_lock);
1650 WARN_ON_ONCE(q->mq_ops);
1652 blk_delete_timer(rq);
1653 blk_clear_rq_complete(rq);
1654 trace_block_rq_requeue(q, rq);
1655 rq_qos_requeue(q, rq);
1657 if (rq->rq_flags & RQF_QUEUED)
1658 blk_queue_end_tag(q, rq);
1660 BUG_ON(blk_queued_rq(rq));
1662 elv_requeue_request(q, rq);
1664 EXPORT_SYMBOL(blk_requeue_request);
1666 static void add_acct_request(struct request_queue *q, struct request *rq,
1667 int where)
1669 blk_account_io_start(rq, true);
1670 __elv_add_request(q, rq, where);
1673 static void part_round_stats_single(struct request_queue *q, int cpu,
1674 struct hd_struct *part, unsigned long now,
1675 unsigned int inflight)
1677 if (inflight) {
1678 __part_stat_add(cpu, part, time_in_queue,
1679 inflight * (now - part->stamp));
1680 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1682 part->stamp = now;
1686 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1687 * @q: target block queue
1688 * @cpu: cpu number for stats access
1689 * @part: target partition
1691 * The average IO queue length and utilisation statistics are maintained
1692 * by observing the current state of the queue length and the amount of
1693 * time it has been in this state for.
1695 * Normally, that accounting is done on IO completion, but that can result
1696 * in more than a second's worth of IO being accounted for within any one
1697 * second, leading to >100% utilisation. To deal with that, we call this
1698 * function to do a round-off before returning the results when reading
1699 * /proc/diskstats. This accounts immediately for all queue usage up to
1700 * the current jiffies and restarts the counters again.
1702 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1704 struct hd_struct *part2 = NULL;
1705 unsigned long now = jiffies;
1706 unsigned int inflight[2];
1707 int stats = 0;
1709 if (part->stamp != now)
1710 stats |= 1;
1712 if (part->partno) {
1713 part2 = &part_to_disk(part)->part0;
1714 if (part2->stamp != now)
1715 stats |= 2;
1718 if (!stats)
1719 return;
1721 part_in_flight(q, part, inflight);
1723 if (stats & 2)
1724 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1725 if (stats & 1)
1726 part_round_stats_single(q, cpu, part, now, inflight[0]);
1728 EXPORT_SYMBOL_GPL(part_round_stats);
1730 #ifdef CONFIG_PM
1731 static void blk_pm_put_request(struct request *rq)
1733 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1734 pm_runtime_mark_last_busy(rq->q->dev);
1736 #else
1737 static inline void blk_pm_put_request(struct request *rq) {}
1738 #endif
1740 void __blk_put_request(struct request_queue *q, struct request *req)
1742 req_flags_t rq_flags = req->rq_flags;
1744 if (unlikely(!q))
1745 return;
1747 if (q->mq_ops) {
1748 blk_mq_free_request(req);
1749 return;
1752 lockdep_assert_held(q->queue_lock);
1754 blk_req_zone_write_unlock(req);
1755 blk_pm_put_request(req);
1757 elv_completed_request(q, req);
1759 /* this is a bio leak */
1760 WARN_ON(req->bio != NULL);
1762 rq_qos_done(q, req);
1765 * Request may not have originated from ll_rw_blk. if not,
1766 * it didn't come out of our reserved rq pools
1768 if (rq_flags & RQF_ALLOCED) {
1769 struct request_list *rl = blk_rq_rl(req);
1770 bool sync = op_is_sync(req->cmd_flags);
1772 BUG_ON(!list_empty(&req->queuelist));
1773 BUG_ON(ELV_ON_HASH(req));
1775 blk_free_request(rl, req);
1776 freed_request(rl, sync, rq_flags);
1777 blk_put_rl(rl);
1778 blk_queue_exit(q);
1781 EXPORT_SYMBOL_GPL(__blk_put_request);
1783 void blk_put_request(struct request *req)
1785 struct request_queue *q = req->q;
1787 if (q->mq_ops)
1788 blk_mq_free_request(req);
1789 else {
1790 unsigned long flags;
1792 spin_lock_irqsave(q->queue_lock, flags);
1793 __blk_put_request(q, req);
1794 spin_unlock_irqrestore(q->queue_lock, flags);
1797 EXPORT_SYMBOL(blk_put_request);
1799 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1800 struct bio *bio)
1802 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1804 if (!ll_back_merge_fn(q, req, bio))
1805 return false;
1807 trace_block_bio_backmerge(q, req, bio);
1809 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1810 blk_rq_set_mixed_merge(req);
1812 req->biotail->bi_next = bio;
1813 req->biotail = bio;
1814 req->__data_len += bio->bi_iter.bi_size;
1815 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1817 blk_account_io_start(req, false);
1818 return true;
1821 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1822 struct bio *bio)
1824 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1826 if (!ll_front_merge_fn(q, req, bio))
1827 return false;
1829 trace_block_bio_frontmerge(q, req, bio);
1831 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1832 blk_rq_set_mixed_merge(req);
1834 bio->bi_next = req->bio;
1835 req->bio = bio;
1837 req->__sector = bio->bi_iter.bi_sector;
1838 req->__data_len += bio->bi_iter.bi_size;
1839 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1841 blk_account_io_start(req, false);
1842 return true;
1845 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1846 struct bio *bio)
1848 unsigned short segments = blk_rq_nr_discard_segments(req);
1850 if (segments >= queue_max_discard_segments(q))
1851 goto no_merge;
1852 if (blk_rq_sectors(req) + bio_sectors(bio) >
1853 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1854 goto no_merge;
1856 req->biotail->bi_next = bio;
1857 req->biotail = bio;
1858 req->__data_len += bio->bi_iter.bi_size;
1859 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1860 req->nr_phys_segments = segments + 1;
1862 blk_account_io_start(req, false);
1863 return true;
1864 no_merge:
1865 req_set_nomerge(q, req);
1866 return false;
1870 * blk_attempt_plug_merge - try to merge with %current's plugged list
1871 * @q: request_queue new bio is being queued at
1872 * @bio: new bio being queued
1873 * @request_count: out parameter for number of traversed plugged requests
1874 * @same_queue_rq: pointer to &struct request that gets filled in when
1875 * another request associated with @q is found on the plug list
1876 * (optional, may be %NULL)
1878 * Determine whether @bio being queued on @q can be merged with a request
1879 * on %current's plugged list. Returns %true if merge was successful,
1880 * otherwise %false.
1882 * Plugging coalesces IOs from the same issuer for the same purpose without
1883 * going through @q->queue_lock. As such it's more of an issuing mechanism
1884 * than scheduling, and the request, while may have elvpriv data, is not
1885 * added on the elevator at this point. In addition, we don't have
1886 * reliable access to the elevator outside queue lock. Only check basic
1887 * merging parameters without querying the elevator.
