net/fec: reorder functions a bit allows removing forward declarations
[linux-2.6/btrfs-unstable.git] / drivers / net / fec.c
blob3f5dfe2e41ac584f5e6198af450a1a987ade70e6
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <asm/cacheflush.h>
50 #ifndef CONFIG_ARM
51 #include <asm/coldfire.h>
52 #include <asm/mcfsim.h>
53 #endif
55 #include "fec.h"
57 #if defined(CONFIG_ARM)
58 #define FEC_ALIGNMENT 0xf
59 #else
60 #define FEC_ALIGNMENT 0x3
61 #endif
63 #define DRIVER_NAME "fec"
65 /* Controller is ENET-MAC */
66 #define FEC_QUIRK_ENET_MAC (1 << 0)
67 /* Controller needs driver to swap frame */
68 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
70 static struct platform_device_id fec_devtype[] = {
72 .name = DRIVER_NAME,
73 .driver_data = 0,
74 }, {
75 .name = "imx28-fec",
76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
80 static unsigned char macaddr[ETH_ALEN];
81 module_param_array(macaddr, byte, NULL, 0);
82 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
84 #if defined(CONFIG_M5272)
86 * Some hardware gets it MAC address out of local flash memory.
87 * if this is non-zero then assume it is the address to get MAC from.
89 #if defined(CONFIG_NETtel)
90 #define FEC_FLASHMAC 0xf0006006
91 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
92 #define FEC_FLASHMAC 0xf0006000
93 #elif defined(CONFIG_CANCam)
94 #define FEC_FLASHMAC 0xf0020000
95 #elif defined (CONFIG_M5272C3)
96 #define FEC_FLASHMAC (0xffe04000 + 4)
97 #elif defined(CONFIG_MOD5272)
98 #define FEC_FLASHMAC 0xffc0406b
99 #else
100 #define FEC_FLASHMAC 0
101 #endif
102 #endif /* CONFIG_M5272 */
104 /* The number of Tx and Rx buffers. These are allocated from the page
105 * pool. The code may assume these are power of two, so it it best
106 * to keep them that size.
107 * We don't need to allocate pages for the transmitter. We just use
108 * the skbuffer directly.
110 #define FEC_ENET_RX_PAGES 8
111 #define FEC_ENET_RX_FRSIZE 2048
112 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
113 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
114 #define FEC_ENET_TX_FRSIZE 2048
115 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
116 #define TX_RING_SIZE 16 /* Must be power of two */
117 #define TX_RING_MOD_MASK 15 /* for this to work */
119 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
120 #error "FEC: descriptor ring size constants too large"
121 #endif
123 /* Interrupt events/masks. */
124 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
125 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
126 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
127 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
128 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
129 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
130 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
131 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
132 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
133 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
135 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
137 /* The FEC stores dest/src/type, data, and checksum for receive packets.
139 #define PKT_MAXBUF_SIZE 1518
140 #define PKT_MINBUF_SIZE 64
141 #define PKT_MAXBLR_SIZE 1520
145 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
146 * size bits. Other FEC hardware does not, so we need to take that into
147 * account when setting it.
149 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
150 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
151 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
152 #else
153 #define OPT_FRAME_SIZE 0
154 #endif
156 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
157 * tx_bd_base always point to the base of the buffer descriptors. The
158 * cur_rx and cur_tx point to the currently available buffer.
159 * The dirty_tx tracks the current buffer that is being sent by the
160 * controller. The cur_tx and dirty_tx are equal under both completely
161 * empty and completely full conditions. The empty/ready indicator in
162 * the buffer descriptor determines the actual condition.
164 struct fec_enet_private {
165 /* Hardware registers of the FEC device */
166 void __iomem *hwp;
168 struct net_device *netdev;
170 struct clk *clk;
172 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
173 unsigned char *tx_bounce[TX_RING_SIZE];
174 struct sk_buff* tx_skbuff[TX_RING_SIZE];
175 struct sk_buff* rx_skbuff[RX_RING_SIZE];
176 ushort skb_cur;
177 ushort skb_dirty;
179 /* CPM dual port RAM relative addresses */
180 dma_addr_t bd_dma;
181 /* Address of Rx and Tx buffers */
182 struct bufdesc *rx_bd_base;
183 struct bufdesc *tx_bd_base;
184 /* The next free ring entry */
185 struct bufdesc *cur_rx, *cur_tx;
186 /* The ring entries to be free()ed */
187 struct bufdesc *dirty_tx;
189 uint tx_full;
190 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
191 spinlock_t hw_lock;
193 struct platform_device *pdev;
195 int opened;
197 /* Phylib and MDIO interface */
198 struct mii_bus *mii_bus;
199 struct phy_device *phy_dev;
200 int mii_timeout;
201 uint phy_speed;
202 phy_interface_t phy_interface;
203 int link;
204 int full_duplex;
205 struct completion mdio_done;
208 /* FEC MII MMFR bits definition */
209 #define FEC_MMFR_ST (1 << 30)
210 #define FEC_MMFR_OP_READ (2 << 28)
211 #define FEC_MMFR_OP_WRITE (1 << 28)
212 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
213 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
214 #define FEC_MMFR_TA (2 << 16)
215 #define FEC_MMFR_DATA(v) (v & 0xffff)
217 #define FEC_MII_TIMEOUT 1000 /* us */
219 /* Transmitter timeout */
220 #define TX_TIMEOUT (2 * HZ)
222 static void *swap_buffer(void *bufaddr, int len)
224 int i;
225 unsigned int *buf = bufaddr;
227 for (i = 0; i < (len + 3) / 4; i++, buf++)
228 *buf = cpu_to_be32(*buf);
230 return bufaddr;
233 static netdev_tx_t
234 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
236 struct fec_enet_private *fep = netdev_priv(ndev);
237 const struct platform_device_id *id_entry =
238 platform_get_device_id(fep->pdev);
239 struct bufdesc *bdp;
240 void *bufaddr;
241 unsigned short status;
242 unsigned long flags;
244 if (!fep->link) {
245 /* Link is down or autonegotiation is in progress. */
246 return NETDEV_TX_BUSY;
249 spin_lock_irqsave(&fep->hw_lock, flags);
250 /* Fill in a Tx ring entry */
251 bdp = fep->cur_tx;
253 status = bdp->cbd_sc;
255 if (status & BD_ENET_TX_READY) {
256 /* Ooops. All transmit buffers are full. Bail out.
