sparc: time: Replace update_persistent_clock() with CONFIG_RTC_SYSTOHC
[linux-2.6/btrfs-unstable.git] / fs / ext4 / super.c
blobca9d4a2fed415649cd9744fdac2a1e8bdfa1631a
1 /*
2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/parser.h>
28 #include <linux/buffer_head.h>
29 #include <linux/exportfs.h>
30 #include <linux/vfs.h>
31 #include <linux/random.h>
32 #include <linux/mount.h>
33 #include <linux/namei.h>
34 #include <linux/quotaops.h>
35 #include <linux/seq_file.h>
36 #include <linux/proc_fs.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61 static int ext4_mballoc_ready;
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136 return cpu_to_le32(csum);
139 static int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
142 if (!ext4_has_metadata_csum(sb))
143 return 1;
145 return es->s_checksum == ext4_superblock_csum(sb, es);
148 void ext4_superblock_csum_set(struct super_block *sb)
150 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152 if (!ext4_has_metadata_csum(sb))
153 return;
155 es->s_checksum = ext4_superblock_csum(sb, es);
158 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 void *ret;
162 ret = kmalloc(size, flags | __GFP_NOWARN);
163 if (!ret)
164 ret = __vmalloc(size, flags, PAGE_KERNEL);
165 return ret;
168 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 void *ret;
172 ret = kzalloc(size, flags | __GFP_NOWARN);
173 if (!ret)
174 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
175 return ret;
178 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
179 struct ext4_group_desc *bg)
181 return le32_to_cpu(bg->bg_block_bitmap_lo) |
182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
186 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
189 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
194 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
195 struct ext4_group_desc *bg)
197 return le32_to_cpu(bg->bg_inode_table_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
202 __u32 ext4_free_group_clusters(struct super_block *sb,
203 struct ext4_group_desc *bg)
205 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
210 __u32 ext4_free_inodes_count(struct super_block *sb,
211 struct ext4_group_desc *bg)
213 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
218 __u32 ext4_used_dirs_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
221 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
226 __u32 ext4_itable_unused_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
229 return le16_to_cpu(bg->bg_itable_unused_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
234 void ext4_block_bitmap_set(struct super_block *sb,
235 struct ext4_group_desc *bg, ext4_fsblk_t blk)
237 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
242 void ext4_inode_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
245 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
250 void ext4_inode_table_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
253 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
258 void ext4_free_group_clusters_set(struct super_block *sb,
259 struct ext4_group_desc *bg, __u32 count)
261 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
266 void ext4_free_inodes_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
269 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
274 void ext4_used_dirs_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
277 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
282 void ext4_itable_unused_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
285 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
291 static void __save_error_info(struct super_block *sb, const char *func,
292 unsigned int line)
294 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
296 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
297 if (bdev_read_only(sb->s_bdev))
298 return;
299 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
300 es->s_last_error_time = cpu_to_le32(get_seconds());
301 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
302 es->s_last_error_line = cpu_to_le32(line);
303 if (!es->s_first_error_time) {
304 es->s_first_error_time = es->s_last_error_time;
305 strncpy(es->s_first_error_func, func,
306 sizeof(es->s_first_error_func));
307 es->s_first_error_line = cpu_to_le32(line);
308 es->s_first_error_ino = es->s_last_error_ino;
309 es->s_first_error_block = es->s_last_error_block;
312 * Start the daily error reporting function if it hasn't been
313 * started already
315 if (!es->s_error_count)
316 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
317 le32_add_cpu(&es->s_error_count, 1);
320 static void save_error_info(struct super_block *sb, const char *func,
321 unsigned int line)
323 __save_error_info(sb, func, line);
324 ext4_commit_super(sb, 1);
327 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
329 struct super_block *sb = journal->j_private;
330 struct ext4_sb_info *sbi = EXT4_SB(sb);
331 int error = is_journal_aborted(journal);
332 struct ext4_journal_cb_entry *jce;
334 BUG_ON(txn->t_state == T_FINISHED);
335 spin_lock(&sbi->s_md_lock);
336 while (!list_empty(&txn->t_private_list)) {
337 jce = list_entry(txn->t_private_list.next,
338 struct ext4_journal_cb_entry, jce_list);
339 list_del_init(&jce->jce_list);
340 spin_unlock(&sbi->s_md_lock);
341 jce->jce_func(sb, jce, error);
342 spin_lock(&sbi->s_md_lock);
344 spin_unlock(&sbi->s_md_lock);
347 /* Deal with the reporting of failure conditions on a filesystem such as
348 * inconsistencies detected or read IO failures.
350 * On ext2, we can store the error state of the filesystem in the
351 * superblock. That is not possible on ext4, because we may have other
352 * write ordering constraints on the superblock which prevent us from
353 * writing it out straight away; and given that the journal is about to
354 * be aborted, we can't rely on the current, or future, transactions to
355 * write out the superblock safely.
357 * We'll just use the jbd2_journal_abort() error code to record an error in
358 * the journal instead. On recovery, the journal will complain about
359 * that error until we've noted it down and cleared it.
362 static void ext4_handle_error(struct super_block *sb)
364 if (sb->s_flags & MS_RDONLY)
365 return;
367 if (!test_opt(sb, ERRORS_CONT)) {
368 journal_t *journal = EXT4_SB(sb)->s_journal;
370 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
371 if (journal)
372 jbd2_journal_abort(journal, -EIO);
374 if (test_opt(sb, ERRORS_RO)) {
375 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
377 * Make sure updated value of ->s_mount_flags will be visible
378 * before ->s_flags update
380 smp_wmb();
381 sb->s_flags |= MS_RDONLY;
383 if (test_opt(sb, ERRORS_PANIC))
384 panic("EXT4-fs (device %s): panic forced after error\n",
385 sb->s_id);
388 #define ext4_error_ratelimit(sb) \
389 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
390 "EXT4-fs error")
392 void __ext4_error(struct super_block *sb, const char *function,
393 unsigned int line, const char *fmt, ...)
395 struct va_format vaf;
396 va_list args;
398 if (ext4_error_ratelimit(sb)) {
399 va_start(args, fmt);
400 vaf.fmt = fmt;
401 vaf.va = &args;
402 printk(KERN_CRIT
403 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
404 sb->s_id, function, line, current->comm, &vaf);
405 va_end(args);
407 save_error_info(sb, function, line);
408 ext4_handle_error(sb);
411 void __ext4_error_inode(struct inode *inode, const char *function,
412 unsigned int line, ext4_fsblk_t block,
413 const char *fmt, ...)
415 va_list args;
416 struct va_format vaf;
417 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
419 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
420 es->s_last_error_block = cpu_to_le64(block);
421 if (ext4_error_ratelimit(inode->i_sb)) {
422 va_start(args, fmt);
423 vaf.fmt = fmt;
424 vaf.va = &args;
425 if (block)
426 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
427 "inode #%lu: block %llu: comm %s: %pV\n",
428 inode->i_sb->s_id, function, line, inode->i_ino,
429 block, current->comm, &vaf);
430 else
431 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
432 "inode #%lu: comm %s: %pV\n",
433 inode->i_sb->s_id, function, line, inode->i_ino,
434 current->comm, &vaf);
435 va_end(args);
437 save_error_info(inode->i_sb, function, line);
438 ext4_handle_error(inode->i_sb);
441 void __ext4_error_file(struct file *file, const char *function,
442 unsigned int line, ext4_fsblk_t block,
443 const char *fmt, ...)
445 va_list args;
446 struct va_format vaf;
447 struct ext4_super_block *es;
448 struct inode *inode = file_inode(file);
449 char pathname[80], *path;
451 es = EXT4_SB(inode->i_sb)->s_es;
452 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
453 if (ext4_error_ratelimit(inode->i_sb)) {
454 path = d_path(&(file->f_path), pathname, sizeof(pathname));
455 if (IS_ERR(path))
456 path = "(unknown)";
457 va_start(args, fmt);
458 vaf.fmt = fmt;
459 vaf.va = &args;
460 if (block)
461 printk(KERN_CRIT
462 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
463 "block %llu: comm %s: path %s: %pV\n",
464 inode->i_sb->s_id, function, line, inode->i_ino,
465 block, current->comm, path, &vaf);
466 else
467 printk(KERN_CRIT
468 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
469 "comm %s: path %s: %pV\n",
470 inode->i_sb->s_id, function, line, inode->i_ino,
471 current->comm, path, &vaf);
472 va_end(args);
474 save_error_info(inode->i_sb, function, line);
475 ext4_handle_error(inode->i_sb);
478 const char *ext4_decode_error(struct super_block *sb, int errno,
479 char nbuf[16])
481 char *errstr = NULL;
483 switch (errno) {
484 case -EIO:
485 errstr = "IO failure";
486 break;
487 case -ENOMEM:
488 errstr = "Out of memory";
489 break;
490 case -EROFS:
491 if (!sb || (EXT4_SB(sb)->s_journal &&
492 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
493 errstr = "Journal has aborted";
494 else
495 errstr = "Readonly filesystem";
496 break;
497 default:
498 /* If the caller passed in an extra buffer for unknown
499 * errors, textualise them now. Else we just return
500 * NULL. */
501 if (nbuf) {
502 /* Check for truncated error codes... */
503 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
504 errstr = nbuf;
506 break;
509 return errstr;
512 /* __ext4_std_error decodes expected errors from journaling functions
513 * automatically and invokes the appropriate error response. */
515 void __ext4_std_error(struct super_block *sb, const char *function,
516 unsigned int line, int errno)
518 char nbuf[16];
519 const char *errstr;
521 /* Special case: if the error is EROFS, and we're not already
522 * inside a transaction, then there's really no point in logging
523 * an error. */
524 if (errno == -EROFS && journal_current_handle() == NULL &&
525 (sb->s_flags & MS_RDONLY))
526 return;
528 if (ext4_error_ratelimit(sb)) {
529 errstr = ext4_decode_error(sb, errno, nbuf);
530 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
531 sb->s_id, function, line, errstr);
534 save_error_info(sb, function, line);
535 ext4_handle_error(sb);
539 * ext4_abort is a much stronger failure handler than ext4_error. The
540 * abort function may be used to deal with unrecoverable failures such
541 * as journal IO errors or ENOMEM at a critical moment in log management.
543 * We unconditionally force the filesystem into an ABORT|READONLY state,
544 * unless the error response on the fs has been set to panic in which
545 * case we take the easy way out and panic immediately.
548 void __ext4_abort(struct super_block *sb, const char *function,
549 unsigned int line, const char *fmt, ...)
551 va_list args;
553 save_error_info(sb, function, line);
554 va_start(args, fmt);
555 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
556 function, line);
557 vprintk(fmt, args);
558 printk("\n");
559 va_end(args);
561 if ((sb->s_flags & MS_RDONLY) == 0) {
562 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
563 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
565 * Make sure updated value of ->s_mount_flags will be visible
566 * before ->s_flags update
568 smp_wmb();
569 sb->s_flags |= MS_RDONLY;
570 if (EXT4_SB(sb)->s_journal)
571 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
572 save_error_info(sb, function, line);
574 if (test_opt(sb, ERRORS_PANIC))
575 panic("EXT4-fs panic from previous error\n");
578 void __ext4_msg(struct super_block *sb,
579 const char *prefix, const char *fmt, ...)
581 struct va_format vaf;
582 va_list args;
584 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
585 return;
587 va_start(args, fmt);
588 vaf.fmt = fmt;
589 vaf.va = &args;
590 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
591 va_end(args);
594 void __ext4_warning(struct super_block *sb, const char *function,
595 unsigned int line, const char *fmt, ...)
597 struct va_format vaf;
598 va_list args;
600 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
601 "EXT4-fs warning"))
602 return;
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
608 sb->s_id, function, line, &vaf);
609 va_end(args);
612 void __ext4_grp_locked_error(const char *function, unsigned int line,
613 struct super_block *sb, ext4_group_t grp,
614 unsigned long ino, ext4_fsblk_t block,
615 const char *fmt, ...)
616 __releases(bitlock)
617 __acquires(bitlock)
619 struct va_format vaf;
620 va_list args;
621 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
623 es->s_last_error_ino = cpu_to_le32(ino);
624 es->s_last_error_block = cpu_to_le64(block);
625 __save_error_info(sb, function, line);
627 if (ext4_error_ratelimit(sb)) {
628 va_start(args, fmt);
629 vaf.fmt = fmt;
630 vaf.va = &args;
631 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
632 sb->s_id, function, line, grp);
633 if (ino)
634 printk(KERN_CONT "inode %lu: ", ino);
635 if (block)
636 printk(KERN_CONT "block %llu:",
637 (unsigned long long) block);
638 printk(KERN_CONT "%pV\n", &vaf);
639 va_end(args);
642 if (test_opt(sb, ERRORS_CONT)) {
643 ext4_commit_super(sb, 0);
644 return;
647 ext4_unlock_group(sb, grp);
648 ext4_handle_error(sb);
650 * We only get here in the ERRORS_RO case; relocking the group
651 * may be dangerous, but nothing bad will happen since the
652 * filesystem will have already been marked read/only and the
653 * journal has been aborted. We return 1 as a hint to callers
654 * who might what to use the return value from
655 * ext4_grp_locked_error() to distinguish between the
656 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
657 * aggressively from the ext4 function in question, with a
658 * more appropriate error code.
660 ext4_lock_group(sb, grp);
661 return;
664 void ext4_update_dynamic_rev(struct super_block *sb)
666 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
668 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
669 return;
671 ext4_warning(sb,
672 "updating to rev %d because of new feature flag, "
673 "running e2fsck is recommended",
674 EXT4_DYNAMIC_REV);
676 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
677 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
678 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
679 /* leave es->s_feature_*compat flags alone */
680 /* es->s_uuid will be set by e2fsck if empty */
683 * The rest of the superblock fields should be zero, and if not it
684 * means they are likely already in use, so leave them alone. We
685 * can leave it up to e2fsck to clean up any inconsistencies there.
690 * Open the external journal device
692 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
694 struct block_device *bdev;
695 char b[BDEVNAME_SIZE];
697 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
698 if (IS_ERR(bdev))
699 goto fail;
700 return bdev;
702 fail:
703 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
704 __bdevname(dev, b), PTR_ERR(bdev));
705 return NULL;
709 * Release the journal device
711 static void ext4_blkdev_put(struct block_device *bdev)
713 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
716 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
718 struct block_device *bdev;
719 bdev = sbi->journal_bdev;
720 if (bdev) {
721 ext4_blkdev_put(bdev);
722 sbi->journal_bdev = NULL;
726 static inline struct inode *orphan_list_entry(struct list_head *l)
728 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
731 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
733 struct list_head *l;
735 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
736 le32_to_cpu(sbi->s_es->s_last_orphan));
738 printk(KERN_ERR "sb_info orphan list:\n");
739 list_for_each(l, &sbi->s_orphan) {
740 struct inode *inode = orphan_list_entry(l);
741 printk(KERN_ERR " "
742 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
743 inode->i_sb->s_id, inode->i_ino, inode,
744 inode->i_mode, inode->i_nlink,
745 NEXT_ORPHAN(inode));
749 static void ext4_put_super(struct super_block *sb)
751 struct ext4_sb_info *sbi = EXT4_SB(sb);
752 struct ext4_super_block *es = sbi->s_es;
753 int i, err;
755 ext4_unregister_li_request(sb);
756 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
758 flush_workqueue(sbi->rsv_conversion_wq);
759 destroy_workqueue(sbi->rsv_conversion_wq);
761 if (sbi->s_journal) {
762 err = jbd2_journal_destroy(sbi->s_journal);
763 sbi->s_journal = NULL;
764 if (err < 0)
765 ext4_abort(sb, "Couldn't clean up the journal");
768 ext4_es_unregister_shrinker(sbi);
769 del_timer_sync(&sbi->s_err_report);
770 ext4_release_system_zone(sb);
771 ext4_mb_release(sb);
772 ext4_ext_release(sb);
773 ext4_xattr_put_super(sb);
775 if (!(sb->s_flags & MS_RDONLY)) {
776 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
777 es->s_state = cpu_to_le16(sbi->s_mount_state);
779 if (!(sb->s_flags & MS_RDONLY))
780 ext4_commit_super(sb, 1);
782 if (sbi->s_proc) {
783 remove_proc_entry("options", sbi->s_proc);
784 remove_proc_entry(sb->s_id, ext4_proc_root);
786 kobject_del(&sbi->s_kobj);
788 for (i = 0; i < sbi->s_gdb_count; i++)
789 brelse(sbi->s_group_desc[i]);
790 kvfree(sbi->s_group_desc);
791 kvfree(sbi->s_flex_groups);
792 percpu_counter_destroy(&sbi->s_freeclusters_counter);
793 percpu_counter_destroy(&sbi->s_freeinodes_counter);
794 percpu_counter_destroy(&sbi->s_dirs_counter);
795 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
796 brelse(sbi->s_sbh);
797 #ifdef CONFIG_QUOTA
798 for (i = 0; i < EXT4_MAXQUOTAS; i++)
799 kfree(sbi->s_qf_names[i]);
800 #endif
802 /* Debugging code just in case the in-memory inode orphan list
803 * isn't empty. The on-disk one can be non-empty if we've
804 * detected an error and taken the fs readonly, but the
805 * in-memory list had better be clean by this point. */
806 if (!list_empty(&sbi->s_orphan))
807 dump_orphan_list(sb, sbi);
808 J_ASSERT(list_empty(&sbi->s_orphan));
810 invalidate_bdev(sb->s_bdev);
811 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
813 * Invalidate the journal device's buffers. We don't want them
814 * floating about in memory - the physical journal device may
815 * hotswapped, and it breaks the `ro-after' testing code.
817 sync_blockdev(sbi->journal_bdev);
818 invalidate_bdev(sbi->journal_bdev);
819 ext4_blkdev_remove(sbi);
821 if (sbi->s_mb_cache) {
822 ext4_xattr_destroy_cache(sbi->s_mb_cache);
823 sbi->s_mb_cache = NULL;
825 if (sbi->s_mmp_tsk)
826 kthread_stop(sbi->s_mmp_tsk);
827 sb->s_fs_info = NULL;
829 * Now that we are completely done shutting down the
830 * superblock, we need to actually destroy the kobject.