1889 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1891 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1892 unsigned int *request_count,
1893 struct request **same_queue_rq)
1895 struct blk_plug *plug;
1896 struct request *rq;
1897 struct list_head *plug_list;
1899 plug = current->plug;
1900 if (!plug)
1901 return false;
1902 *request_count = 0;
1904 if (q->mq_ops)
1905 plug_list = &plug->mq_list;
1906 else
1907 plug_list = &plug->list;
1909 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1910 bool merged = false;
1912 if (rq->q == q) {
1913 (*request_count)++;
1915 * Only blk-mq multiple hardware queues case checks the
1916 * rq in the same queue, there should be only one such
1917 * rq in a queue
1919 if (same_queue_rq)
1920 *same_queue_rq = rq;
1923 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1924 continue;
1926 switch (blk_try_merge(rq, bio)) {
1927 case ELEVATOR_BACK_MERGE:
1928 merged = bio_attempt_back_merge(q, rq, bio);
1929 break;
1930 case ELEVATOR_FRONT_MERGE:
1931 merged = bio_attempt_front_merge(q, rq, bio);
1932 break;
1933 case ELEVATOR_DISCARD_MERGE:
1934 merged = bio_attempt_discard_merge(q, rq, bio);
1935 break;
1936 default:
1937 break;
1940 if (merged)
1941 return true;
1944 return false;
1947 unsigned int blk_plug_queued_count(struct request_queue *q)
1949 struct blk_plug *plug;
1950 struct request *rq;
1951 struct list_head *plug_list;
1952 unsigned int ret = 0;
1954 plug = current->plug;
1955 if (!plug)
1956 goto out;
1958 if (q->mq_ops)
1959 plug_list = &plug->mq_list;
1960 else
1961 plug_list = &plug->list;
1963 list_for_each_entry(rq, plug_list, queuelist) {
1964 if (rq->q == q)
1965 ret++;
1967 out:
1968 return ret;
1971 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1973 struct io_context *ioc = rq_ioc(bio);
1975 if (bio->bi_opf & REQ_RAHEAD)
1976 req->cmd_flags |= REQ_FAILFAST_MASK;
1978 req->__sector = bio->bi_iter.bi_sector;
1979 if (ioprio_valid(bio_prio(bio)))
1980 req->ioprio = bio_prio(bio);
1981 else if (ioc)
1982 req->ioprio = ioc->ioprio;
1983 else
1984 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1985 req->write_hint = bio->bi_write_hint;
1986 blk_rq_bio_prep(req->q, req, bio);
1988 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1990 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1992 struct blk_plug *plug;
1993 int where = ELEVATOR_INSERT_SORT;
1994 struct request *req, *free;
1995 unsigned int request_count = 0;
1998 * low level driver can indicate that it wants pages above a
1999 * certain limit bounced to low memory (ie for highmem, or even
2000 * ISA dma in theory)
2002 blk_queue_bounce(q, &bio);
2004 blk_queue_split(q, &bio);
2006 if (!bio_integrity_prep(bio))
2007 return BLK_QC_T_NONE;
2009 if (op_is_flush(bio->bi_opf)) {
2010 spin_lock_irq(q->queue_lock);
2011 where = ELEVATOR_INSERT_FLUSH;
2012 goto get_rq;
2016 * Check if we can merge with the plugged list before grabbing
2017 * any locks.
2019 if (!blk_queue_nomerges(q)) {
2020 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2021 return BLK_QC_T_NONE;
2022 } else
2023 request_count = blk_plug_queued_count(q);
2025 spin_lock_irq(q->queue_lock);
2027 switch (elv_merge(q, &req, bio)) {
2028 case ELEVATOR_BACK_MERGE:
2029 if (!bio_attempt_back_merge(q, req, bio))
2030 break;
2031 elv_bio_merged(q, req, bio);
2032 free = attempt_back_merge(q, req);
2033 if (free)
2034 __blk_put_request(q, free);
2035 else
2036 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2037 goto out_unlock;
2038 case ELEVATOR_FRONT_MERGE:
2039 if (!bio_attempt_front_merge(q, req, bio))
2040 break;
2041 elv_bio_merged(q, req, bio);
2042 free = attempt_front_merge(q, req);
2043 if (free)
2044 __blk_put_request(q, free);
2045 else
2046 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2047 goto out_unlock;
2048 default:
2049 break;
2052 get_rq:
2053 rq_qos_throttle(q, bio, q->queue_lock);
2056 * Grab a free request. This is might sleep but can not fail.
2057 * Returns with the queue unlocked.
2059 blk_queue_enter_live(q);
2060 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2061 if (IS_ERR(req)) {
2062 blk_queue_exit(q);
2063 rq_qos_cleanup(q, bio);
2064 if (PTR_ERR(req) == -ENOMEM)
2065 bio->bi_status = BLK_STS_RESOURCE;
2066 else
2067 bio->bi_status = BLK_STS_IOERR;
2068 bio_endio(bio);
2069 goto out_unlock;
2072 rq_qos_track(q, req, bio);
2075 * After dropping the lock and possibly sleeping here, our request
2076 * may now be mergeable after it had proven unmergeable (above).
2077 * We don't worry about that case for efficiency. It won't happen
2078 * often, and the elevators are able to handle it.
2080 blk_init_request_from_bio(req, bio);
2082 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2083 req->cpu = raw_smp_processor_id();
2085 plug = current->plug;
2086 if (plug) {
2088 * If this is the first request added after a plug, fire
2089 * of a plug trace.
2091 * @request_count may become stale because of schedule
2092 * out, so check plug list again.
2094 if (!request_count || list_empty(&plug->list))
2095 trace_block_plug(q);
2096 else {
2097 struct request *last = list_entry_rq(plug->list.prev);
2098 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2099 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2100 blk_flush_plug_list(plug, false);
2101 trace_block_plug(q);
2104 list_add_tail(&req->queuelist, &plug->list);
2105 blk_account_io_start(req, true);
2106 } else {
2107 spin_lock_irq(q->queue_lock);
2108 add_acct_request(q, req, where);
2109 __blk_run_queue(q);
2110 out_unlock:
2111 spin_unlock_irq(q->queue_lock);
2114 return BLK_QC_T_NONE;
2117 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2119 char b[BDEVNAME_SIZE];
2121 printk(KERN_INFO "attempt to access beyond end of device\n");
2122 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2123 bio_devname(bio, b), bio->bi_opf,
2124 (unsigned long long)bio_end_sector(bio),
2125 (long long)maxsector);
2128 #ifdef CONFIG_FAIL_MAKE_REQUEST
2130 static DECLARE_FAULT_ATTR(fail_make_request);
2132 static int __init setup_fail_make_request(char *str)
2134 return setup_fault_attr(&fail_make_request, str);
2136 __setup("fail_make_request=", setup_fail_make_request);
2138 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2140 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2143 static int __init fail_make_request_debugfs(void)
2145 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2146 NULL, &fail_make_request);
2148 return PTR_ERR_OR_ZERO(dir);
2151 late_initcall(fail_make_request_debugfs);
2153 #else /* CONFIG_FAIL_MAKE_REQUEST */
2155 static inline bool should_fail_request(struct hd_struct *part,
2156 unsigned int bytes)
2158 return false;
2161 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2163 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2165 if (part->policy && op_is_write(bio_op(bio))) {
2166 char b[BDEVNAME_SIZE];
2168 WARN_ONCE(1,
2169 "generic_make_request: Trying to write "
2170 "to read-only block-device %s (partno %d)\n",
2171 bio_devname(bio, b), part->partno);
2172 /* Older lvm-tools actually trigger this */
2173 return false;
2176 return false;
2179 static noinline int should_fail_bio(struct bio *bio)
2181 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2182 return -EIO;
2183 return 0;
2185 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2188 * Check whether this bio extends beyond the end of the device or partition.
2189 * This may well happen - the kernel calls bread() without checking the size of
2190 * the device, e.g., when mounting a file system.
2192 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2194 unsigned int nr_sectors = bio_sectors(bio);
2196 if (nr_sectors && maxsector &&
2197 (nr_sectors > maxsector ||
2198 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2199 handle_bad_sector(bio, maxsector);
2200 return -EIO;
2202 return 0;
2206 * Remap block n of partition p to block n+start(p) of the disk.
2208 static inline int blk_partition_remap(struct bio *bio)
2210 struct hd_struct *p;
2211 int ret = -EIO;
2213 rcu_read_lock();
2214 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2215 if (unlikely(!p))
2216 goto out;
2217 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2218 goto out;
2219 if (unlikely(bio_check_ro(bio, p)))
2220 goto out;
2223 * Zone reset does not include bi_size so bio_sectors() is always 0.
2224 * Include a test for the reset op code and perform the remap if needed.
2226 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2227 if (bio_check_eod(bio, part_nr_sects_read(p)))
2228 goto out;
2229 bio->bi_iter.bi_sector += p->start_sect;
2230 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2231 bio->bi_iter.bi_sector - p->start_sect);
2233 bio->bi_partno = 0;
2234 ret = 0;
2235 out:
2236 rcu_read_unlock();
2237 return ret;
2240 static noinline_for_stack bool
2241 generic_make_request_checks(struct bio *bio)
2243 struct request_queue *q;
2244 int nr_sectors = bio_sectors(bio);
2245 blk_status_t status = BLK_STS_IOERR;
2246 char b[BDEVNAME_SIZE];
2248 might_sleep();
2250 q = bio->bi_disk->queue;
2251 if (unlikely(!q)) {
2252 printk(KERN_ERR
2253 "generic_make_request: Trying to access "
2254 "nonexistent block-device %s (%Lu)\n",
2255 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2256 goto end_io;
2260 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2261 * if queue is not a request based queue.