257 * This should not happen, since ndev->tbusy should be set.
259 printk("%s: tx queue full!.\n", ndev->name);
260 spin_unlock_irqrestore(&fep->hw_lock, flags);
261 return NETDEV_TX_BUSY;
264 /* Clear all of the status flags */
265 status &= ~BD_ENET_TX_STATS;
267 /* Set buffer length and buffer pointer */
268 bufaddr = skb->data;
269 bdp->cbd_datlen = skb->len;
272 * On some FEC implementations data must be aligned on
273 * 4-byte boundaries. Use bounce buffers to copy data
274 * and get it aligned. Ugh.
276 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
277 unsigned int index;
278 index = bdp - fep->tx_bd_base;
279 memcpy(fep->tx_bounce[index], skb->data, skb->len);
280 bufaddr = fep->tx_bounce[index];
284 * Some design made an incorrect assumption on endian mode of
285 * the system that it's running on. As the result, driver has to
286 * swap every frame going to and coming from the controller.
288 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
289 swap_buffer(bufaddr, skb->len);
291 /* Save skb pointer */
292 fep->tx_skbuff[fep->skb_cur] = skb;
294 ndev->stats.tx_bytes += skb->len;
295 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
297 /* Push the data cache so the CPM does not get stale memory
298 * data.
300 bdp->cbd_bufaddr = dma_map_single(&ndev->dev, bufaddr,
301 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
303 /* Send it on its way. Tell FEC it's ready, interrupt when done,
304 * it's the last BD of the frame, and to put the CRC on the end.
306 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
307 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
308 bdp->cbd_sc = status;
310 /* Trigger transmission start */
311 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
313 /* If this was the last BD in the ring, start at the beginning again. */
314 if (status & BD_ENET_TX_WRAP)
315 bdp = fep->tx_bd_base;
316 else
317 bdp++;
319 if (bdp == fep->dirty_tx) {
320 fep->tx_full = 1;
321 netif_stop_queue(ndev);
324 fep->cur_tx = bdp;
326 spin_unlock_irqrestore(&fep->hw_lock, flags);
328 return NETDEV_TX_OK;
331 /* This function is called to start or restart the FEC during a link
332 * change. This only happens when switching between half and full
333 * duplex.
335 static void
336 fec_restart(struct net_device *ndev, int duplex)
338 struct fec_enet_private *fep = netdev_priv(ndev);
339 const struct platform_device_id *id_entry =
340 platform_get_device_id(fep->pdev);
341 int i;
342 u32 val, temp_mac[2];
344 /* Whack a reset. We should wait for this. */
345 writel(1, fep->hwp + FEC_ECNTRL);
346 udelay(10);
349 * enet-mac reset will reset mac address registers too,
350 * so need to reconfigure it.
352 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
353 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
354 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
355 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
358 /* Clear any outstanding interrupt. */
359 writel(0xffc00000, fep->hwp + FEC_IEVENT);
361 /* Reset all multicast. */
362 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
363 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
364 #ifndef CONFIG_M5272
365 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
366 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
367 #endif
369 /* Set maximum receive buffer size. */
370 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
372 /* Set receive and transmit descriptor base. */
373 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
374 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
375 fep->hwp + FEC_X_DES_START);
377 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
378 fep->cur_rx = fep->rx_bd_base;
380 /* Reset SKB transmit buffers. */
381 fep->skb_cur = fep->skb_dirty = 0;
382 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
383 if (fep->tx_skbuff[i]) {
384 dev_kfree_skb_any(fep->tx_skbuff[i]);
385 fep->tx_skbuff[i] = NULL;
389 /* Enable MII mode */
390 if (duplex) {
391 /* MII enable / FD enable */
392 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
393 writel(0x04, fep->hwp + FEC_X_CNTRL);
394 } else {
395 /* MII enable / No Rcv on Xmit */
396 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
397 writel(0x0, fep->hwp + FEC_X_CNTRL);
399 fep->full_duplex = duplex;
401 /* Set MII speed */
402 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
405 * The phy interface and speed need to get configured
406 * differently on enet-mac.
