block: blk-mq: support draining mq queue
[linux-2.6/btrfs-unstable.git] / block / blk-core.c
blobaccb7fc6ec944a59651e1e8a43a4319eb2df1cca
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 DEFINE_IDA(blk_queue_ida);
51 * For the allocated request tables
53 struct kmem_cache *request_cachep = NULL;
56 * For queue allocation
58 struct kmem_cache *blk_requestq_cachep;
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 void blk_queue_congestion_threshold(struct request_queue *q)
67 int nr;
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
80 /**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
87 * Will return NULL if the request queue cannot be located.
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91 struct backing_dev_info *ret = NULL;
92 struct request_queue *q = bdev_get_queue(bdev);
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
98 EXPORT_SYMBOL(blk_get_backing_dev_info);
100 void blk_rq_init(struct request_queue *q, struct request *rq)
102 memset(rq, 0, sizeof(*rq));
104 INIT_LIST_HEAD(&rq->queuelist);
105 INIT_LIST_HEAD(&rq->timeout_list);
106 rq->cpu = -1;
107 rq->q = q;
108 rq->__sector = (sector_t) -1;
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
111 rq->cmd = rq->__cmd;
112 rq->cmd_len = BLK_MAX_CDB;
113 rq->tag = -1;
114 rq->start_time = jiffies;
115 set_start_time_ns(rq);
116 rq->part = NULL;
118 EXPORT_SYMBOL(blk_rq_init);
120 static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
131 bio_advance(bio, nbytes);
133 /* don't actually finish bio if it's part of flush sequence */
134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 bio_endio(bio, error);
138 void blk_dump_rq_flags(struct request *rq, char *msg)
140 int bit;
142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 (unsigned long long) rq->cmd_flags);
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
150 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 printk(KERN_INFO " cdb: ");
154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
159 EXPORT_SYMBOL(blk_dump_rq_flags);
161 static void blk_delay_work(struct work_struct *work)
163 struct request_queue *q;
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
167 __blk_run_queue(q);
168 spin_unlock_irq(q->queue_lock);
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
176 * Description:
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
179 * restarted around the specified time. Queue lock must be held.
181 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
187 EXPORT_SYMBOL(blk_delay_queue);
190 * blk_start_queue - restart a previously stopped queue
191 * @q: The &struct request_queue in question
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
198 void blk_start_queue(struct request_queue *q)
200 WARN_ON(!irqs_disabled());
202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 __blk_run_queue(q);
205 EXPORT_SYMBOL(blk_start_queue);
208 * blk_stop_queue - stop a queue
209 * @q: The &struct request_queue in question
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
221 void blk_stop_queue(struct request_queue *q)
223 cancel_delayed_work(&q->delay_work);
224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
226 EXPORT_SYMBOL(blk_stop_queue);
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
237 * that the callbacks might use. The caller must already have made sure
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
243 * and blkcg_exit_queue() to be called with queue lock initialized.
246 void blk_sync_queue(struct request_queue *q)
248 del_timer_sync(&q->timeout);
249 cancel_delayed_work_sync(&q->delay_work);
251 EXPORT_SYMBOL(blk_sync_queue);
254 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
255 * @q: The queue to run
257 * Description:
258 * Invoke request handling on a queue if there are any pending requests.
259 * May be used to restart request handling after a request has completed.
260 * This variant runs the queue whether or not the queue has been
261 * stopped. Must be called with the queue lock held and interrupts
262 * disabled. See also @blk_run_queue.
264 inline void __blk_run_queue_uncond(struct request_queue *q)
266 if (unlikely(blk_queue_dead(q)))
267 return;
270 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
271 * the queue lock internally. As a result multiple threads may be
272 * running such a request function concurrently. Keep track of the
273 * number of active request_fn invocations such that blk_drain_queue()
274 * can wait until all these request_fn calls have finished.
276 q->request_fn_active++;
277 q->request_fn(q);
278 q->request_fn_active--;
282 * __blk_run_queue - run a single device queue
283 * @q: The queue to run
285 * Description:
286 * See @blk_run_queue. This variant must be called with the queue lock
287 * held and interrupts disabled.
289 void __blk_run_queue(struct request_queue *q)
291 if (unlikely(blk_queue_stopped(q)))
292 return;
294 __blk_run_queue_uncond(q);
296 EXPORT_SYMBOL(__blk_run_queue);
299 * blk_run_queue_async - run a single device queue in workqueue context
300 * @q: The queue to run
302 * Description:
303 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
304 * of us. The caller must hold the queue lock.
306 void blk_run_queue_async(struct request_queue *q)
308 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
309 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
311 EXPORT_SYMBOL(blk_run_queue_async);
314 * blk_run_queue - run a single device queue
315 * @q: The queue to run
317 * Description:
318 * Invoke request handling on this queue, if it has pending work to do.
319 * May be used to restart queueing when a request has completed.
321 void blk_run_queue(struct request_queue *q)
323 unsigned long flags;
325 spin_lock_irqsave(q->queue_lock, flags);
326 __blk_run_queue(q);
327 spin_unlock_irqrestore(q->queue_lock, flags);
329 EXPORT_SYMBOL(blk_run_queue);
331 void blk_put_queue(struct request_queue *q)
333 kobject_put(&q->kobj);
335 EXPORT_SYMBOL(blk_put_queue);
338 * __blk_drain_queue - drain requests from request_queue
339 * @q: queue to drain
340 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
342 * Drain requests from @q. If @drain_all is set, all requests are drained.
343 * If not, only ELVPRIV requests are drained. The caller is responsible
344 * for ensuring that no new requests which need to be drained are queued.
346 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
347 __releases(q->queue_lock)
348 __acquires(q->queue_lock)
350 int i;
352 lockdep_assert_held(q->queue_lock);
354 while (true) {
355 bool drain = false;
358 * The caller might be trying to drain @q before its
359 * elevator is initialized.
361 if (q->elevator)
362 elv_drain_elevator(q);
364 blkcg_drain_queue(q);
367 * This function might be called on a queue which failed
368 * driver init after queue creation or is not yet fully
369 * active yet. Some drivers (e.g. fd and loop) get unhappy
370 * in such cases. Kick queue iff dispatch queue has
371 * something on it and @q has request_fn set.
373 if (!list_empty(&q->queue_head) && q->request_fn)
374 __blk_run_queue(q);
376 drain |= q->nr_rqs_elvpriv;
377 drain |= q->request_fn_active;
380 * Unfortunately, requests are queued at and tracked from
381 * multiple places and there's no single counter which can
382 * be drained. Check all the queues and counters.
384 if (drain_all) {
385 drain |= !list_empty(&q->queue_head);
386 for (i = 0; i < 2; i++) {
387 drain |= q->nr_rqs[i];
388 drain |= q->in_flight[i];
389 drain |= !list_empty(&q->flush_queue[i]);
393 if (!drain)
394 break;
396 spin_unlock_irq(q->queue_lock);
398 msleep(10);
400 spin_lock_irq(q->queue_lock);
404 * With queue marked dead, any woken up waiter will fail the
405 * allocation path, so the wakeup chaining is lost and we're
406 * left with hung waiters. We need to wake up those waiters.
408 if (q->request_fn) {
409 struct request_list *rl;
411 blk_queue_for_each_rl(rl, q)
412 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
413 wake_up_all(&rl->wait[i]);
418 * blk_queue_bypass_start - enter queue bypass mode
419 * @q: queue of interest
421 * In bypass mode, only the dispatch FIFO queue of @q is used. This
422 * function makes @q enter bypass mode and drains all requests which were
423 * throttled or issued before. On return, it's guaranteed that no request
424 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
425 * inside queue or RCU read lock.
427 void blk_queue_bypass_start(struct request_queue *q)
429 bool drain;
431 spin_lock_irq(q->queue_lock);
432 drain = !q->bypass_depth++;
433 queue_flag_set(QUEUE_FLAG_BYPASS, q);
434 spin_unlock_irq(q->queue_lock);
436 if (drain) {
437 spin_lock_irq(q->queue_lock);
438 __blk_drain_queue(q, false);
439 spin_unlock_irq(q->queue_lock);
441 /* ensure blk_queue_bypass() is %true inside RCU read lock */
442 synchronize_rcu();
445 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
448 * blk_queue_bypass_end - leave queue bypass mode
449 * @q: queue of interest
451 * Leave bypass mode and restore the normal queueing behavior.
453 void blk_queue_bypass_end(struct request_queue *q)
455 spin_lock_irq(q->queue_lock);
456 if (!--q->bypass_depth)
457 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
458 WARN_ON_ONCE(q->bypass_depth < 0);
459 spin_unlock_irq(q->queue_lock);
461 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
464 * blk_cleanup_queue - shutdown a request queue
465 * @q: request queue to shutdown
467 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
468 * put it. All future requests will be failed immediately with -ENODEV.
470 void blk_cleanup_queue(struct request_queue *q)
472 spinlock_t *lock = q->queue_lock;
474 /* mark @q DYING, no new request or merges will be allowed afterwards */
475 mutex_lock(&q->sysfs_lock);
476 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
477 spin_lock_irq(lock);
480 * A dying queue is permanently in bypass mode till released. Note
481 * that, unlike blk_queue_bypass_start(), we aren't performing
482 * synchronize_rcu() after entering bypass mode to avoid the delay
483 * as some drivers create and destroy a lot of queues while
484 * probing. This is still safe because blk_release_queue() will be
485 * called only after the queue refcnt drops to zero and nothing,
486 * RCU or not, would be traversing the queue by then.
488 q->bypass_depth++;
489 queue_flag_set(QUEUE_FLAG_BYPASS, q);
491 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
492 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
493 queue_flag_set(QUEUE_FLAG_DYING, q);
494 spin_unlock_irq(lock);
495 mutex_unlock(&q->sysfs_lock);
498 * Drain all requests queued before DYING marking. Set DEAD flag to
499 * prevent that q->request_fn() gets invoked after draining finished.