2263 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2264 goto not_supported;
2266 if (should_fail_bio(bio))
2267 goto end_io;
2269 if (bio->bi_partno) {
2270 if (unlikely(blk_partition_remap(bio)))
2271 goto end_io;
2272 } else {
2273 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2274 goto end_io;
2275 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2276 goto end_io;
2280 * Filter flush bio's early so that make_request based
2281 * drivers without flush support don't have to worry
2282 * about them.
2284 if (op_is_flush(bio->bi_opf) &&
2285 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2286 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2287 if (!nr_sectors) {
2288 status = BLK_STS_OK;
2289 goto end_io;
2293 switch (bio_op(bio)) {
2294 case REQ_OP_DISCARD:
2295 if (!blk_queue_discard(q))
2296 goto not_supported;
2297 break;
2298 case REQ_OP_SECURE_ERASE:
2299 if (!blk_queue_secure_erase(q))
2300 goto not_supported;
2301 break;
2302 case REQ_OP_WRITE_SAME:
2303 if (!q->limits.max_write_same_sectors)
2304 goto not_supported;
2305 break;
2306 case REQ_OP_ZONE_REPORT:
2307 case REQ_OP_ZONE_RESET:
2308 if (!blk_queue_is_zoned(q))
2309 goto not_supported;
2310 break;
2311 case REQ_OP_WRITE_ZEROES:
2312 if (!q->limits.max_write_zeroes_sectors)
2313 goto not_supported;
2314 break;
2315 default:
2316 break;
2320 * Various block parts want %current->io_context and lazy ioc
2321 * allocation ends up trading a lot of pain for a small amount of
2322 * memory. Just allocate it upfront. This may fail and block
2323 * layer knows how to live with it.
2325 create_io_context(GFP_ATOMIC, q->node);
2327 if (!blkcg_bio_issue_check(q, bio))
2328 return false;
2330 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2331 trace_block_bio_queue(q, bio);
2332 /* Now that enqueuing has been traced, we need to trace
2333 * completion as well.
2335 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2337 return true;
2339 not_supported:
2340 status = BLK_STS_NOTSUPP;
2341 end_io:
2342 bio->bi_status = status;
2343 bio_endio(bio);
2344 return false;
2348 * generic_make_request - hand a buffer to its device driver for I/O
2349 * @bio: The bio describing the location in memory and on the device.
2351 * generic_make_request() is used to make I/O requests of block
2352 * devices. It is passed a &struct bio, which describes the I/O that needs
2353 * to be done.
2355 * generic_make_request() does not return any status. The
2356 * success/failure status of the request, along with notification of
2357 * completion, is delivered asynchronously through the bio->bi_end_io
2358 * function described (one day) else where.
2360 * The caller of generic_make_request must make sure that bi_io_vec
2361 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2362 * set to describe the device address, and the
2363 * bi_end_io and optionally bi_private are set to describe how
2364 * completion notification should be signaled.
2366 * generic_make_request and the drivers it calls may use bi_next if this
2367 * bio happens to be merged with someone else, and may resubmit the bio to
2368 * a lower device by calling into generic_make_request recursively, which
2369 * means the bio should NOT be touched after the call to ->make_request_fn.
2371 blk_qc_t generic_make_request(struct bio *bio)
2374 * bio_list_on_stack[0] contains bios submitted by the current
2375 * make_request_fn.
2376 * bio_list_on_stack[1] contains bios that were submitted before
2377 * the current make_request_fn, but that haven't been processed
2378 * yet.
2380 struct bio_list bio_list_on_stack[2];
2381 blk_mq_req_flags_t flags = 0;
2382 struct request_queue *q = bio->bi_disk->queue;
2383 blk_qc_t ret = BLK_QC_T_NONE;
2385 if (bio->bi_opf & REQ_NOWAIT)
2386 flags = BLK_MQ_REQ_NOWAIT;
2387 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2388 blk_queue_enter_live(q);
2389 else if (blk_queue_enter(q, flags) < 0) {
2390 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2391 bio_wouldblock_error(bio);
2392 else
2393 bio_io_error(bio);
2394 return ret;
2397 if (!generic_make_request_checks(bio))
2398 goto out;
2401 * We only want one ->make_request_fn to be active at a time, else
2402 * stack usage with stacked devices could be a problem. So use
2403 * current->bio_list to keep a list of requests submited by a
2404 * make_request_fn function. current->bio_list is also used as a
2405 * flag to say if generic_make_request is currently active in this
2406 * task or not. If it is NULL, then no make_request is active. If
2407 * it is non-NULL, then a make_request is active, and new requests
2408 * should be added at the tail
2410 if (current->bio_list) {
2411 bio_list_add(&current->bio_list[0], bio);
2412 goto out;
2415 /* following loop may be a bit non-obvious, and so deserves some
2416 * explanation.
2417 * Before entering the loop, bio->bi_next is NULL (as all callers
2418 * ensure that) so we have a list with a single bio.
2419 * We pretend that we have just taken it off a longer list, so
2420 * we assign bio_list to a pointer to the bio_list_on_stack,
2421 * thus initialising the bio_list of new bios to be
2422 * added. ->make_request() may indeed add some more bios
2423 * through a recursive call to generic_make_request. If it
2424 * did, we find a non-NULL value in bio_list and re-enter the loop
2425 * from the top. In this case we really did just take the bio
2426 * of the top of the list (no pretending) and so remove it from
2427 * bio_list, and call into ->make_request() again.
2429 BUG_ON(bio->bi_next);
2430 bio_list_init(&bio_list_on_stack[0]);
2431 current->bio_list = bio_list_on_stack;
2432 do {
2433 bool enter_succeeded = true;
2435 if (unlikely(q != bio->bi_disk->queue)) {
2436 if (q)
2437 blk_queue_exit(q);
2438 q = bio->bi_disk->queue;
2439 flags = 0;
2440 if (bio->bi_opf & REQ_NOWAIT)
2441 flags = BLK_MQ_REQ_NOWAIT;
2442 if (blk_queue_enter(q, flags) < 0) {
2443 enter_succeeded = false;
2444 q = NULL;
2448 if (enter_succeeded) {
2449 struct bio_list lower, same;
2451 /* Create a fresh bio_list for all subordinate requests */
2452 bio_list_on_stack[1] = bio_list_on_stack[0];
2453 bio_list_init(&bio_list_on_stack[0]);
2454 ret = q->make_request_fn(q, bio);
2456 /* sort new bios into those for a lower level
2457 * and those for the same level
2459 bio_list_init(&lower);
2460 bio_list_init(&same);
2461 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2462 if (q == bio->bi_disk->queue)
2463 bio_list_add(&same, bio);
2464 else
2465 bio_list_add(&lower, bio);
2466 /* now assemble so we handle the lowest level first */
2467 bio_list_merge(&bio_list_on_stack[0], &lower);
2468 bio_list_merge(&bio_list_on_stack[0], &same);
2469 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2470 } else {
2471 if (unlikely(!blk_queue_dying(q) &&
2472 (bio->bi_opf & REQ_NOWAIT)))
2473 bio_wouldblock_error(bio);
2474 else
2475 bio_io_error(bio);
2477 bio = bio_list_pop(&bio_list_on_stack[0]);
2478 } while (bio);
2479 current->bio_list = NULL; /* deactivate */
2481 out:
2482 if (q)
2483 blk_queue_exit(q);
2484 return ret;
2486 EXPORT_SYMBOL(generic_make_request);
2489 * direct_make_request - hand a buffer directly to its device driver for I/O
2490 * @bio: The bio describing the location in memory and on the device.
2492 * This function behaves like generic_make_request(), but does not protect
2493 * against recursion. Must only be used if the called driver is known
2494 * to not call generic_make_request (or direct_make_request) again from
2495 * its make_request function. (Calling direct_make_request again from
2496 * a workqueue is perfectly fine as that doesn't recurse).