408 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
409 val = readl(fep->hwp + FEC_R_CNTRL);
411 /* MII or RMII */
412 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
413 val |= (1 << 8);
414 else
415 val &= ~(1 << 8);
417 /* 10M or 100M */
418 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
419 val &= ~(1 << 9);
420 else
421 val |= (1 << 9);
423 writel(val, fep->hwp + FEC_R_CNTRL);
424 } else {
425 #ifdef FEC_MIIGSK_ENR
426 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
427 /* disable the gasket and wait */
428 writel(0, fep->hwp + FEC_MIIGSK_ENR);
429 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
430 udelay(1);
433 * configure the gasket:
434 * RMII, 50 MHz, no loopback, no echo
436 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
438 /* re-enable the gasket */
439 writel(2, fep->hwp + FEC_MIIGSK_ENR);
441 #endif
444 /* And last, enable the transmit and receive processing */
445 writel(2, fep->hwp + FEC_ECNTRL);
446 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
448 /* Enable interrupts we wish to service */
449 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
452 static void
453 fec_stop(struct net_device *ndev)
455 struct fec_enet_private *fep = netdev_priv(ndev);
457 /* We cannot expect a graceful transmit stop without link !!! */
458 if (fep->link) {
459 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
460 udelay(10);
461 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
462 printk("fec_stop : Graceful transmit stop did not complete !\n");
465 /* Whack a reset. We should wait for this. */
466 writel(1, fep->hwp + FEC_ECNTRL);
467 udelay(10);
468 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
469 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
473 static void
474 fec_timeout(struct net_device *ndev)
476 struct fec_enet_private *fep = netdev_priv(ndev);
478 ndev->stats.tx_errors++;
480 fec_restart(ndev, fep->full_duplex);
481 netif_wake_queue(ndev);
484 static void
485 fec_enet_tx(struct net_device *ndev)
487 struct fec_enet_private *fep;
488 struct bufdesc *bdp;
489 unsigned short status;
490 struct sk_buff *skb;
492 fep = netdev_priv(ndev);
493 spin_lock(&fep->hw_lock);
494 bdp = fep->dirty_tx;
496 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
497 if (bdp == fep->cur_tx && fep->tx_full == 0)
498 break;
500 dma_unmap_single(&ndev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
501 bdp->cbd_bufaddr = 0;
503 skb = fep->tx_skbuff[fep->skb_dirty];
504 /* Check for errors. */
505 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
506 BD_ENET_TX_RL | BD_ENET_TX_UN |
507 BD_ENET_TX_CSL)) {
508 ndev->stats.tx_errors++;
509 if (status & BD_ENET_TX_HB) /* No heartbeat */
510 ndev->stats.tx_heartbeat_errors++;
511 if (status & BD_ENET_TX_LC) /* Late collision */
512 ndev->stats.tx_window_errors++;
513 if (status & BD_ENET_TX_RL) /* Retrans limit */
514 ndev->stats.tx_aborted_errors++;
515 if (status & BD_ENET_TX_UN) /* Underrun */
516 ndev->stats.tx_fifo_errors++;
517 if (status & BD_ENET_TX_CSL) /* Carrier lost */
518 ndev->stats.tx_carrier_errors++;
519 } else {
520 ndev->stats.tx_packets++;
523 if (status & BD_ENET_TX_READY)
524 printk("HEY! Enet xmit interrupt and TX_READY.\n");
526 /* Deferred means some collisions occurred during transmit,
527 * but we eventually sent the packet OK.
529 if (status & BD_ENET_TX_DEF)
530 ndev->stats.collisions++;
532 /* Free the sk buffer associated with this last transmit */
533 dev_kfree_skb_any(skb);
534 fep->tx_skbuff[fep->skb_dirty] = NULL;
535 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
537 /* Update pointer to next buffer descriptor to be transmitted */
538 if (status & BD_ENET_TX_WRAP)
539 bdp = fep->tx_bd_base;
540 else
541 bdp++;
543 /* Since we have freed up a buffer, the ring is no longer full
545 if (fep->tx_full) {
546 fep->tx_full = 0;
547 if (netif_queue_stopped(ndev))
548 netif_wake_queue(ndev);
551 fep->dirty_tx = bdp;
552 spin_unlock(&fep->hw_lock);
556 /* During a receive, the cur_rx points to the current incoming buffer.
557 * When we update through the ring, if the next incoming buffer has
558 * not been given to the system, we just set the empty indicator,
559 * effectively tossing the packet.
561 static void
562 fec_enet_rx(struct net_device *ndev)
564 struct fec_enet_private *fep = netdev_priv(ndev);
565 const struct platform_device_id *id_entry =
566 platform_get_device_id(fep->pdev);
567 struct bufdesc *bdp;
568 unsigned short status;
569 struct sk_buff *skb;
570 ushort pkt_len;
571 __u8 *data;
573 #ifdef CONFIG_M532x
574 flush_cache_all();
575 #endif
577 spin_lock(&fep->hw_lock);
579 /* First, grab all of the stats for the incoming packet.
580 * These get messed up if we get called due to a busy condition.
582 bdp = fep->cur_rx;
584 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
586 /* Since we have allocated space to hold a complete frame,
587 * the last indicator should be set.
589 if ((status & BD_ENET_RX_LAST) == 0)
590 printk("FEC ENET: rcv is not +last\n");
592 if (!fep->opened)
593 goto rx_processing_done;
595 /* Check for errors. */
596 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
597 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
598 ndev->stats.rx_errors++;
599 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
600 /* Frame too long or too short. */
601 ndev->stats.rx_length_errors++;
603 if (status & BD_ENET_RX_NO) /* Frame alignment */
604 ndev->stats.rx_frame_errors++;
605 if (status & BD_ENET_RX_CR) /* CRC Error */
606 ndev->stats.rx_crc_errors++;
607 if (status & BD_ENET_RX_OV) /* FIFO overrun */
608 ndev->stats.rx_fifo_errors++;
611 /* Report late collisions as a frame error.
