[media] media: rc: nuvoton: support reading / writing wakeup sequence via sysfs
[linux-2.6/btrfs-unstable.git] / mm / swapfile.c
blobd2c37365e2d6e429cf0f7cdbb62308f5e76aea93
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
64 PLIST_HEAD(swap_active_head);
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
83 static DEFINE_MUTEX(swapon_mutex);
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
89 static inline unsigned char swap_count(unsigned char ent)
91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
98 swp_entry_t entry = swp_entry(si->type, offset);
99 struct page *page;
100 int ret = 0;
102 page = find_get_page(swap_address_space(entry), entry.val);
103 if (!page)
104 return 0;
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
116 page_cache_release(page);
117 return ret;
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
124 static int discard_swap(struct swap_info_struct *si)
126 struct swap_extent *se;
127 sector_t start_block;
128 sector_t nr_blocks;
129 int err = 0;
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
137 nr_blocks, GFP_KERNEL, 0);
138 if (err)
139 return err;
140 cond_resched();
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
147 err = blkdev_issue_discard(si->bdev, start_block,
148 nr_blocks, GFP_KERNEL, 0);
149 if (err)
150 break;
152 cond_resched();
154 return err; /* That will often be -EOPNOTSUPP */
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
161 static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
167 while (nr_pages) {
168 if (se->start_page <= start_page &&
169 start_page < se->start_page + se->nr_pages) {
170 pgoff_t offset = start_page - se->start_page;
171 sector_t start_block = se->start_block + offset;
172 sector_t nr_blocks = se->nr_pages - offset;
174 if (nr_blocks > nr_pages)
175 nr_blocks = nr_pages;
176 start_page += nr_blocks;
177 nr_pages -= nr_blocks;
179 if (!found_extent++)
180 si->curr_swap_extent = se;
182 start_block <<= PAGE_SHIFT - 9;
183 nr_blocks <<= PAGE_SHIFT - 9;
184 if (blkdev_issue_discard(si->bdev, start_block,
185 nr_blocks, GFP_NOIO, 0))
186 break;
189 se = list_next_entry(se, list);
193 #define SWAPFILE_CLUSTER 256
194 #define LATENCY_LIMIT 256
196 static inline void cluster_set_flag(struct swap_cluster_info *info,
197 unsigned int flag)
199 info->flags = flag;
202 static inline unsigned int cluster_count(struct swap_cluster_info *info)
204 return info->data;
207 static inline void cluster_set_count(struct swap_cluster_info *info,
208 unsigned int c)
210 info->data = c;
213 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214 unsigned int c, unsigned int f)
216 info->flags = f;
217 info->data = c;
220 static inline unsigned int cluster_next(struct swap_cluster_info *info)
222 return info->data;
225 static inline void cluster_set_next(struct swap_cluster_info *info,
226 unsigned int n)
228 info->data = n;
231 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232 unsigned int n, unsigned int f)
234 info->flags = f;
235 info->data = n;
238 static inline bool cluster_is_free(struct swap_cluster_info *info)
240 return info->flags & CLUSTER_FLAG_FREE;
243 static inline bool cluster_is_null(struct swap_cluster_info *info)
245 return info->flags & CLUSTER_FLAG_NEXT_NULL;
248 static inline void cluster_set_null(struct swap_cluster_info *info)
250 info->flags = CLUSTER_FLAG_NEXT_NULL;
251 info->data = 0;
254 /* Add a cluster to discard list and schedule it to do discard */
255 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256 unsigned int idx)
259 * If scan_swap_map() can't find a free cluster, it will check
260 * si->swap_map directly. To make sure the discarding cluster isn't
261 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262 * will be cleared after discard
264 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
267 if (cluster_is_null(&si->discard_cluster_head)) {
268 cluster_set_next_flag(&si->discard_cluster_head,
269 idx, 0);
270 cluster_set_next_flag(&si->discard_cluster_tail,
271 idx, 0);
272 } else {
273 unsigned int tail = cluster_next(&si->discard_cluster_tail);
274 cluster_set_next(&si->cluster_info[tail], idx);
275 cluster_set_next_flag(&si->discard_cluster_tail,
276 idx, 0);
279 schedule_work(&si->discard_work);
283 * Doing discard actually. After a cluster discard is finished, the cluster
284 * will be added to free cluster list. caller should hold si->lock.
286 static void swap_do_scheduled_discard(struct swap_info_struct *si)
288 struct swap_cluster_info *info;
289 unsigned int idx;
291 info = si->cluster_info;
293 while (!cluster_is_null(&si->discard_cluster_head)) {
294 idx = cluster_next(&si->discard_cluster_head);
296 cluster_set_next_flag(&si->discard_cluster_head,
297 cluster_next(&info[idx]), 0);
298 if (cluster_next(&si->discard_cluster_tail) == idx) {
299 cluster_set_null(&si->discard_cluster_head);
300 cluster_set_null(&si->discard_cluster_tail);
302 spin_unlock(&si->lock);
304 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305 SWAPFILE_CLUSTER);
307 spin_lock(&si->lock);
308 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309 if (cluster_is_null(&si->free_cluster_head)) {
310 cluster_set_next_flag(&si->free_cluster_head,
311 idx, 0);
312 cluster_set_next_flag(&si->free_cluster_tail,
313 idx, 0);
314 } else {
315 unsigned int tail;
317 tail = cluster_next(&si->free_cluster_tail);
318 cluster_set_next(&info[tail], idx);
319 cluster_set_next_flag(&si->free_cluster_tail,
320 idx, 0);
322 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323 0, SWAPFILE_CLUSTER);
327 static void swap_discard_work(struct work_struct *work)
329 struct swap_info_struct *si;
331 si = container_of(work, struct swap_info_struct, discard_work);
333 spin_lock(&si->lock);
334 swap_do_scheduled_discard(si);
335 spin_unlock(&si->lock);
339 * The cluster corresponding to page_nr will be used. The cluster will be
340 * removed from free cluster list and its usage counter will be increased.
342 static void inc_cluster_info_page(struct swap_info_struct *p,
343 struct swap_cluster_info *cluster_info, unsigned long page_nr)
345 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
347 if (!cluster_info)
348 return;
349 if (cluster_is_free(&cluster_info[idx])) {
350 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351 cluster_set_next_flag(&p->free_cluster_head,
352 cluster_next(&cluster_info[idx]), 0);
353 if (cluster_next(&p->free_cluster_tail) == idx) {
354 cluster_set_null(&p->free_cluster_tail);
355 cluster_set_null(&p->free_cluster_head);
357 cluster_set_count_flag(&cluster_info[idx], 0, 0);
360 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361 cluster_set_count(&cluster_info[idx],
362 cluster_count(&cluster_info[idx]) + 1);
366 * The cluster corresponding to page_nr decreases one usage. If the usage
367 * counter becomes 0, which means no page in the cluster is in using, we can
368 * optionally discard the cluster and add it to free cluster list.
370 static void dec_cluster_info_page(struct swap_info_struct *p,
371 struct swap_cluster_info *cluster_info, unsigned long page_nr)
373 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
375 if (!cluster_info)
376 return;
378 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379 cluster_set_count(&cluster_info[idx],
380 cluster_count(&cluster_info[idx]) - 1);
382 if (cluster_count(&cluster_info[idx]) == 0) {
384 * If the swap is discardable, prepare discard the cluster
385 * instead of free it immediately. The cluster will be freed
386 * after discard.
388 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
390 swap_cluster_schedule_discard(p, idx);
391 return;
394 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395 if (cluster_is_null(&p->free_cluster_head)) {
396 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398 } else {
399 unsigned int tail = cluster_next(&p->free_cluster_tail);
400 cluster_set_next(&cluster_info[tail], idx);
401 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
407 * It's possible scan_swap_map() uses a free cluster in the middle of free
408 * cluster list. Avoiding such abuse to avoid list corruption.
410 static bool
411 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
412 unsigned long offset)
414 struct percpu_cluster *percpu_cluster;
415 bool conflict;
417 offset /= SWAPFILE_CLUSTER;
418 conflict = !cluster_is_null(&si->free_cluster_head) &&
419 offset != cluster_next(&si->free_cluster_head) &&
420 cluster_is_free(&si->cluster_info[offset]);
422 if (!conflict)
423 return false;
425 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426 cluster_set_null(&percpu_cluster->index);
427 return true;
431 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432 * might involve allocating a new cluster for current CPU too.
434 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435 unsigned long *offset, unsigned long *scan_base)
437 struct percpu_cluster *cluster;
438 bool found_free;
439 unsigned long tmp;
441 new_cluster:
442 cluster = this_cpu_ptr(si->percpu_cluster);
443 if (cluster_is_null(&cluster->index)) {
444 if (!cluster_is_null(&si->free_cluster_head)) {
445 cluster->index = si->free_cluster_head;
446 cluster->next = cluster_next(&cluster->index) *
447 SWAPFILE_CLUSTER;
448 } else if (!cluster_is_null(&si->discard_cluster_head)) {
450 * we don't have free cluster but have some clusters in
451 * discarding, do discard now and reclaim them
453 swap_do_scheduled_discard(si);
454 *scan_base = *offset = si->cluster_next;
455 goto new_cluster;
456 } else
457 return;
460 found_free = false;
463 * Other CPUs can use our cluster if they can't find a free cluster,
464 * check if there is still free entry in the cluster
466 tmp = cluster->next;
467 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468 SWAPFILE_CLUSTER) {
469 if (!si->swap_map[tmp]) {
470 found_free = true;
471 break;
473 tmp++;
475 if (!found_free) {
476 cluster_set_null(&cluster->index);
477 goto new_cluster;
479 cluster->next = tmp + 1;
480 *offset = tmp;
481 *scan_base = tmp;
484 static unsigned long scan_swap_map(struct swap_info_struct *si,
485 unsigned char usage)
487 unsigned long offset;
488 unsigned long scan_base;
489 unsigned long last_in_cluster = 0;
490 int latency_ration = LATENCY_LIMIT;
493 * We try to cluster swap pages by allocating them sequentially
494 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
495 * way, however, we resort to first-free allocation, starting
496 * a new cluster. This prevents us from scattering swap pages
497 * all over the entire swap partition, so that we reduce
498 * overall disk seek times between swap pages. -- sct
499 * But we do now try to find an empty cluster. -Andrea
500 * And we let swap pages go all over an SSD partition. Hugh
503 si->flags += SWP_SCANNING;
504 scan_base = offset = si->cluster_next;
506 /* SSD algorithm */
507 if (si->cluster_info) {
508 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509 goto checks;
512 if (unlikely(!si->cluster_nr--)) {
513 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514 si->cluster_nr = SWAPFILE_CLUSTER - 1;
515 goto checks;
518 spin_unlock(&si->lock);
521 * If seek is expensive, start searching for new cluster from
522 * start of partition, to minimize the span of allocated swap.