2498 blk_qc_t direct_make_request(struct bio *bio)
2500 struct request_queue *q = bio->bi_disk->queue;
2501 bool nowait = bio->bi_opf & REQ_NOWAIT;
2502 blk_qc_t ret;
2504 if (!generic_make_request_checks(bio))
2505 return BLK_QC_T_NONE;
2507 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2508 if (nowait && !blk_queue_dying(q))
2509 bio->bi_status = BLK_STS_AGAIN;
2510 else
2511 bio->bi_status = BLK_STS_IOERR;
2512 bio_endio(bio);
2513 return BLK_QC_T_NONE;
2516 ret = q->make_request_fn(q, bio);
2517 blk_queue_exit(q);
2518 return ret;
2520 EXPORT_SYMBOL_GPL(direct_make_request);
2523 * submit_bio - submit a bio to the block device layer for I/O
2524 * @bio: The &struct bio which describes the I/O
2526 * submit_bio() is very similar in purpose to generic_make_request(), and
2527 * uses that function to do most of the work. Both are fairly rough
2528 * interfaces; @bio must be presetup and ready for I/O.
2531 blk_qc_t submit_bio(struct bio *bio)
2534 * If it's a regular read/write or a barrier with data attached,
2535 * go through the normal accounting stuff before submission.
2537 if (bio_has_data(bio)) {
2538 unsigned int count;
2540 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2541 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2542 else
2543 count = bio_sectors(bio);
2545 if (op_is_write(bio_op(bio))) {
2546 count_vm_events(PGPGOUT, count);
2547 } else {
2548 task_io_account_read(bio->bi_iter.bi_size);
2549 count_vm_events(PGPGIN, count);
2552 if (unlikely(block_dump)) {
2553 char b[BDEVNAME_SIZE];
2554 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2555 current->comm, task_pid_nr(current),
2556 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2557 (unsigned long long)bio->bi_iter.bi_sector,
2558 bio_devname(bio, b), count);
2562 return generic_make_request(bio);
2564 EXPORT_SYMBOL(submit_bio);
2566 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2568 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2569 return false;
2571 if (current->plug)
2572 blk_flush_plug_list(current->plug, false);
2573 return q->poll_fn(q, cookie);
2575 EXPORT_SYMBOL_GPL(blk_poll);
2578 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2579 * for new the queue limits
2580 * @q: the queue
2581 * @rq: the request being checked
2583 * Description:
2584 * @rq may have been made based on weaker limitations of upper-level queues
2585 * in request stacking drivers, and it may violate the limitation of @q.
2586 * Since the block layer and the underlying device driver trust @rq
2587 * after it is inserted to @q, it should be checked against @q before
2588 * the insertion using this generic function.
2590 * Request stacking drivers like request-based dm may change the queue
2591 * limits when retrying requests on other queues. Those requests need
2592 * to be checked against the new queue limits again during dispatch.
2594 static int blk_cloned_rq_check_limits(struct request_queue *q,
2595 struct request *rq)
2597 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2598 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2599 return -EIO;
2603 * queue's settings related to segment counting like q->bounce_pfn
2604 * may differ from that of other stacking queues.
2605 * Recalculate it to check the request correctly on this queue's
2606 * limitation.
2608 blk_recalc_rq_segments(rq);
2609 if (rq->nr_phys_segments > queue_max_segments(q)) {
2610 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2611 return -EIO;
2614 return 0;
2618 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2619 * @q: the queue to submit the request
2620 * @rq: the request being queued
2622 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2624 unsigned long flags;
2625 int where = ELEVATOR_INSERT_BACK;
2627 if (blk_cloned_rq_check_limits(q, rq))
2628 return BLK_STS_IOERR;
2630 if (rq->rq_disk &&
2631 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2632 return BLK_STS_IOERR;
2634 if (q->mq_ops) {
2635 if (blk_queue_io_stat(q))
2636 blk_account_io_start(rq, true);
2638 * Since we have a scheduler attached on the top device,
2639 * bypass a potential scheduler on the bottom device for
2640 * insert.
2642 return blk_mq_request_issue_directly(rq);
2645 spin_lock_irqsave(q->queue_lock, flags);
2646 if (unlikely(blk_queue_dying(q))) {
2647 spin_unlock_irqrestore(q->queue_lock, flags);
2648 return BLK_STS_IOERR;
2652 * Submitting request must be dequeued before calling this function
2653 * because it will be linked to another request_queue
2655 BUG_ON(blk_queued_rq(rq));
2657 if (op_is_flush(rq->cmd_flags))
2658 where = ELEVATOR_INSERT_FLUSH;
2660 add_acct_request(q, rq, where);
2661 if (where == ELEVATOR_INSERT_FLUSH)
2662 __blk_run_queue(q);
2663 spin_unlock_irqrestore(q->queue_lock, flags);
2665 return BLK_STS_OK;
2667 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2670 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2671 * @rq: request to examine
2673 * Description:
2674 * A request could be merge of IOs which require different failure
2675 * handling. This function determines the number of bytes which
2676 * can be failed from the beginning of the request without
2677 * crossing into area which need to be retried further.
2679 * Return:
2680 * The number of bytes to fail.
2682 unsigned int blk_rq_err_bytes(const struct request *rq)
2684 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2685 unsigned int bytes = 0;
2686 struct bio *bio;
2688 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2689 return blk_rq_bytes(rq);
2692 * Currently the only 'mixing' which can happen is between
2693 * different fastfail types. We can safely fail portions
2694 * which have all the failfast bits that the first one has -
2695 * the ones which are at least as eager to fail as the first
2696 * one.
2698 for (bio = rq->bio; bio; bio = bio->bi_next) {
2699 if ((bio->bi_opf & ff) != ff)
2700 break;
2701 bytes += bio->bi_iter.bi_size;
2704 /* this could lead to infinite loop */
2705 BUG_ON(blk_rq_bytes(rq) && !bytes);
2706 return bytes;
2708 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2710 void blk_account_io_completion(struct request *req, unsigned int bytes)
2712 if (blk_do_io_stat(req)) {
2713 const int sgrp = op_stat_group(req_op(req));
2714 struct hd_struct *part;
2715 int cpu;
2717 cpu = part_stat_lock();
2718 part = req->part;
2719 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2720 part_stat_unlock();
2724 void blk_account_io_done(struct request *req, u64 now)
2727 * Account IO completion. flush_rq isn't accounted as a
2728 * normal IO on queueing nor completion. Accounting the
2729 * containing request is enough.
2731 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2732 unsigned long duration;
2733 const int sgrp = op_stat_group(req_op(req));
2734 struct hd_struct *part;
2735 int cpu;
2737 duration = nsecs_to_jiffies(now - req->start_time_ns);
2738 cpu = part_stat_lock();
2739 part = req->part;
2741 part_stat_inc(cpu, part, ios[sgrp]);
2742 part_stat_add(cpu, part, ticks[sgrp], duration);
2743 part_round_stats(req->q, cpu, part);
2744 part_dec_in_flight(req->q, part, rq_data_dir(req));
2746 hd_struct_put(part);
2747 part_stat_unlock();
2751 #ifdef CONFIG_PM
2753 * Don't process normal requests when queue is suspended
2754 * or in the process of suspending/resuming
2756 static bool blk_pm_allow_request(struct request *rq)
2758 switch (rq->q->rpm_status) {
2759 case RPM_RESUMING:
2760 case RPM_SUSPENDING:
2761 return rq->rq_flags & RQF_PM;
2762 case RPM_SUSPENDED:
2763 return false;
2764 default:
2765 return true;
2768 #else
2769 static bool blk_pm_allow_request(struct request *rq)
2771 return true;
2773 #endif
2775 void blk_account_io_start(struct request *rq, bool new_io)
2777 struct hd_struct *part;
2778 int rw = rq_data_dir(rq);
2779 int cpu;
2781 if (!blk_do_io_stat(rq))
2782 return;
2784 cpu = part_stat_lock();
2786 if (!new_io) {
2787 part = rq->part;
2788 part_stat_inc(cpu, part, merges[rw]);
2789 } else {
2790 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2791 if (!hd_struct_try_get(part)) {
2793 * The partition is already being removed,
2794 * the request will be accounted on the disk only
2796 * We take a reference on disk->part0 although that
2797 * partition will never be deleted, so we can treat
2798 * it as any other partition.