832 kobject_put(&sbi->s_kobj);
833 wait_for_completion(&sbi->s_kobj_unregister);
834 if (sbi->s_chksum_driver)
835 crypto_free_shash(sbi->s_chksum_driver);
836 kfree(sbi->s_blockgroup_lock);
837 kfree(sbi);
840 static struct kmem_cache *ext4_inode_cachep;
843 * Called inside transaction, so use GFP_NOFS
845 static struct inode *ext4_alloc_inode(struct super_block *sb)
847 struct ext4_inode_info *ei;
849 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
850 if (!ei)
851 return NULL;
853 ei->vfs_inode.i_version = 1;
854 spin_lock_init(&ei->i_raw_lock);
855 INIT_LIST_HEAD(&ei->i_prealloc_list);
856 spin_lock_init(&ei->i_prealloc_lock);
857 ext4_es_init_tree(&ei->i_es_tree);
858 rwlock_init(&ei->i_es_lock);
859 INIT_LIST_HEAD(&ei->i_es_list);
860 ei->i_es_all_nr = 0;
861 ei->i_es_shk_nr = 0;
862 ei->i_es_shrink_lblk = 0;
863 ei->i_reserved_data_blocks = 0;
864 ei->i_reserved_meta_blocks = 0;
865 ei->i_allocated_meta_blocks = 0;
866 ei->i_da_metadata_calc_len = 0;
867 ei->i_da_metadata_calc_last_lblock = 0;
868 spin_lock_init(&(ei->i_block_reservation_lock));
869 #ifdef CONFIG_QUOTA
870 ei->i_reserved_quota = 0;
871 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
872 #endif
873 ei->jinode = NULL;
874 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
875 spin_lock_init(&ei->i_completed_io_lock);
876 ei->i_sync_tid = 0;
877 ei->i_datasync_tid = 0;
878 atomic_set(&ei->i_ioend_count, 0);
879 atomic_set(&ei->i_unwritten, 0);
880 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
881 #ifdef CONFIG_EXT4_FS_ENCRYPTION
882 ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
883 #endif
885 return &ei->vfs_inode;
888 static int ext4_drop_inode(struct inode *inode)
890 int drop = generic_drop_inode(inode);
892 trace_ext4_drop_inode(inode, drop);
893 return drop;
896 static void ext4_i_callback(struct rcu_head *head)
898 struct inode *inode = container_of(head, struct inode, i_rcu);
899 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
902 static void ext4_destroy_inode(struct inode *inode)
904 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
905 ext4_msg(inode->i_sb, KERN_ERR,
906 "Inode %lu (%p): orphan list check failed!",
907 inode->i_ino, EXT4_I(inode));
908 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
909 EXT4_I(inode), sizeof(struct ext4_inode_info),
910 true);
911 dump_stack();
913 call_rcu(&inode->i_rcu, ext4_i_callback);
916 static void init_once(void *foo)
918 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
920 INIT_LIST_HEAD(&ei->i_orphan);
921 init_rwsem(&ei->xattr_sem);
922 init_rwsem(&ei->i_data_sem);
923 inode_init_once(&ei->vfs_inode);
926 static int __init init_inodecache(void)
928 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
929 sizeof(struct ext4_inode_info),
930 0, (SLAB_RECLAIM_ACCOUNT|
931 SLAB_MEM_SPREAD),
932 init_once);
933 if (ext4_inode_cachep == NULL)
934 return -ENOMEM;
935 return 0;
938 static void destroy_inodecache(void)
941 * Make sure all delayed rcu free inodes are flushed before we
942 * destroy cache.
944 rcu_barrier();
945 kmem_cache_destroy(ext4_inode_cachep);
948 void ext4_clear_inode(struct inode *inode)
950 invalidate_inode_buffers(inode);
951 clear_inode(inode);
952 dquot_drop(inode);
953 ext4_discard_preallocations(inode);
954 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
955 if (EXT4_I(inode)->jinode) {
956 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
957 EXT4_I(inode)->jinode);
958 jbd2_free_inode(EXT4_I(inode)->jinode);
959 EXT4_I(inode)->jinode = NULL;
963 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
964 u64 ino, u32 generation)
966 struct inode *inode;
968 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
969 return ERR_PTR(-ESTALE);
970 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
971 return ERR_PTR(-ESTALE);
973 /* iget isn't really right if the inode is currently unallocated!!
975 * ext4_read_inode will return a bad_inode if the inode had been
976 * deleted, so we should be safe.
978 * Currently we don't know the generation for parent directory, so
979 * a generation of 0 means "accept any"
981 inode = ext4_iget_normal(sb, ino);
982 if (IS_ERR(inode))
983 return ERR_CAST(inode);
984 if (generation && inode->i_generation != generation) {
985 iput(inode);
986 return ERR_PTR(-ESTALE);
989 return inode;
992 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
993 int fh_len, int fh_type)
995 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
996 ext4_nfs_get_inode);
999 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1000 int fh_len, int fh_type)
1002 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1003 ext4_nfs_get_inode);
1007 * Try to release metadata pages (indirect blocks, directories) which are
1008 * mapped via the block device. Since these pages could have journal heads
1009 * which would prevent try_to_free_buffers() from freeing them, we must use
1010 * jbd2 layer's try_to_free_buffers() function to release them.
1012 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1013 gfp_t wait)
1015 journal_t *journal = EXT4_SB(sb)->s_journal;
1017 WARN_ON(PageChecked(page));
1018 if (!page_has_buffers(page))
1019 return 0;
1020 if (journal)
1021 return jbd2_journal_try_to_free_buffers(journal, page,
1022 wait & ~__GFP_WAIT);
1023 return try_to_free_buffers(page);
1026 #ifdef CONFIG_QUOTA
1027 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1028 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1030 static int ext4_write_dquot(struct dquot *dquot);
1031 static int ext4_acquire_dquot(struct dquot *dquot);
1032 static int ext4_release_dquot(struct dquot *dquot);
1033 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1034 static int ext4_write_info(struct super_block *sb, int type);
1035 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1036 struct path *path);
1037 static int ext4_quota_off(struct super_block *sb, int type);
1038 static int ext4_quota_on_mount(struct super_block *sb, int type);
1039 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1040 size_t len, loff_t off);
1041 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1042 const char *data, size_t len, loff_t off);
1043 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1044 unsigned int flags);
1045 static int ext4_enable_quotas(struct super_block *sb);
1047 static struct dquot **ext4_get_dquots(struct inode *inode)
1049 return EXT4_I(inode)->i_dquot;
1052 static const struct dquot_operations ext4_quota_operations = {
1053 .get_reserved_space = ext4_get_reserved_space,
1054 .write_dquot = ext4_write_dquot,
1055 .acquire_dquot = ext4_acquire_dquot,
1056 .release_dquot = ext4_release_dquot,
1057 .mark_dirty = ext4_mark_dquot_dirty,
1058 .write_info = ext4_write_info,
1059 .alloc_dquot = dquot_alloc,
1060 .destroy_dquot = dquot_destroy,
1063 static const struct quotactl_ops ext4_qctl_operations = {
1064 .quota_on = ext4_quota_on,
1065 .quota_off = ext4_quota_off,
1066 .quota_sync = dquot_quota_sync,
1067 .get_state = dquot_get_state,
1068 .set_info = dquot_set_dqinfo,
1069 .get_dqblk = dquot_get_dqblk,
1070 .set_dqblk = dquot_set_dqblk
1072 #endif
1074 static const struct super_operations ext4_sops = {
1075 .alloc_inode = ext4_alloc_inode,
1076 .destroy_inode = ext4_destroy_inode,
1077 .write_inode = ext4_write_inode,
1078 .dirty_inode = ext4_dirty_inode,
1079 .drop_inode = ext4_drop_inode,
1080 .evict_inode = ext4_evict_inode,
1081 .put_super = ext4_put_super,
1082 .sync_fs = ext4_sync_fs,
1083 .freeze_fs = ext4_freeze,
1084 .unfreeze_fs = ext4_unfreeze,
1085 .statfs = ext4_statfs,
1086 .remount_fs = ext4_remount,
1087 .show_options = ext4_show_options,
1088 #ifdef CONFIG_QUOTA
1089 .quota_read = ext4_quota_read,
1090 .quota_write = ext4_quota_write,
1091 .get_dquots = ext4_get_dquots,
1092 #endif
1093 .bdev_try_to_free_page = bdev_try_to_free_page,
1096 static const struct export_operations ext4_export_ops = {
1097 .fh_to_dentry = ext4_fh_to_dentry,
1098 .fh_to_parent = ext4_fh_to_parent,
1099 .get_parent = ext4_get_parent,
1102 enum {
1103 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1104 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1105 Opt_nouid32, Opt_debug, Opt_removed,
1106 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1107 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1108 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1109 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1110 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1111 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1112 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1113 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1114 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1115 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1116 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1117 Opt_lazytime, Opt_nolazytime,
1118 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1119 Opt_inode_readahead_blks, Opt_journal_ioprio,
1120 Opt_dioread_nolock, Opt_dioread_lock,
1121 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1122 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1125 static const match_table_t tokens = {
1126 {Opt_bsd_df, "bsddf"},
1127 {Opt_minix_df, "minixdf"},
1128 {Opt_grpid, "grpid"},
1129 {Opt_grpid, "bsdgroups"},
1130 {Opt_nogrpid, "nogrpid"},
1131 {Opt_nogrpid, "sysvgroups"},
1132 {Opt_resgid, "resgid=%u"},
1133 {Opt_resuid, "resuid=%u"},
1134 {Opt_sb, "sb=%u"},
1135 {Opt_err_cont, "errors=continue"},
1136 {Opt_err_panic, "errors=panic"},
1137 {Opt_err_ro, "errors=remount-ro"},
1138 {Opt_nouid32, "nouid32"},
1139 {Opt_debug, "debug"},
1140 {Opt_removed, "oldalloc"},
1141 {Opt_removed, "orlov"},
1142 {Opt_user_xattr, "user_xattr"},
1143 {Opt_nouser_xattr, "nouser_xattr"},
1144 {Opt_acl, "acl"},
1145 {Opt_noacl, "noacl"},
1146 {Opt_noload, "norecovery"},
1147 {Opt_noload, "noload"},
1148 {Opt_removed, "nobh"},
1149 {Opt_removed, "bh"},
1150 {Opt_commit, "commit=%u"},
1151 {Opt_min_batch_time, "min_batch_time=%u"},
1152 {Opt_max_batch_time, "max_batch_time=%u"},
1153 {Opt_journal_dev, "journal_dev=%u"},
1154 {Opt_journal_path, "journal_path=%s"},
1155 {Opt_journal_checksum, "journal_checksum"},
1156 {Opt_nojournal_checksum, "nojournal_checksum"},
1157 {Opt_journal_async_commit, "journal_async_commit"},
1158 {Opt_abort, "abort"},
1159 {Opt_data_journal, "data=journal"},
1160 {Opt_data_ordered, "data=ordered"},
1161 {Opt_data_writeback, "data=writeback"},
1162 {Opt_data_err_abort, "data_err=abort"},
1163 {Opt_data_err_ignore, "data_err=ignore"},
1164 {Opt_offusrjquota, "usrjquota="},
1165 {Opt_usrjquota, "usrjquota=%s"},
1166 {Opt_offgrpjquota, "grpjquota="},
1167 {Opt_grpjquota, "grpjquota=%s"},
1168 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1169 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1170 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1171 {Opt_grpquota, "grpquota"},
1172 {Opt_noquota, "noquota"},
1173 {Opt_quota, "quota"},
1174 {Opt_usrquota, "usrquota"},
1175 {Opt_barrier, "barrier=%u"},
1176 {Opt_barrier, "barrier"},
1177 {Opt_nobarrier, "nobarrier"},
1178 {Opt_i_version, "i_version"},
1179 {Opt_dax, "dax"},
1180 {Opt_stripe, "stripe=%u"},
1181 {Opt_delalloc, "delalloc"},
1182 {Opt_lazytime, "lazytime"},
1183 {Opt_nolazytime, "nolazytime"},
1184 {Opt_nodelalloc, "nodelalloc"},
1185 {Opt_removed, "mblk_io_submit"},
1186 {Opt_removed, "nomblk_io_submit"},
1187 {Opt_block_validity, "block_validity"},
1188 {Opt_noblock_validity, "noblock_validity"},
1189 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1190 {Opt_journal_ioprio, "journal_ioprio=%u"},
1191 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1192 {Opt_auto_da_alloc, "auto_da_alloc"},
1193 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1194 {Opt_dioread_nolock, "dioread_nolock"},
1195 {Opt_dioread_lock, "dioread_lock"},
1196 {Opt_discard, "discard"},
1197 {Opt_nodiscard, "nodiscard"},
1198 {Opt_init_itable, "init_itable=%u"},
1199 {Opt_init_itable, "init_itable"},
1200 {Opt_noinit_itable, "noinit_itable"},
1201 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1202 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1203 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1204 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1205 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1206 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1207 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1208 {Opt_err, NULL},
1211 static ext4_fsblk_t get_sb_block(void **data)
1213 ext4_fsblk_t sb_block;
1214 char *options = (char *) *data;
1216 if (!options || strncmp(options, "sb=", 3) != 0)
1217 return 1; /* Default location */
1219 options += 3;
1220 /* TODO: use simple_strtoll with >32bit ext4 */
1221 sb_block = simple_strtoul(options, &options, 0);
1222 if (*options && *options != ',') {
1223 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1224 (char *) *data);
1225 return 1;
1227 if (*options == ',')
1228 options++;
1229 *data = (void *) options;
1231 return sb_block;
1234 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1235 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1236 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1238 #ifdef CONFIG_QUOTA
1239 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1241 struct ext4_sb_info *sbi = EXT4_SB(sb);
1242 char *qname;
1243 int ret = -1;
1245 if (sb_any_quota_loaded(sb) &&
1246 !sbi->s_qf_names[qtype]) {
1247 ext4_msg(sb, KERN_ERR,
1248 "Cannot change journaled "
1249 "quota options when quota turned on");
1250 return -1;
1252 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1253 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1254 "when QUOTA feature is enabled");
1255 return -1;
1257 qname = match_strdup(args);
1258 if (!qname) {
1259 ext4_msg(sb, KERN_ERR,
1260 "Not enough memory for storing quotafile name");
1261 return -1;
1263 if (sbi->s_qf_names[qtype]) {
1264 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1265 ret = 1;
1266 else
1267 ext4_msg(sb, KERN_ERR,
1268 "%s quota file already specified",
1269 QTYPE2NAME(qtype));
1270 goto errout;
1272 if (strchr(qname, '/')) {
1273 ext4_msg(sb, KERN_ERR,
1274 "quotafile must be on filesystem root");
1275 goto errout;
1277 sbi->s_qf_names[qtype] = qname;
1278 set_opt(sb, QUOTA);
1279 return 1;
1280 errout:
1281 kfree(qname);
1282 return ret;
1285 static int clear_qf_name(struct super_block *sb, int qtype)
1288 struct ext4_sb_info *sbi = EXT4_SB(sb);
1290 if (sb_any_quota_loaded(sb) &&
1291 sbi->s_qf_names[qtype]) {
1292 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1293 " when quota turned on");
1294 return -1;
1296 kfree(sbi->s_qf_names[qtype]);
1297 sbi->s_qf_names[qtype] = NULL;
1298 return 1;
1300 #endif
1302 #define MOPT_SET 0x0001
1303 #define MOPT_CLEAR 0x0002
1304 #define MOPT_NOSUPPORT 0x0004
1305 #define MOPT_EXPLICIT 0x0008
1306 #define MOPT_CLEAR_ERR 0x0010
1307 #define MOPT_GTE0 0x0020
1308 #ifdef CONFIG_QUOTA
1309 #define MOPT_Q 0
1310 #define MOPT_QFMT 0x0040
1311 #else
1312 #define MOPT_Q MOPT_NOSUPPORT
1313 #define MOPT_QFMT MOPT_NOSUPPORT
1314 #endif
1315 #define MOPT_DATAJ 0x0080
1316 #define MOPT_NO_EXT2 0x0100
1317 #define MOPT_NO_EXT3 0x0200
1318 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1319 #define MOPT_STRING 0x0400
1321 static const struct mount_opts {
1322 int token;
1323 int mount_opt;
1324 int flags;
1325 } ext4_mount_opts[] = {
1326 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1327 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1328 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1329 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1330 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1331 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1332 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1333 MOPT_EXT4_ONLY | MOPT_SET},
1334 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1335 MOPT_EXT4_ONLY | MOPT_CLEAR},
1336 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1337 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1338 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1339 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1340 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1341 MOPT_EXT4_ONLY | MOPT_CLEAR},
1342 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1343 MOPT_EXT4_ONLY | MOPT_CLEAR},
1344 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1345 MOPT_EXT4_ONLY | MOPT_SET},
1346 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1347 EXT4_MOUNT_JOURNAL_CHECKSUM),
1348 MOPT_EXT4_ONLY | MOPT_SET},
1349 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1350 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1351 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1352 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1353 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1354 MOPT_NO_EXT2 | MOPT_SET},
1355 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1356 MOPT_NO_EXT2 | MOPT_CLEAR},
1357 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1358 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1359 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1360 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1361 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1362 {Opt_commit, 0, MOPT_GTE0},
1363 {Opt_max_batch_time, 0, MOPT_GTE0},
1364 {Opt_min_batch_time, 0, MOPT_GTE0},
1365 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1366 {Opt_init_itable, 0, MOPT_GTE0},
1367 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1368 {Opt_stripe, 0, MOPT_GTE0},
1369 {Opt_resuid, 0, MOPT_GTE0},
1370 {Opt_resgid, 0, MOPT_GTE0},
1371 {Opt_journal_dev, 0, MOPT_GTE0},
1372 {Opt_journal_path, 0, MOPT_STRING},
1373 {Opt_journal_ioprio, 0, MOPT_GTE0},
1374 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1375 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1376 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1377 MOPT_NO_EXT2 | MOPT_DATAJ},
1378 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1379 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1380 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1381 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1382 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1383 #else
1384 {Opt_acl, 0, MOPT_NOSUPPORT},
1385 {Opt_noacl, 0, MOPT_NOSUPPORT},
1386 #endif
1387 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1388 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1389 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1390 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1391 MOPT_SET | MOPT_Q},
1392 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1393 MOPT_SET | MOPT_Q},
1394 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1395 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1396 {Opt_usrjquota, 0, MOPT_Q},
1397 {Opt_grpjquota, 0, MOPT_Q},
1398 {Opt_offusrjquota, 0, MOPT_Q},
1399 {Opt_offgrpjquota, 0, MOPT_Q},
1400 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1401 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1402 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1403 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1404 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1405 {Opt_err, 0, 0}
1408 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1409 substring_t *args, unsigned long *journal_devnum,
1410 unsigned int *journal_ioprio, int is_remount)
1412 struct ext4_sb_info *sbi = EXT4_SB(sb);
1413 const struct mount_opts *m;
1414 kuid_t uid;
1415 kgid_t gid;
1416 int arg = 0;
1418 #ifdef CONFIG_QUOTA
1419 if (token == Opt_usrjquota)
1420 return set_qf_name(sb, USRQUOTA, &args[0]);
1421 else if (token == Opt_grpjquota)
1422 return set_qf_name(sb, GRPQUOTA, &args[0]);
1423 else if (token == Opt_offusrjquota)
1424 return clear_qf_name(sb, USRQUOTA);
1425 else if (token == Opt_offgrpjquota)
1426 return clear_qf_name(sb, GRPQUOTA);
1427 #endif
1428 switch (token) {
1429 case Opt_noacl:
1430 case Opt_nouser_xattr:
1431 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1432 break;
1433 case Opt_sb:
1434 return 1; /* handled by get_sb_block() */
1435 case Opt_removed:
1436 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1437 return 1;
1438 case Opt_abort:
1439 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1440 return 1;
1441 case Opt_i_version:
1442 sb->s_flags |= MS_I_VERSION;
1443 return 1;
1444 case Opt_lazytime:
1445 sb->s_flags |= MS_LAZYTIME;
1446 return 1;
1447 case Opt_nolazytime:
1448 sb->s_flags &= ~MS_LAZYTIME;
1449 return 1;
1452 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1453 if (token == m->token)
1454 break;
1456 if (m->token == Opt_err) {
1457 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1458 "or missing value", opt);
1459 return -1;
1462 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1463 ext4_msg(sb, KERN_ERR,
1464 "Mount option \"%s\" incompatible with ext2", opt);