523 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524 * case, just handled by scan_swap_map_try_ssd_cluster() above.
526 scan_base = offset = si->lowest_bit;
527 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
529 /* Locate the first empty (unaligned) cluster */
530 for (; last_in_cluster <= si->highest_bit; offset++) {
531 if (si->swap_map[offset])
532 last_in_cluster = offset + SWAPFILE_CLUSTER;
533 else if (offset == last_in_cluster) {
534 spin_lock(&si->lock);
535 offset -= SWAPFILE_CLUSTER - 1;
536 si->cluster_next = offset;
537 si->cluster_nr = SWAPFILE_CLUSTER - 1;
538 goto checks;
540 if (unlikely(--latency_ration < 0)) {
541 cond_resched();
542 latency_ration = LATENCY_LIMIT;
546 offset = scan_base;
547 spin_lock(&si->lock);
548 si->cluster_nr = SWAPFILE_CLUSTER - 1;
551 checks:
552 if (si->cluster_info) {
553 while (scan_swap_map_ssd_cluster_conflict(si, offset))
554 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
556 if (!(si->flags & SWP_WRITEOK))
557 goto no_page;
558 if (!si->highest_bit)
559 goto no_page;
560 if (offset > si->highest_bit)
561 scan_base = offset = si->lowest_bit;
563 /* reuse swap entry of cache-only swap if not busy. */
564 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
565 int swap_was_freed;
566 spin_unlock(&si->lock);
567 swap_was_freed = __try_to_reclaim_swap(si, offset);
568 spin_lock(&si->lock);
569 /* entry was freed successfully, try to use this again */
570 if (swap_was_freed)
571 goto checks;
572 goto scan; /* check next one */
575 if (si->swap_map[offset])
576 goto scan;
578 if (offset == si->lowest_bit)
579 si->lowest_bit++;
580 if (offset == si->highest_bit)
581 si->highest_bit--;
582 si->inuse_pages++;
583 if (si->inuse_pages == si->pages) {
584 si->lowest_bit = si->max;
585 si->highest_bit = 0;
586 spin_lock(&swap_avail_lock);
587 plist_del(&si->avail_list, &swap_avail_head);
588 spin_unlock(&swap_avail_lock);
590 si->swap_map[offset] = usage;
591 inc_cluster_info_page(si, si->cluster_info, offset);
592 si->cluster_next = offset + 1;
593 si->flags -= SWP_SCANNING;
595 return offset;
597 scan:
598 spin_unlock(&si->lock);
599 while (++offset <= si->highest_bit) {
600 if (!si->swap_map[offset]) {
601 spin_lock(&si->lock);
602 goto checks;
604 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
605 spin_lock(&si->lock);
606 goto checks;
608 if (unlikely(--latency_ration < 0)) {
609 cond_resched();
610 latency_ration = LATENCY_LIMIT;
613 offset = si->lowest_bit;
614 while (offset < scan_base) {
615 if (!si->swap_map[offset]) {
616 spin_lock(&si->lock);
617 goto checks;
619 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
620 spin_lock(&si->lock);
621 goto checks;
623 if (unlikely(--latency_ration < 0)) {
624 cond_resched();
625 latency_ration = LATENCY_LIMIT;
627 offset++;
629 spin_lock(&si->lock);
631 no_page:
632 si->flags -= SWP_SCANNING;
633 return 0;
636 swp_entry_t get_swap_page(void)
638 struct swap_info_struct *si, *next;
639 pgoff_t offset;
641 if (atomic_long_read(&nr_swap_pages) <= 0)
642 goto noswap;
643 atomic_long_dec(&nr_swap_pages);
645 spin_lock(&swap_avail_lock);
647 start_over:
648 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649 /* requeue si to after same-priority siblings */
650 plist_requeue(&si->avail_list, &swap_avail_head);
651 spin_unlock(&swap_avail_lock);
652 spin_lock(&si->lock);
653 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
654 spin_lock(&swap_avail_lock);
655 if (plist_node_empty(&si->avail_list)) {
656 spin_unlock(&si->lock);
657 goto nextsi;
659 WARN(!si->highest_bit,
660 "swap_info %d in list but !highest_bit\n",
661 si->type);
662 WARN(!(si->flags & SWP_WRITEOK),
663 "swap_info %d in list but !SWP_WRITEOK\n",
664 si->type);
665 plist_del(&si->avail_list, &swap_avail_head);
666 spin_unlock(&si->lock);
667 goto nextsi;
670 /* This is called for allocating swap entry for cache */
671 offset = scan_swap_map(si, SWAP_HAS_CACHE);
672 spin_unlock(&si->lock);
673 if (offset)
674 return swp_entry(si->type, offset);
675 pr_debug("scan_swap_map of si %d failed to find offset\n",
676 si->type);
677 spin_lock(&swap_avail_lock);
678 nextsi:
680 * if we got here, it's likely that si was almost full before,
681 * and since scan_swap_map() can drop the si->lock, multiple
682 * callers probably all tried to get a page from the same si
683 * and it filled up before we could get one; or, the si filled
684 * up between us dropping swap_avail_lock and taking si->lock.
685 * Since we dropped the swap_avail_lock, the swap_avail_head
686 * list may have been modified; so if next is still in the
687 * swap_avail_head list then try it, otherwise start over.
689 if (plist_node_empty(&next->avail_list))
690 goto start_over;
693 spin_unlock(&swap_avail_lock);
695 atomic_long_inc(&nr_swap_pages);
696 noswap:
697 return (swp_entry_t) {0};
700 /* The only caller of this function is now suspend routine */
701 swp_entry_t get_swap_page_of_type(int type)
703 struct swap_info_struct *si;
704 pgoff_t offset;
706 si = swap_info[type];
707 spin_lock(&si->lock);
708 if (si && (si->flags & SWP_WRITEOK)) {
709 atomic_long_dec(&nr_swap_pages);
710 /* This is called for allocating swap entry, not cache */
711 offset = scan_swap_map(si, 1);
712 if (offset) {
713 spin_unlock(&si->lock);
714 return swp_entry(type, offset);
716 atomic_long_inc(&nr_swap_pages);
718 spin_unlock(&si->lock);
719 return (swp_entry_t) {0};
722 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
724 struct swap_info_struct *p;
725 unsigned long offset, type;
727 if (!entry.val)
728 goto out;
729 type = swp_type(entry);
730 if (type >= nr_swapfiles)
731 goto bad_nofile;
732 p = swap_info[type];
733 if (!(p->flags & SWP_USED))
734 goto bad_device;
735 offset = swp_offset(entry);
736 if (offset >= p->max)
737 goto bad_offset;
738 if (!p->swap_map[offset])
739 goto bad_free;
740 spin_lock(&p->lock);
741 return p;
743 bad_free:
744 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
745 goto out;
746 bad_offset:
747 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
748 goto out;
749 bad_device:
750 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
751 goto out;
752 bad_nofile:
753 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
754 out:
755 return NULL;
758 static unsigned char swap_entry_free(struct swap_info_struct *p,
759 swp_entry_t entry, unsigned char usage)
761 unsigned long offset = swp_offset(entry);
762 unsigned char count;
763 unsigned char has_cache;
765 count = p->swap_map[offset];
766 has_cache = count & SWAP_HAS_CACHE;
767 count &= ~SWAP_HAS_CACHE;
769 if (usage == SWAP_HAS_CACHE) {
770 VM_BUG_ON(!has_cache);
771 has_cache = 0;
772 } else if (count == SWAP_MAP_SHMEM) {
774 * Or we could insist on shmem.c using a special
775 * swap_shmem_free() and free_shmem_swap_and_cache()...
777 count = 0;
778 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779 if (count == COUNT_CONTINUED) {
780 if (swap_count_continued(p, offset, count))
781 count = SWAP_MAP_MAX | COUNT_CONTINUED;
782 else
783 count = SWAP_MAP_MAX;
784 } else
785 count--;
788 usage = count | has_cache;
789 p->swap_map[offset] = usage;
791 /* free if no reference */
792 if (!usage) {
793 mem_cgroup_uncharge_swap(entry);
794 dec_cluster_info_page(p, p->cluster_info, offset);
795 if (offset < p->lowest_bit)
796 p->lowest_bit = offset;
797 if (offset > p->highest_bit) {
798 bool was_full = !p->highest_bit;
799 p->highest_bit = offset;
800 if (was_full && (p->flags & SWP_WRITEOK)) {
801 spin_lock(&swap_avail_lock);
802 WARN_ON(!plist_node_empty(&p->avail_list));
803 if (plist_node_empty(&p->avail_list))
804 plist_add(&p->avail_list,
805 &swap_avail_head);
806 spin_unlock(&swap_avail_lock);
809 atomic_long_inc(&nr_swap_pages);
810 p->inuse_pages--;
811 frontswap_invalidate_page(p->type, offset);
812 if (p->flags & SWP_BLKDEV) {
813 struct gendisk *disk = p->bdev->bd_disk;
814 if (disk->fops->swap_slot_free_notify)
815 disk->fops->swap_slot_free_notify(p->bdev,
816 offset);
820 return usage;
824 * Caller has made sure that the swap device corresponding to entry
825 * is still around or has not been recycled.