2800 part = &rq->rq_disk->part0;
2801 hd_struct_get(part);
2803 part_round_stats(rq->q, cpu, part);
2804 part_inc_in_flight(rq->q, part, rw);
2805 rq->part = part;
2808 part_stat_unlock();
2811 static struct request *elv_next_request(struct request_queue *q)
2813 struct request *rq;
2814 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2816 WARN_ON_ONCE(q->mq_ops);
2818 while (1) {
2819 list_for_each_entry(rq, &q->queue_head, queuelist) {
2820 if (blk_pm_allow_request(rq))
2821 return rq;
2823 if (rq->rq_flags & RQF_SOFTBARRIER)
2824 break;
2828 * Flush request is running and flush request isn't queueable
2829 * in the drive, we can hold the queue till flush request is
2830 * finished. Even we don't do this, driver can't dispatch next
2831 * requests and will requeue them. And this can improve
2832 * throughput too. For example, we have request flush1, write1,
2833 * flush 2. flush1 is dispatched, then queue is hold, write1
2834 * isn't inserted to queue. After flush1 is finished, flush2
2835 * will be dispatched. Since disk cache is already clean,
2836 * flush2 will be finished very soon, so looks like flush2 is
2837 * folded to flush1.
2838 * Since the queue is hold, a flag is set to indicate the queue
2839 * should be restarted later. Please see flush_end_io() for
2840 * details.
2842 if (fq->flush_pending_idx != fq->flush_running_idx &&
2843 !queue_flush_queueable(q)) {
2844 fq->flush_queue_delayed = 1;
2845 return NULL;
2847 if (unlikely(blk_queue_bypass(q)) ||
2848 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2849 return NULL;
2854 * blk_peek_request - peek at the top of a request queue
2855 * @q: request queue to peek at
2857 * Description:
2858 * Return the request at the top of @q. The returned request
2859 * should be started using blk_start_request() before LLD starts
2860 * processing it.
2862 * Return:
2863 * Pointer to the request at the top of @q if available. Null
2864 * otherwise.
2866 struct request *blk_peek_request(struct request_queue *q)
2868 struct request *rq;
2869 int ret;
2871 lockdep_assert_held(q->queue_lock);
2872 WARN_ON_ONCE(q->mq_ops);
2874 while ((rq = elv_next_request(q)) != NULL) {
2875 if (!(rq->rq_flags & RQF_STARTED)) {
2877 * This is the first time the device driver
2878 * sees this request (possibly after
2879 * requeueing). Notify IO scheduler.
2881 if (rq->rq_flags & RQF_SORTED)
2882 elv_activate_rq(q, rq);
2885 * just mark as started even if we don't start
2886 * it, a request that has been delayed should
2887 * not be passed by new incoming requests
2889 rq->rq_flags |= RQF_STARTED;
2890 trace_block_rq_issue(q, rq);
2893 if (!q->boundary_rq || q->boundary_rq == rq) {
2894 q->end_sector = rq_end_sector(rq);
2895 q->boundary_rq = NULL;
2898 if (rq->rq_flags & RQF_DONTPREP)
2899 break;
2901 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2903 * make sure space for the drain appears we
2904 * know we can do this because max_hw_segments
2905 * has been adjusted to be one fewer than the
2906 * device can handle
2908 rq->nr_phys_segments++;
2911 if (!q->prep_rq_fn)
2912 break;
2914 ret = q->prep_rq_fn(q, rq);
2915 if (ret == BLKPREP_OK) {
2916 break;
2917 } else if (ret == BLKPREP_DEFER) {
2919 * the request may have been (partially) prepped.
2920 * we need to keep this request in the front to
2921 * avoid resource deadlock. RQF_STARTED will
2922 * prevent other fs requests from passing this one.
2924 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2925 !(rq->rq_flags & RQF_DONTPREP)) {
2927 * remove the space for the drain we added
2928 * so that we don't add it again
2930 --rq->nr_phys_segments;
2933 rq = NULL;
2934 break;
2935 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2936 rq->rq_flags |= RQF_QUIET;
2938 * Mark this request as started so we don't trigger
2939 * any debug logic in the end I/O path.
2941 blk_start_request(rq);
2942 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2943 BLK_STS_TARGET : BLK_STS_IOERR);
2944 } else {
2945 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2946 break;
2950 return rq;
2952 EXPORT_SYMBOL(blk_peek_request);
2954 static void blk_dequeue_request(struct request *rq)
2956 struct request_queue *q = rq->q;
2958 BUG_ON(list_empty(&rq->queuelist));
2959 BUG_ON(ELV_ON_HASH(rq));
2961 list_del_init(&rq->queuelist);
2964 * the time frame between a request being removed from the lists
2965 * and to it is freed is accounted as io that is in progress at
2966 * the driver side.
2968 if (blk_account_rq(rq))
2969 q->in_flight[rq_is_sync(rq)]++;
2973 * blk_start_request - start request processing on the driver
2974 * @req: request to dequeue
2976 * Description:
2977 * Dequeue @req and start timeout timer on it. This hands off the
2978 * request to the driver.
2980 void blk_start_request(struct request *req)
2982 lockdep_assert_held(req->q->queue_lock);
2983 WARN_ON_ONCE(req->q->mq_ops);
2985 blk_dequeue_request(req);
2987 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2988 req->io_start_time_ns = ktime_get_ns();
2989 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2990 req->throtl_size = blk_rq_sectors(req);
2991 #endif
2992 req->rq_flags |= RQF_STATS;
2993 rq_qos_issue(req->q, req);
2996 BUG_ON(blk_rq_is_complete(req));
2997 blk_add_timer(req);
2999 EXPORT_SYMBOL(blk_start_request);
3002 * blk_fetch_request - fetch a request from a request queue
3003 * @q: request queue to fetch a request from
3005 * Description:
3006 * Return the request at the top of @q. The request is started on
3007 * return and LLD can start processing it immediately.
3009 * Return:
3010 * Pointer to the request at the top of @q if available. Null
3011 * otherwise.
3013 struct request *blk_fetch_request(struct request_queue *q)
3015 struct request *rq;
3017 lockdep_assert_held(q->queue_lock);
3018 WARN_ON_ONCE(q->mq_ops);
3020 rq = blk_peek_request(q);
3021 if (rq)
3022 blk_start_request(rq);
3023 return rq;
3025 EXPORT_SYMBOL(blk_fetch_request);
3028 * Steal bios from a request and add them to a bio list.
3029 * The request must not have been partially completed before.
3031 void blk_steal_bios(struct bio_list *list, struct request *rq)
3033 if (rq->bio) {
3034 if (list->tail)
3035 list->tail->bi_next = rq->bio;
3036 else
3037 list->head = rq->bio;
3038 list->tail = rq->biotail;
3040 rq->bio = NULL;
3041 rq->biotail = NULL;
3044 rq->__data_len = 0;
3046 EXPORT_SYMBOL_GPL(blk_steal_bios);
3049 * blk_update_request - Special helper function for request stacking drivers
3050 * @req: the request being processed
3051 * @error: block status code
3052 * @nr_bytes: number of bytes to complete @req
3054 * Description:
3055 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3056 * the request structure even if @req doesn't have leftover.
3057 * If @req has leftover, sets it up for the next range of segments.
3059 * This special helper function is only for request stacking drivers
3060 * (e.g. request-based dm) so that they can handle partial completion.
3061 * Actual device drivers should use blk_end_request instead.
3063 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3064 * %false return from this function.
3066 * Note:
3067 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3068 * blk_rq_bytes() and in blk_update_request().
3070 * Return:
3071 * %false - this request doesn't have any more data
3072 * %true - this request has more data
3074 bool blk_update_request(struct request *req, blk_status_t error,
3075 unsigned int nr_bytes)
3077 int total_bytes;
3079 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3081 if (!req->bio)
3082 return false;
3084 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3085 !(req->rq_flags & RQF_QUIET)))
3086 print_req_error(req, error);
3088 blk_account_io_completion(req, nr_bytes);
3090 total_bytes = 0;
3091 while (req->bio) {
3092 struct bio *bio = req->bio;
3093 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3095 if (bio_bytes == bio->bi_iter.bi_size)
3096 req->bio = bio->bi_next;
3098 /* Completion has already been traced */
3099 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3100 req_bio_endio(req, bio, bio_bytes, error);
3102 total_bytes += bio_bytes;
3103 nr_bytes -= bio_bytes;
3105 if (!nr_bytes)
3106 break;
3110 * completely done
3112 if (!req->bio) {
3114 * Reset counters so that the request stacking driver
3115 * can find how many bytes remain in the request
3116 * later.