612 * On this error, the BD is closed, but we don't know what we
613 * have in the buffer. So, just drop this frame on the floor.
615 if (status & BD_ENET_RX_CL) {
616 ndev->stats.rx_errors++;
617 ndev->stats.rx_frame_errors++;
618 goto rx_processing_done;
621 /* Process the incoming frame. */
622 ndev->stats.rx_packets++;
623 pkt_len = bdp->cbd_datlen;
624 ndev->stats.rx_bytes += pkt_len;
625 data = (__u8*)__va(bdp->cbd_bufaddr);
627 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
628 DMA_FROM_DEVICE);
630 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
631 swap_buffer(data, pkt_len);
633 /* This does 16 byte alignment, exactly what we need.
634 * The packet length includes FCS, but we don't want to
635 * include that when passing upstream as it messes up
636 * bridging applications.
638 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
640 if (unlikely(!skb)) {
641 printk("%s: Memory squeeze, dropping packet.\n",
642 ndev->name);
643 ndev->stats.rx_dropped++;
644 } else {
645 skb_reserve(skb, NET_IP_ALIGN);
646 skb_put(skb, pkt_len - 4); /* Make room */
647 skb_copy_to_linear_data(skb, data, pkt_len - 4);
648 skb->protocol = eth_type_trans(skb, ndev);
649 netif_rx(skb);
652 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
653 DMA_FROM_DEVICE);
654 rx_processing_done:
655 /* Clear the status flags for this buffer */
656 status &= ~BD_ENET_RX_STATS;
658 /* Mark the buffer empty */
659 status |= BD_ENET_RX_EMPTY;
660 bdp->cbd_sc = status;
662 /* Update BD pointer to next entry */
663 if (status & BD_ENET_RX_WRAP)
664 bdp = fep->rx_bd_base;
665 else
666 bdp++;
667 /* Doing this here will keep the FEC running while we process
668 * incoming frames. On a heavily loaded network, we should be
669 * able to keep up at the expense of system resources.
671 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
673 fep->cur_rx = bdp;
675 spin_unlock(&fep->hw_lock);
678 static irqreturn_t
679 fec_enet_interrupt(int irq, void *dev_id)
681 struct net_device *ndev = dev_id;
682 struct fec_enet_private *fep = netdev_priv(ndev);
683 uint int_events;
684 irqreturn_t ret = IRQ_NONE;
686 do {
687 int_events = readl(fep->hwp + FEC_IEVENT);
688 writel(int_events, fep->hwp + FEC_IEVENT);
690 if (int_events & FEC_ENET_RXF) {
691 ret = IRQ_HANDLED;
692 fec_enet_rx(ndev);
695 /* Transmit OK, or non-fatal error. Update the buffer
696 * descriptors. FEC handles all errors, we just discover
697 * them as part of the transmit process.
699 if (int_events & FEC_ENET_TXF) {
700 ret = IRQ_HANDLED;
701 fec_enet_tx(ndev);
704 if (int_events & FEC_ENET_MII) {
705 ret = IRQ_HANDLED;
706 complete(&fep->mdio_done);
708 } while (int_events);
710 return ret;
715 /* ------------------------------------------------------------------------- */
716 static void __inline__ fec_get_mac(struct net_device *ndev)
718 struct fec_enet_private *fep = netdev_priv(ndev);
719 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
720 unsigned char *iap, tmpaddr[ETH_ALEN];
723 * try to get mac address in following order:
725 * 1) module parameter via kernel command line in form
726 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
728 iap = macaddr;
731 * 2) from flash or fuse (via platform data)
733 if (!is_valid_ether_addr(iap)) {
734 #ifdef CONFIG_M5272
735 if (FEC_FLASHMAC)
736 iap = (unsigned char *)FEC_FLASHMAC;
737 #else
738 if (pdata)
739 memcpy(iap, pdata->mac, ETH_ALEN);
740 #endif
744 * 3) FEC mac registers set by bootloader
746 if (!is_valid_ether_addr(iap)) {
747 *((unsigned long *) &tmpaddr[0]) =
748 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
749 *((unsigned short *) &tmpaddr[4]) =
750 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
751 iap = &tmpaddr[0];
754 memcpy(ndev->dev_addr, iap, ETH_ALEN);
756 /* Adjust MAC if using macaddr */
757 if (iap == macaddr)
758 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
761 /* ------------------------------------------------------------------------- */
764 * Phy section
766 static void fec_enet_adjust_link(struct net_device *ndev)
768 struct fec_enet_private *fep = netdev_priv(ndev);
769 struct phy_device *phy_dev = fep->phy_dev;
770 unsigned long flags;
772 int status_change = 0;
774 spin_lock_irqsave(&fep->hw_lock, flags);
776 /* Prevent a state halted on mii error */
777 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
778 phy_dev->state = PHY_RESUMING;
779 goto spin_unlock;
782 /* Duplex link change */
783 if (phy_dev->link) {