501 if (q->mq_ops) {
502 blk_mq_drain_queue(q);
503 spin_lock_irq(lock);
504 } else {
505 spin_lock_irq(lock);
506 __blk_drain_queue(q, true);
508 queue_flag_set(QUEUE_FLAG_DEAD, q);
509 spin_unlock_irq(lock);
511 /* @q won't process any more request, flush async actions */
512 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
513 blk_sync_queue(q);
515 spin_lock_irq(lock);
516 if (q->queue_lock != &q->__queue_lock)
517 q->queue_lock = &q->__queue_lock;
518 spin_unlock_irq(lock);
520 /* @q is and will stay empty, shutdown and put */
521 blk_put_queue(q);
523 EXPORT_SYMBOL(blk_cleanup_queue);
525 int blk_init_rl(struct request_list *rl, struct request_queue *q,
526 gfp_t gfp_mask)
528 if (unlikely(rl->rq_pool))
529 return 0;
531 rl->q = q;
532 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
533 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
534 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
535 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
537 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
538 mempool_free_slab, request_cachep,
539 gfp_mask, q->node);
540 if (!rl->rq_pool)
541 return -ENOMEM;
543 return 0;
546 void blk_exit_rl(struct request_list *rl)
548 if (rl->rq_pool)
549 mempool_destroy(rl->rq_pool);
552 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
554 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
556 EXPORT_SYMBOL(blk_alloc_queue);
558 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
560 struct request_queue *q;
561 int err;
563 q = kmem_cache_alloc_node(blk_requestq_cachep,
564 gfp_mask | __GFP_ZERO, node_id);
565 if (!q)
566 return NULL;
568 if (percpu_counter_init(&q->mq_usage_counter, 0))
569 goto fail_q;
571 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
572 if (q->id < 0)
573 goto fail_c;
575 q->backing_dev_info.ra_pages =
576 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
577 q->backing_dev_info.state = 0;
578 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
579 q->backing_dev_info.name = "block";
580 q->node = node_id;
582 err = bdi_init(&q->backing_dev_info);
583 if (err)
584 goto fail_id;
586 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
587 laptop_mode_timer_fn, (unsigned long) q);
588 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
589 INIT_LIST_HEAD(&q->queue_head);
590 INIT_LIST_HEAD(&q->timeout_list);
591 INIT_LIST_HEAD(&q->icq_list);
592 #ifdef CONFIG_BLK_CGROUP
593 INIT_LIST_HEAD(&q->blkg_list);
594 #endif
595 INIT_LIST_HEAD(&q->flush_queue[0]);
596 INIT_LIST_HEAD(&q->flush_queue[1]);
597 INIT_LIST_HEAD(&q->flush_data_in_flight);
598 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
600 kobject_init(&q->kobj, &blk_queue_ktype);
602 mutex_init(&q->sysfs_lock);
603 spin_lock_init(&q->__queue_lock);
606 * By default initialize queue_lock to internal lock and driver can
607 * override it later if need be.
609 q->queue_lock = &q->__queue_lock;
612 * A queue starts its life with bypass turned on to avoid
613 * unnecessary bypass on/off overhead and nasty surprises during
614 * init. The initial bypass will be finished when the queue is
615 * registered by blk_register_queue().
617 q->bypass_depth = 1;
618 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
620 init_waitqueue_head(&q->mq_freeze_wq);
622 if (blkcg_init_queue(q))
623 goto fail_bdi;
625 return q;
627 fail_bdi:
628 bdi_destroy(&q->backing_dev_info);
629 fail_id:
630 ida_simple_remove(&blk_queue_ida, q->id);
631 fail_c:
632 percpu_counter_destroy(&q->mq_usage_counter);
633 fail_q:
634 kmem_cache_free(blk_requestq_cachep, q);
635 return NULL;
637 EXPORT_SYMBOL(blk_alloc_queue_node);
640 * blk_init_queue - prepare a request queue for use with a block device
641 * @rfn: The function to be called to process requests that have been
642 * placed on the queue.
643 * @lock: Request queue spin lock
645 * Description:
646 * If a block device wishes to use the standard request handling procedures,
647 * which sorts requests and coalesces adjacent requests, then it must
648 * call blk_init_queue(). The function @rfn will be called when there
649 * are requests on the queue that need to be processed. If the device
650 * supports plugging, then @rfn may not be called immediately when requests
651 * are available on the queue, but may be called at some time later instead.
652 * Plugged queues are generally unplugged when a buffer belonging to one
653 * of the requests on the queue is needed, or due to memory pressure.
655 * @rfn is not required, or even expected, to remove all requests off the
656 * queue, but only as many as it can handle at a time. If it does leave
657 * requests on the queue, it is responsible for arranging that the requests
658 * get dealt with eventually.
660 * The queue spin lock must be held while manipulating the requests on the
661 * request queue; this lock will be taken also from interrupt context, so irq
662 * disabling is needed for it.
664 * Function returns a pointer to the initialized request queue, or %NULL if
665 * it didn't succeed.
667 * Note:
668 * blk_init_queue() must be paired with a blk_cleanup_queue() call
669 * when the block device is deactivated (such as at module unload).
672 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
674 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
676 EXPORT_SYMBOL(blk_init_queue);
678 struct request_queue *
679 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
681 struct request_queue *uninit_q, *q;
683 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
684 if (!uninit_q)
685 return NULL;
687 q = blk_init_allocated_queue(uninit_q, rfn, lock);
688 if (!q)
689 blk_cleanup_queue(uninit_q);
691 return q;
693 EXPORT_SYMBOL(blk_init_queue_node);
695 struct request_queue *
696 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
697 spinlock_t *lock)
699 if (!q)
700 return NULL;
702 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
703 return NULL;
705 q->request_fn = rfn;
706 q->prep_rq_fn = NULL;
707 q->unprep_rq_fn = NULL;
708 q->queue_flags |= QUEUE_FLAG_DEFAULT;
710 /* Override internal queue lock with supplied lock pointer */
711 if (lock)
712 q->queue_lock = lock;
715 * This also sets hw/phys segments, boundary and size
717 blk_queue_make_request(q, blk_queue_bio);
719 q->sg_reserved_size = INT_MAX;
721 /* Protect q->elevator from elevator_change */
722 mutex_lock(&q->sysfs_lock);
724 /* init elevator */
725 if (elevator_init(q, NULL)) {
726 mutex_unlock(&q->sysfs_lock);
727 return NULL;
730 mutex_unlock(&q->sysfs_lock);
732 return q;
734 EXPORT_SYMBOL(blk_init_allocated_queue);
736 bool blk_get_queue(struct request_queue *q)
738 if (likely(!blk_queue_dying(q))) {
739 __blk_get_queue(q);
740 return true;
743 return false;
745 EXPORT_SYMBOL(blk_get_queue);
747 static inline void blk_free_request(struct request_list *rl, struct request *rq)
749 if (rq->cmd_flags & REQ_ELVPRIV) {
750 elv_put_request(rl->q, rq);
751 if (rq->elv.icq)
752 put_io_context(rq->elv.icq->ioc);
755 mempool_free(rq, rl->rq_pool);
759 * ioc_batching returns true if the ioc is a valid batching request and
760 * should be given priority access to a request.
762 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
764 if (!ioc)
765 return 0;
768 * Make sure the process is able to allocate at least 1 request
769 * even if the batch times out, otherwise we could theoretically
770 * lose wakeups.
772 return ioc->nr_batch_requests == q->nr_batching ||
773 (ioc->nr_batch_requests > 0
774 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
778 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
779 * will cause the process to be a "batcher" on all queues in the system. This
780 * is the behaviour we want though - once it gets a wakeup it should be given
781 * a nice run.
783 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
785 if (!ioc || ioc_batching(q, ioc))
786 return;
788 ioc->nr_batch_requests = q->nr_batching;
789 ioc->last_waited = jiffies;
792 static void __freed_request(struct request_list *rl, int sync)
794 struct request_queue *q = rl->q;
797 * bdi isn't aware of blkcg yet. As all async IOs end up root
798 * blkcg anyway, just use root blkcg state.
800 if (rl == &q->root_rl &&
801 rl->count[sync] < queue_congestion_off_threshold(q))
802 blk_clear_queue_congested(q, sync);
804 if (rl->count[sync] + 1 <= q->nr_requests) {
805 if (waitqueue_active(&rl->wait[sync]))
806 wake_up(&rl->wait[sync]);
808 blk_clear_rl_full(rl, sync);
813 * A request has just been released. Account for it, update the full and
814 * congestion status, wake up any waiters. Called under q->queue_lock.
816 static void freed_request(struct request_list *rl, unsigned int flags)
818 struct request_queue *q = rl->q;
819 int sync = rw_is_sync(flags);
821 q->nr_rqs[sync]--;
822 rl->count[sync]--;
823 if (flags & REQ_ELVPRIV)
824 q->nr_rqs_elvpriv--;
826 __freed_request(rl, sync);
828 if (unlikely(rl->starved[sync ^ 1]))
829 __freed_request(rl, sync ^ 1);
833 * Determine if elevator data should be initialized when allocating the
834 * request associated with @bio.
836 static bool blk_rq_should_init_elevator(struct bio *bio)
838 if (!bio)
839 return true;
842 * Flush requests do not use the elevator so skip initialization.
843 * This allows a request to share the flush and elevator data.
845 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
846 return false;
848 return true;
852 * rq_ioc - determine io_context for request allocation
853 * @bio: request being allocated is for this bio (can be %NULL)
855 * Determine io_context to use for request allocation for @bio. May return
856 * %NULL if %current->io_context doesn't exist.
858 static struct io_context *rq_ioc(struct bio *bio)
860 #ifdef CONFIG_BLK_CGROUP
861 if (bio && bio->bi_ioc)
862 return bio->bi_ioc;
863 #endif
864 return current->io_context;
868 * __get_request - get a free request
869 * @rl: request list to allocate from
870 * @rw_flags: RW and SYNC flags
871 * @bio: bio to allocate request for (can be %NULL)
872 * @gfp_mask: allocation mask
874 * Get a free request from @q. This function may fail under memory
875 * pressure or if @q is dead.
877 * Must be callled with @q->queue_lock held and,
878 * Returns %NULL on failure, with @q->queue_lock held.
879 * Returns !%NULL on success, with @q->queue_lock *not held*.
881 static struct request *__get_request(struct request_list *rl, int rw_flags,
882 struct bio *bio, gfp_t gfp_mask)
884 struct request_queue *q = rl->q;
885 struct request *rq;
886 struct elevator_type *et = q->elevator->type;
887 struct io_context *ioc = rq_ioc(bio);
888 struct io_cq *icq = NULL;
889 const bool is_sync = rw_is_sync(rw_flags) != 0;
890 int may_queue;
892 if (unlikely(blk_queue_dying(q)))
893 return NULL;
895 may_queue = elv_may_queue(q, rw_flags);
896 if (may_queue == ELV_MQUEUE_NO)
897 goto rq_starved;
899 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
900 if (rl->count[is_sync]+1 >= q->nr_requests) {
902 * The queue will fill after this allocation, so set
903 * it as full, and mark this process as "batching".
904 * This process will be allowed to complete a batch of
905 * requests, others will be blocked.
907 if (!blk_rl_full(rl, is_sync)) {
908 ioc_set_batching(q, ioc);
909 blk_set_rl_full(rl, is_sync);
910 } else {
911 if (may_queue != ELV_MQUEUE_MUST
912 && !ioc_batching(q, ioc)) {
914 * The queue is full and the allocating
915 * process is not a "batcher", and not
916 * exempted by the IO scheduler
918 return NULL;
923 * bdi isn't aware of blkcg yet. As all async IOs end up
924 * root blkcg anyway, just use root blkcg state.