3118 req->__data_len = 0;
3119 return false;
3122 req->__data_len -= total_bytes;
3124 /* update sector only for requests with clear definition of sector */
3125 if (!blk_rq_is_passthrough(req))
3126 req->__sector += total_bytes >> 9;
3128 /* mixed attributes always follow the first bio */
3129 if (req->rq_flags & RQF_MIXED_MERGE) {
3130 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3131 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3134 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3136 * If total number of sectors is less than the first segment
3137 * size, something has gone terribly wrong.
3139 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3140 blk_dump_rq_flags(req, "request botched");
3141 req->__data_len = blk_rq_cur_bytes(req);
3144 /* recalculate the number of segments */
3145 blk_recalc_rq_segments(req);
3148 return true;
3150 EXPORT_SYMBOL_GPL(blk_update_request);
3152 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3153 unsigned int nr_bytes,
3154 unsigned int bidi_bytes)
3156 if (blk_update_request(rq, error, nr_bytes))
3157 return true;
3159 /* Bidi request must be completed as a whole */
3160 if (unlikely(blk_bidi_rq(rq)) &&
3161 blk_update_request(rq->next_rq, error, bidi_bytes))
3162 return true;
3164 if (blk_queue_add_random(rq->q))
3165 add_disk_randomness(rq->rq_disk);
3167 return false;
3171 * blk_unprep_request - unprepare a request
3172 * @req: the request
3174 * This function makes a request ready for complete resubmission (or
3175 * completion). It happens only after all error handling is complete,
3176 * so represents the appropriate moment to deallocate any resources
3177 * that were allocated to the request in the prep_rq_fn. The queue
3178 * lock is held when calling this.
3180 void blk_unprep_request(struct request *req)
3182 struct request_queue *q = req->q;
3184 req->rq_flags &= ~RQF_DONTPREP;
3185 if (q->unprep_rq_fn)
3186 q->unprep_rq_fn(q, req);
3188 EXPORT_SYMBOL_GPL(blk_unprep_request);
3190 void blk_finish_request(struct request *req, blk_status_t error)
3192 struct request_queue *q = req->q;
3193 u64 now = ktime_get_ns();
3195 lockdep_assert_held(req->q->queue_lock);
3196 WARN_ON_ONCE(q->mq_ops);
3198 if (req->rq_flags & RQF_STATS)
3199 blk_stat_add(req, now);
3201 if (req->rq_flags & RQF_QUEUED)
3202 blk_queue_end_tag(q, req);
3204 BUG_ON(blk_queued_rq(req));
3206 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3207 laptop_io_completion(req->q->backing_dev_info);
3209 blk_delete_timer(req);
3211 if (req->rq_flags & RQF_DONTPREP)
3212 blk_unprep_request(req);
3214 blk_account_io_done(req, now);
3216 if (req->end_io) {
3217 rq_qos_done(q, req);
3218 req->end_io(req, error);
3219 } else {
3220 if (blk_bidi_rq(req))
3221 __blk_put_request(req->next_rq->q, req->next_rq);
3223 __blk_put_request(q, req);
3226 EXPORT_SYMBOL(blk_finish_request);
3229 * blk_end_bidi_request - Complete a bidi request
3230 * @rq: the request to complete
3231 * @error: block status code
3232 * @nr_bytes: number of bytes to complete @rq
3233 * @bidi_bytes: number of bytes to complete @rq->next_rq
3235 * Description:
3236 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3237 * Drivers that supports bidi can safely call this member for any
3238 * type of request, bidi or uni. In the later case @bidi_bytes is
3239 * just ignored.
3241 * Return:
3242 * %false - we are done with this request
3243 * %true - still buffers pending for this request
3245 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3246 unsigned int nr_bytes, unsigned int bidi_bytes)
3248 struct request_queue *q = rq->q;
3249 unsigned long flags;
3251 WARN_ON_ONCE(q->mq_ops);
3253 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3254 return true;
3256 spin_lock_irqsave(q->queue_lock, flags);
3257 blk_finish_request(rq, error);
3258 spin_unlock_irqrestore(q->queue_lock, flags);
3260 return false;
3264 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3265 * @rq: the request to complete
3266 * @error: block status code
3267 * @nr_bytes: number of bytes to complete @rq
3268 * @bidi_bytes: number of bytes to complete @rq->next_rq
3270 * Description:
3271 * Identical to blk_end_bidi_request() except that queue lock is
3272 * assumed to be locked on entry and remains so on return.
3274 * Return:
3275 * %false - we are done with this request
3276 * %true - still buffers pending for this request
3278 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3279 unsigned int nr_bytes, unsigned int bidi_bytes)
3281 lockdep_assert_held(rq->q->queue_lock);
3282 WARN_ON_ONCE(rq->q->mq_ops);
3284 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3285 return true;
3287 blk_finish_request(rq, error);
3289 return false;
3293 * blk_end_request - Helper function for drivers to complete the request.
3294 * @rq: the request being processed
3295 * @error: block status code
3296 * @nr_bytes: number of bytes to complete
3298 * Description:
3299 * Ends I/O on a number of bytes attached to @rq.
3300 * If @rq has leftover, sets it up for the next range of segments.
3302 * Return:
3303 * %false - we are done with this request
3304 * %true - still buffers pending for this request
3306 bool blk_end_request(struct request *rq, blk_status_t error,
3307 unsigned int nr_bytes)
3309 WARN_ON_ONCE(rq->q->mq_ops);
3310 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3312 EXPORT_SYMBOL(blk_end_request);
3315 * blk_end_request_all - Helper function for drives to finish the request.
3316 * @rq: the request to finish
3317 * @error: block status code
3319 * Description:
3320 * Completely finish @rq.
3322 void blk_end_request_all(struct request *rq, blk_status_t error)
3324 bool pending;
3325 unsigned int bidi_bytes = 0;
3327 if (unlikely(blk_bidi_rq(rq)))
3328 bidi_bytes = blk_rq_bytes(rq->next_rq);
3330 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3331 BUG_ON(pending);
3333 EXPORT_SYMBOL(blk_end_request_all);
3336 * __blk_end_request - Helper function for drivers to complete the request.
3337 * @rq: the request being processed
3338 * @error: block status code
3339 * @nr_bytes: number of bytes to complete
3341 * Description:
3342 * Must be called with queue lock held unlike blk_end_request().
3344 * Return:
3345 * %false - we are done with this request
3346 * %true - still buffers pending for this request
3348 bool __blk_end_request(struct request *rq, blk_status_t error,
3349 unsigned int nr_bytes)
3351 lockdep_assert_held(rq->q->queue_lock);
3352 WARN_ON_ONCE(rq->q->mq_ops);
3354 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3356 EXPORT_SYMBOL(__blk_end_request);
3359 * __blk_end_request_all - Helper function for drives to finish the request.
3360 * @rq: the request to finish
3361 * @error: block status code
3363 * Description:
3364 * Completely finish @rq. Must be called with queue lock held.
3366 void __blk_end_request_all(struct request *rq, blk_status_t error)
3368 bool pending;
3369 unsigned int bidi_bytes = 0;
3371 lockdep_assert_held(rq->q->queue_lock);
3372 WARN_ON_ONCE(rq->q->mq_ops);
3374 if (unlikely(blk_bidi_rq(rq)))
3375 bidi_bytes = blk_rq_bytes(rq->next_rq);
3377 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3378 BUG_ON(pending);
3380 EXPORT_SYMBOL(__blk_end_request_all);
3383 * __blk_end_request_cur - Helper function to finish the current request chunk.
3384 * @rq: the request to finish the current chunk for
3385 * @error: block status code
3387 * Description:
3388 * Complete the current consecutively mapped chunk from @rq. Must
3389 * be called with queue lock held.