827 void swap_free(swp_entry_t entry)
829 struct swap_info_struct *p;
831 p = swap_info_get(entry);
832 if (p) {
833 swap_entry_free(p, entry, 1);
834 spin_unlock(&p->lock);
839 * Called after dropping swapcache to decrease refcnt to swap entries.
841 void swapcache_free(swp_entry_t entry)
843 struct swap_info_struct *p;
845 p = swap_info_get(entry);
846 if (p) {
847 swap_entry_free(p, entry, SWAP_HAS_CACHE);
848 spin_unlock(&p->lock);
853 * How many references to page are currently swapped out?
854 * This does not give an exact answer when swap count is continued,
855 * but does include the high COUNT_CONTINUED flag to allow for that.
857 int page_swapcount(struct page *page)
859 int count = 0;
860 struct swap_info_struct *p;
861 swp_entry_t entry;
863 entry.val = page_private(page);
864 p = swap_info_get(entry);
865 if (p) {
866 count = swap_count(p->swap_map[swp_offset(entry)]);
867 spin_unlock(&p->lock);
869 return count;
873 * How many references to @entry are currently swapped out?
874 * This considers COUNT_CONTINUED so it returns exact answer.
876 int swp_swapcount(swp_entry_t entry)
878 int count, tmp_count, n;
879 struct swap_info_struct *p;
880 struct page *page;
881 pgoff_t offset;
882 unsigned char *map;
884 p = swap_info_get(entry);
885 if (!p)
886 return 0;
888 count = swap_count(p->swap_map[swp_offset(entry)]);
889 if (!(count & COUNT_CONTINUED))
890 goto out;
892 count &= ~COUNT_CONTINUED;
893 n = SWAP_MAP_MAX + 1;
895 offset = swp_offset(entry);
896 page = vmalloc_to_page(p->swap_map + offset);
897 offset &= ~PAGE_MASK;
898 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
900 do {
901 page = list_next_entry(page, lru);
902 map = kmap_atomic(page);
903 tmp_count = map[offset];
904 kunmap_atomic(map);
906 count += (tmp_count & ~COUNT_CONTINUED) * n;
907 n *= (SWAP_CONT_MAX + 1);
908 } while (tmp_count & COUNT_CONTINUED);
909 out:
910 spin_unlock(&p->lock);
911 return count;
915 * We can write to an anon page without COW if there are no other references
916 * to it. And as a side-effect, free up its swap: because the old content
917 * on disk will never be read, and seeking back there to write new content
918 * later would only waste time away from clustering.
920 int reuse_swap_page(struct page *page)
922 int count;
924 VM_BUG_ON_PAGE(!PageLocked(page), page);
925 if (unlikely(PageKsm(page)))
926 return 0;
927 /* The page is part of THP and cannot be reused */
928 if (PageTransCompound(page))
929 return 0;
930 count = page_mapcount(page);
931 if (count <= 1 && PageSwapCache(page)) {
932 count += page_swapcount(page);
933 if (count == 1 && !PageWriteback(page)) {
934 delete_from_swap_cache(page);
935 SetPageDirty(page);
938 return count <= 1;
942 * If swap is getting full, or if there are no more mappings of this page,
943 * then try_to_free_swap is called to free its swap space.
945 int try_to_free_swap(struct page *page)
947 VM_BUG_ON_PAGE(!PageLocked(page), page);
949 if (!PageSwapCache(page))
950 return 0;
951 if (PageWriteback(page))
952 return 0;
953 if (page_swapcount(page))
954 return 0;
957 * Once hibernation has begun to create its image of memory,
958 * there's a danger that one of the calls to try_to_free_swap()
959 * - most probably a call from __try_to_reclaim_swap() while
960 * hibernation is allocating its own swap pages for the image,
961 * but conceivably even a call from memory reclaim - will free
962 * the swap from a page which has already been recorded in the
963 * image as a clean swapcache page, and then reuse its swap for
964 * another page of the image. On waking from hibernation, the
965 * original page might be freed under memory pressure, then
966 * later read back in from swap, now with the wrong data.
968 * Hibernation suspends storage while it is writing the image
969 * to disk so check that here.
971 if (pm_suspended_storage())
972 return 0;
974 delete_from_swap_cache(page);
975 SetPageDirty(page);
976 return 1;
980 * Free the swap entry like above, but also try to
981 * free the page cache entry if it is the last user.
983 int free_swap_and_cache(swp_entry_t entry)
985 struct swap_info_struct *p;
986 struct page *page = NULL;
988 if (non_swap_entry(entry))
989 return 1;
991 p = swap_info_get(entry);
992 if (p) {
993 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
994 page = find_get_page(swap_address_space(entry),
995 entry.val);
996 if (page && !trylock_page(page)) {
997 page_cache_release(page);
998 page = NULL;
1001 spin_unlock(&p->lock);
1003 if (page) {
1005 * Not mapped elsewhere, or swap space full? Free it!
1006 * Also recheck PageSwapCache now page is locked (above).
1008 if (PageSwapCache(page) && !PageWriteback(page) &&
1009 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1010 delete_from_swap_cache(page);
1011 SetPageDirty(page);
1013 unlock_page(page);
1014 page_cache_release(page);
1016 return p != NULL;
1019 #ifdef CONFIG_HIBERNATION
1021 * Find the swap type that corresponds to given device (if any).
1023 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1024 * from 0, in which the swap header is expected to be located.
1026 * This is needed for the suspend to disk (aka swsusp).
1028 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1030 struct block_device *bdev = NULL;
1031 int type;
1033 if (device)
1034 bdev = bdget(device);
1036 spin_lock(&swap_lock);
1037 for (type = 0; type < nr_swapfiles; type++) {
1038 struct swap_info_struct *sis = swap_info[type];
1040 if (!(sis->flags & SWP_WRITEOK))
1041 continue;
1043 if (!bdev) {
1044 if (bdev_p)
1045 *bdev_p = bdgrab(sis->bdev);
1047 spin_unlock(&swap_lock);
1048 return type;
1050 if (bdev == sis->bdev) {
1051 struct swap_extent *se = &sis->first_swap_extent;
1053 if (se->start_block == offset) {
1054 if (bdev_p)
1055 *bdev_p = bdgrab(sis->bdev);
1057 spin_unlock(&swap_lock);
1058 bdput(bdev);
1059 return type;
1063 spin_unlock(&swap_lock);
1064 if (bdev)
1065 bdput(bdev);
1067 return -ENODEV;
1071 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1072 * corresponding to given index in swap_info (swap type).
1074 sector_t swapdev_block(int type, pgoff_t offset)
1076 struct block_device *bdev;
1078 if ((unsigned int)type >= nr_swapfiles)
1079 return 0;
1080 if (!(swap_info[type]->flags & SWP_WRITEOK))
1081 return 0;
1082 return map_swap_entry(swp_entry(type, offset), &bdev);
1086 * Return either the total number of swap pages of given type, or the number
1087 * of free pages of that type (depending on @free)
1089 * This is needed for software suspend
1091 unsigned int count_swap_pages(int type, int free)
1093 unsigned int n = 0;
1095 spin_lock(&swap_lock);
1096 if ((unsigned int)type < nr_swapfiles) {
1097 struct swap_info_struct *sis = swap_info[type];
1099 spin_lock(&sis->lock);
1100 if (sis->flags & SWP_WRITEOK) {
1101 n = sis->pages;
1102 if (free)
1103 n -= sis->inuse_pages;
1105 spin_unlock(&sis->lock);
1107 spin_unlock(&swap_lock);
1108 return n;
1110 #endif /* CONFIG_HIBERNATION */
1112 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1114 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1118 * No need to decide whether this PTE shares the swap entry with others,
1119 * just let do_wp_page work it out if a write is requested later - to
1120 * force COW, vm_page_prot omits write permission from any private vma.
1122 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1123 unsigned long addr, swp_entry_t entry, struct page *page)
1125 struct page *swapcache;
1126 struct mem_cgroup *memcg;
1127 spinlock_t *ptl;
1128 pte_t *pte;
1129 int ret = 1;
1131 swapcache = page;
1132 page = ksm_might_need_to_copy(page, vma, addr);
1133 if (unlikely(!page))
1134 return -ENOMEM;
1136 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1137 &memcg, false)) {
1138 ret = -ENOMEM;
1139 goto out_nolock;
1142 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1143 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1144 mem_cgroup_cancel_charge(page, memcg, false);
1145 ret = 0;
1146 goto out;
1149 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1150 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1151 get_page(page);
1152 set_pte_at(vma->vm_mm, addr, pte,
1153 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1154 if (page == swapcache) {
1155 page_add_anon_rmap(page, vma, addr, false);
1156 mem_cgroup_commit_charge(page, memcg, true, false);
1157 } else { /* ksm created a completely new copy */
1158 page_add_new_anon_rmap(page, vma, addr, false);
1159 mem_cgroup_commit_charge(page, memcg, false, false);
1160 lru_cache_add_active_or_unevictable(page, vma);
1162 swap_free(entry);
1164 * Move the page to the active list so it is not
1165 * immediately swapped out again after swapon.
1167 activate_page(page);
1168 out:
1169 pte_unmap_unlock(pte, ptl);
1170 out_nolock:
1171 if (page != swapcache) {
1172 unlock_page(page);
1173 put_page(page);
1175 return ret;
1178 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1179 unsigned long addr, unsigned long end,
1180 swp_entry_t entry, struct page *page)
1182 pte_t swp_pte = swp_entry_to_pte(entry);
1183 pte_t *pte;
1184 int ret = 0;
1187 * We don't actually need pte lock while scanning for swp_pte: since
1188 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1189 * page table while we're scanning; though it could get zapped, and on
1190 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1191 * of unmatched parts which look like swp_pte, so unuse_pte must
1192 * recheck under pte lock. Scanning without pte lock lets it be
1193 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1195 pte = pte_offset_map(pmd, addr);
1196 do {
1198 * swapoff spends a _lot_ of time in this loop!