926 if (rl == &q->root_rl)
927 blk_set_queue_congested(q, is_sync);
931 * Only allow batching queuers to allocate up to 50% over the defined
932 * limit of requests, otherwise we could have thousands of requests
933 * allocated with any setting of ->nr_requests
935 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
936 return NULL;
938 q->nr_rqs[is_sync]++;
939 rl->count[is_sync]++;
940 rl->starved[is_sync] = 0;
943 * Decide whether the new request will be managed by elevator. If
944 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
945 * prevent the current elevator from being destroyed until the new
946 * request is freed. This guarantees icq's won't be destroyed and
947 * makes creating new ones safe.
949 * Also, lookup icq while holding queue_lock. If it doesn't exist,
950 * it will be created after releasing queue_lock.
952 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
953 rw_flags |= REQ_ELVPRIV;
954 q->nr_rqs_elvpriv++;
955 if (et->icq_cache && ioc)
956 icq = ioc_lookup_icq(ioc, q);
959 if (blk_queue_io_stat(q))
960 rw_flags |= REQ_IO_STAT;
961 spin_unlock_irq(q->queue_lock);
963 /* allocate and init request */
964 rq = mempool_alloc(rl->rq_pool, gfp_mask);
965 if (!rq)
966 goto fail_alloc;
968 blk_rq_init(q, rq);
969 blk_rq_set_rl(rq, rl);
970 rq->cmd_flags = rw_flags | REQ_ALLOCED;
972 /* init elvpriv */
973 if (rw_flags & REQ_ELVPRIV) {
974 if (unlikely(et->icq_cache && !icq)) {
975 if (ioc)
976 icq = ioc_create_icq(ioc, q, gfp_mask);
977 if (!icq)
978 goto fail_elvpriv;
981 rq->elv.icq = icq;
982 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
983 goto fail_elvpriv;
985 /* @rq->elv.icq holds io_context until @rq is freed */
986 if (icq)
987 get_io_context(icq->ioc);
989 out:
991 * ioc may be NULL here, and ioc_batching will be false. That's
992 * OK, if the queue is under the request limit then requests need
993 * not count toward the nr_batch_requests limit. There will always
994 * be some limit enforced by BLK_BATCH_TIME.
996 if (ioc_batching(q, ioc))
997 ioc->nr_batch_requests--;
999 trace_block_getrq(q, bio, rw_flags & 1);
1000 return rq;
1002 fail_elvpriv:
1004 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1005 * and may fail indefinitely under memory pressure and thus
1006 * shouldn't stall IO. Treat this request as !elvpriv. This will
1007 * disturb iosched and blkcg but weird is bettern than dead.
1009 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1010 dev_name(q->backing_dev_info.dev));
1012 rq->cmd_flags &= ~REQ_ELVPRIV;
1013 rq->elv.icq = NULL;
1015 spin_lock_irq(q->queue_lock);
1016 q->nr_rqs_elvpriv--;
1017 spin_unlock_irq(q->queue_lock);
1018 goto out;
1020 fail_alloc:
1022 * Allocation failed presumably due to memory. Undo anything we
1023 * might have messed up.
1025 * Allocating task should really be put onto the front of the wait
1026 * queue, but this is pretty rare.
1028 spin_lock_irq(q->queue_lock);
1029 freed_request(rl, rw_flags);
1032 * in the very unlikely event that allocation failed and no
1033 * requests for this direction was pending, mark us starved so that
1034 * freeing of a request in the other direction will notice
1035 * us. another possible fix would be to split the rq mempool into
1036 * READ and WRITE
1038 rq_starved:
1039 if (unlikely(rl->count[is_sync] == 0))
1040 rl->starved[is_sync] = 1;
1041 return NULL;
1045 * get_request - get a free request
1046 * @q: request_queue to allocate request from
1047 * @rw_flags: RW and SYNC flags
1048 * @bio: bio to allocate request for (can be %NULL)
1049 * @gfp_mask: allocation mask
1051 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1052 * function keeps retrying under memory pressure and fails iff @q is dead.
1054 * Must be callled with @q->queue_lock held and,
1055 * Returns %NULL on failure, with @q->queue_lock held.
1056 * Returns !%NULL on success, with @q->queue_lock *not held*.
1058 static struct request *get_request(struct request_queue *q, int rw_flags,
1059 struct bio *bio, gfp_t gfp_mask)
1061 const bool is_sync = rw_is_sync(rw_flags) != 0;
1062 DEFINE_WAIT(wait);
1063 struct request_list *rl;
1064 struct request *rq;
1066 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1067 retry:
1068 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1069 if (rq)
1070 return rq;
1072 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1073 blk_put_rl(rl);
1074 return NULL;
1077 /* wait on @rl and retry */
1078 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1079 TASK_UNINTERRUPTIBLE);
1081 trace_block_sleeprq(q, bio, rw_flags & 1);
1083 spin_unlock_irq(q->queue_lock);
1084 io_schedule();
1087 * After sleeping, we become a "batching" process and will be able
1088 * to allocate at least one request, and up to a big batch of them
1089 * for a small period time. See ioc_batching, ioc_set_batching
1091 ioc_set_batching(q, current->io_context);
1093 spin_lock_irq(q->queue_lock);
1094 finish_wait(&rl->wait[is_sync], &wait);
1096 goto retry;
1099 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1100 gfp_t gfp_mask)
1102 struct request *rq;
1104 BUG_ON(rw != READ && rw != WRITE);
1106 /* create ioc upfront */
1107 create_io_context(gfp_mask, q->node);
1109 spin_lock_irq(q->queue_lock);
1110 rq = get_request(q, rw, NULL, gfp_mask);
1111 if (!rq)
1112 spin_unlock_irq(q->queue_lock);
1113 /* q->queue_lock is unlocked at this point */
1115 return rq;
1118 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1120 if (q->mq_ops)
1121 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1122 else
1123 return blk_old_get_request(q, rw, gfp_mask);
1125 EXPORT_SYMBOL(blk_get_request);
1128 * blk_make_request - given a bio, allocate a corresponding struct request.
1129 * @q: target request queue
1130 * @bio: The bio describing the memory mappings that will be submitted for IO.
1131 * It may be a chained-bio properly constructed by block/bio layer.
1132 * @gfp_mask: gfp flags to be used for memory allocation
1134 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1135 * type commands. Where the struct request needs to be farther initialized by
1136 * the caller. It is passed a &struct bio, which describes the memory info of
1137 * the I/O transfer.
1139 * The caller of blk_make_request must make sure that bi_io_vec
1140 * are set to describe the memory buffers. That bio_data_dir() will return
1141 * the needed direction of the request. (And all bio's in the passed bio-chain
1142 * are properly set accordingly)
1144 * If called under none-sleepable conditions, mapped bio buffers must not
1145 * need bouncing, by calling the appropriate masked or flagged allocator,
1146 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1147 * BUG.
1149 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1150 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1151 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1152 * completion of a bio that hasn't been submitted yet, thus resulting in a
1153 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1154 * of bio_alloc(), as that avoids the mempool deadlock.
1155 * If possible a big IO should be split into smaller parts when allocation
1156 * fails. Partial allocation should not be an error, or you risk a live-lock.
1158 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1159 gfp_t gfp_mask)
1161 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1163 if (unlikely(!rq))
1164 return ERR_PTR(-ENOMEM);
1166 for_each_bio(bio) {
1167 struct bio *bounce_bio = bio;
1168 int ret;
1170 blk_queue_bounce(q, &bounce_bio);
1171 ret = blk_rq_append_bio(q, rq, bounce_bio);
1172 if (unlikely(ret)) {
1173 blk_put_request(rq);
1174 return ERR_PTR(ret);
1178 return rq;
1180 EXPORT_SYMBOL(blk_make_request);
1183 * blk_requeue_request - put a request back on queue
1184 * @q: request queue where request should be inserted
1185 * @rq: request to be inserted
1187 * Description:
1188 * Drivers often keep queueing requests until the hardware cannot accept
1189 * more, when that condition happens we need to put the request back
1190 * on the queue. Must be called with queue lock held.
1192 void blk_requeue_request(struct request_queue *q, struct request *rq)
1194 blk_delete_timer(rq);
1195 blk_clear_rq_complete(rq);
1196 trace_block_rq_requeue(q, rq);
1198 if (blk_rq_tagged(rq))
1199 blk_queue_end_tag(q, rq);
1201 BUG_ON(blk_queued_rq(rq));
1203 elv_requeue_request(q, rq);
1205 EXPORT_SYMBOL(blk_requeue_request);
1207 static void add_acct_request(struct request_queue *q, struct request *rq,
1208 int where)
1210 blk_account_io_start(rq, true);
1211 __elv_add_request(q, rq, where);
1214 static void part_round_stats_single(int cpu, struct hd_struct *part,
1215 unsigned long now)
1217 if (now == part->stamp)
1218 return;
1220 if (part_in_flight(part)) {
1221 __part_stat_add(cpu, part, time_in_queue,
1222 part_in_flight(part) * (now - part->stamp));
1223 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1225 part->stamp = now;
1229 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1230 * @cpu: cpu number for stats access
1231 * @part: target partition
1233 * The average IO queue length and utilisation statistics are maintained
1234 * by observing the current state of the queue length and the amount of
1235 * time it has been in this state for.
1237 * Normally, that accounting is done on IO completion, but that can result
1238 * in more than a second's worth of IO being accounted for within any one
1239 * second, leading to >100% utilisation. To deal with that, we call this
1240 * function to do a round-off before returning the results when reading
1241 * /proc/diskstats. This accounts immediately for all queue usage up to
1242 * the current jiffies and restarts the counters again.