3391 * Return:
3392 * %false - we are done with this request
3393 * %true - still buffers pending for this request
3395 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3397 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3399 EXPORT_SYMBOL(__blk_end_request_cur);
3401 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3402 struct bio *bio)
3404 if (bio_has_data(bio))
3405 rq->nr_phys_segments = bio_phys_segments(q, bio);
3406 else if (bio_op(bio) == REQ_OP_DISCARD)
3407 rq->nr_phys_segments = 1;
3409 rq->__data_len = bio->bi_iter.bi_size;
3410 rq->bio = rq->biotail = bio;
3412 if (bio->bi_disk)
3413 rq->rq_disk = bio->bi_disk;
3416 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3418 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3419 * @rq: the request to be flushed
3421 * Description:
3422 * Flush all pages in @rq.
3424 void rq_flush_dcache_pages(struct request *rq)
3426 struct req_iterator iter;
3427 struct bio_vec bvec;
3429 rq_for_each_segment(bvec, rq, iter)
3430 flush_dcache_page(bvec.bv_page);
3432 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3433 #endif
3436 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3437 * @q : the queue of the device being checked
3439 * Description:
3440 * Check if underlying low-level drivers of a device are busy.
3441 * If the drivers want to export their busy state, they must set own
3442 * exporting function using blk_queue_lld_busy() first.
3444 * Basically, this function is used only by request stacking drivers
3445 * to stop dispatching requests to underlying devices when underlying
3446 * devices are busy. This behavior helps more I/O merging on the queue
3447 * of the request stacking driver and prevents I/O throughput regression
3448 * on burst I/O load.
3450 * Return:
3451 * 0 - Not busy (The request stacking driver should dispatch request)
3452 * 1 - Busy (The request stacking driver should stop dispatching request)
3454 int blk_lld_busy(struct request_queue *q)
3456 if (q->lld_busy_fn)
3457 return q->lld_busy_fn(q);
3459 return 0;
3461 EXPORT_SYMBOL_GPL(blk_lld_busy);
3464 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3465 * @rq: the clone request to be cleaned up
3467 * Description:
3468 * Free all bios in @rq for a cloned request.
3470 void blk_rq_unprep_clone(struct request *rq)
3472 struct bio *bio;
3474 while ((bio = rq->bio) != NULL) {
3475 rq->bio = bio->bi_next;
3477 bio_put(bio);
3480 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3483 * Copy attributes of the original request to the clone request.
3484 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3486 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3488 dst->cpu = src->cpu;
3489 dst->__sector = blk_rq_pos(src);
3490 dst->__data_len = blk_rq_bytes(src);
3491 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3492 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3493 dst->special_vec = src->special_vec;
3495 dst->nr_phys_segments = src->nr_phys_segments;
3496 dst->ioprio = src->ioprio;
3497 dst->extra_len = src->extra_len;
3501 * blk_rq_prep_clone - Helper function to setup clone request
3502 * @rq: the request to be setup
3503 * @rq_src: original request to be cloned
3504 * @bs: bio_set that bios for clone are allocated from
3505 * @gfp_mask: memory allocation mask for bio
3506 * @bio_ctr: setup function to be called for each clone bio.
3507 * Returns %0 for success, non %0 for failure.
3508 * @data: private data to be passed to @bio_ctr
3510 * Description:
3511 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3512 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3513 * are not copied, and copying such parts is the caller's responsibility.
3514 * Also, pages which the original bios are pointing to are not copied
3515 * and the cloned bios just point same pages.
3516 * So cloned bios must be completed before original bios, which means
3517 * the caller must complete @rq before @rq_src.
3519 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3520 struct bio_set *bs, gfp_t gfp_mask,
3521 int (*bio_ctr)(struct bio *, struct bio *, void *),
3522 void *data)
3524 struct bio *bio, *bio_src;
3526 if (!bs)
3527 bs = &fs_bio_set;
3529 __rq_for_each_bio(bio_src, rq_src) {
3530 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3531 if (!bio)
3532 goto free_and_out;
3534 if (bio_ctr && bio_ctr(bio, bio_src, data))
3535 goto free_and_out;
3537 if (rq->bio) {
3538 rq->biotail->bi_next = bio;
3539 rq->biotail = bio;
3540 } else
3541 rq->bio = rq->biotail = bio;
3544 __blk_rq_prep_clone(rq, rq_src);
3546 return 0;
3548 free_and_out:
3549 if (bio)
3550 bio_put(bio);
3551 blk_rq_unprep_clone(rq);
3553 return -ENOMEM;
3555 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3557 int kblockd_schedule_work(struct work_struct *work)
3559 return queue_work(kblockd_workqueue, work);
3561 EXPORT_SYMBOL(kblockd_schedule_work);
3563 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3565 return queue_work_on(cpu, kblockd_workqueue, work);
3567 EXPORT_SYMBOL(kblockd_schedule_work_on);
3569 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3570 unsigned long delay)
3572 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3574 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3577 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3578 * @plug: The &struct blk_plug that needs to be initialized
3580 * Description:
3581 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3582 * pending I/O should the task end up blocking between blk_start_plug() and
3583 * blk_finish_plug(). This is important from a performance perspective, but
3584 * also ensures that we don't deadlock. For instance, if the task is blocking
3585 * for a memory allocation, memory reclaim could end up wanting to free a
3586 * page belonging to that request that is currently residing in our private
3587 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3588 * this kind of deadlock.
3590 void blk_start_plug(struct blk_plug *plug)
3592 struct task_struct *tsk = current;
3595 * If this is a nested plug, don't actually assign it.
3597 if (tsk->plug)
3598 return;
3600 INIT_LIST_HEAD(&plug->list);
3601 INIT_LIST_HEAD(&plug->mq_list);
3602 INIT_LIST_HEAD(&plug->cb_list);
3604 * Store ordering should not be needed here, since a potential
3605 * preempt will imply a full memory barrier
3607 tsk->plug = plug;
3609 EXPORT_SYMBOL(blk_start_plug);
3611 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3613 struct request *rqa = container_of(a, struct request, queuelist);
3614 struct request *rqb = container_of(b, struct request, queuelist);
3616 return !(rqa->q < rqb->q ||
3617 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3621 * If 'from_schedule' is true, then postpone the dispatch of requests
3622 * until a safe kblockd context. We due this to avoid accidental big
3623 * additional stack usage in driver dispatch, in places where the originally
3624 * plugger did not intend it.
3626 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3627 bool from_schedule)
3628 __releases(q->queue_lock)
3630 lockdep_assert_held(q->queue_lock);
3632 trace_block_unplug(q, depth, !from_schedule);
3634 if (from_schedule)
3635 blk_run_queue_async(q);
3636 else
3637 __blk_run_queue(q);
3638 spin_unlock_irq(q->queue_lock);
3641 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3643 LIST_HEAD(callbacks);
3645 while (!list_empty(&plug->cb_list)) {
3646 list_splice_init(&plug->cb_list, &callbacks);
3648 while (!list_empty(&callbacks)) {
3649 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3650 struct blk_plug_cb,
3651 list);
3652 list_del(&cb->list);
3653 cb->callback(cb, from_schedule);
3658 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3659 int size)
3661 struct blk_plug *plug = current->plug;
3662 struct blk_plug_cb *cb;
3664 if (!plug)
3665 return NULL;
3667 list_for_each_entry(cb, &plug->cb_list, list)
3668 if (cb->callback == unplug && cb->data == data)
3669 return cb;
3671 /* Not currently on the callback list */
3672 BUG_ON(size < sizeof(*cb));
3673 cb = kzalloc(size, GFP_ATOMIC);
3674 if (cb) {
3675 cb->data = data;
3676 cb->callback = unplug;
3677 list_add(&cb->list, &plug->cb_list);
3679 return cb;
3681 EXPORT_SYMBOL(blk_check_plugged);
3683 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3685 struct request_queue *q;
3686 struct request *rq;
3687 LIST_HEAD(list);
3688 unsigned int depth;
3690 flush_plug_callbacks(plug, from_schedule);
3692 if (!list_empty(&plug->mq_list))
3693 blk_mq_flush_plug_list(plug, from_schedule);
3695 if (list_empty(&plug->list))
3696 return;
3698 list_splice_init(&plug->list, &list);
3700 list_sort(NULL, &list, plug_rq_cmp);
3702 q = NULL;
3703 depth = 0;
3705 while (!list_empty(&list)) {
3706 rq = list_entry_rq(list.next);
3707 list_del_init(&rq->queuelist);
3708 BUG_ON(!rq->q);
3709 if (rq->q != q) {
3711 * This drops the queue lock
3713 if (q)
3714 queue_unplugged(q, depth, from_schedule);
3715 q = rq->q;
3716 depth = 0;
3717 spin_lock_irq(q->queue_lock);
3721 * Short-circuit if @q is dead
3723 if (unlikely(blk_queue_dying(q))) {
3724 __blk_end_request_all(rq, BLK_STS_IOERR);
3725 continue;
3729 * rq is already accounted, so use raw insert
3731 if (op_is_flush(rq->cmd_flags))
3732 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3733 else
3734 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3736 depth++;
3740 * This drops the queue lock
3742 if (q)
3743 queue_unplugged(q, depth, from_schedule);
3746 void blk_finish_plug(struct blk_plug *plug)
3748 if (plug != current->plug)
3749 return;
3750 blk_flush_plug_list(plug, false);
3752 current->plug = NULL;
3754 EXPORT_SYMBOL(blk_finish_plug);
3756 #ifdef CONFIG_PM
3758 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3759 * @q: the queue of the device
3760 * @dev: the device the queue belongs to
3762 * Description:
3763 * Initialize runtime-PM-related fields for @q and start auto suspend for
3764 * @dev. Drivers that want to take advantage of request-based runtime PM
3765 * should call this function after @dev has been initialized, and its
3766 * request queue @q has been allocated, and runtime PM for it can not happen
3767 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3768 * cases, driver should call this function before any I/O has taken place.