784 if (fep->full_duplex != phy_dev->duplex) {
785 fec_restart(ndev, phy_dev->duplex);
786 status_change = 1;
790 /* Link on or off change */
791 if (phy_dev->link != fep->link) {
792 fep->link = phy_dev->link;
793 if (phy_dev->link)
794 fec_restart(ndev, phy_dev->duplex);
795 else
796 fec_stop(ndev);
797 status_change = 1;
800 spin_unlock:
801 spin_unlock_irqrestore(&fep->hw_lock, flags);
803 if (status_change)
804 phy_print_status(phy_dev);
807 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
809 struct fec_enet_private *fep = bus->priv;
810 unsigned long time_left;
812 fep->mii_timeout = 0;
813 init_completion(&fep->mdio_done);
815 /* start a read op */
816 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
817 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
818 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
820 /* wait for end of transfer */
821 time_left = wait_for_completion_timeout(&fep->mdio_done,
822 usecs_to_jiffies(FEC_MII_TIMEOUT));
823 if (time_left == 0) {
824 fep->mii_timeout = 1;
825 printk(KERN_ERR "FEC: MDIO read timeout\n");
826 return -ETIMEDOUT;
829 /* return value */
830 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
833 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
834 u16 value)
836 struct fec_enet_private *fep = bus->priv;
837 unsigned long time_left;
839 fep->mii_timeout = 0;
840 init_completion(&fep->mdio_done);
842 /* start a write op */
843 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
844 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
845 FEC_MMFR_TA | FEC_MMFR_DATA(value),
846 fep->hwp + FEC_MII_DATA);
848 /* wait for end of transfer */
849 time_left = wait_for_completion_timeout(&fep->mdio_done,
850 usecs_to_jiffies(FEC_MII_TIMEOUT));
851 if (time_left == 0) {
852 fep->mii_timeout = 1;
853 printk(KERN_ERR "FEC: MDIO write timeout\n");
854 return -ETIMEDOUT;
857 return 0;
860 static int fec_enet_mdio_reset(struct mii_bus *bus)
862 return 0;
865 static int fec_enet_mii_probe(struct net_device *ndev)
867 struct fec_enet_private *fep = netdev_priv(ndev);
868 struct phy_device *phy_dev = NULL;
869 char mdio_bus_id[MII_BUS_ID_SIZE];
870 char phy_name[MII_BUS_ID_SIZE + 3];
871 int phy_id;
872 int dev_id = fep->pdev->id;
874 fep->phy_dev = NULL;
876 /* check for attached phy */
877 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
878 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
879 continue;
880 if (fep->mii_bus->phy_map[phy_id] == NULL)
881 continue;
882 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
883 continue;
884 if (dev_id--)
885 continue;
886 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
887 break;
890 if (phy_id >= PHY_MAX_ADDR) {
891 printk(KERN_INFO "%s: no PHY, assuming direct connection "
892 "to switch\n", ndev->name);
893 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
894 phy_id = 0;
897 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
898 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
899 PHY_INTERFACE_MODE_MII);
900 if (IS_ERR(phy_dev)) {
901 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
902 return PTR_ERR(phy_dev);
905 /* mask with MAC supported features */
906 phy_dev->supported &= PHY_BASIC_FEATURES;
907 phy_dev->advertising = phy_dev->supported;
909 fep->phy_dev = phy_dev;
910 fep->link = 0;
911 fep->full_duplex = 0;
913 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
914 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
915 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
916 fep->phy_dev->irq);
918 return 0;
921 static int fec_enet_mii_init(struct platform_device *pdev)
923 static struct mii_bus *fec0_mii_bus;
924 struct net_device *ndev = platform_get_drvdata(pdev);
925 struct fec_enet_private *fep = netdev_priv(ndev);
926 const struct platform_device_id *id_entry =
927 platform_get_device_id(fep->pdev);
928 int err = -ENXIO, i;
931 * The dual fec interfaces are not equivalent with enet-mac.
932 * Here are the differences:
934 * - fec0 supports MII & RMII modes while fec1 only supports RMII
935 * - fec0 acts as the 1588 time master while fec1 is slave
936 * - external phys can only be configured by fec0
938 * That is to say fec1 can not work independently. It only works
939 * when fec0 is working. The reason behind this design is that the
940 * second interface is added primarily for Switch mode.
942 * Because of the last point above, both phys are attached on fec0
943 * mdio interface in board design, and need to be configured by
944 * fec0 mii_bus.