1244 void part_round_stats(int cpu, struct hd_struct *part)
1246 unsigned long now = jiffies;
1248 if (part->partno)
1249 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1250 part_round_stats_single(cpu, part, now);
1252 EXPORT_SYMBOL_GPL(part_round_stats);
1254 #ifdef CONFIG_PM_RUNTIME
1255 static void blk_pm_put_request(struct request *rq)
1257 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1258 pm_runtime_mark_last_busy(rq->q->dev);
1260 #else
1261 static inline void blk_pm_put_request(struct request *rq) {}
1262 #endif
1265 * queue lock must be held
1267 void __blk_put_request(struct request_queue *q, struct request *req)
1269 if (unlikely(!q))
1270 return;
1272 blk_pm_put_request(req);
1274 elv_completed_request(q, req);
1276 /* this is a bio leak */
1277 WARN_ON(req->bio != NULL);
1280 * Request may not have originated from ll_rw_blk. if not,
1281 * it didn't come out of our reserved rq pools
1283 if (req->cmd_flags & REQ_ALLOCED) {
1284 unsigned int flags = req->cmd_flags;
1285 struct request_list *rl = blk_rq_rl(req);
1287 BUG_ON(!list_empty(&req->queuelist));
1288 BUG_ON(!hlist_unhashed(&req->hash));
1290 blk_free_request(rl, req);
1291 freed_request(rl, flags);
1292 blk_put_rl(rl);
1295 EXPORT_SYMBOL_GPL(__blk_put_request);
1297 void blk_put_request(struct request *req)
1299 struct request_queue *q = req->q;
1301 if (q->mq_ops)
1302 blk_mq_free_request(req);
1303 else {
1304 unsigned long flags;
1306 spin_lock_irqsave(q->queue_lock, flags);
1307 __blk_put_request(q, req);
1308 spin_unlock_irqrestore(q->queue_lock, flags);
1311 EXPORT_SYMBOL(blk_put_request);
1314 * blk_add_request_payload - add a payload to a request
1315 * @rq: request to update
1316 * @page: page backing the payload
1317 * @len: length of the payload.
1319 * This allows to later add a payload to an already submitted request by
1320 * a block driver. The driver needs to take care of freeing the payload
1321 * itself.
1323 * Note that this is a quite horrible hack and nothing but handling of
1324 * discard requests should ever use it.
1326 void blk_add_request_payload(struct request *rq, struct page *page,
1327 unsigned int len)
1329 struct bio *bio = rq->bio;
1331 bio->bi_io_vec->bv_page = page;
1332 bio->bi_io_vec->bv_offset = 0;
1333 bio->bi_io_vec->bv_len = len;
1335 bio->bi_iter.bi_size = len;
1336 bio->bi_vcnt = 1;
1337 bio->bi_phys_segments = 1;
1339 rq->__data_len = rq->resid_len = len;
1340 rq->nr_phys_segments = 1;
1341 rq->buffer = bio_data(bio);
1343 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1345 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1346 struct bio *bio)
1348 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1350 if (!ll_back_merge_fn(q, req, bio))
1351 return false;
1353 trace_block_bio_backmerge(q, req, bio);
1355 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1356 blk_rq_set_mixed_merge(req);
1358 req->biotail->bi_next = bio;
1359 req->biotail = bio;
1360 req->__data_len += bio->bi_iter.bi_size;
1361 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1363 blk_account_io_start(req, false);
1364 return true;
1367 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1368 struct bio *bio)
1370 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1372 if (!ll_front_merge_fn(q, req, bio))
1373 return false;
1375 trace_block_bio_frontmerge(q, req, bio);
1377 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1378 blk_rq_set_mixed_merge(req);
1380 bio->bi_next = req->bio;
1381 req->bio = bio;
1384 * may not be valid. if the low level driver said
1385 * it didn't need a bounce buffer then it better
1386 * not touch req->buffer either...
1388 req->buffer = bio_data(bio);
1389 req->__sector = bio->bi_iter.bi_sector;
1390 req->__data_len += bio->bi_iter.bi_size;
1391 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1393 blk_account_io_start(req, false);
1394 return true;
1398 * blk_attempt_plug_merge - try to merge with %current's plugged list
1399 * @q: request_queue new bio is being queued at
1400 * @bio: new bio being queued
1401 * @request_count: out parameter for number of traversed plugged requests
1403 * Determine whether @bio being queued on @q can be merged with a request
1404 * on %current's plugged list. Returns %true if merge was successful,
1405 * otherwise %false.
1407 * Plugging coalesces IOs from the same issuer for the same purpose without
1408 * going through @q->queue_lock. As such it's more of an issuing mechanism
1409 * than scheduling, and the request, while may have elvpriv data, is not
1410 * added on the elevator at this point. In addition, we don't have
1411 * reliable access to the elevator outside queue lock. Only check basic
1412 * merging parameters without querying the elevator.
1414 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1415 unsigned int *request_count)
1417 struct blk_plug *plug;
1418 struct request *rq;
1419 bool ret = false;
1420 struct list_head *plug_list;
1422 if (blk_queue_nomerges(q))
1423 goto out;
1425 plug = current->plug;
1426 if (!plug)
1427 goto out;
1428 *request_count = 0;
1430 if (q->mq_ops)
1431 plug_list = &plug->mq_list;
1432 else
1433 plug_list = &plug->list;
1435 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1436 int el_ret;
1438 if (rq->q == q)
1439 (*request_count)++;
1441 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1442 continue;
1444 el_ret = blk_try_merge(rq, bio);
1445 if (el_ret == ELEVATOR_BACK_MERGE) {
1446 ret = bio_attempt_back_merge(q, rq, bio);
1447 if (ret)
1448 break;
1449 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1450 ret = bio_attempt_front_merge(q, rq, bio);
1451 if (ret)
1452 break;
1455 out:
1456 return ret;
1459 void init_request_from_bio(struct request *req, struct bio *bio)
1461 req->cmd_type = REQ_TYPE_FS;
1463 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1464 if (bio->bi_rw & REQ_RAHEAD)
1465 req->cmd_flags |= REQ_FAILFAST_MASK;
1467 req->errors = 0;
1468 req->__sector = bio->bi_iter.bi_sector;
1469 req->ioprio = bio_prio(bio);
1470 blk_rq_bio_prep(req->q, req, bio);
1473 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1475 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1476 struct blk_plug *plug;
1477 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1478 struct request *req;
1479 unsigned int request_count = 0;
1482 * low level driver can indicate that it wants pages above a
1483 * certain limit bounced to low memory (ie for highmem, or even
1484 * ISA dma in theory)
1486 blk_queue_bounce(q, &bio);
1488 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1489 bio_endio(bio, -EIO);
1490 return;
1493 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1494 spin_lock_irq(q->queue_lock);
1495 where = ELEVATOR_INSERT_FLUSH;
1496 goto get_rq;
1500 * Check if we can merge with the plugged list before grabbing
1501 * any locks.
1503 if (blk_attempt_plug_merge(q, bio, &request_count))
1504 return;
1506 spin_lock_irq(q->queue_lock);
1508 el_ret = elv_merge(q, &req, bio);
1509 if (el_ret == ELEVATOR_BACK_MERGE) {
1510 if (bio_attempt_back_merge(q, req, bio)) {
1511 elv_bio_merged(q, req, bio);
1512 if (!attempt_back_merge(q, req))
1513 elv_merged_request(q, req, el_ret);
1514 goto out_unlock;
1516 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1517 if (bio_attempt_front_merge(q, req, bio)) {
1518 elv_bio_merged(q, req, bio);
1519 if (!attempt_front_merge(q, req))
1520 elv_merged_request(q, req, el_ret);
1521 goto out_unlock;
1525 get_rq:
1527 * This sync check and mask will be re-done in init_request_from_bio(),
1528 * but we need to set it earlier to expose the sync flag to the
1529 * rq allocator and io schedulers.
1531 rw_flags = bio_data_dir(bio);
1532 if (sync)
1533 rw_flags |= REQ_SYNC;
1536 * Grab a free request. This is might sleep but can not fail.
1537 * Returns with the queue unlocked.
1539 req = get_request(q, rw_flags, bio, GFP_NOIO);
1540 if (unlikely(!req)) {
1541 bio_endio(bio, -ENODEV); /* @q is dead */
1542 goto out_unlock;
1546 * After dropping the lock and possibly sleeping here, our request
1547 * may now be mergeable after it had proven unmergeable (above).
1548 * We don't worry about that case for efficiency. It won't happen
1549 * often, and the elevators are able to handle it.
1551 init_request_from_bio(req, bio);
1553 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1554 req->cpu = raw_smp_processor_id();
1556 plug = current->plug;
1557 if (plug) {
1559 * If this is the first request added after a plug, fire
1560 * of a plug trace.
1562 if (!request_count)
1563 trace_block_plug(q);
1564 else {
1565 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1566 blk_flush_plug_list(plug, false);
1567 trace_block_plug(q);
1570 list_add_tail(&req->queuelist, &plug->list);
1571 blk_account_io_start(req, true);
1572 } else {
1573 spin_lock_irq(q->queue_lock);
1574 add_acct_request(q, req, where);
1575 __blk_run_queue(q);
1576 out_unlock:
1577 spin_unlock_irq(q->queue_lock);
1580 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1583 * If bio->bi_dev is a partition, remap the location
1585 static inline void blk_partition_remap(struct bio *bio)
1587 struct block_device *bdev = bio->bi_bdev;
1589 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1590 struct hd_struct *p = bdev->bd_part;
1592 bio->bi_iter.bi_sector += p->start_sect;
1593 bio->bi_bdev = bdev->bd_contains;
1595 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1596 bdev->bd_dev,
1597 bio->bi_iter.bi_sector - p->start_sect);
1601 static void handle_bad_sector(struct bio *bio)
1603 char b[BDEVNAME_SIZE];
1605 printk(KERN_INFO "attempt to access beyond end of device\n");
1606 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1607 bdevname(bio->bi_bdev, b),
1608 bio->bi_rw,
1609 (unsigned long long)bio_end_sector(bio),
1610 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1612 set_bit(BIO_EOF, &bio->bi_flags);
1615 #ifdef CONFIG_FAIL_MAKE_REQUEST
1617 static DECLARE_FAULT_ATTR(fail_make_request);
1619 static int __init setup_fail_make_request(char *str)
1621 return setup_fault_attr(&fail_make_request, str);
1623 __setup("fail_make_request=", setup_fail_make_request);
1625 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1627 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1630 static int __init fail_make_request_debugfs(void)
1632 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1633 NULL, &fail_make_request);
1635 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1638 late_initcall(fail_make_request_debugfs);
1640 #else /* CONFIG_FAIL_MAKE_REQUEST */
1642 static inline bool should_fail_request(struct hd_struct *part,
1643 unsigned int bytes)
1645 return false;
1648 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1651 * Check whether this bio extends beyond the end of the device.
1653 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1655 sector_t maxsector;
1657 if (!nr_sectors)
1658 return 0;
1660 /* Test device or partition size, when known. */
1661 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1662 if (maxsector) {
1663 sector_t sector = bio->bi_iter.bi_sector;
1665 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1667 * This may well happen - the kernel calls bread()
1668 * without checking the size of the device, e.g., when
1669 * mounting a device.