1465 return -1;
1467 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1468 ext4_msg(sb, KERN_ERR,
1469 "Mount option \"%s\" incompatible with ext3", opt);
1470 return -1;
1473 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1474 return -1;
1475 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1476 return -1;
1477 if (m->flags & MOPT_EXPLICIT)
1478 set_opt2(sb, EXPLICIT_DELALLOC);
1479 if (m->flags & MOPT_CLEAR_ERR)
1480 clear_opt(sb, ERRORS_MASK);
1481 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1482 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1483 "options when quota turned on");
1484 return -1;
1487 if (m->flags & MOPT_NOSUPPORT) {
1488 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1489 } else if (token == Opt_commit) {
1490 if (arg == 0)
1491 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1492 sbi->s_commit_interval = HZ * arg;
1493 } else if (token == Opt_max_batch_time) {
1494 sbi->s_max_batch_time = arg;
1495 } else if (token == Opt_min_batch_time) {
1496 sbi->s_min_batch_time = arg;
1497 } else if (token == Opt_inode_readahead_blks) {
1498 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1499 ext4_msg(sb, KERN_ERR,
1500 "EXT4-fs: inode_readahead_blks must be "
1501 "0 or a power of 2 smaller than 2^31");
1502 return -1;
1504 sbi->s_inode_readahead_blks = arg;
1505 } else if (token == Opt_init_itable) {
1506 set_opt(sb, INIT_INODE_TABLE);
1507 if (!args->from)
1508 arg = EXT4_DEF_LI_WAIT_MULT;
1509 sbi->s_li_wait_mult = arg;
1510 } else if (token == Opt_max_dir_size_kb) {
1511 sbi->s_max_dir_size_kb = arg;
1512 } else if (token == Opt_stripe) {
1513 sbi->s_stripe = arg;
1514 } else if (token == Opt_resuid) {
1515 uid = make_kuid(current_user_ns(), arg);
1516 if (!uid_valid(uid)) {
1517 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1518 return -1;
1520 sbi->s_resuid = uid;
1521 } else if (token == Opt_resgid) {
1522 gid = make_kgid(current_user_ns(), arg);
1523 if (!gid_valid(gid)) {
1524 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1525 return -1;
1527 sbi->s_resgid = gid;
1528 } else if (token == Opt_journal_dev) {
1529 if (is_remount) {
1530 ext4_msg(sb, KERN_ERR,
1531 "Cannot specify journal on remount");
1532 return -1;
1534 *journal_devnum = arg;
1535 } else if (token == Opt_journal_path) {
1536 char *journal_path;
1537 struct inode *journal_inode;
1538 struct path path;
1539 int error;
1541 if (is_remount) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Cannot specify journal on remount");
1544 return -1;
1546 journal_path = match_strdup(&args[0]);
1547 if (!journal_path) {
1548 ext4_msg(sb, KERN_ERR, "error: could not dup "
1549 "journal device string");
1550 return -1;
1553 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1554 if (error) {
1555 ext4_msg(sb, KERN_ERR, "error: could not find "
1556 "journal device path: error %d", error);
1557 kfree(journal_path);
1558 return -1;
1561 journal_inode = d_inode(path.dentry);
1562 if (!S_ISBLK(journal_inode->i_mode)) {
1563 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1564 "is not a block device", journal_path);
1565 path_put(&path);
1566 kfree(journal_path);
1567 return -1;
1570 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1571 path_put(&path);
1572 kfree(journal_path);
1573 } else if (token == Opt_journal_ioprio) {
1574 if (arg > 7) {
1575 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1576 " (must be 0-7)");
1577 return -1;
1579 *journal_ioprio =
1580 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1581 } else if (token == Opt_test_dummy_encryption) {
1582 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1583 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1584 ext4_msg(sb, KERN_WARNING,
1585 "Test dummy encryption mode enabled");
1586 #else
1587 ext4_msg(sb, KERN_WARNING,
1588 "Test dummy encryption mount option ignored");
1589 #endif
1590 } else if (m->flags & MOPT_DATAJ) {
1591 if (is_remount) {
1592 if (!sbi->s_journal)
1593 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1594 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1595 ext4_msg(sb, KERN_ERR,
1596 "Cannot change data mode on remount");
1597 return -1;
1599 } else {
1600 clear_opt(sb, DATA_FLAGS);
1601 sbi->s_mount_opt |= m->mount_opt;
1603 #ifdef CONFIG_QUOTA
1604 } else if (m->flags & MOPT_QFMT) {
1605 if (sb_any_quota_loaded(sb) &&
1606 sbi->s_jquota_fmt != m->mount_opt) {
1607 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1608 "quota options when quota turned on");
1609 return -1;
1611 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1612 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1613 ext4_msg(sb, KERN_ERR,
1614 "Cannot set journaled quota options "
1615 "when QUOTA feature is enabled");
1616 return -1;
1618 sbi->s_jquota_fmt = m->mount_opt;
1619 #endif
1620 #ifndef CONFIG_FS_DAX
1621 } else if (token == Opt_dax) {
1622 ext4_msg(sb, KERN_INFO, "dax option not supported");
1623 return -1;
1624 #endif
1625 } else {
1626 if (!args->from)
1627 arg = 1;
1628 if (m->flags & MOPT_CLEAR)
1629 arg = !arg;
1630 else if (unlikely(!(m->flags & MOPT_SET))) {
1631 ext4_msg(sb, KERN_WARNING,
1632 "buggy handling of option %s", opt);
1633 WARN_ON(1);
1634 return -1;
1636 if (arg != 0)
1637 sbi->s_mount_opt |= m->mount_opt;
1638 else
1639 sbi->s_mount_opt &= ~m->mount_opt;
1641 return 1;
1644 static int parse_options(char *options, struct super_block *sb,
1645 unsigned long *journal_devnum,
1646 unsigned int *journal_ioprio,
1647 int is_remount)
1649 struct ext4_sb_info *sbi = EXT4_SB(sb);
1650 char *p;
1651 substring_t args[MAX_OPT_ARGS];
1652 int token;
1654 if (!options)
1655 return 1;
1657 while ((p = strsep(&options, ",")) != NULL) {
1658 if (!*p)
1659 continue;
1661 * Initialize args struct so we know whether arg was
1662 * found; some options take optional arguments.
1664 args[0].to = args[0].from = NULL;
1665 token = match_token(p, tokens, args);
1666 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1667 journal_ioprio, is_remount) < 0)
1668 return 0;
1670 #ifdef CONFIG_QUOTA
1671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1672 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1673 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1674 "feature is enabled");
1675 return 0;
1677 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1678 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1679 clear_opt(sb, USRQUOTA);
1681 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1682 clear_opt(sb, GRPQUOTA);
1684 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1685 ext4_msg(sb, KERN_ERR, "old and new quota "
1686 "format mixing");
1687 return 0;
1690 if (!sbi->s_jquota_fmt) {
1691 ext4_msg(sb, KERN_ERR, "journaled quota format "
1692 "not specified");
1693 return 0;
1696 #endif
1697 if (test_opt(sb, DIOREAD_NOLOCK)) {
1698 int blocksize =
1699 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1701 if (blocksize < PAGE_CACHE_SIZE) {
1702 ext4_msg(sb, KERN_ERR, "can't mount with "
1703 "dioread_nolock if block size != PAGE_SIZE");
1704 return 0;
1707 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1708 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1709 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1710 "in data=ordered mode");
1711 return 0;
1713 return 1;
1716 static inline void ext4_show_quota_options(struct seq_file *seq,
1717 struct super_block *sb)
1719 #if defined(CONFIG_QUOTA)
1720 struct ext4_sb_info *sbi = EXT4_SB(sb);
1722 if (sbi->s_jquota_fmt) {
1723 char *fmtname = "";
1725 switch (sbi->s_jquota_fmt) {
1726 case QFMT_VFS_OLD:
1727 fmtname = "vfsold";
1728 break;
1729 case QFMT_VFS_V0:
1730 fmtname = "vfsv0";
1731 break;
1732 case QFMT_VFS_V1:
1733 fmtname = "vfsv1";
1734 break;
1736 seq_printf(seq, ",jqfmt=%s", fmtname);
1739 if (sbi->s_qf_names[USRQUOTA])
1740 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1742 if (sbi->s_qf_names[GRPQUOTA])
1743 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1744 #endif
1747 static const char *token2str(int token)
1749 const struct match_token *t;
1751 for (t = tokens; t->token != Opt_err; t++)
1752 if (t->token == token && !strchr(t->pattern, '='))
1753 break;
1754 return t->pattern;
1758 * Show an option if
1759 * - it's set to a non-default value OR
1760 * - if the per-sb default is different from the global default
1762 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1763 int nodefs)
1765 struct ext4_sb_info *sbi = EXT4_SB(sb);
1766 struct ext4_super_block *es = sbi->s_es;
1767 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1768 const struct mount_opts *m;
1769 char sep = nodefs ? '\n' : ',';
1771 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1772 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1774 if (sbi->s_sb_block != 1)
1775 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1777 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1778 int want_set = m->flags & MOPT_SET;
1779 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1780 (m->flags & MOPT_CLEAR_ERR))
1781 continue;
1782 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1783 continue; /* skip if same as the default */
1784 if ((want_set &&
1785 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1786 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1787 continue; /* select Opt_noFoo vs Opt_Foo */
1788 SEQ_OPTS_PRINT("%s", token2str(m->token));
1791 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1792 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1793 SEQ_OPTS_PRINT("resuid=%u",
1794 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1795 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1796 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1797 SEQ_OPTS_PRINT("resgid=%u",
1798 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1799 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1800 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1801 SEQ_OPTS_PUTS("errors=remount-ro");
1802 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1803 SEQ_OPTS_PUTS("errors=continue");
1804 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1805 SEQ_OPTS_PUTS("errors=panic");
1806 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1807 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1808 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1809 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1810 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1811 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1812 if (sb->s_flags & MS_I_VERSION)
1813 SEQ_OPTS_PUTS("i_version");
1814 if (nodefs || sbi->s_stripe)
1815 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1816 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1817 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1818 SEQ_OPTS_PUTS("data=journal");
1819 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1820 SEQ_OPTS_PUTS("data=ordered");
1821 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1822 SEQ_OPTS_PUTS("data=writeback");
1824 if (nodefs ||
1825 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1826 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1827 sbi->s_inode_readahead_blks);
1829 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1830 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1831 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1832 if (nodefs || sbi->s_max_dir_size_kb)
1833 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1835 ext4_show_quota_options(seq, sb);
1836 return 0;
1839 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1841 return _ext4_show_options(seq, root->d_sb, 0);
1844 static int options_seq_show(struct seq_file *seq, void *offset)
1846 struct super_block *sb = seq->private;
1847 int rc;
1849 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1850 rc = _ext4_show_options(seq, sb, 1);
1851 seq_puts(seq, "\n");
1852 return rc;
1855 static int options_open_fs(struct inode *inode, struct file *file)
1857 return single_open(file, options_seq_show, PDE_DATA(inode));
1860 static const struct file_operations ext4_seq_options_fops = {
1861 .owner = THIS_MODULE,
1862 .open = options_open_fs,
1863 .read = seq_read,
1864 .llseek = seq_lseek,
1865 .release = single_release,
1868 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1869 int read_only)
1871 struct ext4_sb_info *sbi = EXT4_SB(sb);
1872 int res = 0;
1874 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1875 ext4_msg(sb, KERN_ERR, "revision level too high, "
1876 "forcing read-only mode");
1877 res = MS_RDONLY;
1879 if (read_only)
1880 goto done;
1881 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1882 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1883 "running e2fsck is recommended");
1884 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1885 ext4_msg(sb, KERN_WARNING,
1886 "warning: mounting fs with errors, "
1887 "running e2fsck is recommended");
1888 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1889 le16_to_cpu(es->s_mnt_count) >=
1890 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1891 ext4_msg(sb, KERN_WARNING,
1892 "warning: maximal mount count reached, "
1893 "running e2fsck is recommended");
1894 else if (le32_to_cpu(es->s_checkinterval) &&
1895 (le32_to_cpu(es->s_lastcheck) +
1896 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1897 ext4_msg(sb, KERN_WARNING,
1898 "warning: checktime reached, "
1899 "running e2fsck is recommended");
1900 if (!sbi->s_journal)
1901 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1902 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1903 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1904 le16_add_cpu(&es->s_mnt_count, 1);
1905 es->s_mtime = cpu_to_le32(get_seconds());
1906 ext4_update_dynamic_rev(sb);
1907 if (sbi->s_journal)
1908 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1910 ext4_commit_super(sb, 1);
1911 done:
1912 if (test_opt(sb, DEBUG))
1913 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1914 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1915 sb->s_blocksize,
1916 sbi->s_groups_count,
1917 EXT4_BLOCKS_PER_GROUP(sb),
1918 EXT4_INODES_PER_GROUP(sb),
1919 sbi->s_mount_opt, sbi->s_mount_opt2);
1921 cleancache_init_fs(sb);
1922 return res;
1925 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1927 struct ext4_sb_info *sbi = EXT4_SB(sb);
1928 struct flex_groups *new_groups;
1929 int size;
1931 if (!sbi->s_log_groups_per_flex)
1932 return 0;
1934 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1935 if (size <= sbi->s_flex_groups_allocated)
1936 return 0;
1938 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1939 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1940 if (!new_groups) {
1941 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1942 size / (int) sizeof(struct flex_groups));
1943 return -ENOMEM;
1946 if (sbi->s_flex_groups) {
1947 memcpy(new_groups, sbi->s_flex_groups,
1948 (sbi->s_flex_groups_allocated *
1949 sizeof(struct flex_groups)));
1950 kvfree(sbi->s_flex_groups);
1952 sbi->s_flex_groups = new_groups;
1953 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1954 return 0;
1957 static int ext4_fill_flex_info(struct super_block *sb)
1959 struct ext4_sb_info *sbi = EXT4_SB(sb);
1960 struct ext4_group_desc *gdp = NULL;
1961 ext4_group_t flex_group;
1962 int i, err;
1964 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1965 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1966 sbi->s_log_groups_per_flex = 0;
1967 return 1;
1970 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1971 if (err)
1972 goto failed;
1974 for (i = 0; i < sbi->s_groups_count; i++) {
1975 gdp = ext4_get_group_desc(sb, i, NULL);
1977 flex_group = ext4_flex_group(sbi, i);
1978 atomic_add(ext4_free_inodes_count(sb, gdp),
1979 &sbi->s_flex_groups[flex_group].free_inodes);
1980 atomic64_add(ext4_free_group_clusters(sb, gdp),
1981 &sbi->s_flex_groups[flex_group].free_clusters);
1982 atomic_add(ext4_used_dirs_count(sb, gdp),
1983 &sbi->s_flex_groups[flex_group].used_dirs);
1986 return 1;
1987 failed:
1988 return 0;
1991 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1992 struct ext4_group_desc *gdp)
1994 int offset;
1995 __u16 crc = 0;
1996 __le32 le_group = cpu_to_le32(block_group);
1998 if (ext4_has_metadata_csum(sbi->s_sb)) {
1999 /* Use new metadata_csum algorithm */
2000 __le16 save_csum;
2001 __u32 csum32;
2003 save_csum = gdp->bg_checksum;
2004 gdp->bg_checksum = 0;
2005 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2006 sizeof(le_group));
2007 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2008 sbi->s_desc_size);
2009 gdp->bg_checksum = save_csum;
2011 crc = csum32 & 0xFFFF;
2012 goto out;
2015 /* old crc16 code */
2016 if (!(sbi->s_es->s_feature_ro_compat &
2017 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2018 return 0;
2020 offset = offsetof(struct ext4_group_desc, bg_checksum);
2022 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2023 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2024 crc = crc16(crc, (__u8 *)gdp, offset);
2025 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2026 /* for checksum of struct ext4_group_desc do the rest...*/
2027 if ((sbi->s_es->s_feature_incompat &
2028 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2029 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2030 crc = crc16(crc, (__u8 *)gdp + offset,
2031 le16_to_cpu(sbi->s_es->s_desc_size) -
2032 offset);
2034 out:
2035 return cpu_to_le16(crc);
2038 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2039 struct ext4_group_desc *gdp)
2041 if (ext4_has_group_desc_csum(sb) &&
2042 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2043 block_group, gdp)))
2044 return 0;
2046 return 1;
2049 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2050 struct ext4_group_desc *gdp)
2052 if (!ext4_has_group_desc_csum(sb))
2053 return;
2054 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2057 /* Called at mount-time, super-block is locked */
2058 static int ext4_check_descriptors(struct super_block *sb,
2059 ext4_group_t *first_not_zeroed)
2061 struct ext4_sb_info *sbi = EXT4_SB(sb);
2062 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2063 ext4_fsblk_t last_block;
2064 ext4_fsblk_t block_bitmap;
2065 ext4_fsblk_t inode_bitmap;
2066 ext4_fsblk_t inode_table;
2067 int flexbg_flag = 0;
2068 ext4_group_t i, grp = sbi->s_groups_count;
2070 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2071 flexbg_flag = 1;
2073 ext4_debug("Checking group descriptors");
2075 for (i = 0; i < sbi->s_groups_count; i++) {
2076 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2078 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2079 last_block = ext4_blocks_count(sbi->s_es) - 1;
2080 else
2081 last_block = first_block +
2082 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2084 if ((grp == sbi->s_groups_count) &&
2085 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2086 grp = i;
2088 block_bitmap = ext4_block_bitmap(sb, gdp);
2089 if (block_bitmap < first_block || block_bitmap > last_block) {
2090 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2091 "Block bitmap for group %u not in group "
2092 "(block %llu)!", i, block_bitmap);
2093 return 0;
2095 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2096 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2097 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2098 "Inode bitmap for group %u not in group "
2099 "(block %llu)!", i, inode_bitmap);
2100 return 0;
2102 inode_table = ext4_inode_table(sb, gdp);
2103 if (inode_table < first_block ||
2104 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2105 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2106 "Inode table for group %u not in group "
2107 "(block %llu)!", i, inode_table);
2108 return 0;
2110 ext4_lock_group(sb, i);
2111 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2112 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2113 "Checksum for group %u failed (%u!=%u)",
2114 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2115 gdp)), le16_to_cpu(gdp->bg_checksum));
2116 if (!(sb->s_flags & MS_RDONLY)) {
2117 ext4_unlock_group(sb, i);
2118 return 0;
2121 ext4_unlock_group(sb, i);
2122 if (!flexbg_flag)
2123 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2125 if (NULL != first_not_zeroed)
2126 *first_not_zeroed = grp;
2127 return 1;
2130 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2131 * the superblock) which were deleted from all directories, but held open by
2132 * a process at the time of a crash. We walk the list and try to delete these
2133 * inodes at recovery time (only with a read-write filesystem).
2135 * In order to keep the orphan inode chain consistent during traversal (in
2136 * case of crash during recovery), we link each inode into the superblock
2137 * orphan list_head and handle it the same way as an inode deletion during
2138 * normal operation (which journals the operations for us).