946 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
947 /* fec1 uses fec0 mii_bus */
948 fep->mii_bus = fec0_mii_bus;
949 return 0;
952 fep->mii_timeout = 0;
955 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
957 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
958 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
960 fep->mii_bus = mdiobus_alloc();
961 if (fep->mii_bus == NULL) {
962 err = -ENOMEM;
963 goto err_out;
966 fep->mii_bus->name = "fec_enet_mii_bus";
967 fep->mii_bus->read = fec_enet_mdio_read;
968 fep->mii_bus->write = fec_enet_mdio_write;
969 fep->mii_bus->reset = fec_enet_mdio_reset;
970 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
971 fep->mii_bus->priv = fep;
972 fep->mii_bus->parent = &pdev->dev;
974 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
975 if (!fep->mii_bus->irq) {
976 err = -ENOMEM;
977 goto err_out_free_mdiobus;
980 for (i = 0; i < PHY_MAX_ADDR; i++)
981 fep->mii_bus->irq[i] = PHY_POLL;
983 platform_set_drvdata(ndev, fep->mii_bus);
985 if (mdiobus_register(fep->mii_bus))
986 goto err_out_free_mdio_irq;
988 /* save fec0 mii_bus */
989 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
990 fec0_mii_bus = fep->mii_bus;
992 return 0;
994 err_out_free_mdio_irq:
995 kfree(fep->mii_bus->irq);
996 err_out_free_mdiobus:
997 mdiobus_free(fep->mii_bus);
998 err_out:
999 return err;
1002 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1004 if (fep->phy_dev)
1005 phy_disconnect(fep->phy_dev);
1006 mdiobus_unregister(fep->mii_bus);
1007 kfree(fep->mii_bus->irq);
1008 mdiobus_free(fep->mii_bus);
1011 static int fec_enet_get_settings(struct net_device *ndev,
1012 struct ethtool_cmd *cmd)
1014 struct fec_enet_private *fep = netdev_priv(ndev);
1015 struct phy_device *phydev = fep->phy_dev;
1017 if (!phydev)
1018 return -ENODEV;
1020 return phy_ethtool_gset(phydev, cmd);
1023 static int fec_enet_set_settings(struct net_device *ndev,
1024 struct ethtool_cmd *cmd)
1026 struct fec_enet_private *fep = netdev_priv(ndev);
1027 struct phy_device *phydev = fep->phy_dev;
1029 if (!phydev)
1030 return -ENODEV;
1032 return phy_ethtool_sset(phydev, cmd);
1035 static void fec_enet_get_drvinfo(struct net_device *ndev,
1036 struct ethtool_drvinfo *info)
1038 struct fec_enet_private *fep = netdev_priv(ndev);
1040 strcpy(info->driver, fep->pdev->dev.driver->name);
1041 strcpy(info->version, "Revision: 1.0");
1042 strcpy(info->bus_info, dev_name(&ndev->dev));
1045 static struct ethtool_ops fec_enet_ethtool_ops = {
1046 .get_settings = fec_enet_get_settings,
1047 .set_settings = fec_enet_set_settings,
1048 .get_drvinfo = fec_enet_get_drvinfo,
1049 .get_link = ethtool_op_get_link,
1052 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1054 struct fec_enet_private *fep = netdev_priv(ndev);
1055 struct phy_device *phydev = fep->phy_dev;
1057 if (!netif_running(ndev))
1058 return -EINVAL;
1060 if (!phydev)
1061 return -ENODEV;
1063 return phy_mii_ioctl(phydev, rq, cmd);
1066 static void fec_enet_free_buffers(struct net_device *ndev)
1068 struct fec_enet_private *fep = netdev_priv(ndev);
1069 int i;
1070 struct sk_buff *skb;
1071 struct bufdesc *bdp;
1073 bdp = fep->rx_bd_base;
1074 for (i = 0; i < RX_RING_SIZE; i++) {
1075 skb = fep->rx_skbuff[i];
1077 if (bdp->cbd_bufaddr)
1078 dma_unmap_single(&ndev->dev, bdp->cbd_bufaddr,
1079 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1080 if (skb)
1081 dev_kfree_skb(skb);
1082 bdp++;
1085 bdp = fep->tx_bd_base;
1086 for (i = 0; i < TX_RING_SIZE; i++)
1087 kfree(fep->tx_bounce[i]);
1090 static int fec_enet_alloc_buffers(struct net_device *ndev)
1092 struct fec_enet_private *fep = netdev_priv(ndev);
1093 int i;
1094 struct sk_buff *skb;
1095 struct bufdesc *bdp;
1097 bdp = fep->rx_bd_base;
1098 for (i = 0; i < RX_RING_SIZE; i++) {
1099 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1100 if (!skb) {
1101 fec_enet_free_buffers(ndev);
1102 return -ENOMEM;
1104 fep->rx_skbuff[i] = skb;
1106 bdp->cbd_bufaddr = dma_map_single(&ndev->dev, skb->data,
1107 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1108 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1109 bdp++;
1112 /* Set the last buffer to wrap. */
1113 bdp--;
1114 bdp->cbd_sc |= BD_SC_WRAP;
1116 bdp = fep->tx_bd_base;
1117 for (i = 0; i < TX_RING_SIZE; i++) {
1118 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1120 bdp->cbd_sc = 0;
1121 bdp->cbd_bufaddr = 0;
1122 bdp++;
1125 /* Set the last buffer to wrap. */
1126 bdp--;
1127 bdp->cbd_sc |= BD_SC_WRAP;
1129 return 0;
1132 static int
1133 fec_enet_open(struct net_device *ndev)
1135 struct fec_enet_private *fep = netdev_priv(ndev);
1136 int ret;
1138 /* I should reset the ring buffers here, but I don't yet know
1139 * a simple way to do that.
1142 ret = fec_enet_alloc_buffers(ndev);
1143 if (ret)
1144 return ret;
1146 /* Probe and connect to PHY when open the interface */
1147 ret = fec_enet_mii_probe(ndev);
1148 if (ret) {
1149 fec_enet_free_buffers(ndev);
1150 return ret;
1152 phy_start(fep->phy_dev);
1153 netif_start_queue(ndev);
1154 fep->opened = 1;
1155 return 0;
1158 static int
1159 fec_enet_close(struct net_device *ndev)
1161 struct fec_enet_private *fep = netdev_priv(ndev);
1163 /* Don't know what to do yet. */
1164 fep->opened = 0;
1165 netif_stop_queue(ndev);
1166 fec_stop(ndev);
1168 if (fep->phy_dev) {
1169 phy_stop(fep->phy_dev);
1170 phy_disconnect(fep->phy_dev);
1173 fec_enet_free_buffers(ndev);
1175 return 0;
1178 /* Set or clear the multicast filter for this adaptor.
1179 * Skeleton taken from sunlance driver.