1671 handle_bad_sector(bio);
1672 return 1;
1676 return 0;
1679 static noinline_for_stack bool
1680 generic_make_request_checks(struct bio *bio)
1682 struct request_queue *q;
1683 int nr_sectors = bio_sectors(bio);
1684 int err = -EIO;
1685 char b[BDEVNAME_SIZE];
1686 struct hd_struct *part;
1688 might_sleep();
1690 if (bio_check_eod(bio, nr_sectors))
1691 goto end_io;
1693 q = bdev_get_queue(bio->bi_bdev);
1694 if (unlikely(!q)) {
1695 printk(KERN_ERR
1696 "generic_make_request: Trying to access "
1697 "nonexistent block-device %s (%Lu)\n",
1698 bdevname(bio->bi_bdev, b),
1699 (long long) bio->bi_iter.bi_sector);
1700 goto end_io;
1703 if (likely(bio_is_rw(bio) &&
1704 nr_sectors > queue_max_hw_sectors(q))) {
1705 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1706 bdevname(bio->bi_bdev, b),
1707 bio_sectors(bio),
1708 queue_max_hw_sectors(q));
1709 goto end_io;
1712 part = bio->bi_bdev->bd_part;
1713 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1714 should_fail_request(&part_to_disk(part)->part0,
1715 bio->bi_iter.bi_size))
1716 goto end_io;
1719 * If this device has partitions, remap block n
1720 * of partition p to block n+start(p) of the disk.
1722 blk_partition_remap(bio);
1724 if (bio_check_eod(bio, nr_sectors))
1725 goto end_io;
1728 * Filter flush bio's early so that make_request based
1729 * drivers without flush support don't have to worry
1730 * about them.
1732 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1733 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1734 if (!nr_sectors) {
1735 err = 0;
1736 goto end_io;
1740 if ((bio->bi_rw & REQ_DISCARD) &&
1741 (!blk_queue_discard(q) ||
1742 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1743 err = -EOPNOTSUPP;
1744 goto end_io;
1747 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1748 err = -EOPNOTSUPP;
1749 goto end_io;
1753 * Various block parts want %current->io_context and lazy ioc
1754 * allocation ends up trading a lot of pain for a small amount of
1755 * memory. Just allocate it upfront. This may fail and block
1756 * layer knows how to live with it.
1758 create_io_context(GFP_ATOMIC, q->node);
1760 if (blk_throtl_bio(q, bio))
1761 return false; /* throttled, will be resubmitted later */
1763 trace_block_bio_queue(q, bio);
1764 return true;
1766 end_io:
1767 bio_endio(bio, err);
1768 return false;
1772 * generic_make_request - hand a buffer to its device driver for I/O
1773 * @bio: The bio describing the location in memory and on the device.
1775 * generic_make_request() is used to make I/O requests of block
1776 * devices. It is passed a &struct bio, which describes the I/O that needs
1777 * to be done.
1779 * generic_make_request() does not return any status. The
1780 * success/failure status of the request, along with notification of
1781 * completion, is delivered asynchronously through the bio->bi_end_io
1782 * function described (one day) else where.
1784 * The caller of generic_make_request must make sure that bi_io_vec
1785 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1786 * set to describe the device address, and the
1787 * bi_end_io and optionally bi_private are set to describe how
1788 * completion notification should be signaled.
1790 * generic_make_request and the drivers it calls may use bi_next if this
1791 * bio happens to be merged with someone else, and may resubmit the bio to
1792 * a lower device by calling into generic_make_request recursively, which
1793 * means the bio should NOT be touched after the call to ->make_request_fn.
1795 void generic_make_request(struct bio *bio)
1797 struct bio_list bio_list_on_stack;
1799 if (!generic_make_request_checks(bio))
1800 return;
1803 * We only want one ->make_request_fn to be active at a time, else
1804 * stack usage with stacked devices could be a problem. So use
1805 * current->bio_list to keep a list of requests submited by a
1806 * make_request_fn function. current->bio_list is also used as a
1807 * flag to say if generic_make_request is currently active in this
1808 * task or not. If it is NULL, then no make_request is active. If
1809 * it is non-NULL, then a make_request is active, and new requests
1810 * should be added at the tail
1812 if (current->bio_list) {
1813 bio_list_add(current->bio_list, bio);
1814 return;
1817 /* following loop may be a bit non-obvious, and so deserves some
1818 * explanation.
1819 * Before entering the loop, bio->bi_next is NULL (as all callers
1820 * ensure that) so we have a list with a single bio.
1821 * We pretend that we have just taken it off a longer list, so
1822 * we assign bio_list to a pointer to the bio_list_on_stack,
1823 * thus initialising the bio_list of new bios to be
1824 * added. ->make_request() may indeed add some more bios
1825 * through a recursive call to generic_make_request. If it
1826 * did, we find a non-NULL value in bio_list and re-enter the loop
1827 * from the top. In this case we really did just take the bio
1828 * of the top of the list (no pretending) and so remove it from
1829 * bio_list, and call into ->make_request() again.
1831 BUG_ON(bio->bi_next);
1832 bio_list_init(&bio_list_on_stack);
1833 current->bio_list = &bio_list_on_stack;
1834 do {
1835 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1837 q->make_request_fn(q, bio);
1839 bio = bio_list_pop(current->bio_list);
1840 } while (bio);
1841 current->bio_list = NULL; /* deactivate */
1843 EXPORT_SYMBOL(generic_make_request);
1846 * submit_bio - submit a bio to the block device layer for I/O
1847 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1848 * @bio: The &struct bio which describes the I/O
1850 * submit_bio() is very similar in purpose to generic_make_request(), and
1851 * uses that function to do most of the work. Both are fairly rough
1852 * interfaces; @bio must be presetup and ready for I/O.
1855 void submit_bio(int rw, struct bio *bio)
1857 bio->bi_rw |= rw;
1860 * If it's a regular read/write or a barrier with data attached,
1861 * go through the normal accounting stuff before submission.
1863 if (bio_has_data(bio)) {
1864 unsigned int count;
1866 if (unlikely(rw & REQ_WRITE_SAME))
1867 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1868 else
1869 count = bio_sectors(bio);
1871 if (rw & WRITE) {
1872 count_vm_events(PGPGOUT, count);
1873 } else {
1874 task_io_account_read(bio->bi_iter.bi_size);
1875 count_vm_events(PGPGIN, count);
1878 if (unlikely(block_dump)) {
1879 char b[BDEVNAME_SIZE];
1880 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1881 current->comm, task_pid_nr(current),
1882 (rw & WRITE) ? "WRITE" : "READ",
1883 (unsigned long long)bio->bi_iter.bi_sector,
1884 bdevname(bio->bi_bdev, b),
1885 count);
1889 generic_make_request(bio);
1891 EXPORT_SYMBOL(submit_bio);
1894 * blk_rq_check_limits - Helper function to check a request for the queue limit
1895 * @q: the queue
1896 * @rq: the request being checked
1898 * Description:
1899 * @rq may have been made based on weaker limitations of upper-level queues
1900 * in request stacking drivers, and it may violate the limitation of @q.
1901 * Since the block layer and the underlying device driver trust @rq
1902 * after it is inserted to @q, it should be checked against @q before
1903 * the insertion using this generic function.
1905 * This function should also be useful for request stacking drivers
1906 * in some cases below, so export this function.
1907 * Request stacking drivers like request-based dm may change the queue
1908 * limits while requests are in the queue (e.g. dm's table swapping).
1909 * Such request stacking drivers should check those requests agaist
1910 * the new queue limits again when they dispatch those requests,
1911 * although such checkings are also done against the old queue limits
1912 * when submitting requests.
1914 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1916 if (!rq_mergeable(rq))
1917 return 0;
1919 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1920 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1921 return -EIO;
1925 * queue's settings related to segment counting like q->bounce_pfn
1926 * may differ from that of other stacking queues.
1927 * Recalculate it to check the request correctly on this queue's
1928 * limitation.
1930 blk_recalc_rq_segments(rq);
1931 if (rq->nr_phys_segments > queue_max_segments(q)) {
1932 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1933 return -EIO;
1936 return 0;
1938 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1941 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1942 * @q: the queue to submit the request
1943 * @rq: the request being queued
1945 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1947 unsigned long flags;
1948 int where = ELEVATOR_INSERT_BACK;
1950 if (blk_rq_check_limits(q, rq))
1951 return -EIO;
1953 if (rq->rq_disk &&
1954 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1955 return -EIO;
1957 spin_lock_irqsave(q->queue_lock, flags);
1958 if (unlikely(blk_queue_dying(q))) {
1959 spin_unlock_irqrestore(q->queue_lock, flags);
1960 return -ENODEV;
1964 * Submitting request must be dequeued before calling this function
1965 * because it will be linked to another request_queue
1967 BUG_ON(blk_queued_rq(rq));
1969 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1970 where = ELEVATOR_INSERT_FLUSH;
1972 add_acct_request(q, rq, where);
1973 if (where == ELEVATOR_INSERT_FLUSH)
1974 __blk_run_queue(q);
1975 spin_unlock_irqrestore(q->queue_lock, flags);
1977 return 0;
1979 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1982 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1983 * @rq: request to examine
1985 * Description:
1986 * A request could be merge of IOs which require different failure
1987 * handling. This function determines the number of bytes which
1988 * can be failed from the beginning of the request without
1989 * crossing into area which need to be retried further.
1991 * Return:
1992 * The number of bytes to fail.
1994 * Context:
1995 * queue_lock must be held.
1997 unsigned int blk_rq_err_bytes(const struct request *rq)
1999 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2000 unsigned int bytes = 0;
2001 struct bio *bio;
2003 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2004 return blk_rq_bytes(rq);
2007 * Currently the only 'mixing' which can happen is between
2008 * different fastfail types. We can safely fail portions
2009 * which have all the failfast bits that the first one has -
2010 * the ones which are at least as eager to fail as the first
2011 * one.
2013 for (bio = rq->bio; bio; bio = bio->bi_next) {
2014 if ((bio->bi_rw & ff) != ff)
2015 break;
2016 bytes += bio->bi_iter.bi_size;
2019 /* this could lead to infinite loop */
2020 BUG_ON(blk_rq_bytes(rq) && !bytes);
2021 return bytes;
2023 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2025 void blk_account_io_completion(struct request *req, unsigned int bytes)
2027 if (blk_do_io_stat(req)) {
2028 const int rw = rq_data_dir(req);
2029 struct hd_struct *part;
2030 int cpu;
2032 cpu = part_stat_lock();
2033 part = req->part;
2034 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2035 part_stat_unlock();
2039 void blk_account_io_done(struct request *req)
2042 * Account IO completion. flush_rq isn't accounted as a
2043 * normal IO on queueing nor completion. Accounting the
2044 * containing request is enough.