2140 * We only do an iget() and an iput() on each inode, which is very safe if we
2141 * accidentally point at an in-use or already deleted inode. The worst that
2142 * can happen in this case is that we get a "bit already cleared" message from
2143 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2144 * e2fsck was run on this filesystem, and it must have already done the orphan
2145 * inode cleanup for us, so we can safely abort without any further action.
2147 static void ext4_orphan_cleanup(struct super_block *sb,
2148 struct ext4_super_block *es)
2150 unsigned int s_flags = sb->s_flags;
2151 int nr_orphans = 0, nr_truncates = 0;
2152 #ifdef CONFIG_QUOTA
2153 int i;
2154 #endif
2155 if (!es->s_last_orphan) {
2156 jbd_debug(4, "no orphan inodes to clean up\n");
2157 return;
2160 if (bdev_read_only(sb->s_bdev)) {
2161 ext4_msg(sb, KERN_ERR, "write access "
2162 "unavailable, skipping orphan cleanup");
2163 return;
2166 /* Check if feature set would not allow a r/w mount */
2167 if (!ext4_feature_set_ok(sb, 0)) {
2168 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2169 "unknown ROCOMPAT features");
2170 return;
2173 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2174 /* don't clear list on RO mount w/ errors */
2175 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2176 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2177 "clearing orphan list.\n");
2178 es->s_last_orphan = 0;
2180 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2181 return;
2184 if (s_flags & MS_RDONLY) {
2185 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2186 sb->s_flags &= ~MS_RDONLY;
2188 #ifdef CONFIG_QUOTA
2189 /* Needed for iput() to work correctly and not trash data */
2190 sb->s_flags |= MS_ACTIVE;
2191 /* Turn on quotas so that they are updated correctly */
2192 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2193 if (EXT4_SB(sb)->s_qf_names[i]) {
2194 int ret = ext4_quota_on_mount(sb, i);
2195 if (ret < 0)
2196 ext4_msg(sb, KERN_ERR,
2197 "Cannot turn on journaled "
2198 "quota: error %d", ret);
2201 #endif
2203 while (es->s_last_orphan) {
2204 struct inode *inode;
2206 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2207 if (IS_ERR(inode)) {
2208 es->s_last_orphan = 0;
2209 break;
2212 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2213 dquot_initialize(inode);
2214 if (inode->i_nlink) {
2215 if (test_opt(sb, DEBUG))
2216 ext4_msg(sb, KERN_DEBUG,
2217 "%s: truncating inode %lu to %lld bytes",
2218 __func__, inode->i_ino, inode->i_size);
2219 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2220 inode->i_ino, inode->i_size);
2221 mutex_lock(&inode->i_mutex);
2222 truncate_inode_pages(inode->i_mapping, inode->i_size);
2223 ext4_truncate(inode);
2224 mutex_unlock(&inode->i_mutex);
2225 nr_truncates++;
2226 } else {
2227 if (test_opt(sb, DEBUG))
2228 ext4_msg(sb, KERN_DEBUG,
2229 "%s: deleting unreferenced inode %lu",
2230 __func__, inode->i_ino);
2231 jbd_debug(2, "deleting unreferenced inode %lu\n",
2232 inode->i_ino);
2233 nr_orphans++;
2235 iput(inode); /* The delete magic happens here! */
2238 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2240 if (nr_orphans)
2241 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2242 PLURAL(nr_orphans));
2243 if (nr_truncates)
2244 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2245 PLURAL(nr_truncates));
2246 #ifdef CONFIG_QUOTA
2247 /* Turn quotas off */
2248 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2249 if (sb_dqopt(sb)->files[i])
2250 dquot_quota_off(sb, i);
2252 #endif
2253 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2257 * Maximal extent format file size.
2258 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2259 * extent format containers, within a sector_t, and within i_blocks
2260 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2261 * so that won't be a limiting factor.
2263 * However there is other limiting factor. We do store extents in the form
2264 * of starting block and length, hence the resulting length of the extent
2265 * covering maximum file size must fit into on-disk format containers as
2266 * well. Given that length is always by 1 unit bigger than max unit (because
2267 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2269 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2271 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2273 loff_t res;
2274 loff_t upper_limit = MAX_LFS_FILESIZE;
2276 /* small i_blocks in vfs inode? */
2277 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2279 * CONFIG_LBDAF is not enabled implies the inode
2280 * i_block represent total blocks in 512 bytes
2281 * 32 == size of vfs inode i_blocks * 8
2283 upper_limit = (1LL << 32) - 1;
2285 /* total blocks in file system block size */
2286 upper_limit >>= (blkbits - 9);
2287 upper_limit <<= blkbits;
2291 * 32-bit extent-start container, ee_block. We lower the maxbytes
2292 * by one fs block, so ee_len can cover the extent of maximum file
2293 * size
2295 res = (1LL << 32) - 1;
2296 res <<= blkbits;
2298 /* Sanity check against vm- & vfs- imposed limits */
2299 if (res > upper_limit)
2300 res = upper_limit;
2302 return res;
2306 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2307 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2308 * We need to be 1 filesystem block less than the 2^48 sector limit.
2310 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2312 loff_t res = EXT4_NDIR_BLOCKS;
2313 int meta_blocks;
2314 loff_t upper_limit;
2315 /* This is calculated to be the largest file size for a dense, block
2316 * mapped file such that the file's total number of 512-byte sectors,
2317 * including data and all indirect blocks, does not exceed (2^48 - 1).
2319 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2320 * number of 512-byte sectors of the file.
2323 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2325 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2326 * the inode i_block field represents total file blocks in
2327 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2329 upper_limit = (1LL << 32) - 1;
2331 /* total blocks in file system block size */
2332 upper_limit >>= (bits - 9);
2334 } else {
2336 * We use 48 bit ext4_inode i_blocks
2337 * With EXT4_HUGE_FILE_FL set the i_blocks
2338 * represent total number of blocks in
2339 * file system block size
2341 upper_limit = (1LL << 48) - 1;
2345 /* indirect blocks */
2346 meta_blocks = 1;
2347 /* double indirect blocks */
2348 meta_blocks += 1 + (1LL << (bits-2));
2349 /* tripple indirect blocks */
2350 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2352 upper_limit -= meta_blocks;
2353 upper_limit <<= bits;
2355 res += 1LL << (bits-2);
2356 res += 1LL << (2*(bits-2));
2357 res += 1LL << (3*(bits-2));
2358 res <<= bits;
2359 if (res > upper_limit)
2360 res = upper_limit;
2362 if (res > MAX_LFS_FILESIZE)
2363 res = MAX_LFS_FILESIZE;
2365 return res;
2368 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2369 ext4_fsblk_t logical_sb_block, int nr)
2371 struct ext4_sb_info *sbi = EXT4_SB(sb);
2372 ext4_group_t bg, first_meta_bg;
2373 int has_super = 0;
2375 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2377 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2378 nr < first_meta_bg)
2379 return logical_sb_block + nr + 1;
2380 bg = sbi->s_desc_per_block * nr;
2381 if (ext4_bg_has_super(sb, bg))
2382 has_super = 1;
2385 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2386 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2387 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2388 * compensate.
2390 if (sb->s_blocksize == 1024 && nr == 0 &&
2391 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2392 has_super++;
2394 return (has_super + ext4_group_first_block_no(sb, bg));
2398 * ext4_get_stripe_size: Get the stripe size.
2399 * @sbi: In memory super block info
2401 * If we have specified it via mount option, then
2402 * use the mount option value. If the value specified at mount time is
2403 * greater than the blocks per group use the super block value.
2404 * If the super block value is greater than blocks per group return 0.
2405 * Allocator needs it be less than blocks per group.
2408 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2410 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2411 unsigned long stripe_width =
2412 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2413 int ret;
2415 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2416 ret = sbi->s_stripe;
2417 else if (stripe_width <= sbi->s_blocks_per_group)
2418 ret = stripe_width;
2419 else if (stride <= sbi->s_blocks_per_group)
2420 ret = stride;
2421 else
2422 ret = 0;
2425 * If the stripe width is 1, this makes no sense and
2426 * we set it to 0 to turn off stripe handling code.
2428 if (ret <= 1)
2429 ret = 0;
2431 return ret;
2434 /* sysfs supprt */
2436 struct ext4_attr {
2437 struct attribute attr;
2438 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2439 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2440 const char *, size_t);
2441 union {
2442 int offset;
2443 int deprecated_val;
2444 } u;
2447 static int parse_strtoull(const char *buf,
2448 unsigned long long max, unsigned long long *value)
2450 int ret;
2452 ret = kstrtoull(skip_spaces(buf), 0, value);
2453 if (!ret && *value > max)
2454 ret = -EINVAL;
2455 return ret;
2458 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2459 struct ext4_sb_info *sbi,
2460 char *buf)
2462 return snprintf(buf, PAGE_SIZE, "%llu\n",
2463 (s64) EXT4_C2B(sbi,
2464 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2467 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2468 struct ext4_sb_info *sbi, char *buf)
2470 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2472 if (!sb->s_bdev->bd_part)
2473 return snprintf(buf, PAGE_SIZE, "0\n");
2474 return snprintf(buf, PAGE_SIZE, "%lu\n",
2475 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2476 sbi->s_sectors_written_start) >> 1);
2479 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2480 struct ext4_sb_info *sbi, char *buf)
2482 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2484 if (!sb->s_bdev->bd_part)
2485 return snprintf(buf, PAGE_SIZE, "0\n");
2486 return snprintf(buf, PAGE_SIZE, "%llu\n",
2487 (unsigned long long)(sbi->s_kbytes_written +
2488 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2489 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2492 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi,
2494 const char *buf, size_t count)
2496 unsigned long t;
2497 int ret;
2499 ret = kstrtoul(skip_spaces(buf), 0, &t);
2500 if (ret)
2501 return ret;
2503 if (t && (!is_power_of_2(t) || t > 0x40000000))
2504 return -EINVAL;
2506 sbi->s_inode_readahead_blks = t;
2507 return count;
2510 static ssize_t sbi_ui_show(struct ext4_attr *a,
2511 struct ext4_sb_info *sbi, char *buf)
2513 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2515 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2518 static ssize_t sbi_ui_store(struct ext4_attr *a,
2519 struct ext4_sb_info *sbi,
2520 const char *buf, size_t count)
2522 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2523 unsigned long t;
2524 int ret;
2526 ret = kstrtoul(skip_spaces(buf), 0, &t);
2527 if (ret)
2528 return ret;
2529 *ui = t;
2530 return count;
2533 static ssize_t es_ui_show(struct ext4_attr *a,
2534 struct ext4_sb_info *sbi, char *buf)
2537 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2538 a->u.offset);
2540 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2543 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2544 struct ext4_sb_info *sbi, char *buf)
2546 return snprintf(buf, PAGE_SIZE, "%llu\n",
2547 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2550 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2551 struct ext4_sb_info *sbi,
2552 const char *buf, size_t count)
2554 unsigned long long val;
2555 int ret;
2557 if (parse_strtoull(buf, -1ULL, &val))
2558 return -EINVAL;
2559 ret = ext4_reserve_clusters(sbi, val);
2561 return ret ? ret : count;
2564 static ssize_t trigger_test_error(struct ext4_attr *a,
2565 struct ext4_sb_info *sbi,
2566 const char *buf, size_t count)
2568 int len = count;
2570 if (!capable(CAP_SYS_ADMIN))
2571 return -EPERM;
2573 if (len && buf[len-1] == '\n')
2574 len--;
2576 if (len)
2577 ext4_error(sbi->s_sb, "%.*s", len, buf);
2578 return count;
2581 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2582 struct ext4_sb_info *sbi, char *buf)
2584 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2587 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2588 static struct ext4_attr ext4_attr_##_name = { \
2589 .attr = {.name = __stringify(_name), .mode = _mode }, \
2590 .show = _show, \
2591 .store = _store, \
2592 .u = { \
2593 .offset = offsetof(struct ext4_sb_info, _elname),\
2594 }, \
2597 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2598 static struct ext4_attr ext4_attr_##_name = { \
2599 .attr = {.name = __stringify(_name), .mode = _mode }, \
2600 .show = _show, \
2601 .store = _store, \
2602 .u = { \
2603 .offset = offsetof(struct ext4_super_block, _elname), \
2604 }, \
2607 #define EXT4_ATTR(name, mode, show, store) \
2608 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2610 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2611 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2612 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2614 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2615 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2616 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2617 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2619 #define ATTR_LIST(name) &ext4_attr_##name.attr
2620 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2621 static struct ext4_attr ext4_attr_##_name = { \
2622 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2623 .show = sbi_deprecated_show, \
2624 .u = { \
2625 .deprecated_val = _val, \
2626 }, \
2629 EXT4_RO_ATTR(delayed_allocation_blocks);
2630 EXT4_RO_ATTR(session_write_kbytes);
2631 EXT4_RO_ATTR(lifetime_write_kbytes);
2632 EXT4_RW_ATTR(reserved_clusters);
2633 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2634 inode_readahead_blks_store, s_inode_readahead_blks);
2635 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2636 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2637 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2638 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2639 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2640 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2641 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2642 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2643 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2644 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2645 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2646 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2647 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2648 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2649 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2650 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2651 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2652 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2653 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2655 static struct attribute *ext4_attrs[] = {
2656 ATTR_LIST(delayed_allocation_blocks),
2657 ATTR_LIST(session_write_kbytes),
2658 ATTR_LIST(lifetime_write_kbytes),
2659 ATTR_LIST(reserved_clusters),
2660 ATTR_LIST(inode_readahead_blks),
2661 ATTR_LIST(inode_goal),
2662 ATTR_LIST(mb_stats),
2663 ATTR_LIST(mb_max_to_scan),
2664 ATTR_LIST(mb_min_to_scan),
2665 ATTR_LIST(mb_order2_req),
2666 ATTR_LIST(mb_stream_req),
2667 ATTR_LIST(mb_group_prealloc),
2668 ATTR_LIST(max_writeback_mb_bump),
2669 ATTR_LIST(extent_max_zeroout_kb),
2670 ATTR_LIST(trigger_fs_error),
2671 ATTR_LIST(err_ratelimit_interval_ms),
2672 ATTR_LIST(err_ratelimit_burst),
2673 ATTR_LIST(warning_ratelimit_interval_ms),
2674 ATTR_LIST(warning_ratelimit_burst),
2675 ATTR_LIST(msg_ratelimit_interval_ms),
2676 ATTR_LIST(msg_ratelimit_burst),
2677 ATTR_LIST(errors_count),
2678 ATTR_LIST(first_error_time),
2679 ATTR_LIST(last_error_time),
2680 NULL,
2683 /* Features this copy of ext4 supports */
2684 EXT4_INFO_ATTR(lazy_itable_init);
2685 EXT4_INFO_ATTR(batched_discard);
2686 EXT4_INFO_ATTR(meta_bg_resize);
2687 EXT4_INFO_ATTR(encryption);
2689 static struct attribute *ext4_feat_attrs[] = {
2690 ATTR_LIST(lazy_itable_init),
2691 ATTR_LIST(batched_discard),
2692 ATTR_LIST(meta_bg_resize),
2693 ATTR_LIST(encryption),
2694 NULL,
2697 static ssize_t ext4_attr_show(struct kobject *kobj,
2698 struct attribute *attr, char *buf)
2700 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2701 s_kobj);
2702 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2704 return a->show ? a->show(a, sbi, buf) : 0;
2707 static ssize_t ext4_attr_store(struct kobject *kobj,
2708 struct attribute *attr,
2709 const char *buf, size_t len)
2711 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2712 s_kobj);
2713 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2715 return a->store ? a->store(a, sbi, buf, len) : 0;
2718 static void ext4_sb_release(struct kobject *kobj)
2720 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2721 s_kobj);
2722 complete(&sbi->s_kobj_unregister);
2725 static const struct sysfs_ops ext4_attr_ops = {
2726 .show = ext4_attr_show,
2727 .store = ext4_attr_store,
2730 static struct kobj_type ext4_ktype = {
2731 .default_attrs = ext4_attrs,
2732 .sysfs_ops = &ext4_attr_ops,
2733 .release = ext4_sb_release,
2736 static void ext4_feat_release(struct kobject *kobj)
2738 complete(&ext4_feat->f_kobj_unregister);
2741 static ssize_t ext4_feat_show(struct kobject *kobj,
2742 struct attribute *attr, char *buf)
2744 return snprintf(buf, PAGE_SIZE, "supported\n");
2748 * We can not use ext4_attr_show/store because it relies on the kobject
2749 * being embedded in the ext4_sb_info structure which is definitely not
2750 * true in this case.
2752 static const struct sysfs_ops ext4_feat_ops = {
2753 .show = ext4_feat_show,
2754 .store = NULL,
2757 static struct kobj_type ext4_feat_ktype = {
2758 .default_attrs = ext4_feat_attrs,
2759 .sysfs_ops = &ext4_feat_ops,
2760 .release = ext4_feat_release,
2764 * Check whether this filesystem can be mounted based on
2765 * the features present and the RDONLY/RDWR mount requested.
2766 * Returns 1 if this filesystem can be mounted as requested,
2767 * 0 if it cannot be.