1199 * Test inline before going to call unuse_pte.
1201 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1202 pte_unmap(pte);
1203 ret = unuse_pte(vma, pmd, addr, entry, page);
1204 if (ret)
1205 goto out;
1206 pte = pte_offset_map(pmd, addr);
1208 } while (pte++, addr += PAGE_SIZE, addr != end);
1209 pte_unmap(pte - 1);
1210 out:
1211 return ret;
1214 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1215 unsigned long addr, unsigned long end,
1216 swp_entry_t entry, struct page *page)
1218 pmd_t *pmd;
1219 unsigned long next;
1220 int ret;
1222 pmd = pmd_offset(pud, addr);
1223 do {
1224 next = pmd_addr_end(addr, end);
1225 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1226 continue;
1227 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1228 if (ret)
1229 return ret;
1230 } while (pmd++, addr = next, addr != end);
1231 return 0;
1234 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1235 unsigned long addr, unsigned long end,
1236 swp_entry_t entry, struct page *page)
1238 pud_t *pud;
1239 unsigned long next;
1240 int ret;
1242 pud = pud_offset(pgd, addr);
1243 do {
1244 next = pud_addr_end(addr, end);
1245 if (pud_none_or_clear_bad(pud))
1246 continue;
1247 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1248 if (ret)
1249 return ret;
1250 } while (pud++, addr = next, addr != end);
1251 return 0;
1254 static int unuse_vma(struct vm_area_struct *vma,
1255 swp_entry_t entry, struct page *page)
1257 pgd_t *pgd;
1258 unsigned long addr, end, next;
1259 int ret;
1261 if (page_anon_vma(page)) {
1262 addr = page_address_in_vma(page, vma);
1263 if (addr == -EFAULT)
1264 return 0;
1265 else
1266 end = addr + PAGE_SIZE;
1267 } else {
1268 addr = vma->vm_start;
1269 end = vma->vm_end;
1272 pgd = pgd_offset(vma->vm_mm, addr);
1273 do {
1274 next = pgd_addr_end(addr, end);
1275 if (pgd_none_or_clear_bad(pgd))
1276 continue;
1277 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1278 if (ret)
1279 return ret;
1280 } while (pgd++, addr = next, addr != end);
1281 return 0;
1284 static int unuse_mm(struct mm_struct *mm,
1285 swp_entry_t entry, struct page *page)
1287 struct vm_area_struct *vma;
1288 int ret = 0;
1290 if (!down_read_trylock(&mm->mmap_sem)) {
1292 * Activate page so shrink_inactive_list is unlikely to unmap
1293 * its ptes while lock is dropped, so swapoff can make progress.
1295 activate_page(page);
1296 unlock_page(page);
1297 down_read(&mm->mmap_sem);
1298 lock_page(page);
1300 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1301 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1302 break;
1304 up_read(&mm->mmap_sem);
1305 return (ret < 0)? ret: 0;
1309 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1310 * from current position to next entry still in use.
1311 * Recycle to start on reaching the end, returning 0 when empty.
1313 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1314 unsigned int prev, bool frontswap)
1316 unsigned int max = si->max;
1317 unsigned int i = prev;
1318 unsigned char count;
1321 * No need for swap_lock here: we're just looking
1322 * for whether an entry is in use, not modifying it; false
1323 * hits are okay, and sys_swapoff() has already prevented new
1324 * allocations from this area (while holding swap_lock).
1326 for (;;) {
1327 if (++i >= max) {
1328 if (!prev) {
1329 i = 0;
1330 break;
1333 * No entries in use at top of swap_map,
1334 * loop back to start and recheck there.
1336 max = prev + 1;
1337 prev = 0;
1338 i = 1;
1340 if (frontswap) {
1341 if (frontswap_test(si, i))
1342 break;
1343 else
1344 continue;
1346 count = READ_ONCE(si->swap_map[i]);
1347 if (count && swap_count(count) != SWAP_MAP_BAD)
1348 break;
1350 return i;
1354 * We completely avoid races by reading each swap page in advance,
1355 * and then search for the process using it. All the necessary
1356 * page table adjustments can then be made atomically.
1358 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1359 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1361 int try_to_unuse(unsigned int type, bool frontswap,
1362 unsigned long pages_to_unuse)
1364 struct swap_info_struct *si = swap_info[type];
1365 struct mm_struct *start_mm;
1366 volatile unsigned char *swap_map; /* swap_map is accessed without
1367 * locking. Mark it as volatile
1368 * to prevent compiler doing
1369 * something odd.
1371 unsigned char swcount;
1372 struct page *page;
1373 swp_entry_t entry;
1374 unsigned int i = 0;
1375 int retval = 0;
1378 * When searching mms for an entry, a good strategy is to
1379 * start at the first mm we freed the previous entry from
1380 * (though actually we don't notice whether we or coincidence
1381 * freed the entry). Initialize this start_mm with a hold.
1383 * A simpler strategy would be to start at the last mm we
1384 * freed the previous entry from; but that would take less
1385 * advantage of mmlist ordering, which clusters forked mms
1386 * together, child after parent. If we race with dup_mmap(), we
1387 * prefer to resolve parent before child, lest we miss entries
1388 * duplicated after we scanned child: using last mm would invert
1389 * that.
1391 start_mm = &init_mm;
1392 atomic_inc(&init_mm.mm_users);
1395 * Keep on scanning until all entries have gone. Usually,
1396 * one pass through swap_map is enough, but not necessarily:
1397 * there are races when an instance of an entry might be missed.
1399 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1400 if (signal_pending(current)) {
1401 retval = -EINTR;
1402 break;
1406 * Get a page for the entry, using the existing swap
1407 * cache page if there is one. Otherwise, get a clean
1408 * page and read the swap into it.
1410 swap_map = &si->swap_map[i];
1411 entry = swp_entry(type, i);
1412 page = read_swap_cache_async(entry,
1413 GFP_HIGHUSER_MOVABLE, NULL, 0);
1414 if (!page) {
1416 * Either swap_duplicate() failed because entry
1417 * has been freed independently, and will not be
1418 * reused since sys_swapoff() already disabled
1419 * allocation from here, or alloc_page() failed.
1421 swcount = *swap_map;
1423 * We don't hold lock here, so the swap entry could be
1424 * SWAP_MAP_BAD (when the cluster is discarding).
1425 * Instead of fail out, We can just skip the swap
1426 * entry because swapoff will wait for discarding
1427 * finish anyway.
1429 if (!swcount || swcount == SWAP_MAP_BAD)
1430 continue;
1431 retval = -ENOMEM;
1432 break;
1436 * Don't hold on to start_mm if it looks like exiting.
1438 if (atomic_read(&start_mm->mm_users) == 1) {
1439 mmput(start_mm);
1440 start_mm = &init_mm;
1441 atomic_inc(&init_mm.mm_users);
1445 * Wait for and lock page. When do_swap_page races with
1446 * try_to_unuse, do_swap_page can handle the fault much
1447 * faster than try_to_unuse can locate the entry. This
1448 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1449 * defer to do_swap_page in such a case - in some tests,
1450 * do_swap_page and try_to_unuse repeatedly compete.
1452 wait_on_page_locked(page);
1453 wait_on_page_writeback(page);
1454 lock_page(page);
1455 wait_on_page_writeback(page);
1458 * Remove all references to entry.
1460 swcount = *swap_map;
1461 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1462 retval = shmem_unuse(entry, page);
1463 /* page has already been unlocked and released */
1464 if (retval < 0)
1465 break;
1466 continue;
1468 if (swap_count(swcount) && start_mm != &init_mm)
1469 retval = unuse_mm(start_mm, entry, page);
1471 if (swap_count(*swap_map)) {
1472 int set_start_mm = (*swap_map >= swcount);
1473 struct list_head *p = &start_mm->mmlist;
1474 struct mm_struct *new_start_mm = start_mm;
1475 struct mm_struct *prev_mm = start_mm;
1476 struct mm_struct *mm;
1478 atomic_inc(&new_start_mm->mm_users);
1479 atomic_inc(&prev_mm->mm_users);
1480 spin_lock(&mmlist_lock);
1481 while (swap_count(*swap_map) && !retval &&
1482 (p = p->next) != &start_mm->mmlist) {
1483 mm = list_entry(p, struct mm_struct, mmlist);
1484 if (!atomic_inc_not_zero(&mm->mm_users))
1485 continue;
1486 spin_unlock(&mmlist_lock);
1487 mmput(prev_mm);
1488 prev_mm = mm;
1490 cond_resched();
1492 swcount = *swap_map;
1493 if (!swap_count(swcount)) /* any usage ? */
1495 else if (mm == &init_mm)
1496 set_start_mm = 1;
1497 else
1498 retval = unuse_mm(mm, entry, page);
1500 if (set_start_mm && *swap_map < swcount) {
1501 mmput(new_start_mm);
1502 atomic_inc(&mm->mm_users);
1503 new_start_mm = mm;
1504 set_start_mm = 0;
1506 spin_lock(&mmlist_lock);
1508 spin_unlock(&mmlist_lock);
1509 mmput(prev_mm);
1510 mmput(start_mm);
1511 start_mm = new_start_mm;
1513 if (retval) {
1514 unlock_page(page);
1515 page_cache_release(page);
1516 break;
1520 * If a reference remains (rare), we would like to leave
1521 * the page in the swap cache; but try_to_unmap could
1522 * then re-duplicate the entry once we drop page lock,
1523 * so we might loop indefinitely; also, that page could
1524 * not be swapped out to other storage meanwhile. So:
1525 * delete from cache even if there's another reference,
1526 * after ensuring that the data has been saved to disk -
1527 * since if the reference remains (rarer), it will be
1528 * read from disk into another page. Splitting into two
1529 * pages would be incorrect if swap supported "shared
1530 * private" pages, but they are handled by tmpfs files.
1532 * Given how unuse_vma() targets one particular offset
1533 * in an anon_vma, once the anon_vma has been determined,
1534 * this splitting happens to be just what is needed to
1535 * handle where KSM pages have been swapped out: re-reading
1536 * is unnecessarily slow, but we can fix that later on.