1180 * The CPM Ethernet implementation allows Multicast as well as individual
1181 * MAC address filtering. Some of the drivers check to make sure it is
1182 * a group multicast address, and discard those that are not. I guess I
1183 * will do the same for now, but just remove the test if you want
1184 * individual filtering as well (do the upper net layers want or support
1185 * this kind of feature?).
1188 #define HASH_BITS 6 /* #bits in hash */
1189 #define CRC32_POLY 0xEDB88320
1191 static void set_multicast_list(struct net_device *ndev)
1193 struct fec_enet_private *fep = netdev_priv(ndev);
1194 struct netdev_hw_addr *ha;
1195 unsigned int i, bit, data, crc, tmp;
1196 unsigned char hash;
1198 if (ndev->flags & IFF_PROMISC) {
1199 tmp = readl(fep->hwp + FEC_R_CNTRL);
1200 tmp |= 0x8;
1201 writel(tmp, fep->hwp + FEC_R_CNTRL);
1202 return;
1205 tmp = readl(fep->hwp + FEC_R_CNTRL);
1206 tmp &= ~0x8;
1207 writel(tmp, fep->hwp + FEC_R_CNTRL);
1209 if (ndev->flags & IFF_ALLMULTI) {
1210 /* Catch all multicast addresses, so set the
1211 * filter to all 1's
1213 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1214 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1216 return;
1219 /* Clear filter and add the addresses in hash register
1221 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1222 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1224 netdev_for_each_mc_addr(ha, ndev) {
1225 /* Only support group multicast for now */
1226 if (!(ha->addr[0] & 1))
1227 continue;
1229 /* calculate crc32 value of mac address */
1230 crc = 0xffffffff;
1232 for (i = 0; i < ndev->addr_len; i++) {
1233 data = ha->addr[i];
1234 for (bit = 0; bit < 8; bit++, data >>= 1) {
1235 crc = (crc >> 1) ^
1236 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1240 /* only upper 6 bits (HASH_BITS) are used
1241 * which point to specific bit in he hash registers
1243 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1245 if (hash > 31) {
1246 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1247 tmp |= 1 << (hash - 32);
1248 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1249 } else {
1250 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1251 tmp |= 1 << hash;
1252 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1257 /* Set a MAC change in hardware. */
1258 static int
1259 fec_set_mac_address(struct net_device *ndev, void *p)
1261 struct fec_enet_private *fep = netdev_priv(ndev);
1262 struct sockaddr *addr = p;
1264 if (!is_valid_ether_addr(addr->sa_data))
1265 return -EADDRNOTAVAIL;
1267 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1269 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1270 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1271 fep->hwp + FEC_ADDR_LOW);
1272 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1273 fep->hwp + FEC_ADDR_HIGH);
1274 return 0;
1277 static const struct net_device_ops fec_netdev_ops = {
1278 .ndo_open = fec_enet_open,
1279 .ndo_stop = fec_enet_close,
1280 .ndo_start_xmit = fec_enet_start_xmit,
1281 .ndo_set_multicast_list = set_multicast_list,
1282 .ndo_change_mtu = eth_change_mtu,
1283 .ndo_validate_addr = eth_validate_addr,
1284 .ndo_tx_timeout = fec_timeout,
1285 .ndo_set_mac_address = fec_set_mac_address,
1286 .ndo_do_ioctl = fec_enet_ioctl,
1290 * XXX: We need to clean up on failure exits here.
1293 static int fec_enet_init(struct net_device *ndev)
1295 struct fec_enet_private *fep = netdev_priv(ndev);
1296 struct bufdesc *cbd_base;
1297 struct bufdesc *bdp;
1298 int i;
1300 /* Allocate memory for buffer descriptors. */
1301 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1302 GFP_KERNEL);
1303 if (!cbd_base) {
1304 printk("FEC: allocate descriptor memory failed?\n");
1305 return -ENOMEM;
1308 spin_lock_init(&fep->hw_lock);
1310 fep->netdev = ndev;
1312 /* Get the Ethernet address */
1313 fec_get_mac(ndev);
1315 /* Set receive and transmit descriptor base. */
1316 fep->rx_bd_base = cbd_base;
1317 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1319 /* The FEC Ethernet specific entries in the device structure */
1320 ndev->watchdog_timeo = TX_TIMEOUT;
1321 ndev->netdev_ops = &fec_netdev_ops;
1322 ndev->ethtool_ops = &fec_enet_ethtool_ops;
1324 /* Initialize the receive buffer descriptors. */
1325 bdp = fep->rx_bd_base;
1326 for (i = 0; i < RX_RING_SIZE; i++) {
1328 /* Initialize the BD for every fragment in the page. */
1329 bdp->cbd_sc = 0;
1330 bdp++;
1333 /* Set the last buffer to wrap */
1334 bdp--;
1335 bdp->cbd_sc |= BD_SC_WRAP;
1337 /* ...and the same for transmit */
1338 bdp = fep->tx_bd_base;