2046 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2047 unsigned long duration = jiffies - req->start_time;
2048 const int rw = rq_data_dir(req);
2049 struct hd_struct *part;
2050 int cpu;
2052 cpu = part_stat_lock();
2053 part = req->part;
2055 part_stat_inc(cpu, part, ios[rw]);
2056 part_stat_add(cpu, part, ticks[rw], duration);
2057 part_round_stats(cpu, part);
2058 part_dec_in_flight(part, rw);
2060 hd_struct_put(part);
2061 part_stat_unlock();
2065 #ifdef CONFIG_PM_RUNTIME
2067 * Don't process normal requests when queue is suspended
2068 * or in the process of suspending/resuming
2070 static struct request *blk_pm_peek_request(struct request_queue *q,
2071 struct request *rq)
2073 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2074 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2075 return NULL;
2076 else
2077 return rq;
2079 #else
2080 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2081 struct request *rq)
2083 return rq;
2085 #endif
2087 void blk_account_io_start(struct request *rq, bool new_io)
2089 struct hd_struct *part;
2090 int rw = rq_data_dir(rq);
2091 int cpu;
2093 if (!blk_do_io_stat(rq))
2094 return;
2096 cpu = part_stat_lock();
2098 if (!new_io) {
2099 part = rq->part;
2100 part_stat_inc(cpu, part, merges[rw]);
2101 } else {
2102 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2103 if (!hd_struct_try_get(part)) {
2105 * The partition is already being removed,
2106 * the request will be accounted on the disk only
2108 * We take a reference on disk->part0 although that
2109 * partition will never be deleted, so we can treat
2110 * it as any other partition.
2112 part = &rq->rq_disk->part0;
2113 hd_struct_get(part);
2115 part_round_stats(cpu, part);
2116 part_inc_in_flight(part, rw);
2117 rq->part = part;
2120 part_stat_unlock();
2124 * blk_peek_request - peek at the top of a request queue
2125 * @q: request queue to peek at
2127 * Description:
2128 * Return the request at the top of @q. The returned request
2129 * should be started using blk_start_request() before LLD starts
2130 * processing it.
2132 * Return:
2133 * Pointer to the request at the top of @q if available. Null
2134 * otherwise.
2136 * Context:
2137 * queue_lock must be held.
2139 struct request *blk_peek_request(struct request_queue *q)
2141 struct request *rq;
2142 int ret;
2144 while ((rq = __elv_next_request(q)) != NULL) {
2146 rq = blk_pm_peek_request(q, rq);
2147 if (!rq)
2148 break;
2150 if (!(rq->cmd_flags & REQ_STARTED)) {
2152 * This is the first time the device driver
2153 * sees this request (possibly after
2154 * requeueing). Notify IO scheduler.
2156 if (rq->cmd_flags & REQ_SORTED)
2157 elv_activate_rq(q, rq);
2160 * just mark as started even if we don't start
2161 * it, a request that has been delayed should
2162 * not be passed by new incoming requests
2164 rq->cmd_flags |= REQ_STARTED;
2165 trace_block_rq_issue(q, rq);
2168 if (!q->boundary_rq || q->boundary_rq == rq) {
2169 q->end_sector = rq_end_sector(rq);
2170 q->boundary_rq = NULL;
2173 if (rq->cmd_flags & REQ_DONTPREP)
2174 break;
2176 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2178 * make sure space for the drain appears we
2179 * know we can do this because max_hw_segments
2180 * has been adjusted to be one fewer than the
2181 * device can handle
2183 rq->nr_phys_segments++;
2186 if (!q->prep_rq_fn)
2187 break;
2189 ret = q->prep_rq_fn(q, rq);
2190 if (ret == BLKPREP_OK) {
2191 break;
2192 } else if (ret == BLKPREP_DEFER) {
2194 * the request may have been (partially) prepped.
2195 * we need to keep this request in the front to
2196 * avoid resource deadlock. REQ_STARTED will
2197 * prevent other fs requests from passing this one.
2199 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2200 !(rq->cmd_flags & REQ_DONTPREP)) {
2202 * remove the space for the drain we added
2203 * so that we don't add it again
2205 --rq->nr_phys_segments;
2208 rq = NULL;
2209 break;
2210 } else if (ret == BLKPREP_KILL) {
2211 rq->cmd_flags |= REQ_QUIET;
2213 * Mark this request as started so we don't trigger
2214 * any debug logic in the end I/O path.
2216 blk_start_request(rq);
2217 __blk_end_request_all(rq, -EIO);
2218 } else {
2219 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2220 break;
2224 return rq;
2226 EXPORT_SYMBOL(blk_peek_request);
2228 void blk_dequeue_request(struct request *rq)
2230 struct request_queue *q = rq->q;
2232 BUG_ON(list_empty(&rq->queuelist));
2233 BUG_ON(ELV_ON_HASH(rq));
2235 list_del_init(&rq->queuelist);
2238 * the time frame between a request being removed from the lists
2239 * and to it is freed is accounted as io that is in progress at
2240 * the driver side.
2242 if (blk_account_rq(rq)) {
2243 q->in_flight[rq_is_sync(rq)]++;
2244 set_io_start_time_ns(rq);
2249 * blk_start_request - start request processing on the driver
2250 * @req: request to dequeue
2252 * Description:
2253 * Dequeue @req and start timeout timer on it. This hands off the
2254 * request to the driver.
2256 * Block internal functions which don't want to start timer should
2257 * call blk_dequeue_request().
2259 * Context:
2260 * queue_lock must be held.
2262 void blk_start_request(struct request *req)
2264 blk_dequeue_request(req);
2267 * We are now handing the request to the hardware, initialize
2268 * resid_len to full count and add the timeout handler.
2270 req->resid_len = blk_rq_bytes(req);
2271 if (unlikely(blk_bidi_rq(req)))
2272 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2274 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2275 blk_add_timer(req);
2277 EXPORT_SYMBOL(blk_start_request);
2280 * blk_fetch_request - fetch a request from a request queue
2281 * @q: request queue to fetch a request from
2283 * Description:
2284 * Return the request at the top of @q. The request is started on
2285 * return and LLD can start processing it immediately.
2287 * Return:
2288 * Pointer to the request at the top of @q if available. Null
2289 * otherwise.
2291 * Context:
2292 * queue_lock must be held.
2294 struct request *blk_fetch_request(struct request_queue *q)
2296 struct request *rq;
2298 rq = blk_peek_request(q);
2299 if (rq)
2300 blk_start_request(rq);
2301 return rq;
2303 EXPORT_SYMBOL(blk_fetch_request);
2306 * blk_update_request - Special helper function for request stacking drivers
2307 * @req: the request being processed
2308 * @error: %0 for success, < %0 for error
2309 * @nr_bytes: number of bytes to complete @req
2311 * Description:
2312 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2313 * the request structure even if @req doesn't have leftover.
2314 * If @req has leftover, sets it up for the next range of segments.
2316 * This special helper function is only for request stacking drivers
2317 * (e.g. request-based dm) so that they can handle partial completion.
2318 * Actual device drivers should use blk_end_request instead.
2320 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2321 * %false return from this function.
2323 * Return:
2324 * %false - this request doesn't have any more data
2325 * %true - this request has more data
2327 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2329 int total_bytes;
2331 if (!req->bio)
2332 return false;
2334 trace_block_rq_complete(req->q, req);
2337 * For fs requests, rq is just carrier of independent bio's
2338 * and each partial completion should be handled separately.
2339 * Reset per-request error on each partial completion.
2341 * TODO: tj: This is too subtle. It would be better to let
2342 * low level drivers do what they see fit.
2344 if (req->cmd_type == REQ_TYPE_FS)
2345 req->errors = 0;
2347 if (error && req->cmd_type == REQ_TYPE_FS &&
2348 !(req->cmd_flags & REQ_QUIET)) {
2349 char *error_type;
2351 switch (error) {
2352 case -ENOLINK:
2353 error_type = "recoverable transport";
2354 break;
2355 case -EREMOTEIO:
2356 error_type = "critical target";
2357 break;
2358 case -EBADE:
2359 error_type = "critical nexus";
2360 break;
2361 case -ETIMEDOUT:
2362 error_type = "timeout";
2363 break;
2364 case -ENOSPC:
2365 error_type = "critical space allocation";
2366 break;
2367 case -ENODATA:
2368 error_type = "critical medium";
2369 break;
2370 case -EIO:
2371 default:
2372 error_type = "I/O";
2373 break;
2375 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2376 error_type, req->rq_disk ?
2377 req->rq_disk->disk_name : "?",
2378 (unsigned long long)blk_rq_pos(req));
2382 blk_account_io_completion(req, nr_bytes);
2384 total_bytes = 0;
2385 while (req->bio) {
2386 struct bio *bio = req->bio;
2387 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2389 if (bio_bytes == bio->bi_iter.bi_size)
2390 req->bio = bio->bi_next;
2392 req_bio_endio(req, bio, bio_bytes, error);
2394 total_bytes += bio_bytes;
2395 nr_bytes -= bio_bytes;
2397 if (!nr_bytes)
2398 break;
2402 * completely done
2404 if (!req->bio) {
2406 * Reset counters so that the request stacking driver
2407 * can find how many bytes remain in the request
2408 * later.
2410 req->__data_len = 0;
2411 return false;
2414 req->__data_len -= total_bytes;
2415 req->buffer = bio_data(req->bio);
2417 /* update sector only for requests with clear definition of sector */
2418 if (req->cmd_type == REQ_TYPE_FS)
2419 req->__sector += total_bytes >> 9;
2421 /* mixed attributes always follow the first bio */
2422 if (req->cmd_flags & REQ_MIXED_MERGE) {
2423 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2424 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2428 * If total number of sectors is less than the first segment
2429 * size, something has gone terribly wrong.
2431 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2432 blk_dump_rq_flags(req, "request botched");
2433 req->__data_len = blk_rq_cur_bytes(req);
2436 /* recalculate the number of segments */
2437 blk_recalc_rq_segments(req);
2439 return true;
2441 EXPORT_SYMBOL_GPL(blk_update_request);
2443 static bool blk_update_bidi_request(struct request *rq, int error,
2444 unsigned int nr_bytes,
2445 unsigned int bidi_bytes)
2447 if (blk_update_request(rq, error, nr_bytes))
2448 return true;
2450 /* Bidi request must be completed as a whole */
2451 if (unlikely(blk_bidi_rq(rq)) &&
2452 blk_update_request(rq->next_rq, error, bidi_bytes))
2453 return true;
2455 if (blk_queue_add_random(rq->q))
2456 add_disk_randomness(rq->rq_disk);
2458 return false;
2462 * blk_unprep_request - unprepare a request
2463 * @req: the request
2465 * This function makes a request ready for complete resubmission (or
2466 * completion). It happens only after all error handling is complete,
2467 * so represents the appropriate moment to deallocate any resources
2468 * that were allocated to the request in the prep_rq_fn. The queue
2469 * lock is held when calling this.