3770 * This function takes care of setting up using auto suspend for the device,
3771 * the autosuspend delay is set to -1 to make runtime suspend impossible
3772 * until an updated value is either set by user or by driver. Drivers do
3773 * not need to touch other autosuspend settings.
3775 * The block layer runtime PM is request based, so only works for drivers
3776 * that use request as their IO unit instead of those directly use bio's.
3778 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3780 /* Don't enable runtime PM for blk-mq until it is ready */
3781 if (q->mq_ops) {
3782 pm_runtime_disable(dev);
3783 return;
3786 q->dev = dev;
3787 q->rpm_status = RPM_ACTIVE;
3788 pm_runtime_set_autosuspend_delay(q->dev, -1);
3789 pm_runtime_use_autosuspend(q->dev);
3791 EXPORT_SYMBOL(blk_pm_runtime_init);
3794 * blk_pre_runtime_suspend - Pre runtime suspend check
3795 * @q: the queue of the device
3797 * Description:
3798 * This function will check if runtime suspend is allowed for the device
3799 * by examining if there are any requests pending in the queue. If there
3800 * are requests pending, the device can not be runtime suspended; otherwise,
3801 * the queue's status will be updated to SUSPENDING and the driver can
3802 * proceed to suspend the device.
3804 * For the not allowed case, we mark last busy for the device so that
3805 * runtime PM core will try to autosuspend it some time later.
3807 * This function should be called near the start of the device's
3808 * runtime_suspend callback.
3810 * Return:
3811 * 0 - OK to runtime suspend the device
3812 * -EBUSY - Device should not be runtime suspended
3814 int blk_pre_runtime_suspend(struct request_queue *q)
3816 int ret = 0;
3818 if (!q->dev)
3819 return ret;
3821 spin_lock_irq(q->queue_lock);
3822 if (q->nr_pending) {
3823 ret = -EBUSY;
3824 pm_runtime_mark_last_busy(q->dev);
3825 } else {
3826 q->rpm_status = RPM_SUSPENDING;
3828 spin_unlock_irq(q->queue_lock);
3829 return ret;
3831 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3834 * blk_post_runtime_suspend - Post runtime suspend processing
3835 * @q: the queue of the device
3836 * @err: return value of the device's runtime_suspend function
3838 * Description:
3839 * Update the queue's runtime status according to the return value of the
3840 * device's runtime suspend function and mark last busy for the device so
3841 * that PM core will try to auto suspend the device at a later time.
3843 * This function should be called near the end of the device's
3844 * runtime_suspend callback.
3846 void blk_post_runtime_suspend(struct request_queue *q, int err)
3848 if (!q->dev)
3849 return;
3851 spin_lock_irq(q->queue_lock);
3852 if (!err) {
3853 q->rpm_status = RPM_SUSPENDED;
3854 } else {
3855 q->rpm_status = RPM_ACTIVE;
3856 pm_runtime_mark_last_busy(q->dev);
3858 spin_unlock_irq(q->queue_lock);
3860 EXPORT_SYMBOL(blk_post_runtime_suspend);
3863 * blk_pre_runtime_resume - Pre runtime resume processing
3864 * @q: the queue of the device
3866 * Description:
3867 * Update the queue's runtime status to RESUMING in preparation for the
3868 * runtime resume of the device.
3870 * This function should be called near the start of the device's
3871 * runtime_resume callback.
3873 void blk_pre_runtime_resume(struct request_queue *q)
3875 if (!q->dev)
3876 return;
3878 spin_lock_irq(q->queue_lock);
3879 q->rpm_status = RPM_RESUMING;
3880 spin_unlock_irq(q->queue_lock);
3882 EXPORT_SYMBOL(blk_pre_runtime_resume);
3885 * blk_post_runtime_resume - Post runtime resume processing
3886 * @q: the queue of the device
3887 * @err: return value of the device's runtime_resume function
3889 * Description:
3890 * Update the queue's runtime status according to the return value of the
3891 * device's runtime_resume function. If it is successfully resumed, process
3892 * the requests that are queued into the device's queue when it is resuming
3893 * and then mark last busy and initiate autosuspend for it.
3895 * This function should be called near the end of the device's
3896 * runtime_resume callback.
3898 void blk_post_runtime_resume(struct request_queue *q, int err)
3900 if (!q->dev)
3901 return;
3903 spin_lock_irq(q->queue_lock);
3904 if (!err) {
3905 q->rpm_status = RPM_ACTIVE;
3906 __blk_run_queue(q);
3907 pm_runtime_mark_last_busy(q->dev);
3908 pm_request_autosuspend(q->dev);
3909 } else {
3910 q->rpm_status = RPM_SUSPENDED;
3912 spin_unlock_irq(q->queue_lock);
3914 EXPORT_SYMBOL(blk_post_runtime_resume);
3917 * blk_set_runtime_active - Force runtime status of the queue to be active
3918 * @q: the queue of the device
3920 * If the device is left runtime suspended during system suspend the resume
3921 * hook typically resumes the device and corrects runtime status
3922 * accordingly. However, that does not affect the queue runtime PM status
3923 * which is still "suspended". This prevents processing requests from the
3924 * queue.
3926 * This function can be used in driver's resume hook to correct queue
3927 * runtime PM status and re-enable peeking requests from the queue. It
3928 * should be called before first request is added to the queue.
3930 void blk_set_runtime_active(struct request_queue *q)
3932 spin_lock_irq(q->queue_lock);
3933 q->rpm_status = RPM_ACTIVE;
3934 pm_runtime_mark_last_busy(q->dev);
3935 pm_request_autosuspend(q->dev);
3936 spin_unlock_irq(q->queue_lock);
3938 EXPORT_SYMBOL(blk_set_runtime_active);
3939 #endif
3941 int __init blk_dev_init(void)
3943 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3944 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3945 FIELD_SIZEOF(struct request, cmd_flags));
3946 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3947 FIELD_SIZEOF(struct bio, bi_opf));
3949 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3950 kblockd_workqueue = alloc_workqueue("kblockd",
3951 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3952 if (!kblockd_workqueue)
3953 panic("Failed to create kblockd\n");
3955 request_cachep = kmem_cache_create("blkdev_requests",
3956 sizeof(struct request), 0, SLAB_PANIC, NULL);
3958 blk_requestq_cachep = kmem_cache_create("request_queue",
3959 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3961 #ifdef CONFIG_DEBUG_FS
3962 blk_debugfs_root = debugfs_create_dir("block", NULL);
3963 #endif
3965 return 0;