1538 if (swap_count(*swap_map) &&
1539 PageDirty(page) && PageSwapCache(page)) {
1540 struct writeback_control wbc = {
1541 .sync_mode = WB_SYNC_NONE,
1544 swap_writepage(page, &wbc);
1545 lock_page(page);
1546 wait_on_page_writeback(page);
1550 * It is conceivable that a racing task removed this page from
1551 * swap cache just before we acquired the page lock at the top,
1552 * or while we dropped it in unuse_mm(). The page might even
1553 * be back in swap cache on another swap area: that we must not
1554 * delete, since it may not have been written out to swap yet.
1556 if (PageSwapCache(page) &&
1557 likely(page_private(page) == entry.val))
1558 delete_from_swap_cache(page);
1561 * So we could skip searching mms once swap count went
1562 * to 1, we did not mark any present ptes as dirty: must
1563 * mark page dirty so shrink_page_list will preserve it.
1565 SetPageDirty(page);
1566 unlock_page(page);
1567 page_cache_release(page);
1570 * Make sure that we aren't completely killing
1571 * interactive performance.
1573 cond_resched();
1574 if (frontswap && pages_to_unuse > 0) {
1575 if (!--pages_to_unuse)
1576 break;
1580 mmput(start_mm);
1581 return retval;
1585 * After a successful try_to_unuse, if no swap is now in use, we know
1586 * we can empty the mmlist. swap_lock must be held on entry and exit.
1587 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1588 * added to the mmlist just after page_duplicate - before would be racy.
1590 static void drain_mmlist(void)
1592 struct list_head *p, *next;
1593 unsigned int type;
1595 for (type = 0; type < nr_swapfiles; type++)
1596 if (swap_info[type]->inuse_pages)
1597 return;
1598 spin_lock(&mmlist_lock);
1599 list_for_each_safe(p, next, &init_mm.mmlist)
1600 list_del_init(p);
1601 spin_unlock(&mmlist_lock);
1605 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1606 * corresponds to page offset for the specified swap entry.
1607 * Note that the type of this function is sector_t, but it returns page offset
1608 * into the bdev, not sector offset.
1610 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1612 struct swap_info_struct *sis;
1613 struct swap_extent *start_se;
1614 struct swap_extent *se;
1615 pgoff_t offset;
1617 sis = swap_info[swp_type(entry)];
1618 *bdev = sis->bdev;
1620 offset = swp_offset(entry);
1621 start_se = sis->curr_swap_extent;
1622 se = start_se;
1624 for ( ; ; ) {
1625 if (se->start_page <= offset &&
1626 offset < (se->start_page + se->nr_pages)) {
1627 return se->start_block + (offset - se->start_page);
1629 se = list_next_entry(se, list);
1630 sis->curr_swap_extent = se;
1631 BUG_ON(se == start_se); /* It *must* be present */
1636 * Returns the page offset into bdev for the specified page's swap entry.
1638 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1640 swp_entry_t entry;
1641 entry.val = page_private(page);
1642 return map_swap_entry(entry, bdev);
1646 * Free all of a swapdev's extent information
1648 static void destroy_swap_extents(struct swap_info_struct *sis)
1650 while (!list_empty(&sis->first_swap_extent.list)) {
1651 struct swap_extent *se;
1653 se = list_first_entry(&sis->first_swap_extent.list,
1654 struct swap_extent, list);
1655 list_del(&se->list);
1656 kfree(se);
1659 if (sis->flags & SWP_FILE) {
1660 struct file *swap_file = sis->swap_file;
1661 struct address_space *mapping = swap_file->f_mapping;
1663 sis->flags &= ~SWP_FILE;
1664 mapping->a_ops->swap_deactivate(swap_file);
1669 * Add a block range (and the corresponding page range) into this swapdev's
1670 * extent list. The extent list is kept sorted in page order.
1672 * This function rather assumes that it is called in ascending page order.
1675 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1676 unsigned long nr_pages, sector_t start_block)
1678 struct swap_extent *se;
1679 struct swap_extent *new_se;
1680 struct list_head *lh;
1682 if (start_page == 0) {
1683 se = &sis->first_swap_extent;
1684 sis->curr_swap_extent = se;
1685 se->start_page = 0;
1686 se->nr_pages = nr_pages;
1687 se->start_block = start_block;
1688 return 1;
1689 } else {
1690 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1691 se = list_entry(lh, struct swap_extent, list);
1692 BUG_ON(se->start_page + se->nr_pages != start_page);
1693 if (se->start_block + se->nr_pages == start_block) {
1694 /* Merge it */
1695 se->nr_pages += nr_pages;
1696 return 0;
1701 * No merge. Insert a new extent, preserving ordering.
1703 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1704 if (new_se == NULL)
1705 return -ENOMEM;
1706 new_se->start_page = start_page;
1707 new_se->nr_pages = nr_pages;
1708 new_se->start_block = start_block;
1710 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1711 return 1;
1715 * A `swap extent' is a simple thing which maps a contiguous range of pages
1716 * onto a contiguous range of disk blocks. An ordered list of swap extents
1717 * is built at swapon time and is then used at swap_writepage/swap_readpage
1718 * time for locating where on disk a page belongs.
1720 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1721 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1722 * swap files identically.
1724 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1725 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1726 * swapfiles are handled *identically* after swapon time.
1728 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1729 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1730 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1731 * requirements, they are simply tossed out - we will never use those blocks
1732 * for swapping.
1734 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1735 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1736 * which will scribble on the fs.
1738 * The amount of disk space which a single swap extent represents varies.
1739 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1740 * extents in the list. To avoid much list walking, we cache the previous
1741 * search location in `curr_swap_extent', and start new searches from there.
1742 * This is extremely effective. The average number of iterations in
1743 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1745 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1747 struct file *swap_file = sis->swap_file;
1748 struct address_space *mapping = swap_file->f_mapping;
1749 struct inode *inode = mapping->host;
1750 int ret;
1752 if (S_ISBLK(inode->i_mode)) {
1753 ret = add_swap_extent(sis, 0, sis->max, 0);
1754 *span = sis->pages;
1755 return ret;
1758 if (mapping->a_ops->swap_activate) {
1759 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1760 if (!ret) {
1761 sis->flags |= SWP_FILE;
1762 ret = add_swap_extent(sis, 0, sis->max, 0);
1763 *span = sis->pages;
1765 return ret;
1768 return generic_swapfile_activate(sis, swap_file, span);
1771 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1772 unsigned char *swap_map,
1773 struct swap_cluster_info *cluster_info)
1775 if (prio >= 0)
1776 p->prio = prio;
1777 else
1778 p->prio = --least_priority;
1780 * the plist prio is negated because plist ordering is
1781 * low-to-high, while swap ordering is high-to-low
1783 p->list.prio = -p->prio;
1784 p->avail_list.prio = -p->prio;
1785 p->swap_map = swap_map;
1786 p->cluster_info = cluster_info;
1787 p->flags |= SWP_WRITEOK;
1788 atomic_long_add(p->pages, &nr_swap_pages);
1789 total_swap_pages += p->pages;
1791 assert_spin_locked(&swap_lock);
1793 * both lists are plists, and thus priority ordered.
1794 * swap_active_head needs to be priority ordered for swapoff(),
1795 * which on removal of any swap_info_struct with an auto-assigned
1796 * (i.e. negative) priority increments the auto-assigned priority
1797 * of any lower-priority swap_info_structs.
1798 * swap_avail_head needs to be priority ordered for get_swap_page(),
1799 * which allocates swap pages from the highest available priority
1800 * swap_info_struct.