2769 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2771 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2772 ext4_msg(sb, KERN_ERR,
2773 "Couldn't mount because of "
2774 "unsupported optional features (%x)",
2775 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2776 ~EXT4_FEATURE_INCOMPAT_SUPP));
2777 return 0;
2780 if (readonly)
2781 return 1;
2783 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2784 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2785 sb->s_flags |= MS_RDONLY;
2786 return 1;
2789 /* Check that feature set is OK for a read-write mount */
2790 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2791 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2792 "unsupported optional features (%x)",
2793 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2794 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2795 return 0;
2798 * Large file size enabled file system can only be mounted
2799 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2801 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2802 if (sizeof(blkcnt_t) < sizeof(u64)) {
2803 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2804 "cannot be mounted RDWR without "
2805 "CONFIG_LBDAF");
2806 return 0;
2809 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2810 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2811 ext4_msg(sb, KERN_ERR,
2812 "Can't support bigalloc feature without "
2813 "extents feature\n");
2814 return 0;
2817 #ifndef CONFIG_QUOTA
2818 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2819 !readonly) {
2820 ext4_msg(sb, KERN_ERR,
2821 "Filesystem with quota feature cannot be mounted RDWR "
2822 "without CONFIG_QUOTA");
2823 return 0;
2825 #endif /* CONFIG_QUOTA */
2826 return 1;
2830 * This function is called once a day if we have errors logged
2831 * on the file system
2833 static void print_daily_error_info(unsigned long arg)
2835 struct super_block *sb = (struct super_block *) arg;
2836 struct ext4_sb_info *sbi;
2837 struct ext4_super_block *es;
2839 sbi = EXT4_SB(sb);
2840 es = sbi->s_es;
2842 if (es->s_error_count)
2843 /* fsck newer than v1.41.13 is needed to clean this condition. */
2844 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2845 le32_to_cpu(es->s_error_count));
2846 if (es->s_first_error_time) {
2847 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2848 sb->s_id, le32_to_cpu(es->s_first_error_time),
2849 (int) sizeof(es->s_first_error_func),
2850 es->s_first_error_func,
2851 le32_to_cpu(es->s_first_error_line));
2852 if (es->s_first_error_ino)
2853 printk(": inode %u",
2854 le32_to_cpu(es->s_first_error_ino));
2855 if (es->s_first_error_block)
2856 printk(": block %llu", (unsigned long long)
2857 le64_to_cpu(es->s_first_error_block));
2858 printk("\n");
2860 if (es->s_last_error_time) {
2861 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2862 sb->s_id, le32_to_cpu(es->s_last_error_time),
2863 (int) sizeof(es->s_last_error_func),
2864 es->s_last_error_func,
2865 le32_to_cpu(es->s_last_error_line));
2866 if (es->s_last_error_ino)
2867 printk(": inode %u",
2868 le32_to_cpu(es->s_last_error_ino));
2869 if (es->s_last_error_block)
2870 printk(": block %llu", (unsigned long long)
2871 le64_to_cpu(es->s_last_error_block));
2872 printk("\n");
2874 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2877 /* Find next suitable group and run ext4_init_inode_table */
2878 static int ext4_run_li_request(struct ext4_li_request *elr)
2880 struct ext4_group_desc *gdp = NULL;
2881 ext4_group_t group, ngroups;
2882 struct super_block *sb;
2883 unsigned long timeout = 0;
2884 int ret = 0;
2886 sb = elr->lr_super;
2887 ngroups = EXT4_SB(sb)->s_groups_count;
2889 sb_start_write(sb);
2890 for (group = elr->lr_next_group; group < ngroups; group++) {
2891 gdp = ext4_get_group_desc(sb, group, NULL);
2892 if (!gdp) {
2893 ret = 1;
2894 break;
2897 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2898 break;
2901 if (group >= ngroups)
2902 ret = 1;
2904 if (!ret) {
2905 timeout = jiffies;
2906 ret = ext4_init_inode_table(sb, group,
2907 elr->lr_timeout ? 0 : 1);
2908 if (elr->lr_timeout == 0) {
2909 timeout = (jiffies - timeout) *
2910 elr->lr_sbi->s_li_wait_mult;
2911 elr->lr_timeout = timeout;
2913 elr->lr_next_sched = jiffies + elr->lr_timeout;
2914 elr->lr_next_group = group + 1;
2916 sb_end_write(sb);
2918 return ret;
2922 * Remove lr_request from the list_request and free the
2923 * request structure. Should be called with li_list_mtx held
2925 static void ext4_remove_li_request(struct ext4_li_request *elr)
2927 struct ext4_sb_info *sbi;
2929 if (!elr)
2930 return;
2932 sbi = elr->lr_sbi;
2934 list_del(&elr->lr_request);
2935 sbi->s_li_request = NULL;
2936 kfree(elr);
2939 static void ext4_unregister_li_request(struct super_block *sb)
2941 mutex_lock(&ext4_li_mtx);
2942 if (!ext4_li_info) {
2943 mutex_unlock(&ext4_li_mtx);
2944 return;
2947 mutex_lock(&ext4_li_info->li_list_mtx);
2948 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2949 mutex_unlock(&ext4_li_info->li_list_mtx);
2950 mutex_unlock(&ext4_li_mtx);
2953 static struct task_struct *ext4_lazyinit_task;
2956 * This is the function where ext4lazyinit thread lives. It walks
2957 * through the request list searching for next scheduled filesystem.
2958 * When such a fs is found, run the lazy initialization request
2959 * (ext4_rn_li_request) and keep track of the time spend in this
2960 * function. Based on that time we compute next schedule time of
2961 * the request. When walking through the list is complete, compute
2962 * next waking time and put itself into sleep.
2964 static int ext4_lazyinit_thread(void *arg)
2966 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2967 struct list_head *pos, *n;
2968 struct ext4_li_request *elr;
2969 unsigned long next_wakeup, cur;
2971 BUG_ON(NULL == eli);
2973 cont_thread:
2974 while (true) {
2975 next_wakeup = MAX_JIFFY_OFFSET;
2977 mutex_lock(&eli->li_list_mtx);
2978 if (list_empty(&eli->li_request_list)) {
2979 mutex_unlock(&eli->li_list_mtx);
2980 goto exit_thread;
2983 list_for_each_safe(pos, n, &eli->li_request_list) {
2984 elr = list_entry(pos, struct ext4_li_request,
2985 lr_request);
2987 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2988 if (ext4_run_li_request(elr) != 0) {
2989 /* error, remove the lazy_init job */
2990 ext4_remove_li_request(elr);
2991 continue;
2995 if (time_before(elr->lr_next_sched, next_wakeup))
2996 next_wakeup = elr->lr_next_sched;
2998 mutex_unlock(&eli->li_list_mtx);
3000 try_to_freeze();
3002 cur = jiffies;
3003 if ((time_after_eq(cur, next_wakeup)) ||
3004 (MAX_JIFFY_OFFSET == next_wakeup)) {
3005 cond_resched();
3006 continue;
3009 schedule_timeout_interruptible(next_wakeup - cur);
3011 if (kthread_should_stop()) {
3012 ext4_clear_request_list();
3013 goto exit_thread;
3017 exit_thread:
3019 * It looks like the request list is empty, but we need
3020 * to check it under the li_list_mtx lock, to prevent any
3021 * additions into it, and of course we should lock ext4_li_mtx
3022 * to atomically free the list and ext4_li_info, because at
3023 * this point another ext4 filesystem could be registering
3024 * new one.
3026 mutex_lock(&ext4_li_mtx);
3027 mutex_lock(&eli->li_list_mtx);
3028 if (!list_empty(&eli->li_request_list)) {
3029 mutex_unlock(&eli->li_list_mtx);
3030 mutex_unlock(&ext4_li_mtx);
3031 goto cont_thread;
3033 mutex_unlock(&eli->li_list_mtx);
3034 kfree(ext4_li_info);
3035 ext4_li_info = NULL;
3036 mutex_unlock(&ext4_li_mtx);
3038 return 0;
3041 static void ext4_clear_request_list(void)
3043 struct list_head *pos, *n;
3044 struct ext4_li_request *elr;
3046 mutex_lock(&ext4_li_info->li_list_mtx);
3047 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3048 elr = list_entry(pos, struct ext4_li_request,
3049 lr_request);
3050 ext4_remove_li_request(elr);
3052 mutex_unlock(&ext4_li_info->li_list_mtx);
3055 static int ext4_run_lazyinit_thread(void)
3057 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3058 ext4_li_info, "ext4lazyinit");
3059 if (IS_ERR(ext4_lazyinit_task)) {
3060 int err = PTR_ERR(ext4_lazyinit_task);
3061 ext4_clear_request_list();
3062 kfree(ext4_li_info);
3063 ext4_li_info = NULL;
3064 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3065 "initialization thread\n",
3066 err);
3067 return err;
3069 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3070 return 0;
3074 * Check whether it make sense to run itable init. thread or not.
3075 * If there is at least one uninitialized inode table, return
3076 * corresponding group number, else the loop goes through all
3077 * groups and return total number of groups.
3079 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3081 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3082 struct ext4_group_desc *gdp = NULL;
3084 for (group = 0; group < ngroups; group++) {
3085 gdp = ext4_get_group_desc(sb, group, NULL);
3086 if (!gdp)
3087 continue;
3089 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3090 break;
3093 return group;
3096 static int ext4_li_info_new(void)
3098 struct ext4_lazy_init *eli = NULL;
3100 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3101 if (!eli)
3102 return -ENOMEM;
3104 INIT_LIST_HEAD(&eli->li_request_list);
3105 mutex_init(&eli->li_list_mtx);
3107 eli->li_state |= EXT4_LAZYINIT_QUIT;
3109 ext4_li_info = eli;
3111 return 0;
3114 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3115 ext4_group_t start)
3117 struct ext4_sb_info *sbi = EXT4_SB(sb);
3118 struct ext4_li_request *elr;
3120 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3121 if (!elr)
3122 return NULL;
3124 elr->lr_super = sb;
3125 elr->lr_sbi = sbi;
3126 elr->lr_next_group = start;
3129 * Randomize first schedule time of the request to
3130 * spread the inode table initialization requests
3131 * better.
3133 elr->lr_next_sched = jiffies + (prandom_u32() %
3134 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3135 return elr;
3138 int ext4_register_li_request(struct super_block *sb,
3139 ext4_group_t first_not_zeroed)
3141 struct ext4_sb_info *sbi = EXT4_SB(sb);
3142 struct ext4_li_request *elr = NULL;
3143 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3144 int ret = 0;
3146 mutex_lock(&ext4_li_mtx);
3147 if (sbi->s_li_request != NULL) {
3149 * Reset timeout so it can be computed again, because
3150 * s_li_wait_mult might have changed.
3152 sbi->s_li_request->lr_timeout = 0;
3153 goto out;
3156 if (first_not_zeroed == ngroups ||
3157 (sb->s_flags & MS_RDONLY) ||
3158 !test_opt(sb, INIT_INODE_TABLE))
3159 goto out;
3161 elr = ext4_li_request_new(sb, first_not_zeroed);
3162 if (!elr) {
3163 ret = -ENOMEM;
3164 goto out;
3167 if (NULL == ext4_li_info) {
3168 ret = ext4_li_info_new();
3169 if (ret)
3170 goto out;
3173 mutex_lock(&ext4_li_info->li_list_mtx);
3174 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3175 mutex_unlock(&ext4_li_info->li_list_mtx);
3177 sbi->s_li_request = elr;
3179 * set elr to NULL here since it has been inserted to
3180 * the request_list and the removal and free of it is
3181 * handled by ext4_clear_request_list from now on.
3183 elr = NULL;
3185 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3186 ret = ext4_run_lazyinit_thread();
3187 if (ret)
3188 goto out;
3190 out:
3191 mutex_unlock(&ext4_li_mtx);
3192 if (ret)
3193 kfree(elr);
3194 return ret;
3198 * We do not need to lock anything since this is called on
3199 * module unload.
3201 static void ext4_destroy_lazyinit_thread(void)
3204 * If thread exited earlier
3205 * there's nothing to be done.
3207 if (!ext4_li_info || !ext4_lazyinit_task)
3208 return;
3210 kthread_stop(ext4_lazyinit_task);
3213 static int set_journal_csum_feature_set(struct super_block *sb)
3215 int ret = 1;
3216 int compat, incompat;
3217 struct ext4_sb_info *sbi = EXT4_SB(sb);
3219 if (ext4_has_metadata_csum(sb)) {
3220 /* journal checksum v3 */
3221 compat = 0;
3222 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3223 } else {
3224 /* journal checksum v1 */
3225 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3226 incompat = 0;
3229 jbd2_journal_clear_features(sbi->s_journal,
3230 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3231 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3232 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3233 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3234 ret = jbd2_journal_set_features(sbi->s_journal,
3235 compat, 0,
3236 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3237 incompat);
3238 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3239 ret = jbd2_journal_set_features(sbi->s_journal,
3240 compat, 0,
3241 incompat);
3242 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3243 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3244 } else {
3245 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3246 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3249 return ret;
3253 * Note: calculating the overhead so we can be compatible with
3254 * historical BSD practice is quite difficult in the face of
3255 * clusters/bigalloc. This is because multiple metadata blocks from
3256 * different block group can end up in the same allocation cluster.
3257 * Calculating the exact overhead in the face of clustered allocation
3258 * requires either O(all block bitmaps) in memory or O(number of block
3259 * groups**2) in time. We will still calculate the superblock for
3260 * older file systems --- and if we come across with a bigalloc file
3261 * system with zero in s_overhead_clusters the estimate will be close to
3262 * correct especially for very large cluster sizes --- but for newer
3263 * file systems, it's better to calculate this figure once at mkfs
3264 * time, and store it in the superblock. If the superblock value is
3265 * present (even for non-bigalloc file systems), we will use it.
3267 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3268 char *buf)
3270 struct ext4_sb_info *sbi = EXT4_SB(sb);
3271 struct ext4_group_desc *gdp;
3272 ext4_fsblk_t first_block, last_block, b;
3273 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3274 int s, j, count = 0;
3276 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3277 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3278 sbi->s_itb_per_group + 2);
3280 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3281 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3282 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3283 for (i = 0; i < ngroups; i++) {
3284 gdp = ext4_get_group_desc(sb, i, NULL);
3285 b = ext4_block_bitmap(sb, gdp);
3286 if (b >= first_block && b <= last_block) {
3287 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3288 count++;
3290 b = ext4_inode_bitmap(sb, gdp);
3291 if (b >= first_block && b <= last_block) {
3292 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3293 count++;
3295 b = ext4_inode_table(sb, gdp);
3296 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3297 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3298 int c = EXT4_B2C(sbi, b - first_block);
3299 ext4_set_bit(c, buf);
3300 count++;
3302 if (i != grp)
3303 continue;
3304 s = 0;
3305 if (ext4_bg_has_super(sb, grp)) {
3306 ext4_set_bit(s++, buf);
3307 count++;
3309 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3310 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3311 count++;
3314 if (!count)
3315 return 0;
3316 return EXT4_CLUSTERS_PER_GROUP(sb) -
3317 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3321 * Compute the overhead and stash it in sbi->s_overhead
3323 int ext4_calculate_overhead(struct super_block *sb)
3325 struct ext4_sb_info *sbi = EXT4_SB(sb);
3326 struct ext4_super_block *es = sbi->s_es;
3327 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3328 ext4_fsblk_t overhead = 0;
3329 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3331 if (!buf)
3332 return -ENOMEM;
3335 * Compute the overhead (FS structures). This is constant
3336 * for a given filesystem unless the number of block groups
3337 * changes so we cache the previous value until it does.
3341 * All of the blocks before first_data_block are overhead
3343 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3346 * Add the overhead found in each block group
3348 for (i = 0; i < ngroups; i++) {
3349 int blks;
3351 blks = count_overhead(sb, i, buf);
3352 overhead += blks;
3353 if (blks)
3354 memset(buf, 0, PAGE_SIZE);
3355 cond_resched();
3357 /* Add the internal journal blocks as well */
3358 if (sbi->s_journal && !sbi->journal_bdev)
3359 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3361 sbi->s_overhead = overhead;
3362 smp_wmb();
3363 free_page((unsigned long) buf);
3364 return 0;
3368 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3370 ext4_fsblk_t resv_clusters;
3373 * There's no need to reserve anything when we aren't using extents.
3374 * The space estimates are exact, there are no unwritten extents,
3375 * hole punching doesn't need new metadata... This is needed especially
3376 * to keep ext2/3 backward compatibility.
3378 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3379 return 0;
3381 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3382 * This should cover the situations where we can not afford to run
3383 * out of space like for example punch hole, or converting
3384 * unwritten extents in delalloc path. In most cases such
3385 * allocation would require 1, or 2 blocks, higher numbers are
3386 * very rare.
3388 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3389 EXT4_SB(sb)->s_cluster_bits;
3391 do_div(resv_clusters, 50);
3392 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3394 return resv_clusters;
3398 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3400 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3401 sbi->s_cluster_bits;
3403 if (count >= clusters)
3404 return -EINVAL;
3406 atomic64_set(&sbi->s_resv_clusters, count);
3407 return 0;
3410 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3412 char *orig_data = kstrdup(data, GFP_KERNEL);
3413 struct buffer_head *bh;
3414 struct ext4_super_block *es = NULL;
3415 struct ext4_sb_info *sbi;
3416 ext4_fsblk_t block;
3417 ext4_fsblk_t sb_block = get_sb_block(&data);
3418 ext4_fsblk_t logical_sb_block;
3419 unsigned long offset = 0;
3420 unsigned long journal_devnum = 0;
3421 unsigned long def_mount_opts;
3422 struct inode *root;
3423 char *cp;
3424 const char *descr;
3425 int ret = -ENOMEM;
3426 int blocksize, clustersize;
3427 unsigned int db_count;
3428 unsigned int i;
3429 int needs_recovery, has_huge_files, has_bigalloc;
3430 __u64 blocks_count;
3431 int err = 0;
3432 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3433 ext4_group_t first_not_zeroed;
3435 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3436 if (!sbi)
3437 goto out_free_orig;
3439 sbi->s_blockgroup_lock =
3440 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3441 if (!sbi->s_blockgroup_lock) {
3442 kfree(sbi);
3443 goto out_free_orig;
3445 sb->s_fs_info = sbi;
3446 sbi->s_sb = sb;
3447 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3448 sbi->s_sb_block = sb_block;
3449 if (sb->s_bdev->bd_part)
3450 sbi->s_sectors_written_start =
3451 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3452 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3453 /* Modes of operations for file and directory encryption. */
3454 sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
3455 sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID;
3456 #endif
3458 /* Cleanup superblock name */
3459 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3460 *cp = '!';
3462 /* -EINVAL is default */
3463 ret = -EINVAL;
3464 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3465 if (!blocksize) {
3466 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3467 goto out_fail;
3471 * The ext4 superblock will not be buffer aligned for other than 1kB
3472 * block sizes. We need to calculate the offset from buffer start.
3474 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3475 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3476 offset = do_div(logical_sb_block, blocksize);
3477 } else {
3478 logical_sb_block = sb_block;
3481 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3482 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3483 goto out_fail;
3486 * Note: s_es must be initialized as soon as possible because
3487 * some ext4 macro-instructions depend on its value
3489 es = (struct ext4_super_block *) (bh->b_data + offset);
3490 sbi->s_es = es;
3491 sb->s_magic = le16_to_cpu(es->s_magic);
3492 if (sb->s_magic != EXT4_SUPER_MAGIC)
3493 goto cantfind_ext4;
3494 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3496 /* Warn if metadata_csum and gdt_csum are both set. */
3497 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3498 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3499 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3500 ext4_warning(sb, "metadata_csum and uninit_bg are "
3501 "redundant flags; please run fsck.");
3503 /* Check for a known checksum algorithm */
3504 if (!ext4_verify_csum_type(sb, es)) {
3505 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3506 "unknown checksum algorithm.");
3507 silent = 1;
3508 goto cantfind_ext4;
3511 /* Load the checksum driver */
3512 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3513 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3514 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3515 if (IS_ERR(sbi->s_chksum_driver)) {
3516 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3517 ret = PTR_ERR(sbi->s_chksum_driver);
3518 sbi->s_chksum_driver = NULL;
3519 goto failed_mount;
3523 /* Check superblock checksum */
3524 if (!ext4_superblock_csum_verify(sb, es)) {
3525 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3526 "invalid superblock checksum. Run e2fsck?");
3527 silent = 1;
3528 goto cantfind_ext4;
3531 /* Precompute checksum seed for all metadata */
3532 if (ext4_has_metadata_csum(sb))
3533 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3534 sizeof(es->s_uuid));
3536 /* Set defaults before we parse the mount options */
3537 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3538 set_opt(sb, INIT_INODE_TABLE);
3539 if (def_mount_opts & EXT4_DEFM_DEBUG)
3540 set_opt(sb, DEBUG);
3541 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3542 set_opt(sb, GRPID);
3543 if (def_mount_opts & EXT4_DEFM_UID16)
3544 set_opt(sb, NO_UID32);
3545 /* xattr user namespace & acls are now defaulted on */
3546 set_opt(sb, XATTR_USER);
3547 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3548 set_opt(sb, POSIX_ACL);
3549 #endif
3550 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3551 if (ext4_has_metadata_csum(sb))
3552 set_opt(sb, JOURNAL_CHECKSUM);
3554 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3555 set_opt(sb, JOURNAL_DATA);
3556 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3557 set_opt(sb, ORDERED_DATA);
3558 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3559 set_opt(sb, WRITEBACK_DATA);
3561 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3562 set_opt(sb, ERRORS_PANIC);
3563 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3564 set_opt(sb, ERRORS_CONT);
3565 else
3566 set_opt(sb, ERRORS_RO);
3567 /* block_validity enabled by default; disable with noblock_validity */
3568 set_opt(sb, BLOCK_VALIDITY);
3569 if (def_mount_opts & EXT4_DEFM_DISCARD)
3570 set_opt(sb, DISCARD);
3572 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3573 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3574 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3575 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3576 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3578 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3579 set_opt(sb, BARRIER);
3582 * enable delayed allocation by default
3583 * Use -o nodelalloc to turn it off
3585 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3586 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3587 set_opt(sb, DELALLOC);
3590 * set default s_li_wait_mult for lazyinit, for the case there is
3591 * no mount option specified.