2471 void blk_unprep_request(struct request *req)
2473 struct request_queue *q = req->q;
2475 req->cmd_flags &= ~REQ_DONTPREP;
2476 if (q->unprep_rq_fn)
2477 q->unprep_rq_fn(q, req);
2479 EXPORT_SYMBOL_GPL(blk_unprep_request);
2482 * queue lock must be held
2484 static void blk_finish_request(struct request *req, int error)
2486 if (blk_rq_tagged(req))
2487 blk_queue_end_tag(req->q, req);
2489 BUG_ON(blk_queued_rq(req));
2491 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2492 laptop_io_completion(&req->q->backing_dev_info);
2494 blk_delete_timer(req);
2496 if (req->cmd_flags & REQ_DONTPREP)
2497 blk_unprep_request(req);
2499 blk_account_io_done(req);
2501 if (req->end_io)
2502 req->end_io(req, error);
2503 else {
2504 if (blk_bidi_rq(req))
2505 __blk_put_request(req->next_rq->q, req->next_rq);
2507 __blk_put_request(req->q, req);
2512 * blk_end_bidi_request - Complete a bidi request
2513 * @rq: the request to complete
2514 * @error: %0 for success, < %0 for error
2515 * @nr_bytes: number of bytes to complete @rq
2516 * @bidi_bytes: number of bytes to complete @rq->next_rq
2518 * Description:
2519 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2520 * Drivers that supports bidi can safely call this member for any
2521 * type of request, bidi or uni. In the later case @bidi_bytes is
2522 * just ignored.
2524 * Return:
2525 * %false - we are done with this request
2526 * %true - still buffers pending for this request
2528 static bool blk_end_bidi_request(struct request *rq, int error,
2529 unsigned int nr_bytes, unsigned int bidi_bytes)
2531 struct request_queue *q = rq->q;
2532 unsigned long flags;
2534 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2535 return true;
2537 spin_lock_irqsave(q->queue_lock, flags);
2538 blk_finish_request(rq, error);
2539 spin_unlock_irqrestore(q->queue_lock, flags);
2541 return false;
2545 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2546 * @rq: the request to complete
2547 * @error: %0 for success, < %0 for error
2548 * @nr_bytes: number of bytes to complete @rq
2549 * @bidi_bytes: number of bytes to complete @rq->next_rq
2551 * Description:
2552 * Identical to blk_end_bidi_request() except that queue lock is
2553 * assumed to be locked on entry and remains so on return.
2555 * Return:
2556 * %false - we are done with this request
2557 * %true - still buffers pending for this request
2559 bool __blk_end_bidi_request(struct request *rq, int error,
2560 unsigned int nr_bytes, unsigned int bidi_bytes)
2562 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2563 return true;
2565 blk_finish_request(rq, error);
2567 return false;
2571 * blk_end_request - Helper function for drivers to complete the request.
2572 * @rq: the request being processed
2573 * @error: %0 for success, < %0 for error
2574 * @nr_bytes: number of bytes to complete
2576 * Description:
2577 * Ends I/O on a number of bytes attached to @rq.
2578 * If @rq has leftover, sets it up for the next range of segments.
2580 * Return:
2581 * %false - we are done with this request
2582 * %true - still buffers pending for this request
2584 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2586 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2588 EXPORT_SYMBOL(blk_end_request);
2591 * blk_end_request_all - Helper function for drives to finish the request.
2592 * @rq: the request to finish
2593 * @error: %0 for success, < %0 for error
2595 * Description:
2596 * Completely finish @rq.
2598 void blk_end_request_all(struct request *rq, int error)
2600 bool pending;
2601 unsigned int bidi_bytes = 0;
2603 if (unlikely(blk_bidi_rq(rq)))
2604 bidi_bytes = blk_rq_bytes(rq->next_rq);
2606 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2607 BUG_ON(pending);
2609 EXPORT_SYMBOL(blk_end_request_all);
2612 * blk_end_request_cur - Helper function to finish the current request chunk.
2613 * @rq: the request to finish the current chunk for
2614 * @error: %0 for success, < %0 for error
2616 * Description:
2617 * Complete the current consecutively mapped chunk from @rq.
2619 * Return:
2620 * %false - we are done with this request
2621 * %true - still buffers pending for this request
2623 bool blk_end_request_cur(struct request *rq, int error)
2625 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2627 EXPORT_SYMBOL(blk_end_request_cur);
2630 * blk_end_request_err - Finish a request till the next failure boundary.
2631 * @rq: the request to finish till the next failure boundary for
2632 * @error: must be negative errno
2634 * Description:
2635 * Complete @rq till the next failure boundary.
2637 * Return:
2638 * %false - we are done with this request
2639 * %true - still buffers pending for this request
2641 bool blk_end_request_err(struct request *rq, int error)
2643 WARN_ON(error >= 0);
2644 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2646 EXPORT_SYMBOL_GPL(blk_end_request_err);
2649 * __blk_end_request - Helper function for drivers to complete the request.
2650 * @rq: the request being processed
2651 * @error: %0 for success, < %0 for error
2652 * @nr_bytes: number of bytes to complete
2654 * Description:
2655 * Must be called with queue lock held unlike blk_end_request().
2657 * Return:
2658 * %false - we are done with this request
2659 * %true - still buffers pending for this request
2661 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2663 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2665 EXPORT_SYMBOL(__blk_end_request);
2668 * __blk_end_request_all - Helper function for drives to finish the request.
2669 * @rq: the request to finish
2670 * @error: %0 for success, < %0 for error
2672 * Description:
2673 * Completely finish @rq. Must be called with queue lock held.
2675 void __blk_end_request_all(struct request *rq, int error)
2677 bool pending;
2678 unsigned int bidi_bytes = 0;
2680 if (unlikely(blk_bidi_rq(rq)))
2681 bidi_bytes = blk_rq_bytes(rq->next_rq);
2683 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2684 BUG_ON(pending);
2686 EXPORT_SYMBOL(__blk_end_request_all);
2689 * __blk_end_request_cur - Helper function to finish the current request chunk.
2690 * @rq: the request to finish the current chunk for
2691 * @error: %0 for success, < %0 for error
2693 * Description:
2694 * Complete the current consecutively mapped chunk from @rq. Must
2695 * be called with queue lock held.
2697 * Return:
2698 * %false - we are done with this request
2699 * %true - still buffers pending for this request
2701 bool __blk_end_request_cur(struct request *rq, int error)
2703 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2705 EXPORT_SYMBOL(__blk_end_request_cur);
2708 * __blk_end_request_err - Finish a request till the next failure boundary.
2709 * @rq: the request to finish till the next failure boundary for
2710 * @error: must be negative errno
2712 * Description:
2713 * Complete @rq till the next failure boundary. Must be called
2714 * with queue lock held.
2716 * Return:
2717 * %false - we are done with this request
2718 * %true - still buffers pending for this request
2720 bool __blk_end_request_err(struct request *rq, int error)
2722 WARN_ON(error >= 0);
2723 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2725 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2727 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2728 struct bio *bio)
2730 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2731 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2733 if (bio_has_data(bio)) {
2734 rq->nr_phys_segments = bio_phys_segments(q, bio);
2735 rq->buffer = bio_data(bio);
2737 rq->__data_len = bio->bi_iter.bi_size;
2738 rq->bio = rq->biotail = bio;
2740 if (bio->bi_bdev)
2741 rq->rq_disk = bio->bi_bdev->bd_disk;
2744 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2746 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2747 * @rq: the request to be flushed
2749 * Description:
2750 * Flush all pages in @rq.
2752 void rq_flush_dcache_pages(struct request *rq)
2754 struct req_iterator iter;
2755 struct bio_vec bvec;
2757 rq_for_each_segment(bvec, rq, iter)
2758 flush_dcache_page(bvec.bv_page);
2760 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2761 #endif
2764 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2765 * @q : the queue of the device being checked
2767 * Description:
2768 * Check if underlying low-level drivers of a device are busy.
2769 * If the drivers want to export their busy state, they must set own
2770 * exporting function using blk_queue_lld_busy() first.
2772 * Basically, this function is used only by request stacking drivers
2773 * to stop dispatching requests to underlying devices when underlying
2774 * devices are busy. This behavior helps more I/O merging on the queue
2775 * of the request stacking driver and prevents I/O throughput regression
2776 * on burst I/O load.
2778 * Return:
2779 * 0 - Not busy (The request stacking driver should dispatch request)
2780 * 1 - Busy (The request stacking driver should stop dispatching request)
2782 int blk_lld_busy(struct request_queue *q)
2784 if (q->lld_busy_fn)
2785 return q->lld_busy_fn(q);
2787 return 0;
2789 EXPORT_SYMBOL_GPL(blk_lld_busy);
2792 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2793 * @rq: the clone request to be cleaned up
2795 * Description:
2796 * Free all bios in @rq for a cloned request.
2798 void blk_rq_unprep_clone(struct request *rq)
2800 struct bio *bio;
2802 while ((bio = rq->bio) != NULL) {
2803 rq->bio = bio->bi_next;
2805 bio_put(bio);
2808 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2811 * Copy attributes of the original request to the clone request.
2812 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2814 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2816 dst->cpu = src->cpu;
2817 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2818 dst->cmd_type = src->cmd_type;
2819 dst->__sector = blk_rq_pos(src);
2820 dst->__data_len = blk_rq_bytes(src);
2821 dst->nr_phys_segments = src->nr_phys_segments;
2822 dst->ioprio = src->ioprio;
2823 dst->extra_len = src->extra_len;
2827 * blk_rq_prep_clone - Helper function to setup clone request
2828 * @rq: the request to be setup
2829 * @rq_src: original request to be cloned
2830 * @bs: bio_set that bios for clone are allocated from
2831 * @gfp_mask: memory allocation mask for bio
2832 * @bio_ctr: setup function to be called for each clone bio.
2833 * Returns %0 for success, non %0 for failure.
2834 * @data: private data to be passed to @bio_ctr
2836 * Description:
2837 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2838 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2839 * are not copied, and copying such parts is the caller's responsibility.
2840 * Also, pages which the original bios are pointing to are not copied
2841 * and the cloned bios just point same pages.
2842 * So cloned bios must be completed before original bios, which means
2843 * the caller must complete @rq before @rq_src.