1802 plist_add(&p->list, &swap_active_head);
1803 spin_lock(&swap_avail_lock);
1804 plist_add(&p->avail_list, &swap_avail_head);
1805 spin_unlock(&swap_avail_lock);
1808 static void enable_swap_info(struct swap_info_struct *p, int prio,
1809 unsigned char *swap_map,
1810 struct swap_cluster_info *cluster_info,
1811 unsigned long *frontswap_map)
1813 frontswap_init(p->type, frontswap_map);
1814 spin_lock(&swap_lock);
1815 spin_lock(&p->lock);
1816 _enable_swap_info(p, prio, swap_map, cluster_info);
1817 spin_unlock(&p->lock);
1818 spin_unlock(&swap_lock);
1821 static void reinsert_swap_info(struct swap_info_struct *p)
1823 spin_lock(&swap_lock);
1824 spin_lock(&p->lock);
1825 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1826 spin_unlock(&p->lock);
1827 spin_unlock(&swap_lock);
1830 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1832 struct swap_info_struct *p = NULL;
1833 unsigned char *swap_map;
1834 struct swap_cluster_info *cluster_info;
1835 unsigned long *frontswap_map;
1836 struct file *swap_file, *victim;
1837 struct address_space *mapping;
1838 struct inode *inode;
1839 struct filename *pathname;
1840 int err, found = 0;
1841 unsigned int old_block_size;
1843 if (!capable(CAP_SYS_ADMIN))
1844 return -EPERM;
1846 BUG_ON(!current->mm);
1848 pathname = getname(specialfile);
1849 if (IS_ERR(pathname))
1850 return PTR_ERR(pathname);
1852 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1853 err = PTR_ERR(victim);
1854 if (IS_ERR(victim))
1855 goto out;
1857 mapping = victim->f_mapping;
1858 spin_lock(&swap_lock);
1859 plist_for_each_entry(p, &swap_active_head, list) {
1860 if (p->flags & SWP_WRITEOK) {
1861 if (p->swap_file->f_mapping == mapping) {
1862 found = 1;
1863 break;
1867 if (!found) {
1868 err = -EINVAL;
1869 spin_unlock(&swap_lock);
1870 goto out_dput;
1872 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1873 vm_unacct_memory(p->pages);
1874 else {
1875 err = -ENOMEM;
1876 spin_unlock(&swap_lock);
1877 goto out_dput;
1879 spin_lock(&swap_avail_lock);
1880 plist_del(&p->avail_list, &swap_avail_head);
1881 spin_unlock(&swap_avail_lock);
1882 spin_lock(&p->lock);
1883 if (p->prio < 0) {
1884 struct swap_info_struct *si = p;
1886 plist_for_each_entry_continue(si, &swap_active_head, list) {
1887 si->prio++;
1888 si->list.prio--;
1889 si->avail_list.prio--;
1891 least_priority++;
1893 plist_del(&p->list, &swap_active_head);
1894 atomic_long_sub(p->pages, &nr_swap_pages);
1895 total_swap_pages -= p->pages;
1896 p->flags &= ~SWP_WRITEOK;
1897 spin_unlock(&p->lock);
1898 spin_unlock(&swap_lock);
1900 set_current_oom_origin();
1901 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1902 clear_current_oom_origin();
1904 if (err) {
1905 /* re-insert swap space back into swap_list */
1906 reinsert_swap_info(p);
1907 goto out_dput;
1910 flush_work(&p->discard_work);
1912 destroy_swap_extents(p);
1913 if (p->flags & SWP_CONTINUED)
1914 free_swap_count_continuations(p);
1916 mutex_lock(&swapon_mutex);
1917 spin_lock(&swap_lock);
1918 spin_lock(&p->lock);
1919 drain_mmlist();
1921 /* wait for anyone still in scan_swap_map */
1922 p->highest_bit = 0; /* cuts scans short */
1923 while (p->flags >= SWP_SCANNING) {
1924 spin_unlock(&p->lock);
1925 spin_unlock(&swap_lock);
1926 schedule_timeout_uninterruptible(1);
1927 spin_lock(&swap_lock);
1928 spin_lock(&p->lock);
1931 swap_file = p->swap_file;
1932 old_block_size = p->old_block_size;
1933 p->swap_file = NULL;
1934 p->max = 0;
1935 swap_map = p->swap_map;
1936 p->swap_map = NULL;
1937 cluster_info = p->cluster_info;
1938 p->cluster_info = NULL;
1939 frontswap_map = frontswap_map_get(p);
1940 spin_unlock(&p->lock);
1941 spin_unlock(&swap_lock);
1942 frontswap_invalidate_area(p->type);
1943 frontswap_map_set(p, NULL);
1944 mutex_unlock(&swapon_mutex);
1945 free_percpu(p->percpu_cluster);
1946 p->percpu_cluster = NULL;
1947 vfree(swap_map);
1948 vfree(cluster_info);
1949 vfree(frontswap_map);
1950 /* Destroy swap account information */
1951 swap_cgroup_swapoff(p->type);
1953 inode = mapping->host;
1954 if (S_ISBLK(inode->i_mode)) {
1955 struct block_device *bdev = I_BDEV(inode);
1956 set_blocksize(bdev, old_block_size);
1957 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1958 } else {
1959 inode_lock(inode);
1960 inode->i_flags &= ~S_SWAPFILE;
1961 inode_unlock(inode);
1963 filp_close(swap_file, NULL);
1966 * Clear the SWP_USED flag after all resources are freed so that swapon
1967 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1968 * not hold p->lock after we cleared its SWP_WRITEOK.
1970 spin_lock(&swap_lock);
1971 p->flags = 0;
1972 spin_unlock(&swap_lock);
1974 err = 0;
1975 atomic_inc(&proc_poll_event);
1976 wake_up_interruptible(&proc_poll_wait);
1978 out_dput:
1979 filp_close(victim, NULL);
1980 out:
1981 putname(pathname);
1982 return err;
1985 #ifdef CONFIG_PROC_FS
1986 static unsigned swaps_poll(struct file *file, poll_table *wait)
1988 struct seq_file *seq = file->private_data;
1990 poll_wait(file, &proc_poll_wait, wait);
1992 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1993 seq->poll_event = atomic_read(&proc_poll_event);
1994 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1997 return POLLIN | POLLRDNORM;
2000 /* iterator */
2001 static void *swap_start(struct seq_file *swap, loff_t *pos)
2003 struct swap_info_struct *si;
2004 int type;
2005 loff_t l = *pos;
2007 mutex_lock(&swapon_mutex);
2009 if (!l)
2010 return SEQ_START_TOKEN;
2012 for (type = 0; type < nr_swapfiles; type++) {
2013 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2014 si = swap_info[type];
2015 if (!(si->flags & SWP_USED) || !si->swap_map)
2016 continue;
2017 if (!--l)
2018 return si;
2021 return NULL;
2024 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2026 struct swap_info_struct *si = v;
2027 int type;
2029 if (v == SEQ_START_TOKEN)
2030 type = 0;
2031 else
2032 type = si->type + 1;
2034 for (; type < nr_swapfiles; type++) {
2035 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2036 si = swap_info[type];
2037 if (!(si->flags & SWP_USED) || !si->swap_map)
2038 continue;
2039 ++*pos;
2040 return si;
2043 return NULL;
2046 static void swap_stop(struct seq_file *swap, void *v)
2048 mutex_unlock(&swapon_mutex);
2051 static int swap_show(struct seq_file *swap, void *v)
2053 struct swap_info_struct *si = v;
2054 struct file *file;
2055 int len;
2057 if (si == SEQ_START_TOKEN) {
2058 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2059 return 0;
2062 file = si->swap_file;
2063 len = seq_file_path(swap, file, " \t\n\\");
2064 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2065 len < 40 ? 40 - len : 1, " ",
2066 S_ISBLK(file_inode(file)->i_mode) ?
2067 "partition" : "file\t",
2068 si->pages << (PAGE_SHIFT - 10),
2069 si->inuse_pages << (PAGE_SHIFT - 10),
2070 si->prio);
2071 return 0;
2074 static const struct seq_operations swaps_op = {
2075 .start = swap_start,
2076 .next = swap_next,
2077 .stop = swap_stop,
2078 .show = swap_show
2081 static int swaps_open(struct inode *inode, struct file *file)
2083 struct seq_file *seq;
2084 int ret;
2086 ret = seq_open(file, &swaps_op);
2087 if (ret)
2088 return ret;
2090 seq = file->private_data;
2091 seq->poll_event = atomic_read(&proc_poll_event);
2092 return 0;
2095 static const struct file_operations proc_swaps_operations = {
2096 .open = swaps_open,
2097 .read = seq_read,
2098 .llseek = seq_lseek,
2099 .release = seq_release,
2100 .poll = swaps_poll,
2103 static int __init procswaps_init(void)
2105 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2106 return 0;
2108 __initcall(procswaps_init);
2109 #endif /* CONFIG_PROC_FS */
2111 #ifdef MAX_SWAPFILES_CHECK
2112 static int __init max_swapfiles_check(void)
2114 MAX_SWAPFILES_CHECK();
2115 return 0;
2117 late_initcall(max_swapfiles_check);
2118 #endif
2120 static struct swap_info_struct *alloc_swap_info(void)
2122 struct swap_info_struct *p;
2123 unsigned int type;
2125 p = kzalloc(sizeof(*p), GFP_KERNEL);
2126 if (!p)
2127 return ERR_PTR(-ENOMEM);
2129 spin_lock(&swap_lock);
2130 for (type = 0; type < nr_swapfiles; type++) {
2131 if (!(swap_info[type]->flags & SWP_USED))
2132 break;
2134 if (type >= MAX_SWAPFILES) {
2135 spin_unlock(&swap_lock);
2136 kfree(p);
2137 return ERR_PTR(-EPERM);
2139 if (type >= nr_swapfiles) {
2140 p->type = type;
2141 swap_info[type] = p;
2143 * Write swap_info[type] before nr_swapfiles, in case a
2144 * racing procfs swap_start() or swap_next() is reading them.
2145 * (We never shrink nr_swapfiles, we never free this entry.)
2147 smp_wmb();
2148 nr_swapfiles++;
2149 } else {
2150 kfree(p);
2151 p = swap_info[type];
2153 * Do not memset this entry: a racing procfs swap_next()
2154 * would be relying on p->type to remain valid.
2157 INIT_LIST_HEAD(&p->first_swap_extent.list);
2158 plist_node_init(&p->list, 0);
2159 plist_node_init(&p->avail_list, 0);
2160 p->flags = SWP_USED;
2161 spin_unlock(&swap_lock);
2162 spin_lock_init(&p->lock);
2164 return p;
2167 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2169 int error;
2171 if (S_ISBLK(inode->i_mode)) {
2172 p->bdev = bdgrab(I_BDEV(inode));
2173 error = blkdev_get(p->bdev,
2174 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2175 if (error < 0) {
2176 p->bdev = NULL;
2177 return error;
2179 p->old_block_size = block_size(p->bdev);
2180 error = set_blocksize(p->bdev, PAGE_SIZE);
2181 if (error < 0)
2182 return error;
2183 p->flags |= SWP_BLKDEV;
2184 } else if (S_ISREG(inode->i_mode)) {
2185 p->bdev = inode->i_sb->s_bdev;
2186 inode_lock(inode);
2187 if (IS_SWAPFILE(inode))
2188 return -EBUSY;
2189 } else
2190 return -EINVAL;
2192 return 0;
2195 static unsigned long read_swap_header(struct swap_info_struct *p,
2196 union swap_header *swap_header,
2197 struct inode *inode)
2199 int i;
2200 unsigned long maxpages;
2201 unsigned long swapfilepages;
2202 unsigned long last_page;
2204 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2205 pr_err("Unable to find swap-space signature\n");
2206 return 0;
2209 /* swap partition endianess hack... */
2210 if (swab32(swap_header->info.version) == 1) {
2211 swab32s(&swap_header->info.version);
2212 swab32s(&swap_header->info.last_page);
2213 swab32s(&swap_header->info.nr_badpages);
2214 for (i = 0; i < swap_header->info.nr_badpages; i++)
2215 swab32s(&swap_header->info.badpages[i]);
2217 /* Check the swap header's sub-version */
2218 if (swap_header->info.version != 1) {
2219 pr_warn("Unable to handle swap header version %d\n",
2220 swap_header->info.version);
2221 return 0;
2224 p->lowest_bit = 1;
2225 p->cluster_next = 1;
2226 p->cluster_nr = 0;
2229 * Find out how many pages are allowed for a single swap
2230 * device. There are two limiting factors: 1) the number
2231 * of bits for the swap offset in the swp_entry_t type, and
2232 * 2) the number of bits in the swap pte as defined by the
2233 * different architectures. In order to find the
2234 * largest possible bit mask, a swap entry with swap type 0
2235 * and swap offset ~0UL is created, encoded to a swap pte,
2236 * decoded to a swp_entry_t again, and finally the swap
2237 * offset is extracted. This will mask all the bits from
2238 * the initial ~0UL mask that can't be encoded in either
2239 * the swp_entry_t or the architecture definition of a
2240 * swap pte.