1339 for (i = 0; i < TX_RING_SIZE; i++) {
1341 /* Initialize the BD for every fragment in the page. */
1342 bdp->cbd_sc = 0;
1343 bdp->cbd_bufaddr = 0;
1344 bdp++;
1347 /* Set the last buffer to wrap */
1348 bdp--;
1349 bdp->cbd_sc |= BD_SC_WRAP;
1351 fec_restart(ndev, 0);
1353 return 0;
1356 static int __devinit
1357 fec_probe(struct platform_device *pdev)
1359 struct fec_enet_private *fep;
1360 struct fec_platform_data *pdata;
1361 struct net_device *ndev;
1362 int i, irq, ret = 0;
1363 struct resource *r;
1365 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1366 if (!r)
1367 return -ENXIO;
1369 r = request_mem_region(r->start, resource_size(r), pdev->name);
1370 if (!r)
1371 return -EBUSY;
1373 /* Init network device */
1374 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1375 if (!ndev) {
1376 ret = -ENOMEM;
1377 goto failed_alloc_etherdev;
1380 SET_NETDEV_DEV(ndev, &pdev->dev);
1382 /* setup board info structure */
1383 fep = netdev_priv(ndev);
1385 fep->hwp = ioremap(r->start, resource_size(r));
1386 fep->pdev = pdev;
1388 if (!fep->hwp) {
1389 ret = -ENOMEM;
1390 goto failed_ioremap;
1393 platform_set_drvdata(pdev, ndev);
1395 pdata = pdev->dev.platform_data;
1396 if (pdata)
1397 fep->phy_interface = pdata->phy;
1399 /* This device has up to three irqs on some platforms */
1400 for (i = 0; i < 3; i++) {
1401 irq = platform_get_irq(pdev, i);
1402 if (i && irq < 0)
1403 break;
1404 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1405 if (ret) {
1406 while (--i >= 0) {
1407 irq = platform_get_irq(pdev, i);
1408 free_irq(irq, ndev);
1410 goto failed_irq;
1414 fep->clk = clk_get(&pdev->dev, "fec_clk");
1415 if (IS_ERR(fep->clk)) {
1416 ret = PTR_ERR(fep->clk);
1417 goto failed_clk;
1419 clk_enable(fep->clk);
1421 ret = fec_enet_init(ndev);
1422 if (ret)
1423 goto failed_init;
1425 ret = fec_enet_mii_init(pdev);
1426 if (ret)
1427 goto failed_mii_init;
1429 /* Carrier starts down, phylib will bring it up */
1430 netif_carrier_off(ndev);
1432 ret = register_netdev(ndev);
1433 if (ret)
1434 goto failed_register;
1436 return 0;
1438 failed_register:
1439 fec_enet_mii_remove(fep);
1440 failed_mii_init:
1441 failed_init:
1442 clk_disable(fep->clk);
1443 clk_put(fep->clk);
1444 failed_clk:
1445 for (i = 0; i < 3; i++) {
1446 irq = platform_get_irq(pdev, i);
1447 if (irq > 0)
1448 free_irq(irq, ndev);
1450 failed_irq:
1451 iounmap(fep->hwp);
1452 failed_ioremap:
1453 free_netdev(ndev);
1454 failed_alloc_etherdev:
1455 release_mem_region(r->start, resource_size(r));
1457 return ret;
1460 static int __devexit
1461 fec_drv_remove(struct platform_device *pdev)
1463 struct net_device *ndev = platform_get_drvdata(pdev);
1464 struct fec_enet_private *fep = netdev_priv(ndev);
1465 struct resource *r;
1467 platform_set_drvdata(pdev, NULL);
1469 fec_stop(ndev);
1470 fec_enet_mii_remove(fep);
1471 clk_disable(fep->clk);
1472 clk_put(fep->clk);
1473 iounmap(fep->hwp);
1474 unregister_netdev(ndev);
1475 free_netdev(ndev);
1477 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1478 BUG_ON(!r);
1479 release_mem_region(r->start, resource_size(r));
1481 return 0;
1484 #ifdef CONFIG_PM
1485 static int
1486 fec_suspend(struct device *dev)
1488 struct net_device *ndev = dev_get_drvdata(dev);
1489 struct fec_enet_private *fep = netdev_priv(ndev);
1491 if (netif_running(ndev)) {
1492 fec_stop(ndev);
1493 netif_device_detach(ndev);
1495 clk_disable(fep->clk);
1497 return 0;
1500 static int
1501 fec_resume(struct device *dev)
1503 struct net_device *ndev = dev_get_drvdata(dev);
1504 struct fec_enet_private *fep = netdev_priv(ndev);
1506 clk_enable(fep->clk);
1507 if (netif_running(ndev)) {
1508 fec_restart(ndev, fep->full_duplex);
1509 netif_device_attach(ndev);
1512 return 0;
1515 static const struct dev_pm_ops fec_pm_ops = {
1516 .suspend = fec_suspend,
1517 .resume = fec_resume,
1518 .freeze = fec_suspend,
1519 .thaw = fec_resume,
1520 .poweroff = fec_suspend,
1521 .restore = fec_resume,
1523 #endif
1525 static struct platform_driver fec_driver = {
1526 .driver = {
1527 .name = DRIVER_NAME,
1528 .owner = THIS_MODULE,
1529 #ifdef CONFIG_PM
1530 .pm = &fec_pm_ops,
1531 #endif
1533 .id_table = fec_devtype,
1534 .probe = fec_probe,
1535 .remove = __devexit_p(fec_drv_remove),
1538 static int __init
1539 fec_enet_module_init(void)
1541 printk(KERN_INFO "FEC Ethernet Driver\n");
1543 return platform_driver_register(&fec_driver);
1546 static void __exit
1547 fec_enet_cleanup(void)
1549 platform_driver_unregister(&fec_driver);
1552 module_exit(fec_enet_cleanup);
1553 module_init(fec_enet_module_init);
1555 MODULE_LICENSE("GPL");