2845 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2846 struct bio_set *bs, gfp_t gfp_mask,
2847 int (*bio_ctr)(struct bio *, struct bio *, void *),
2848 void *data)
2850 struct bio *bio, *bio_src;
2852 if (!bs)
2853 bs = fs_bio_set;
2855 blk_rq_init(NULL, rq);
2857 __rq_for_each_bio(bio_src, rq_src) {
2858 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2859 if (!bio)
2860 goto free_and_out;
2862 if (bio_ctr && bio_ctr(bio, bio_src, data))
2863 goto free_and_out;
2865 if (rq->bio) {
2866 rq->biotail->bi_next = bio;
2867 rq->biotail = bio;
2868 } else
2869 rq->bio = rq->biotail = bio;
2872 __blk_rq_prep_clone(rq, rq_src);
2874 return 0;
2876 free_and_out:
2877 if (bio)
2878 bio_put(bio);
2879 blk_rq_unprep_clone(rq);
2881 return -ENOMEM;
2883 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2885 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2887 return queue_work(kblockd_workqueue, work);
2889 EXPORT_SYMBOL(kblockd_schedule_work);
2891 int kblockd_schedule_delayed_work(struct request_queue *q,
2892 struct delayed_work *dwork, unsigned long delay)
2894 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2896 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2898 #define PLUG_MAGIC 0x91827364
2901 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2902 * @plug: The &struct blk_plug that needs to be initialized
2904 * Description:
2905 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2906 * pending I/O should the task end up blocking between blk_start_plug() and
2907 * blk_finish_plug(). This is important from a performance perspective, but
2908 * also ensures that we don't deadlock. For instance, if the task is blocking
2909 * for a memory allocation, memory reclaim could end up wanting to free a
2910 * page belonging to that request that is currently residing in our private
2911 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2912 * this kind of deadlock.
2914 void blk_start_plug(struct blk_plug *plug)
2916 struct task_struct *tsk = current;
2918 plug->magic = PLUG_MAGIC;
2919 INIT_LIST_HEAD(&plug->list);
2920 INIT_LIST_HEAD(&plug->mq_list);
2921 INIT_LIST_HEAD(&plug->cb_list);
2924 * If this is a nested plug, don't actually assign it. It will be
2925 * flushed on its own.
2927 if (!tsk->plug) {
2929 * Store ordering should not be needed here, since a potential
2930 * preempt will imply a full memory barrier
2932 tsk->plug = plug;
2935 EXPORT_SYMBOL(blk_start_plug);
2937 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2939 struct request *rqa = container_of(a, struct request, queuelist);
2940 struct request *rqb = container_of(b, struct request, queuelist);
2942 return !(rqa->q < rqb->q ||
2943 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2947 * If 'from_schedule' is true, then postpone the dispatch of requests
2948 * until a safe kblockd context. We due this to avoid accidental big
2949 * additional stack usage in driver dispatch, in places where the originally
2950 * plugger did not intend it.
2952 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2953 bool from_schedule)
2954 __releases(q->queue_lock)
2956 trace_block_unplug(q, depth, !from_schedule);
2958 if (from_schedule)
2959 blk_run_queue_async(q);
2960 else
2961 __blk_run_queue(q);
2962 spin_unlock(q->queue_lock);
2965 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2967 LIST_HEAD(callbacks);
2969 while (!list_empty(&plug->cb_list)) {
2970 list_splice_init(&plug->cb_list, &callbacks);
2972 while (!list_empty(&callbacks)) {
2973 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2974 struct blk_plug_cb,
2975 list);
2976 list_del(&cb->list);
2977 cb->callback(cb, from_schedule);
2982 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2983 int size)
2985 struct blk_plug *plug = current->plug;
2986 struct blk_plug_cb *cb;
2988 if (!plug)
2989 return NULL;
2991 list_for_each_entry(cb, &plug->cb_list, list)
2992 if (cb->callback == unplug && cb->data == data)
2993 return cb;
2995 /* Not currently on the callback list */
2996 BUG_ON(size < sizeof(*cb));
2997 cb = kzalloc(size, GFP_ATOMIC);
2998 if (cb) {
2999 cb->data = data;
3000 cb->callback = unplug;
3001 list_add(&cb->list, &plug->cb_list);
3003 return cb;
3005 EXPORT_SYMBOL(blk_check_plugged);
3007 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3009 struct request_queue *q;
3010 unsigned long flags;
3011 struct request *rq;
3012 LIST_HEAD(list);
3013 unsigned int depth;
3015 BUG_ON(plug->magic != PLUG_MAGIC);
3017 flush_plug_callbacks(plug, from_schedule);
3019 if (!list_empty(&plug->mq_list))
3020 blk_mq_flush_plug_list(plug, from_schedule);
3022 if (list_empty(&plug->list))
3023 return;
3025 list_splice_init(&plug->list, &list);
3027 list_sort(NULL, &list, plug_rq_cmp);
3029 q = NULL;
3030 depth = 0;
3033 * Save and disable interrupts here, to avoid doing it for every
3034 * queue lock we have to take.
3036 local_irq_save(flags);
3037 while (!list_empty(&list)) {
3038 rq = list_entry_rq(list.next);
3039 list_del_init(&rq->queuelist);
3040 BUG_ON(!rq->q);
3041 if (rq->q != q) {
3043 * This drops the queue lock
3045 if (q)
3046 queue_unplugged(q, depth, from_schedule);
3047 q = rq->q;
3048 depth = 0;
3049 spin_lock(q->queue_lock);
3053 * Short-circuit if @q is dead
3055 if (unlikely(blk_queue_dying(q))) {
3056 __blk_end_request_all(rq, -ENODEV);
3057 continue;
3061 * rq is already accounted, so use raw insert
3063 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3064 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3065 else
3066 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3068 depth++;
3072 * This drops the queue lock
3074 if (q)
3075 queue_unplugged(q, depth, from_schedule);
3077 local_irq_restore(flags);
3080 void blk_finish_plug(struct blk_plug *plug)
3082 blk_flush_plug_list(plug, false);
3084 if (plug == current->plug)
3085 current->plug = NULL;
3087 EXPORT_SYMBOL(blk_finish_plug);
3089 #ifdef CONFIG_PM_RUNTIME
3091 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3092 * @q: the queue of the device
3093 * @dev: the device the queue belongs to
3095 * Description:
3096 * Initialize runtime-PM-related fields for @q and start auto suspend for
3097 * @dev. Drivers that want to take advantage of request-based runtime PM
3098 * should call this function after @dev has been initialized, and its
3099 * request queue @q has been allocated, and runtime PM for it can not happen
3100 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3101 * cases, driver should call this function before any I/O has taken place.
3103 * This function takes care of setting up using auto suspend for the device,
3104 * the autosuspend delay is set to -1 to make runtime suspend impossible
3105 * until an updated value is either set by user or by driver. Drivers do
3106 * not need to touch other autosuspend settings.
3108 * The block layer runtime PM is request based, so only works for drivers
3109 * that use request as their IO unit instead of those directly use bio's.
3111 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3113 q->dev = dev;
3114 q->rpm_status = RPM_ACTIVE;
3115 pm_runtime_set_autosuspend_delay(q->dev, -1);
3116 pm_runtime_use_autosuspend(q->dev);
3118 EXPORT_SYMBOL(blk_pm_runtime_init);
3121 * blk_pre_runtime_suspend - Pre runtime suspend check
3122 * @q: the queue of the device
3124 * Description:
3125 * This function will check if runtime suspend is allowed for the device
3126 * by examining if there are any requests pending in the queue. If there
3127 * are requests pending, the device can not be runtime suspended; otherwise,
3128 * the queue's status will be updated to SUSPENDING and the driver can
3129 * proceed to suspend the device.
3131 * For the not allowed case, we mark last busy for the device so that
3132 * runtime PM core will try to autosuspend it some time later.
3134 * This function should be called near the start of the device's
3135 * runtime_suspend callback.
3137 * Return:
3138 * 0 - OK to runtime suspend the device
3139 * -EBUSY - Device should not be runtime suspended
3141 int blk_pre_runtime_suspend(struct request_queue *q)
3143 int ret = 0;
3145 spin_lock_irq(q->queue_lock);
3146 if (q->nr_pending) {
3147 ret = -EBUSY;
3148 pm_runtime_mark_last_busy(q->dev);
3149 } else {
3150 q->rpm_status = RPM_SUSPENDING;
3152 spin_unlock_irq(q->queue_lock);
3153 return ret;
3155 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3158 * blk_post_runtime_suspend - Post runtime suspend processing
3159 * @q: the queue of the device
3160 * @err: return value of the device's runtime_suspend function
3162 * Description:
3163 * Update the queue's runtime status according to the return value of the
3164 * device's runtime suspend function and mark last busy for the device so
3165 * that PM core will try to auto suspend the device at a later time.
3167 * This function should be called near the end of the device's
3168 * runtime_suspend callback.
3170 void blk_post_runtime_suspend(struct request_queue *q, int err)
3172 spin_lock_irq(q->queue_lock);
3173 if (!err) {
3174 q->rpm_status = RPM_SUSPENDED;
3175 } else {
3176 q->rpm_status = RPM_ACTIVE;
3177 pm_runtime_mark_last_busy(q->dev);
3179 spin_unlock_irq(q->queue_lock);
3181 EXPORT_SYMBOL(blk_post_runtime_suspend);
3184 * blk_pre_runtime_resume - Pre runtime resume processing
3185 * @q: the queue of the device
3187 * Description:
3188 * Update the queue's runtime status to RESUMING in preparation for the
3189 * runtime resume of the device.
3191 * This function should be called near the start of the device's
3192 * runtime_resume callback.
3194 void blk_pre_runtime_resume(struct request_queue *q)
3196 spin_lock_irq(q->queue_lock);
3197 q->rpm_status = RPM_RESUMING;
3198 spin_unlock_irq(q->queue_lock);
3200 EXPORT_SYMBOL(blk_pre_runtime_resume);
3203 * blk_post_runtime_resume - Post runtime resume processing
3204 * @q: the queue of the device
3205 * @err: return value of the device's runtime_resume function
3207 * Description:
3208 * Update the queue's runtime status according to the return value of the
3209 * device's runtime_resume function. If it is successfully resumed, process
3210 * the requests that are queued into the device's queue when it is resuming
3211 * and then mark last busy and initiate autosuspend for it.
3213 * This function should be called near the end of the device's
3214 * runtime_resume callback.
3216 void blk_post_runtime_resume(struct request_queue *q, int err)
3218 spin_lock_irq(q->queue_lock);
3219 if (!err) {
3220 q->rpm_status = RPM_ACTIVE;
3221 __blk_run_queue(q);
3222 pm_runtime_mark_last_busy(q->dev);
3223 pm_request_autosuspend(q->dev);
3224 } else {
3225 q->rpm_status = RPM_SUSPENDED;
3227 spin_unlock_irq(q->queue_lock);
3229 EXPORT_SYMBOL(blk_post_runtime_resume);
3230 #endif
3232 int __init blk_dev_init(void)
3234 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3235 sizeof(((struct request *)0)->cmd_flags));
3237 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3238 kblockd_workqueue = alloc_workqueue("kblockd",
3239 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3240 WQ_POWER_EFFICIENT, 0);
3241 if (!kblockd_workqueue)
3242 panic("Failed to create kblockd\n");
3244 request_cachep = kmem_cache_create("blkdev_requests",
3245 sizeof(struct request), 0, SLAB_PANIC, NULL);
3247 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3248 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3250 return 0;