2242 maxpages = swp_offset(pte_to_swp_entry(
2243 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2244 last_page = swap_header->info.last_page;
2245 if (last_page > maxpages) {
2246 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2247 maxpages << (PAGE_SHIFT - 10),
2248 last_page << (PAGE_SHIFT - 10));
2250 if (maxpages > last_page) {
2251 maxpages = last_page + 1;
2252 /* p->max is an unsigned int: don't overflow it */
2253 if ((unsigned int)maxpages == 0)
2254 maxpages = UINT_MAX;
2256 p->highest_bit = maxpages - 1;
2258 if (!maxpages)
2259 return 0;
2260 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2261 if (swapfilepages && maxpages > swapfilepages) {
2262 pr_warn("Swap area shorter than signature indicates\n");
2263 return 0;
2265 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2266 return 0;
2267 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2268 return 0;
2270 return maxpages;
2273 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2274 union swap_header *swap_header,
2275 unsigned char *swap_map,
2276 struct swap_cluster_info *cluster_info,
2277 unsigned long maxpages,
2278 sector_t *span)
2280 int i;
2281 unsigned int nr_good_pages;
2282 int nr_extents;
2283 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2284 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2286 nr_good_pages = maxpages - 1; /* omit header page */
2288 cluster_set_null(&p->free_cluster_head);
2289 cluster_set_null(&p->free_cluster_tail);
2290 cluster_set_null(&p->discard_cluster_head);
2291 cluster_set_null(&p->discard_cluster_tail);
2293 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2294 unsigned int page_nr = swap_header->info.badpages[i];
2295 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2296 return -EINVAL;
2297 if (page_nr < maxpages) {
2298 swap_map[page_nr] = SWAP_MAP_BAD;
2299 nr_good_pages--;
2301 * Haven't marked the cluster free yet, no list
2302 * operation involved
2304 inc_cluster_info_page(p, cluster_info, page_nr);
2308 /* Haven't marked the cluster free yet, no list operation involved */
2309 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2310 inc_cluster_info_page(p, cluster_info, i);
2312 if (nr_good_pages) {
2313 swap_map[0] = SWAP_MAP_BAD;
2315 * Not mark the cluster free yet, no list
2316 * operation involved
2318 inc_cluster_info_page(p, cluster_info, 0);
2319 p->max = maxpages;
2320 p->pages = nr_good_pages;
2321 nr_extents = setup_swap_extents(p, span);
2322 if (nr_extents < 0)
2323 return nr_extents;
2324 nr_good_pages = p->pages;
2326 if (!nr_good_pages) {
2327 pr_warn("Empty swap-file\n");
2328 return -EINVAL;
2331 if (!cluster_info)
2332 return nr_extents;
2334 for (i = 0; i < nr_clusters; i++) {
2335 if (!cluster_count(&cluster_info[idx])) {
2336 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2337 if (cluster_is_null(&p->free_cluster_head)) {
2338 cluster_set_next_flag(&p->free_cluster_head,
2339 idx, 0);
2340 cluster_set_next_flag(&p->free_cluster_tail,
2341 idx, 0);
2342 } else {
2343 unsigned int tail;
2345 tail = cluster_next(&p->free_cluster_tail);
2346 cluster_set_next(&cluster_info[tail], idx);
2347 cluster_set_next_flag(&p->free_cluster_tail,
2348 idx, 0);
2351 idx++;
2352 if (idx == nr_clusters)
2353 idx = 0;
2355 return nr_extents;
2359 * Helper to sys_swapon determining if a given swap
2360 * backing device queue supports DISCARD operations.
2362 static bool swap_discardable(struct swap_info_struct *si)
2364 struct request_queue *q = bdev_get_queue(si->bdev);
2366 if (!q || !blk_queue_discard(q))
2367 return false;
2369 return true;
2372 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2374 struct swap_info_struct *p;
2375 struct filename *name;
2376 struct file *swap_file = NULL;
2377 struct address_space *mapping;
2378 int prio;
2379 int error;
2380 union swap_header *swap_header;
2381 int nr_extents;
2382 sector_t span;
2383 unsigned long maxpages;
2384 unsigned char *swap_map = NULL;
2385 struct swap_cluster_info *cluster_info = NULL;
2386 unsigned long *frontswap_map = NULL;
2387 struct page *page = NULL;
2388 struct inode *inode = NULL;
2390 if (swap_flags & ~SWAP_FLAGS_VALID)
2391 return -EINVAL;
2393 if (!capable(CAP_SYS_ADMIN))
2394 return -EPERM;
2396 p = alloc_swap_info();
2397 if (IS_ERR(p))
2398 return PTR_ERR(p);
2400 INIT_WORK(&p->discard_work, swap_discard_work);
2402 name = getname(specialfile);
2403 if (IS_ERR(name)) {
2404 error = PTR_ERR(name);
2405 name = NULL;
2406 goto bad_swap;
2408 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2409 if (IS_ERR(swap_file)) {
2410 error = PTR_ERR(swap_file);
2411 swap_file = NULL;
2412 goto bad_swap;
2415 p->swap_file = swap_file;
2416 mapping = swap_file->f_mapping;
2417 inode = mapping->host;
2419 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2420 error = claim_swapfile(p, inode);
2421 if (unlikely(error))
2422 goto bad_swap;
2425 * Read the swap header.
2427 if (!mapping->a_ops->readpage) {
2428 error = -EINVAL;
2429 goto bad_swap;
2431 page = read_mapping_page(mapping, 0, swap_file);
2432 if (IS_ERR(page)) {
2433 error = PTR_ERR(page);
2434 goto bad_swap;
2436 swap_header = kmap(page);
2438 maxpages = read_swap_header(p, swap_header, inode);
2439 if (unlikely(!maxpages)) {
2440 error = -EINVAL;
2441 goto bad_swap;
2444 /* OK, set up the swap map and apply the bad block list */
2445 swap_map = vzalloc(maxpages);
2446 if (!swap_map) {
2447 error = -ENOMEM;
2448 goto bad_swap;
2450 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2451 int cpu;
2453 p->flags |= SWP_SOLIDSTATE;
2455 * select a random position to start with to help wear leveling
2456 * SSD
2458 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2460 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2461 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2462 if (!cluster_info) {
2463 error = -ENOMEM;
2464 goto bad_swap;
2466 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2467 if (!p->percpu_cluster) {
2468 error = -ENOMEM;
2469 goto bad_swap;
2471 for_each_possible_cpu(cpu) {
2472 struct percpu_cluster *cluster;
2473 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2474 cluster_set_null(&cluster->index);
2478 error = swap_cgroup_swapon(p->type, maxpages);
2479 if (error)
2480 goto bad_swap;
2482 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2483 cluster_info, maxpages, &span);
2484 if (unlikely(nr_extents < 0)) {
2485 error = nr_extents;
2486 goto bad_swap;
2488 /* frontswap enabled? set up bit-per-page map for frontswap */
2489 if (frontswap_enabled)
2490 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2492 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2494 * When discard is enabled for swap with no particular
2495 * policy flagged, we set all swap discard flags here in
2496 * order to sustain backward compatibility with older
2497 * swapon(8) releases.
2499 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2500 SWP_PAGE_DISCARD);
2503 * By flagging sys_swapon, a sysadmin can tell us to
2504 * either do single-time area discards only, or to just
2505 * perform discards for released swap page-clusters.
2506 * Now it's time to adjust the p->flags accordingly.
2508 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2509 p->flags &= ~SWP_PAGE_DISCARD;
2510 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2511 p->flags &= ~SWP_AREA_DISCARD;
2513 /* issue a swapon-time discard if it's still required */
2514 if (p->flags & SWP_AREA_DISCARD) {
2515 int err = discard_swap(p);
2516 if (unlikely(err))
2517 pr_err("swapon: discard_swap(%p): %d\n",
2518 p, err);
2522 mutex_lock(&swapon_mutex);
2523 prio = -1;
2524 if (swap_flags & SWAP_FLAG_PREFER)
2525 prio =
2526 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2527 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2529 pr_info("Adding %uk swap on %s. "
2530 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2531 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2532 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2533 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2534 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2535 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2536 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2537 (frontswap_map) ? "FS" : "");
2539 mutex_unlock(&swapon_mutex);
2540 atomic_inc(&proc_poll_event);
2541 wake_up_interruptible(&proc_poll_wait);
2543 if (S_ISREG(inode->i_mode))
2544 inode->i_flags |= S_SWAPFILE;
2545 error = 0;
2546 goto out;
2547 bad_swap:
2548 free_percpu(p->percpu_cluster);
2549 p->percpu_cluster = NULL;
2550 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2551 set_blocksize(p->bdev, p->old_block_size);
2552 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2554 destroy_swap_extents(p);
2555 swap_cgroup_swapoff(p->type);
2556 spin_lock(&swap_lock);
2557 p->swap_file = NULL;
2558 p->flags = 0;
2559 spin_unlock(&swap_lock);
2560 vfree(swap_map);
2561 vfree(cluster_info);
2562 if (swap_file) {
2563 if (inode && S_ISREG(inode->i_mode)) {
2564 inode_unlock(inode);
2565 inode = NULL;
2567 filp_close(swap_file, NULL);
2569 out:
2570 if (page && !IS_ERR(page)) {
2571 kunmap(page);
2572 page_cache_release(page);
2574 if (name)
2575 putname(name);
2576 if (inode && S_ISREG(inode->i_mode))
2577 inode_unlock(inode);
2578 return error;
2581 void si_swapinfo(struct sysinfo *val)
2583 unsigned int type;
2584 unsigned long nr_to_be_unused = 0;
2586 spin_lock(&swap_lock);
2587 for (type = 0; type < nr_swapfiles; type++) {
2588 struct swap_info_struct *si = swap_info[type];
2590 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2591 nr_to_be_unused += si->inuse_pages;
2593 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2594 val->totalswap = total_swap_pages + nr_to_be_unused;
2595 spin_unlock(&swap_lock);
2599 * Verify that a swap entry is valid and increment its swap map count.