3593 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3595 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3596 &journal_devnum, &journal_ioprio, 0)) {
3597 ext4_msg(sb, KERN_WARNING,
3598 "failed to parse options in superblock: %s",
3599 sbi->s_es->s_mount_opts);
3601 sbi->s_def_mount_opt = sbi->s_mount_opt;
3602 if (!parse_options((char *) data, sb, &journal_devnum,
3603 &journal_ioprio, 0))
3604 goto failed_mount;
3606 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3607 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3608 "with data=journal disables delayed "
3609 "allocation and O_DIRECT support!\n");
3610 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3611 ext4_msg(sb, KERN_ERR, "can't mount with "
3612 "both data=journal and delalloc");
3613 goto failed_mount;
3615 if (test_opt(sb, DIOREAD_NOLOCK)) {
3616 ext4_msg(sb, KERN_ERR, "can't mount with "
3617 "both data=journal and dioread_nolock");
3618 goto failed_mount;
3620 if (test_opt(sb, DAX)) {
3621 ext4_msg(sb, KERN_ERR, "can't mount with "
3622 "both data=journal and dax");
3623 goto failed_mount;
3625 if (test_opt(sb, DELALLOC))
3626 clear_opt(sb, DELALLOC);
3629 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3630 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3632 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3633 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3634 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3635 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3636 ext4_msg(sb, KERN_WARNING,
3637 "feature flags set on rev 0 fs, "
3638 "running e2fsck is recommended");
3640 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3641 set_opt2(sb, HURD_COMPAT);
3642 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3643 EXT4_FEATURE_INCOMPAT_64BIT)) {
3644 ext4_msg(sb, KERN_ERR,
3645 "The Hurd can't support 64-bit file systems");
3646 goto failed_mount;
3650 if (IS_EXT2_SB(sb)) {
3651 if (ext2_feature_set_ok(sb))
3652 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3653 "using the ext4 subsystem");
3654 else {
3655 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3656 "to feature incompatibilities");
3657 goto failed_mount;
3661 if (IS_EXT3_SB(sb)) {
3662 if (ext3_feature_set_ok(sb))
3663 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3664 "using the ext4 subsystem");
3665 else {
3666 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3667 "to feature incompatibilities");
3668 goto failed_mount;
3673 * Check feature flags regardless of the revision level, since we
3674 * previously didn't change the revision level when setting the flags,
3675 * so there is a chance incompat flags are set on a rev 0 filesystem.
3677 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3678 goto failed_mount;
3680 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3681 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3682 blocksize > EXT4_MAX_BLOCK_SIZE) {
3683 ext4_msg(sb, KERN_ERR,
3684 "Unsupported filesystem blocksize %d", blocksize);
3685 goto failed_mount;
3688 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3689 if (blocksize != PAGE_SIZE) {
3690 ext4_msg(sb, KERN_ERR,
3691 "error: unsupported blocksize for dax");
3692 goto failed_mount;
3694 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3695 ext4_msg(sb, KERN_ERR,
3696 "error: device does not support dax");
3697 goto failed_mount;
3701 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3702 es->s_encryption_level) {
3703 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3704 es->s_encryption_level);
3705 goto failed_mount;
3708 if (sb->s_blocksize != blocksize) {
3709 /* Validate the filesystem blocksize */
3710 if (!sb_set_blocksize(sb, blocksize)) {
3711 ext4_msg(sb, KERN_ERR, "bad block size %d",
3712 blocksize);
3713 goto failed_mount;
3716 brelse(bh);
3717 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3718 offset = do_div(logical_sb_block, blocksize);
3719 bh = sb_bread_unmovable(sb, logical_sb_block);
3720 if (!bh) {
3721 ext4_msg(sb, KERN_ERR,
3722 "Can't read superblock on 2nd try");
3723 goto failed_mount;
3725 es = (struct ext4_super_block *)(bh->b_data + offset);
3726 sbi->s_es = es;
3727 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3728 ext4_msg(sb, KERN_ERR,
3729 "Magic mismatch, very weird!");
3730 goto failed_mount;
3734 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3735 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3736 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3737 has_huge_files);
3738 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3740 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3741 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3742 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3743 } else {
3744 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3745 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3746 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3747 (!is_power_of_2(sbi->s_inode_size)) ||
3748 (sbi->s_inode_size > blocksize)) {
3749 ext4_msg(sb, KERN_ERR,
3750 "unsupported inode size: %d",
3751 sbi->s_inode_size);
3752 goto failed_mount;
3754 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3755 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3758 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3759 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3760 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3761 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3762 !is_power_of_2(sbi->s_desc_size)) {
3763 ext4_msg(sb, KERN_ERR,
3764 "unsupported descriptor size %lu",
3765 sbi->s_desc_size);
3766 goto failed_mount;
3768 } else
3769 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3771 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3772 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3773 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3774 goto cantfind_ext4;
3776 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3777 if (sbi->s_inodes_per_block == 0)
3778 goto cantfind_ext4;
3779 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3780 sbi->s_inodes_per_block;
3781 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3782 sbi->s_sbh = bh;
3783 sbi->s_mount_state = le16_to_cpu(es->s_state);
3784 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3785 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3787 for (i = 0; i < 4; i++)
3788 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3789 sbi->s_def_hash_version = es->s_def_hash_version;
3790 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3791 i = le32_to_cpu(es->s_flags);
3792 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3793 sbi->s_hash_unsigned = 3;
3794 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3795 #ifdef __CHAR_UNSIGNED__
3796 if (!(sb->s_flags & MS_RDONLY))
3797 es->s_flags |=
3798 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3799 sbi->s_hash_unsigned = 3;
3800 #else
3801 if (!(sb->s_flags & MS_RDONLY))
3802 es->s_flags |=
3803 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3804 #endif
3808 /* Handle clustersize */
3809 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3810 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3811 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3812 if (has_bigalloc) {
3813 if (clustersize < blocksize) {
3814 ext4_msg(sb, KERN_ERR,
3815 "cluster size (%d) smaller than "
3816 "block size (%d)", clustersize, blocksize);
3817 goto failed_mount;
3819 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3820 le32_to_cpu(es->s_log_block_size);
3821 sbi->s_clusters_per_group =
3822 le32_to_cpu(es->s_clusters_per_group);
3823 if (sbi->s_clusters_per_group > blocksize * 8) {
3824 ext4_msg(sb, KERN_ERR,
3825 "#clusters per group too big: %lu",
3826 sbi->s_clusters_per_group);
3827 goto failed_mount;
3829 if (sbi->s_blocks_per_group !=
3830 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3831 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3832 "clusters per group (%lu) inconsistent",
3833 sbi->s_blocks_per_group,
3834 sbi->s_clusters_per_group);
3835 goto failed_mount;
3837 } else {
3838 if (clustersize != blocksize) {
3839 ext4_warning(sb, "fragment/cluster size (%d) != "
3840 "block size (%d)", clustersize,
3841 blocksize);
3842 clustersize = blocksize;
3844 if (sbi->s_blocks_per_group > blocksize * 8) {
3845 ext4_msg(sb, KERN_ERR,
3846 "#blocks per group too big: %lu",
3847 sbi->s_blocks_per_group);
3848 goto failed_mount;
3850 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3851 sbi->s_cluster_bits = 0;
3853 sbi->s_cluster_ratio = clustersize / blocksize;
3855 if (sbi->s_inodes_per_group > blocksize * 8) {
3856 ext4_msg(sb, KERN_ERR,
3857 "#inodes per group too big: %lu",
3858 sbi->s_inodes_per_group);
3859 goto failed_mount;
3862 /* Do we have standard group size of clustersize * 8 blocks ? */
3863 if (sbi->s_blocks_per_group == clustersize << 3)
3864 set_opt2(sb, STD_GROUP_SIZE);
3867 * Test whether we have more sectors than will fit in sector_t,
3868 * and whether the max offset is addressable by the page cache.
3870 err = generic_check_addressable(sb->s_blocksize_bits,
3871 ext4_blocks_count(es));
3872 if (err) {
3873 ext4_msg(sb, KERN_ERR, "filesystem"
3874 " too large to mount safely on this system");
3875 if (sizeof(sector_t) < 8)
3876 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3877 goto failed_mount;
3880 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3881 goto cantfind_ext4;
3883 /* check blocks count against device size */
3884 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3885 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3886 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3887 "exceeds size of device (%llu blocks)",
3888 ext4_blocks_count(es), blocks_count);
3889 goto failed_mount;
3893 * It makes no sense for the first data block to be beyond the end
3894 * of the filesystem.
3896 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3897 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3898 "block %u is beyond end of filesystem (%llu)",
3899 le32_to_cpu(es->s_first_data_block),
3900 ext4_blocks_count(es));
3901 goto failed_mount;
3903 blocks_count = (ext4_blocks_count(es) -
3904 le32_to_cpu(es->s_first_data_block) +
3905 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3906 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3907 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3908 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3909 "(block count %llu, first data block %u, "
3910 "blocks per group %lu)", sbi->s_groups_count,
3911 ext4_blocks_count(es),
3912 le32_to_cpu(es->s_first_data_block),
3913 EXT4_BLOCKS_PER_GROUP(sb));
3914 goto failed_mount;
3916 sbi->s_groups_count = blocks_count;
3917 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3918 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3919 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3920 EXT4_DESC_PER_BLOCK(sb);
3921 sbi->s_group_desc = ext4_kvmalloc(db_count *
3922 sizeof(struct buffer_head *),
3923 GFP_KERNEL);
3924 if (sbi->s_group_desc == NULL) {
3925 ext4_msg(sb, KERN_ERR, "not enough memory");
3926 ret = -ENOMEM;
3927 goto failed_mount;
3930 if (ext4_proc_root)
3931 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3933 if (sbi->s_proc)
3934 proc_create_data("options", S_IRUGO, sbi->s_proc,
3935 &ext4_seq_options_fops, sb);
3937 bgl_lock_init(sbi->s_blockgroup_lock);
3939 for (i = 0; i < db_count; i++) {
3940 block = descriptor_loc(sb, logical_sb_block, i);
3941 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3942 if (!sbi->s_group_desc[i]) {
3943 ext4_msg(sb, KERN_ERR,
3944 "can't read group descriptor %d", i);
3945 db_count = i;
3946 goto failed_mount2;
3949 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3950 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3951 goto failed_mount2;
3954 sbi->s_gdb_count = db_count;
3955 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3956 spin_lock_init(&sbi->s_next_gen_lock);
3958 setup_timer(&sbi->s_err_report, print_daily_error_info,
3959 (unsigned long) sb);
3961 /* Register extent status tree shrinker */
3962 if (ext4_es_register_shrinker(sbi))
3963 goto failed_mount3;
3965 sbi->s_stripe = ext4_get_stripe_size(sbi);
3966 sbi->s_extent_max_zeroout_kb = 32;
3969 * set up enough so that it can read an inode
3971 sb->s_op = &ext4_sops;
3972 sb->s_export_op = &ext4_export_ops;
3973 sb->s_xattr = ext4_xattr_handlers;
3974 #ifdef CONFIG_QUOTA
3975 sb->dq_op = &ext4_quota_operations;
3976 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3977 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3978 else
3979 sb->s_qcop = &ext4_qctl_operations;
3980 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3981 #endif
3982 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3984 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3985 mutex_init(&sbi->s_orphan_lock);
3987 sb->s_root = NULL;
3989 needs_recovery = (es->s_last_orphan != 0 ||
3990 EXT4_HAS_INCOMPAT_FEATURE(sb,
3991 EXT4_FEATURE_INCOMPAT_RECOVER));
3993 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3994 !(sb->s_flags & MS_RDONLY))
3995 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3996 goto failed_mount3a;
3999 * The first inode we look at is the journal inode. Don't try
4000 * root first: it may be modified in the journal!
4002 if (!test_opt(sb, NOLOAD) &&
4003 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4004 if (ext4_load_journal(sb, es, journal_devnum))
4005 goto failed_mount3a;
4006 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4007 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4008 ext4_msg(sb, KERN_ERR, "required journal recovery "
4009 "suppressed and not mounted read-only");
4010 goto failed_mount_wq;
4011 } else {
4012 clear_opt(sb, DATA_FLAGS);
4013 sbi->s_journal = NULL;
4014 needs_recovery = 0;
4015 goto no_journal;
4018 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4019 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4020 JBD2_FEATURE_INCOMPAT_64BIT)) {
4021 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4022 goto failed_mount_wq;
4025 if (!set_journal_csum_feature_set(sb)) {
4026 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4027 "feature set");
4028 goto failed_mount_wq;
4031 /* We have now updated the journal if required, so we can
4032 * validate the data journaling mode. */
4033 switch (test_opt(sb, DATA_FLAGS)) {
4034 case 0:
4035 /* No mode set, assume a default based on the journal
4036 * capabilities: ORDERED_DATA if the journal can
4037 * cope, else JOURNAL_DATA
4039 if (jbd2_journal_check_available_features
4040 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4041 set_opt(sb, ORDERED_DATA);
4042 else
4043 set_opt(sb, JOURNAL_DATA);
4044 break;
4046 case EXT4_MOUNT_ORDERED_DATA:
4047 case EXT4_MOUNT_WRITEBACK_DATA:
4048 if (!jbd2_journal_check_available_features
4049 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4050 ext4_msg(sb, KERN_ERR, "Journal does not support "
4051 "requested data journaling mode");
4052 goto failed_mount_wq;
4054 default:
4055 break;
4057 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4059 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4061 no_journal:
4062 if (ext4_mballoc_ready) {
4063 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4064 if (!sbi->s_mb_cache) {
4065 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4066 goto failed_mount_wq;
4070 if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) &&
4071 !(sb->s_flags & MS_RDONLY) &&
4072 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4073 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4074 ext4_commit_super(sb, 1);
4078 * Get the # of file system overhead blocks from the
4079 * superblock if present.
4081 if (es->s_overhead_clusters)
4082 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4083 else {
4084 err = ext4_calculate_overhead(sb);
4085 if (err)
4086 goto failed_mount_wq;
4090 * The maximum number of concurrent works can be high and
4091 * concurrency isn't really necessary. Limit it to 1.
4093 EXT4_SB(sb)->rsv_conversion_wq =
4094 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4095 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4096 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4097 ret = -ENOMEM;
4098 goto failed_mount4;
4102 * The jbd2_journal_load will have done any necessary log recovery,
4103 * so we can safely mount the rest of the filesystem now.
4106 root = ext4_iget(sb, EXT4_ROOT_INO);
4107 if (IS_ERR(root)) {
4108 ext4_msg(sb, KERN_ERR, "get root inode failed");
4109 ret = PTR_ERR(root);
4110 root = NULL;
4111 goto failed_mount4;
4113 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4114 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4115 iput(root);
4116 goto failed_mount4;
4118 sb->s_root = d_make_root(root);
4119 if (!sb->s_root) {
4120 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4121 ret = -ENOMEM;
4122 goto failed_mount4;
4125 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4126 sb->s_flags |= MS_RDONLY;
4128 /* determine the minimum size of new large inodes, if present */
4129 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4130 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4131 EXT4_GOOD_OLD_INODE_SIZE;
4132 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4133 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4134 if (sbi->s_want_extra_isize <
4135 le16_to_cpu(es->s_want_extra_isize))
4136 sbi->s_want_extra_isize =
4137 le16_to_cpu(es->s_want_extra_isize);
4138 if (sbi->s_want_extra_isize <
4139 le16_to_cpu(es->s_min_extra_isize))
4140 sbi->s_want_extra_isize =
4141 le16_to_cpu(es->s_min_extra_isize);
4144 /* Check if enough inode space is available */
4145 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4146 sbi->s_inode_size) {
4147 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4148 EXT4_GOOD_OLD_INODE_SIZE;
4149 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4150 "available");
4153 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4154 if (err) {
4155 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4156 "reserved pool", ext4_calculate_resv_clusters(sb));
4157 goto failed_mount4a;
4160 err = ext4_setup_system_zone(sb);
4161 if (err) {
4162 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4163 "zone (%d)", err);
4164 goto failed_mount4a;
4167 ext4_ext_init(sb);
4168 err = ext4_mb_init(sb);
4169 if (err) {
4170 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4171 err);
4172 goto failed_mount5;
4175 block = ext4_count_free_clusters(sb);
4176 ext4_free_blocks_count_set(sbi->s_es,
4177 EXT4_C2B(sbi, block));
4178 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4179 GFP_KERNEL);
4180 if (!err) {
4181 unsigned long freei = ext4_count_free_inodes(sb);
4182 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4183 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4184 GFP_KERNEL);
4186 if (!err)
4187 err = percpu_counter_init(&sbi->s_dirs_counter,
4188 ext4_count_dirs(sb), GFP_KERNEL);
4189 if (!err)
4190 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4191 GFP_KERNEL);
4192 if (err) {
4193 ext4_msg(sb, KERN_ERR, "insufficient memory");
4194 goto failed_mount6;
4197 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4198 if (!ext4_fill_flex_info(sb)) {
4199 ext4_msg(sb, KERN_ERR,
4200 "unable to initialize "
4201 "flex_bg meta info!");
4202 goto failed_mount6;
4205 err = ext4_register_li_request(sb, first_not_zeroed);
4206 if (err)
4207 goto failed_mount6;
4209 sbi->s_kobj.kset = ext4_kset;
4210 init_completion(&sbi->s_kobj_unregister);
4211 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4212 "%s", sb->s_id);
4213 if (err)
4214 goto failed_mount7;
4216 #ifdef CONFIG_QUOTA
4217 /* Enable quota usage during mount. */
4218 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4219 !(sb->s_flags & MS_RDONLY)) {
4220 err = ext4_enable_quotas(sb);
4221 if (err)
4222 goto failed_mount8;
4224 #endif /* CONFIG_QUOTA */
4226 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4227 ext4_orphan_cleanup(sb, es);
4228 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4229 if (needs_recovery) {
4230 ext4_msg(sb, KERN_INFO, "recovery complete");
4231 ext4_mark_recovery_complete(sb, es);
4233 if (EXT4_SB(sb)->s_journal) {
4234 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4235 descr = " journalled data mode";
4236 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4237 descr = " ordered data mode";
4238 else
4239 descr = " writeback data mode";
4240 } else
4241 descr = "out journal";
4243 if (test_opt(sb, DISCARD)) {
4244 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4245 if (!blk_queue_discard(q))
4246 ext4_msg(sb, KERN_WARNING,
4247 "mounting with \"discard\" option, but "
4248 "the device does not support discard");
4251 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4252 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4253 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4255 if (es->s_error_count)
4256 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4258 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4259 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4260 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4261 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4263 kfree(orig_data);
4264 return 0;
4266 cantfind_ext4:
4267 if (!silent)
4268 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4269 goto failed_mount;
4271 #ifdef CONFIG_QUOTA
4272 failed_mount8:
4273 kobject_del(&sbi->s_kobj);
4274 #endif
4275 failed_mount7:
4276 ext4_unregister_li_request(sb);
4277 failed_mount6:
4278 ext4_mb_release(sb);
4279 if (sbi->s_flex_groups)
4280 kvfree(sbi->s_flex_groups);
4281 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4282 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4283 percpu_counter_destroy(&sbi->s_dirs_counter);
4284 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4285 failed_mount5:
4286 ext4_ext_release(sb);
4287 ext4_release_system_zone(sb);
4288 failed_mount4a:
4289 dput(sb->s_root);
4290 sb->s_root = NULL;
4291 failed_mount4:
4292 ext4_msg(sb, KERN_ERR, "mount failed");
4293 if (EXT4_SB(sb)->rsv_conversion_wq)
4294 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4295 failed_mount_wq:
4296 if (sbi->s_journal) {
4297 jbd2_journal_destroy(sbi->s_journal);
4298 sbi->s_journal = NULL;
4300 failed_mount3a:
4301 ext4_es_unregister_shrinker(sbi);
4302 failed_mount3:
4303 del_timer_sync(&sbi->s_err_report);
4304 if (sbi->s_mmp_tsk)
4305 kthread_stop(sbi->s_mmp_tsk);
4306 failed_mount2:
4307 for (i = 0; i < db_count; i++)
4308 brelse(sbi->s_group_desc[i]);
4309 kvfree(sbi->s_group_desc);
4310 failed_mount:
4311 if (sbi->s_chksum_driver)
4312 crypto_free_shash(sbi->s_chksum_driver);
4313 if (sbi->s_proc) {
4314 remove_proc_entry("options", sbi->s_proc);
4315 remove_proc_entry(sb->s_id, ext4_proc_root);
4317 #ifdef CONFIG_QUOTA
4318 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4319 kfree(sbi->s_qf_names[i]);
4320 #endif
4321 ext4_blkdev_remove(sbi);
4322 brelse(bh);
4323 out_fail:
4324 sb->s_fs_info = NULL;
4325 kfree(sbi->s_blockgroup_lock);
4326 kfree(sbi);
4327 out_free_orig:
4328 kfree(orig_data);
4329 return err ? err : ret;
4333 * Setup any per-fs journal parameters now. We'll do this both on
4334 * initial mount, once the journal has been initialised but before we've
4335 * done any recovery; and again on any subsequent remount.