2601 * Returns error code in following case.
2602 * - success -> 0
2603 * - swp_entry is invalid -> EINVAL
2604 * - swp_entry is migration entry -> EINVAL
2605 * - swap-cache reference is requested but there is already one. -> EEXIST
2606 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2607 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2609 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2611 struct swap_info_struct *p;
2612 unsigned long offset, type;
2613 unsigned char count;
2614 unsigned char has_cache;
2615 int err = -EINVAL;
2617 if (non_swap_entry(entry))
2618 goto out;
2620 type = swp_type(entry);
2621 if (type >= nr_swapfiles)
2622 goto bad_file;
2623 p = swap_info[type];
2624 offset = swp_offset(entry);
2626 spin_lock(&p->lock);
2627 if (unlikely(offset >= p->max))
2628 goto unlock_out;
2630 count = p->swap_map[offset];
2633 * swapin_readahead() doesn't check if a swap entry is valid, so the
2634 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2636 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2637 err = -ENOENT;
2638 goto unlock_out;
2641 has_cache = count & SWAP_HAS_CACHE;
2642 count &= ~SWAP_HAS_CACHE;
2643 err = 0;
2645 if (usage == SWAP_HAS_CACHE) {
2647 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2648 if (!has_cache && count)
2649 has_cache = SWAP_HAS_CACHE;
2650 else if (has_cache) /* someone else added cache */
2651 err = -EEXIST;
2652 else /* no users remaining */
2653 err = -ENOENT;
2655 } else if (count || has_cache) {
2657 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2658 count += usage;
2659 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2660 err = -EINVAL;
2661 else if (swap_count_continued(p, offset, count))
2662 count = COUNT_CONTINUED;
2663 else
2664 err = -ENOMEM;
2665 } else
2666 err = -ENOENT; /* unused swap entry */
2668 p->swap_map[offset] = count | has_cache;
2670 unlock_out:
2671 spin_unlock(&p->lock);
2672 out:
2673 return err;
2675 bad_file:
2676 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2677 goto out;
2681 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2682 * (in which case its reference count is never incremented).
2684 void swap_shmem_alloc(swp_entry_t entry)
2686 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2690 * Increase reference count of swap entry by 1.
2691 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2692 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2693 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2694 * might occur if a page table entry has got corrupted.
2696 int swap_duplicate(swp_entry_t entry)
2698 int err = 0;
2700 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2701 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2702 return err;
2706 * @entry: swap entry for which we allocate swap cache.
2708 * Called when allocating swap cache for existing swap entry,
2709 * This can return error codes. Returns 0 at success.
2710 * -EBUSY means there is a swap cache.
2711 * Note: return code is different from swap_duplicate().
2713 int swapcache_prepare(swp_entry_t entry)
2715 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2718 struct swap_info_struct *page_swap_info(struct page *page)
2720 swp_entry_t swap = { .val = page_private(page) };
2721 BUG_ON(!PageSwapCache(page));
2722 return swap_info[swp_type(swap)];
2726 * out-of-line __page_file_ methods to avoid include hell.
2728 struct address_space *__page_file_mapping(struct page *page)
2730 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2731 return page_swap_info(page)->swap_file->f_mapping;
2733 EXPORT_SYMBOL_GPL(__page_file_mapping);
2735 pgoff_t __page_file_index(struct page *page)
2737 swp_entry_t swap = { .val = page_private(page) };
2738 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2739 return swp_offset(swap);
2741 EXPORT_SYMBOL_GPL(__page_file_index);
2744 * add_swap_count_continuation - called when a swap count is duplicated
2745 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2746 * page of the original vmalloc'ed swap_map, to hold the continuation count
2747 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2748 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2750 * These continuation pages are seldom referenced: the common paths all work
2751 * on the original swap_map, only referring to a continuation page when the
2752 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2754 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2755 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2756 * can be called after dropping locks.
2758 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2760 struct swap_info_struct *si;
2761 struct page *head;
2762 struct page *page;
2763 struct page *list_page;
2764 pgoff_t offset;
2765 unsigned char count;
2768 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2769 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2771 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2773 si = swap_info_get(entry);
2774 if (!si) {
2776 * An acceptable race has occurred since the failing
2777 * __swap_duplicate(): the swap entry has been freed,
2778 * perhaps even the whole swap_map cleared for swapoff.
2780 goto outer;
2783 offset = swp_offset(entry);
2784 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2786 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2788 * The higher the swap count, the more likely it is that tasks
2789 * will race to add swap count continuation: we need to avoid
2790 * over-provisioning.
2792 goto out;
2795 if (!page) {
2796 spin_unlock(&si->lock);
2797 return -ENOMEM;
2801 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2802 * no architecture is using highmem pages for kernel page tables: so it
2803 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2805 head = vmalloc_to_page(si->swap_map + offset);
2806 offset &= ~PAGE_MASK;
2809 * Page allocation does not initialize the page's lru field,
2810 * but it does always reset its private field.
2812 if (!page_private(head)) {
2813 BUG_ON(count & COUNT_CONTINUED);
2814 INIT_LIST_HEAD(&head->lru);
2815 set_page_private(head, SWP_CONTINUED);
2816 si->flags |= SWP_CONTINUED;
2819 list_for_each_entry(list_page, &head->lru, lru) {
2820 unsigned char *map;
2823 * If the previous map said no continuation, but we've found
2824 * a continuation page, free our allocation and use this one.
2826 if (!(count & COUNT_CONTINUED))
2827 goto out;
2829 map = kmap_atomic(list_page) + offset;
2830 count = *map;
2831 kunmap_atomic(map);
2834 * If this continuation count now has some space in it,
2835 * free our allocation and use this one.
2837 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2838 goto out;
2841 list_add_tail(&page->lru, &head->lru);
2842 page = NULL; /* now it's attached, don't free it */
2843 out:
2844 spin_unlock(&si->lock);
2845 outer:
2846 if (page)
2847 __free_page(page);
2848 return 0;
2852 * swap_count_continued - when the original swap_map count is incremented
2853 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2854 * into, carry if so, or else fail until a new continuation page is allocated;
2855 * when the original swap_map count is decremented from 0 with continuation,
2856 * borrow from the continuation and report whether it still holds more.
2857 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2859 static bool swap_count_continued(struct swap_info_struct *si,
2860 pgoff_t offset, unsigned char count)
2862 struct page *head;
2863 struct page *page;
2864 unsigned char *map;
2866 head = vmalloc_to_page(si->swap_map + offset);
2867 if (page_private(head) != SWP_CONTINUED) {
2868 BUG_ON(count & COUNT_CONTINUED);
2869 return false; /* need to add count continuation */
2872 offset &= ~PAGE_MASK;
2873 page = list_entry(head->lru.next, struct page, lru);
2874 map = kmap_atomic(page) + offset;
2876 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2877 goto init_map; /* jump over SWAP_CONT_MAX checks */
2879 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2881 * Think of how you add 1 to 999
2883 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2884 kunmap_atomic(map);
2885 page = list_entry(page->lru.next, struct page, lru);
2886 BUG_ON(page == head);
2887 map = kmap_atomic(page) + offset;
2889 if (*map == SWAP_CONT_MAX) {
2890 kunmap_atomic(map);
2891 page = list_entry(page->lru.next, struct page, lru);
2892 if (page == head)
2893 return false; /* add count continuation */
2894 map = kmap_atomic(page) + offset;
2895 init_map: *map = 0; /* we didn't zero the page */
2897 *map += 1;
2898 kunmap_atomic(map);
2899 page = list_entry(page->lru.prev, struct page, lru);
2900 while (page != head) {
2901 map = kmap_atomic(page) + offset;
2902 *map = COUNT_CONTINUED;
2903 kunmap_atomic(map);
2904 page = list_entry(page->lru.prev, struct page, lru);
2906 return true; /* incremented */
2908 } else { /* decrementing */
2910 * Think of how you subtract 1 from 1000
2912 BUG_ON(count != COUNT_CONTINUED);
2913 while (*map == COUNT_CONTINUED) {
2914 kunmap_atomic(map);
2915 page = list_entry(page->lru.next, struct page, lru);
2916 BUG_ON(page == head);
2917 map = kmap_atomic(page) + offset;
2919 BUG_ON(*map == 0);
2920 *map -= 1;
2921 if (*map == 0)
2922 count = 0;
2923 kunmap_atomic(map);
2924 page = list_entry(page->lru.prev, struct page, lru);
2925 while (page != head) {
2926 map = kmap_atomic(page) + offset;
2927 *map = SWAP_CONT_MAX | count;
2928 count = COUNT_CONTINUED;
2929 kunmap_atomic(map);
2930 page = list_entry(page->lru.prev, struct page, lru);
2932 return count == COUNT_CONTINUED;
2937 * free_swap_count_continuations - swapoff free all the continuation pages
2938 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2940 static void free_swap_count_continuations(struct swap_info_struct *si)
2942 pgoff_t offset;
2944 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2945 struct page *head;
2946 head = vmalloc_to_page(si->swap_map + offset);
2947 if (page_private(head)) {
2948 struct page *page, *next;
2950 list_for_each_entry_safe(page, next, &head->lru, lru) {
2951 list_del(&page->lru);
2952 __free_page(page);