4337 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4339 struct ext4_sb_info *sbi = EXT4_SB(sb);
4341 journal->j_commit_interval = sbi->s_commit_interval;
4342 journal->j_min_batch_time = sbi->s_min_batch_time;
4343 journal->j_max_batch_time = sbi->s_max_batch_time;
4345 write_lock(&journal->j_state_lock);
4346 if (test_opt(sb, BARRIER))
4347 journal->j_flags |= JBD2_BARRIER;
4348 else
4349 journal->j_flags &= ~JBD2_BARRIER;
4350 if (test_opt(sb, DATA_ERR_ABORT))
4351 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4352 else
4353 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4354 write_unlock(&journal->j_state_lock);
4357 static journal_t *ext4_get_journal(struct super_block *sb,
4358 unsigned int journal_inum)
4360 struct inode *journal_inode;
4361 journal_t *journal;
4363 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4365 /* First, test for the existence of a valid inode on disk. Bad
4366 * things happen if we iget() an unused inode, as the subsequent
4367 * iput() will try to delete it. */
4369 journal_inode = ext4_iget(sb, journal_inum);
4370 if (IS_ERR(journal_inode)) {
4371 ext4_msg(sb, KERN_ERR, "no journal found");
4372 return NULL;
4374 if (!journal_inode->i_nlink) {
4375 make_bad_inode(journal_inode);
4376 iput(journal_inode);
4377 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4378 return NULL;
4381 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4382 journal_inode, journal_inode->i_size);
4383 if (!S_ISREG(journal_inode->i_mode)) {
4384 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4385 iput(journal_inode);
4386 return NULL;
4389 journal = jbd2_journal_init_inode(journal_inode);
4390 if (!journal) {
4391 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4392 iput(journal_inode);
4393 return NULL;
4395 journal->j_private = sb;
4396 ext4_init_journal_params(sb, journal);
4397 return journal;
4400 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4401 dev_t j_dev)
4403 struct buffer_head *bh;
4404 journal_t *journal;
4405 ext4_fsblk_t start;
4406 ext4_fsblk_t len;
4407 int hblock, blocksize;
4408 ext4_fsblk_t sb_block;
4409 unsigned long offset;
4410 struct ext4_super_block *es;
4411 struct block_device *bdev;
4413 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4415 bdev = ext4_blkdev_get(j_dev, sb);
4416 if (bdev == NULL)
4417 return NULL;
4419 blocksize = sb->s_blocksize;
4420 hblock = bdev_logical_block_size(bdev);
4421 if (blocksize < hblock) {
4422 ext4_msg(sb, KERN_ERR,
4423 "blocksize too small for journal device");
4424 goto out_bdev;
4427 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4428 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4429 set_blocksize(bdev, blocksize);
4430 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4431 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4432 "external journal");
4433 goto out_bdev;
4436 es = (struct ext4_super_block *) (bh->b_data + offset);
4437 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4438 !(le32_to_cpu(es->s_feature_incompat) &
4439 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4440 ext4_msg(sb, KERN_ERR, "external journal has "
4441 "bad superblock");
4442 brelse(bh);
4443 goto out_bdev;
4446 if ((le32_to_cpu(es->s_feature_ro_compat) &
4447 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4448 es->s_checksum != ext4_superblock_csum(sb, es)) {
4449 ext4_msg(sb, KERN_ERR, "external journal has "
4450 "corrupt superblock");
4451 brelse(bh);
4452 goto out_bdev;
4455 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4456 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4457 brelse(bh);
4458 goto out_bdev;
4461 len = ext4_blocks_count(es);
4462 start = sb_block + 1;
4463 brelse(bh); /* we're done with the superblock */
4465 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4466 start, len, blocksize);
4467 if (!journal) {
4468 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4469 goto out_bdev;
4471 journal->j_private = sb;
4472 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4473 wait_on_buffer(journal->j_sb_buffer);
4474 if (!buffer_uptodate(journal->j_sb_buffer)) {
4475 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4476 goto out_journal;
4478 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4479 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4480 "user (unsupported) - %d",
4481 be32_to_cpu(journal->j_superblock->s_nr_users));
4482 goto out_journal;
4484 EXT4_SB(sb)->journal_bdev = bdev;
4485 ext4_init_journal_params(sb, journal);
4486 return journal;
4488 out_journal:
4489 jbd2_journal_destroy(journal);
4490 out_bdev:
4491 ext4_blkdev_put(bdev);
4492 return NULL;
4495 static int ext4_load_journal(struct super_block *sb,
4496 struct ext4_super_block *es,
4497 unsigned long journal_devnum)
4499 journal_t *journal;
4500 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4501 dev_t journal_dev;
4502 int err = 0;
4503 int really_read_only;
4505 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4507 if (journal_devnum &&
4508 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4509 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4510 "numbers have changed");
4511 journal_dev = new_decode_dev(journal_devnum);
4512 } else
4513 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4515 really_read_only = bdev_read_only(sb->s_bdev);
4518 * Are we loading a blank journal or performing recovery after a
4519 * crash? For recovery, we need to check in advance whether we
4520 * can get read-write access to the device.
4522 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4523 if (sb->s_flags & MS_RDONLY) {
4524 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4525 "required on readonly filesystem");
4526 if (really_read_only) {
4527 ext4_msg(sb, KERN_ERR, "write access "
4528 "unavailable, cannot proceed");
4529 return -EROFS;
4531 ext4_msg(sb, KERN_INFO, "write access will "
4532 "be enabled during recovery");
4536 if (journal_inum && journal_dev) {
4537 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4538 "and inode journals!");
4539 return -EINVAL;
4542 if (journal_inum) {
4543 if (!(journal = ext4_get_journal(sb, journal_inum)))
4544 return -EINVAL;
4545 } else {
4546 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4547 return -EINVAL;
4550 if (!(journal->j_flags & JBD2_BARRIER))
4551 ext4_msg(sb, KERN_INFO, "barriers disabled");
4553 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4554 err = jbd2_journal_wipe(journal, !really_read_only);
4555 if (!err) {
4556 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4557 if (save)
4558 memcpy(save, ((char *) es) +
4559 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4560 err = jbd2_journal_load(journal);
4561 if (save)
4562 memcpy(((char *) es) + EXT4_S_ERR_START,
4563 save, EXT4_S_ERR_LEN);
4564 kfree(save);
4567 if (err) {
4568 ext4_msg(sb, KERN_ERR, "error loading journal");
4569 jbd2_journal_destroy(journal);
4570 return err;
4573 EXT4_SB(sb)->s_journal = journal;
4574 ext4_clear_journal_err(sb, es);
4576 if (!really_read_only && journal_devnum &&
4577 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4578 es->s_journal_dev = cpu_to_le32(journal_devnum);
4580 /* Make sure we flush the recovery flag to disk. */
4581 ext4_commit_super(sb, 1);
4584 return 0;
4587 static int ext4_commit_super(struct super_block *sb, int sync)
4589 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4590 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4591 int error = 0;
4593 if (!sbh)
4594 return error;
4595 if (buffer_write_io_error(sbh)) {
4597 * Oh, dear. A previous attempt to write the
4598 * superblock failed. This could happen because the
4599 * USB device was yanked out. Or it could happen to
4600 * be a transient write error and maybe the block will
4601 * be remapped. Nothing we can do but to retry the
4602 * write and hope for the best.
4604 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4605 "superblock detected");
4606 clear_buffer_write_io_error(sbh);
4607 set_buffer_uptodate(sbh);
4610 * If the file system is mounted read-only, don't update the
4611 * superblock write time. This avoids updating the superblock
4612 * write time when we are mounting the root file system
4613 * read/only but we need to replay the journal; at that point,
4614 * for people who are east of GMT and who make their clock
4615 * tick in localtime for Windows bug-for-bug compatibility,
4616 * the clock is set in the future, and this will cause e2fsck
4617 * to complain and force a full file system check.
4619 if (!(sb->s_flags & MS_RDONLY))
4620 es->s_wtime = cpu_to_le32(get_seconds());
4621 if (sb->s_bdev->bd_part)
4622 es->s_kbytes_written =
4623 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4624 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4625 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4626 else
4627 es->s_kbytes_written =
4628 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4629 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4630 ext4_free_blocks_count_set(es,
4631 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4632 &EXT4_SB(sb)->s_freeclusters_counter)));
4633 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4634 es->s_free_inodes_count =
4635 cpu_to_le32(percpu_counter_sum_positive(
4636 &EXT4_SB(sb)->s_freeinodes_counter));
4637 BUFFER_TRACE(sbh, "marking dirty");
4638 ext4_superblock_csum_set(sb);
4639 mark_buffer_dirty(sbh);
4640 if (sync) {
4641 error = sync_dirty_buffer(sbh);
4642 if (error)
4643 return error;
4645 error = buffer_write_io_error(sbh);
4646 if (error) {
4647 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4648 "superblock");
4649 clear_buffer_write_io_error(sbh);
4650 set_buffer_uptodate(sbh);
4653 return error;
4657 * Have we just finished recovery? If so, and if we are mounting (or
4658 * remounting) the filesystem readonly, then we will end up with a
4659 * consistent fs on disk. Record that fact.
4661 static void ext4_mark_recovery_complete(struct super_block *sb,
4662 struct ext4_super_block *es)
4664 journal_t *journal = EXT4_SB(sb)->s_journal;
4666 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4667 BUG_ON(journal != NULL);
4668 return;
4670 jbd2_journal_lock_updates(journal);
4671 if (jbd2_journal_flush(journal) < 0)
4672 goto out;
4674 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4675 sb->s_flags & MS_RDONLY) {
4676 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4677 ext4_commit_super(sb, 1);
4680 out:
4681 jbd2_journal_unlock_updates(journal);
4685 * If we are mounting (or read-write remounting) a filesystem whose journal
4686 * has recorded an error from a previous lifetime, move that error to the
4687 * main filesystem now.
4689 static void ext4_clear_journal_err(struct super_block *sb,
4690 struct ext4_super_block *es)
4692 journal_t *journal;
4693 int j_errno;
4694 const char *errstr;
4696 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4698 journal = EXT4_SB(sb)->s_journal;
4701 * Now check for any error status which may have been recorded in the
4702 * journal by a prior ext4_error() or ext4_abort()
4705 j_errno = jbd2_journal_errno(journal);
4706 if (j_errno) {
4707 char nbuf[16];
4709 errstr = ext4_decode_error(sb, j_errno, nbuf);
4710 ext4_warning(sb, "Filesystem error recorded "
4711 "from previous mount: %s", errstr);
4712 ext4_warning(sb, "Marking fs in need of filesystem check.");
4714 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4715 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4716 ext4_commit_super(sb, 1);
4718 jbd2_journal_clear_err(journal);
4719 jbd2_journal_update_sb_errno(journal);
4724 * Force the running and committing transactions to commit,
4725 * and wait on the commit.
4727 int ext4_force_commit(struct super_block *sb)
4729 journal_t *journal;
4731 if (sb->s_flags & MS_RDONLY)
4732 return 0;
4734 journal = EXT4_SB(sb)->s_journal;
4735 return ext4_journal_force_commit(journal);
4738 static int ext4_sync_fs(struct super_block *sb, int wait)
4740 int ret = 0;
4741 tid_t target;
4742 bool needs_barrier = false;
4743 struct ext4_sb_info *sbi = EXT4_SB(sb);
4745 trace_ext4_sync_fs(sb, wait);
4746 flush_workqueue(sbi->rsv_conversion_wq);
4748 * Writeback quota in non-journalled quota case - journalled quota has
4749 * no dirty dquots
4751 dquot_writeback_dquots(sb, -1);
4753 * Data writeback is possible w/o journal transaction, so barrier must
4754 * being sent at the end of the function. But we can skip it if
4755 * transaction_commit will do it for us.
4757 if (sbi->s_journal) {
4758 target = jbd2_get_latest_transaction(sbi->s_journal);
4759 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4760 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4761 needs_barrier = true;
4763 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4764 if (wait)
4765 ret = jbd2_log_wait_commit(sbi->s_journal,
4766 target);
4768 } else if (wait && test_opt(sb, BARRIER))
4769 needs_barrier = true;
4770 if (needs_barrier) {
4771 int err;
4772 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4773 if (!ret)
4774 ret = err;
4777 return ret;
4781 * LVM calls this function before a (read-only) snapshot is created. This
4782 * gives us a chance to flush the journal completely and mark the fs clean.
4784 * Note that only this function cannot bring a filesystem to be in a clean
4785 * state independently. It relies on upper layer to stop all data & metadata
4786 * modifications.
4788 static int ext4_freeze(struct super_block *sb)
4790 int error = 0;
4791 journal_t *journal;
4793 if (sb->s_flags & MS_RDONLY)
4794 return 0;
4796 journal = EXT4_SB(sb)->s_journal;
4798 if (journal) {
4799 /* Now we set up the journal barrier. */
4800 jbd2_journal_lock_updates(journal);
4803 * Don't clear the needs_recovery flag if we failed to
4804 * flush the journal.
4806 error = jbd2_journal_flush(journal);
4807 if (error < 0)
4808 goto out;
4811 /* Journal blocked and flushed, clear needs_recovery flag. */
4812 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4813 error = ext4_commit_super(sb, 1);
4814 out:
4815 if (journal)
4816 /* we rely on upper layer to stop further updates */
4817 jbd2_journal_unlock_updates(journal);
4818 return error;
4822 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4823 * flag here, even though the filesystem is not technically dirty yet.
4825 static int ext4_unfreeze(struct super_block *sb)
4827 if (sb->s_flags & MS_RDONLY)
4828 return 0;
4830 /* Reset the needs_recovery flag before the fs is unlocked. */
4831 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4832 ext4_commit_super(sb, 1);
4833 return 0;
4837 * Structure to save mount options for ext4_remount's benefit
4839 struct ext4_mount_options {
4840 unsigned long s_mount_opt;
4841 unsigned long s_mount_opt2;
4842 kuid_t s_resuid;
4843 kgid_t s_resgid;
4844 unsigned long s_commit_interval;
4845 u32 s_min_batch_time, s_max_batch_time;
4846 #ifdef CONFIG_QUOTA
4847 int s_jquota_fmt;
4848 char *s_qf_names[EXT4_MAXQUOTAS];
4849 #endif
4852 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4854 struct ext4_super_block *es;
4855 struct ext4_sb_info *sbi = EXT4_SB(sb);
4856 unsigned long old_sb_flags;
4857 struct ext4_mount_options old_opts;
4858 int enable_quota = 0;
4859 ext4_group_t g;
4860 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4861 int err = 0;
4862 #ifdef CONFIG_QUOTA
4863 int i, j;
4864 #endif
4865 char *orig_data = kstrdup(data, GFP_KERNEL);
4867 /* Store the original options */
4868 old_sb_flags = sb->s_flags;
4869 old_opts.s_mount_opt = sbi->s_mount_opt;
4870 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4871 old_opts.s_resuid = sbi->s_resuid;
4872 old_opts.s_resgid = sbi->s_resgid;
4873 old_opts.s_commit_interval = sbi->s_commit_interval;
4874 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4875 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4876 #ifdef CONFIG_QUOTA
4877 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4878 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4879 if (sbi->s_qf_names[i]) {
4880 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4881 GFP_KERNEL);
4882 if (!old_opts.s_qf_names[i]) {
4883 for (j = 0; j < i; j++)
4884 kfree(old_opts.s_qf_names[j]);
4885 kfree(orig_data);
4886 return -ENOMEM;
4888 } else
4889 old_opts.s_qf_names[i] = NULL;
4890 #endif
4891 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4892 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4894 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4895 err = -EINVAL;
4896 goto restore_opts;
4899 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4900 test_opt(sb, JOURNAL_CHECKSUM)) {
4901 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4902 "during remount not supported; ignoring");
4903 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4906 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4907 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4908 ext4_msg(sb, KERN_ERR, "can't mount with "
4909 "both data=journal and delalloc");
4910 err = -EINVAL;
4911 goto restore_opts;
4913 if (test_opt(sb, DIOREAD_NOLOCK)) {
4914 ext4_msg(sb, KERN_ERR, "can't mount with "
4915 "both data=journal and dioread_nolock");
4916 err = -EINVAL;
4917 goto restore_opts;
4919 if (test_opt(sb, DAX)) {
4920 ext4_msg(sb, KERN_ERR, "can't mount with "
4921 "both data=journal and dax");
4922 err = -EINVAL;
4923 goto restore_opts;
4927 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4928 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4929 "dax flag with busy inodes while remounting");
4930 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4933 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4934 ext4_abort(sb, "Abort forced by user");
4936 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4937 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4939 es = sbi->s_es;
4941 if (sbi->s_journal) {
4942 ext4_init_journal_params(sb, sbi->s_journal);
4943 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4946 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4947 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4948 err = -EROFS;
4949 goto restore_opts;
4952 if (*flags & MS_RDONLY) {
4953 err = sync_filesystem(sb);
4954 if (err < 0)
4955 goto restore_opts;
4956 err = dquot_suspend(sb, -1);
4957 if (err < 0)
4958 goto restore_opts;
4961 * First of all, the unconditional stuff we have to do
4962 * to disable replay of the journal when we next remount
4964 sb->s_flags |= MS_RDONLY;
4967 * OK, test if we are remounting a valid rw partition
4968 * readonly, and if so set the rdonly flag and then
4969 * mark the partition as valid again.
4971 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4972 (sbi->s_mount_state & EXT4_VALID_FS))
4973 es->s_state = cpu_to_le16(sbi->s_mount_state);
4975 if (sbi->s_journal)
4976 ext4_mark_recovery_complete(sb, es);
4977 } else {
4978 /* Make sure we can mount this feature set readwrite */
4979 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4980 EXT4_FEATURE_RO_COMPAT_READONLY) ||
4981 !ext4_feature_set_ok(sb, 0)) {
4982 err = -EROFS;
4983 goto restore_opts;
4986 * Make sure the group descriptor checksums
4987 * are sane. If they aren't, refuse to remount r/w.
4989 for (g = 0; g < sbi->s_groups_count; g++) {
4990 struct ext4_group_desc *gdp =
4991 ext4_get_group_desc(sb, g, NULL);
4993 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4994 ext4_msg(sb, KERN_ERR,
4995 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4996 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4997 le16_to_cpu(gdp->bg_checksum));
4998 err = -EINVAL;
4999 goto restore_opts;
5004 * If we have an unprocessed orphan list hanging
5005 * around from a previously readonly bdev mount,
5006 * require a full umount/remount for now.
5008 if (es->s_last_orphan) {
5009 ext4_msg(sb, KERN_WARNING, "Couldn't "
5010 "remount RDWR because of unprocessed "
5011 "orphan inode list. Please "
5012 "umount/remount instead");
5013 err = -EINVAL;
5014 goto restore_opts;
5018 * Mounting a RDONLY partition read-write, so reread
5019 * and store the current valid flag. (It may have
5020 * been changed by e2fsck since we originally mounted
5021 * the partition.)
5023 if (sbi->s_journal)
5024 ext4_clear_journal_err(sb, es);
5025 sbi->s_mount_state = le16_to_cpu(es->s_state);
5026 if (!ext4_setup_super(sb, es, 0))
5027 sb->s_flags &= ~MS_RDONLY;
5028 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5029 EXT4_FEATURE_INCOMPAT_MMP))
5030 if (ext4_multi_mount_protect(sb,
5031 le64_to_cpu(es->s_mmp_block))) {
5032 err = -EROFS;
5033 goto restore_opts;
5035 enable_quota = 1;
5040 * Reinitialize lazy itable initialization thread based on
5041 * current settings
5043 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5044 ext4_unregister_li_request(sb);
5045 else {
5046 ext4_group_t first_not_zeroed;
5047 first_not_zeroed = ext4_has_uninit_itable(sb);
5048 ext4_register_li_request(sb, first_not_zeroed);
5051 ext4_setup_system_zone(sb);
5052 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5053 ext4_commit_super(sb, 1);
5055 #ifdef CONFIG_QUOTA
5056 /* Release old quota file names */
5057 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5058 kfree(old_opts.s_qf_names[i]);
5059 if (enable_quota) {
5060 if (sb_any_quota_suspended(sb))
5061 dquot_resume(sb, -1);
5062 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5063 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5064 err = ext4_enable_quotas(sb);
5065 if (err)
5066 goto restore_opts;
5069 #endif
5071 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5072 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5073 kfree(orig_data);
5074 return 0;
5076 restore_opts:
5077 sb->s_flags = old_sb_flags;
5078 sbi->s_mount_opt = old_opts.s_mount_opt;
5079 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5080 sbi->s_resuid = old_opts.s_resuid;
5081 sbi->s_resgid = old_opts.s_resgid;
5082 sbi->s_commit_interval = old_opts.s_commit_interval;
5083 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5084 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5085 #ifdef CONFIG_QUOTA
5086 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5087 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5088 kfree(sbi->s_qf_names[i]);
5089 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5091 #endif
5092 kfree(orig_data);
5093 return err;
5096 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5098 struct super_block *sb = dentry->d_sb;
5099 struct ext4_sb_info *sbi = EXT4_SB(sb);
5100 struct ext4_super_block *es = sbi->s_es;
5101 ext4_fsblk_t overhead = 0, resv_blocks;
5102 u64 fsid;
5103 s64 bfree;
5104 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5106 if (!test_opt(sb, MINIX_DF))
5107 overhead = sbi->s_overhead;
5109 buf->f_type = EXT4_SUPER_MAGIC;
5110 buf->f_bsize = sb->s_blocksize;
5111 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5112 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5113 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5114 /* prevent underflow in case that few free space is available */
5115 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5116 buf->f_bavail = buf->f_bfree -
5117 (ext4_r_blocks_count(es) + resv_blocks);
5118 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5119 buf->f_bavail = 0;
5120 buf->f_files = le32_to_cpu(es->s_inodes_count);
5121 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5122 buf->f_namelen = EXT4_NAME_LEN;
5123 fsid = le64_to_cpup((void *)es->s_uuid) ^
5124 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5125 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5126 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5128 return 0;
5131 /* Helper function for writing quotas on sync - we need to start transaction
5132 * before quota file is locked for write. Otherwise the are possible deadlocks:
5133 * Process 1 Process 2
5134 * ext4_create() quota_sync()
5135 * jbd2_journal_start() write_dquot()
5136 * dquot_initialize() down(dqio_mutex)
5137 * down(dqio_mutex) jbd2_journal_start()
5141 #ifdef CONFIG_QUOTA
5143 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5145 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5148 static int ext4_write_dquot(struct dquot *dquot)
5150 int ret, err;
5151 handle_t *handle;
5152 struct inode *inode;
5154 inode = dquot_to_inode(dquot);
5155 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5156 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5157 if (IS_ERR(handle))
5158 return PTR_ERR(handle);
5159 ret = dquot_commit(dquot);
5160 err = ext4_journal_stop(handle);
5161 if (!ret)
5162 ret = err;
5163 return ret;
5166 static int ext4_acquire_dquot(struct dquot *dquot)
5168 int ret, err;
5169 handle_t *handle;
5171 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5172 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5173 if (IS_ERR(handle))
5174 return PTR_ERR(handle);
5175 ret = dquot_acquire(dquot);
5176 err = ext4_journal_stop(handle);
5177 if (!ret)
5178 ret = err;
5179 return ret;
5182 static int ext4_release_dquot(struct dquot *dquot)
5184 int ret, err;
5185 handle_t *handle;
5187 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5188 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5189 if (IS_ERR(handle)) {
5190 /* Release dquot anyway to avoid endless cycle in dqput() */
5191 dquot_release(dquot);
5192 return PTR_ERR(handle);
5194 ret = dquot_release(dquot);
5195 err = ext4_journal_stop(handle);
5196 if (!ret)
5197 ret = err;
5198 return ret;
5201 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5203 struct super_block *sb = dquot->dq_sb;
5204 struct ext4_sb_info *sbi = EXT4_SB(sb);
5206 /* Are we journaling quotas? */
5207 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5208 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5209 dquot_mark_dquot_dirty(dquot);
5210 return ext4_write_dquot(dquot);
5211 } else {
5212 return dquot_mark_dquot_dirty(dquot);
5216 static int ext4_write_info(struct super_block *sb, int type)
5218 int ret, err;
5219 handle_t *handle;
5221 /* Data block + inode block */
5222 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5223 if (IS_ERR(handle))
5224 return PTR_ERR(handle);
5225 ret = dquot_commit_info(sb, type);
5226 err = ext4_journal_stop(handle);
5227 if (!ret)
5228 ret = err;
5229 return ret;
5233 * Turn on quotas during mount time - we need to find
5234 * the quota file and such...
5236 static int ext4_quota_on_mount(struct super_block *sb, int type)
5238 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5239 EXT4_SB(sb)->s_jquota_fmt, type);
5243 * Standard function to be called on quota_on
5245 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5246 struct path *path)
5248 int err;
5250 if (!test_opt(sb, QUOTA))
5251 return -EINVAL;
5253 /* Quotafile not on the same filesystem? */
5254 if (path->dentry->d_sb != sb)
5255 return -EXDEV;
5256 /* Journaling quota? */
5257 if (EXT4_SB(sb)->s_qf_names[type]) {
5258 /* Quotafile not in fs root? */
5259 if (path->dentry->d_parent != sb->s_root)
5260 ext4_msg(sb, KERN_WARNING,
5261 "Quota file not on filesystem root. "
5262 "Journaled quota will not work");
5266 * When we journal data on quota file, we have to flush journal to see
5267 * all updates to the file when we bypass pagecache...
5269 if (EXT4_SB(sb)->s_journal &&
5270 ext4_should_journal_data(d_inode(path->dentry))) {
5272 * We don't need to lock updates but journal_flush() could
5273 * otherwise be livelocked...
5275 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5276 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5277 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5278 if (err)
5279 return err;
5282 return dquot_quota_on(sb, type, format_id, path);
5285 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5286 unsigned int flags)
5288 int err;
5289 struct inode *qf_inode;
5290 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5291 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5292 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5295 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5297 if (!qf_inums[type])
5298 return -EPERM;
5300 qf_inode = ext4_iget(sb, qf_inums[type]);
5301 if (IS_ERR(qf_inode)) {
5302 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5303 return PTR_ERR(qf_inode);
5306 /* Don't account quota for quota files to avoid recursion */
5307 qf_inode->i_flags |= S_NOQUOTA;
5308 err = dquot_enable(qf_inode, type, format_id, flags);
5309 iput(qf_inode);
5311 return err;
5314 /* Enable usage tracking for all quota types. */
5315 static int ext4_enable_quotas(struct super_block *sb)
5317 int type, err = 0;
5318 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5319 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5320 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5323 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5324 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5325 if (qf_inums[type]) {
5326 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5327 DQUOT_USAGE_ENABLED);
5328 if (err) {
5329 ext4_warning(sb,
5330 "Failed to enable quota tracking "
5331 "(type=%d, err=%d). Please run "
5332 "e2fsck to fix.", type, err);
5333 return err;
5337 return 0;
5340 static int ext4_quota_off(struct super_block *sb, int type)
5342 struct inode *inode = sb_dqopt(sb)->files[type];
5343 handle_t *handle;
5345 /* Force all delayed allocation blocks to be allocated.
5346 * Caller already holds s_umount sem */
5347 if (test_opt(sb, DELALLOC))
5348 sync_filesystem(sb);
5350 if (!inode)
5351 goto out;
5353 /* Update modification times of quota files when userspace can
5354 * start looking at them */
5355 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5356 if (IS_ERR(handle))
5357 goto out;
5358 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5359 ext4_mark_inode_dirty(handle, inode);
5360 ext4_journal_stop(handle);
5362 out:
5363 return dquot_quota_off(sb, type);
5366 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5367 * acquiring the locks... As quota files are never truncated and quota code
5368 * itself serializes the operations (and no one else should touch the files)
5369 * we don't have to be afraid of races */
5370 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5371 size_t len, loff_t off)
5373 struct inode *inode = sb_dqopt(sb)->files[type];
5374 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5375 int offset = off & (sb->s_blocksize - 1);
5376 int tocopy;
5377 size_t toread;
5378 struct buffer_head *bh;
5379 loff_t i_size = i_size_read(inode);
5381 if (off > i_size)
5382 return 0;
5383 if (off+len > i_size)
5384 len = i_size-off;
5385 toread = len;
5386 while (toread > 0) {
5387 tocopy = sb->s_blocksize - offset < toread ?
5388 sb->s_blocksize - offset : toread;
5389 bh = ext4_bread(NULL, inode, blk, 0);
5390 if (IS_ERR(bh))
5391 return PTR_ERR(bh);
5392 if (!bh) /* A hole? */
5393 memset(data, 0, tocopy);
5394 else
5395 memcpy(data, bh->b_data+offset, tocopy);
5396 brelse(bh);
5397 offset = 0;
5398 toread -= tocopy;
5399 data += tocopy;
5400 blk++;
5402 return len;
5405 /* Write to quotafile (we know the transaction is already started and has
5406 * enough credits) */
5407 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5408 const char *data, size_t len, loff_t off)
5410 struct inode *inode = sb_dqopt(sb)->files[type];
5411 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5412 int err, offset = off & (sb->s_blocksize - 1);
5413 struct buffer_head *bh;
5414 handle_t *handle = journal_current_handle();
5416 if (EXT4_SB(sb)->s_journal && !handle) {
5417 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5418 " cancelled because transaction is not started",
5419 (unsigned long long)off, (unsigned long long)len);
5420 return -EIO;
5423 * Since we account only one data block in transaction credits,
5424 * then it is impossible to cross a block boundary.
5426 if (sb->s_blocksize - offset < len) {
5427 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5428 " cancelled because not block aligned",
5429 (unsigned long long)off, (unsigned long long)len);
5430 return -EIO;
5433 bh = ext4_bread(handle, inode, blk, 1);
5434 if (IS_ERR(bh))
5435 return PTR_ERR(bh);
5436 if (!bh)
5437 goto out;
5438 BUFFER_TRACE(bh, "get write access");
5439 err = ext4_journal_get_write_access(handle, bh);
5440 if (err) {
5441 brelse(bh);
5442 return err;
5444 lock_buffer(bh);
5445 memcpy(bh->b_data+offset, data, len);
5446 flush_dcache_page(bh->b_page);
5447 unlock_buffer(bh);
5448 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5449 brelse(bh);
5450 out:
5451 if (inode->i_size < off + len) {
5452 i_size_write(inode, off + len);
5453 EXT4_I(inode)->i_disksize = inode->i_size;
5454 ext4_mark_inode_dirty(handle, inode);
5456 return len;
5459 #endif
5461 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5462 const char *dev_name, void *data)
5464 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5467 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5468 static inline void register_as_ext2(void)
5470 int err = register_filesystem(&ext2_fs_type);
5471 if (err)
5472 printk(KERN_WARNING
5473 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5476 static inline void unregister_as_ext2(void)
5478 unregister_filesystem(&ext2_fs_type);
5481 static inline int ext2_feature_set_ok(struct super_block *sb)
5483 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5484 return 0;
5485 if (sb->s_flags & MS_RDONLY)
5486 return 1;
5487 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5488 return 0;
5489 return 1;
5491 #else
5492 static inline void register_as_ext2(void) { }
5493 static inline void unregister_as_ext2(void) { }
5494 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5495 #endif
5497 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5498 static inline void register_as_ext3(void)
5500 int err = register_filesystem(&ext3_fs_type);
5501 if (err)
5502 printk(KERN_WARNING
5503 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5506 static inline void unregister_as_ext3(void)
5508 unregister_filesystem(&ext3_fs_type);
5511 static inline int ext3_feature_set_ok(struct super_block *sb)
5513 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5514 return 0;
5515 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5516 return 0;
5517 if (sb->s_flags & MS_RDONLY)
5518 return 1;
5519 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5520 return 0;
5521 return 1;
5523 #else
5524 static inline void register_as_ext3(void) { }
5525 static inline void unregister_as_ext3(void) { }
5526 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5527 #endif
5529 static struct file_system_type ext4_fs_type = {
5530 .owner = THIS_MODULE,
5531 .name = "ext4",
5532 .mount = ext4_mount,
5533 .kill_sb = kill_block_super,
5534 .fs_flags = FS_REQUIRES_DEV,
5536 MODULE_ALIAS_FS("ext4");
5538 static int __init ext4_init_feat_adverts(void)
5540 struct ext4_features *ef;
5541 int ret = -ENOMEM;
5543 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5544 if (!ef)
5545 goto out;
5547 ef->f_kobj.kset = ext4_kset;
5548 init_completion(&ef->f_kobj_unregister);
5549 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5550 "features");
5551 if (ret) {
5552 kfree(ef);
5553 goto out;
5556 ext4_feat = ef;
5557 ret = 0;
5558 out:
5559 return ret;
5562 static void ext4_exit_feat_adverts(void)
5564 kobject_put(&ext4_feat->f_kobj);
5565 wait_for_completion(&ext4_feat->f_kobj_unregister);
5566 kfree(ext4_feat);
5569 /* Shared across all ext4 file systems */
5570 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5571 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5573 static int __init ext4_init_fs(void)
5575 int i, err;
5577 ext4_li_info = NULL;
5578 mutex_init(&ext4_li_mtx);
5580 /* Build-time check for flags consistency */
5581 ext4_check_flag_values();
5583 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5584 mutex_init(&ext4__aio_mutex[i]);
5585 init_waitqueue_head(&ext4__ioend_wq[i]);
5588 err = ext4_init_es();
5589 if (err)
5590 return err;
5592 err = ext4_init_pageio();
5593 if (err)
5594 goto out7;
5596 err = ext4_init_system_zone();
5597 if (err)
5598 goto out6;
5599 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5600 if (!ext4_kset) {
5601 err = -ENOMEM;
5602 goto out5;
5604 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5606 err = ext4_init_feat_adverts();
5607 if (err)
5608 goto out4;
5610 err = ext4_init_mballoc();
5611 if (err)
5612 goto out2;
5613 else
5614 ext4_mballoc_ready = 1;
5615 err = init_inodecache();
5616 if (err)
5617 goto out1;
5618 register_as_ext3();
5619 register_as_ext2();
5620 err = register_filesystem(&ext4_fs_type);
5621 if (err)
5622 goto out;
5624 return 0;
5625 out:
5626 unregister_as_ext2();
5627 unregister_as_ext3();
5628 destroy_inodecache();
5629 out1:
5630 ext4_mballoc_ready = 0;
5631 ext4_exit_mballoc();
5632 out2:
5633 ext4_exit_feat_adverts();
5634 out4:
5635 if (ext4_proc_root)
5636 remove_proc_entry("fs/ext4", NULL);
5637 kset_unregister(ext4_kset);
5638 out5:
5639 ext4_exit_system_zone();
5640 out6:
5641 ext4_exit_pageio();
5642 out7:
5643 ext4_exit_es();
5645 return err;
5648 static void __exit ext4_exit_fs(void)
5650 ext4_destroy_lazyinit_thread();
5651 unregister_as_ext2();
5652 unregister_as_ext3();
5653 unregister_filesystem(&ext4_fs_type);
5654 destroy_inodecache();
5655 ext4_exit_mballoc();
5656 ext4_exit_feat_adverts();
5657 remove_proc_entry("fs/ext4", NULL);
5658 kset_unregister(ext4_kset);
5659 ext4_exit_system_zone();
5660 ext4_exit_pageio();
5661 ext4_exit_es();
5664 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5665 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5666 MODULE_LICENSE("GPL");
5667 module_init(ext4_init_fs)
5668 module_exit(ext4_exit_fs)