treewide: Use array_size() in vmalloc()
[linux-2.6/btrfs-unstable.git] / fs / ubifs / lpt.c
blob8e99dad1888009f764d49ffc359be3a3b23578a3
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements the LEB properties tree (LPT) area. The LPT area
25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27 * between the log and the orphan area.
29 * The LPT area is like a miniature self-contained file system. It is required
30 * that it never runs out of space, is fast to access and update, and scales
31 * logarithmically. The LEB properties tree is implemented as a wandering tree
32 * much like the TNC, and the LPT area has its own garbage collection.
34 * The LPT has two slightly different forms called the "small model" and the
35 * "big model". The small model is used when the entire LEB properties table
36 * can be written into a single eraseblock. In that case, garbage collection
37 * consists of just writing the whole table, which therefore makes all other
38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39 * selected for garbage collection, which consists of marking the clean nodes in
40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41 * the case of the big model, a table of LEB numbers is saved so that the entire
42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43 * mounted.
46 #include "ubifs.h"
47 #include <linux/crc16.h>
48 #include <linux/math64.h>
49 #include <linux/slab.h>
51 /**
52 * do_calc_lpt_geom - calculate sizes for the LPT area.
53 * @c: the UBIFS file-system description object
55 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56 * properties of the flash and whether LPT is "big" (c->big_lpt).
58 static void do_calc_lpt_geom(struct ubifs_info *c)
60 int i, n, bits, per_leb_wastage, max_pnode_cnt;
61 long long sz, tot_wastage;
63 n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64 max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
66 c->lpt_hght = 1;
67 n = UBIFS_LPT_FANOUT;
68 while (n < max_pnode_cnt) {
69 c->lpt_hght += 1;
70 n <<= UBIFS_LPT_FANOUT_SHIFT;
73 c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
75 n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76 c->nnode_cnt = n;
77 for (i = 1; i < c->lpt_hght; i++) {
78 n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79 c->nnode_cnt += n;
82 c->space_bits = fls(c->leb_size) - 3;
83 c->lpt_lnum_bits = fls(c->lpt_lebs);
84 c->lpt_offs_bits = fls(c->leb_size - 1);
85 c->lpt_spc_bits = fls(c->leb_size);
87 n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88 c->pcnt_bits = fls(n - 1);
90 c->lnum_bits = fls(c->max_leb_cnt - 1);
92 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93 (c->big_lpt ? c->pcnt_bits : 0) +
94 (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95 c->pnode_sz = (bits + 7) / 8;
97 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98 (c->big_lpt ? c->pcnt_bits : 0) +
99 (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100 c->nnode_sz = (bits + 7) / 8;
102 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103 c->lpt_lebs * c->lpt_spc_bits * 2;
104 c->ltab_sz = (bits + 7) / 8;
106 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107 c->lnum_bits * c->lsave_cnt;
108 c->lsave_sz = (bits + 7) / 8;
110 /* Calculate the minimum LPT size */
111 c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112 c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113 c->lpt_sz += c->ltab_sz;
114 if (c->big_lpt)
115 c->lpt_sz += c->lsave_sz;
117 /* Add wastage */
118 sz = c->lpt_sz;
119 per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120 sz += per_leb_wastage;
121 tot_wastage = per_leb_wastage;
122 while (sz > c->leb_size) {
123 sz += per_leb_wastage;
124 sz -= c->leb_size;
125 tot_wastage += per_leb_wastage;
127 tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128 c->lpt_sz += tot_wastage;
132 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133 * @c: the UBIFS file-system description object
135 * This function returns %0 on success and a negative error code on failure.
137 int ubifs_calc_lpt_geom(struct ubifs_info *c)
139 int lebs_needed;
140 long long sz;
142 do_calc_lpt_geom(c);
144 /* Verify that lpt_lebs is big enough */
145 sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
146 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147 if (lebs_needed > c->lpt_lebs) {
148 ubifs_err(c, "too few LPT LEBs");
149 return -EINVAL;
152 /* Verify that ltab fits in a single LEB (since ltab is a single node */
153 if (c->ltab_sz > c->leb_size) {
154 ubifs_err(c, "LPT ltab too big");
155 return -EINVAL;
158 c->check_lpt_free = c->big_lpt;
159 return 0;
163 * calc_dflt_lpt_geom - calculate default LPT geometry.
164 * @c: the UBIFS file-system description object
165 * @main_lebs: number of main area LEBs is passed and returned here
166 * @big_lpt: whether the LPT area is "big" is returned here
168 * The size of the LPT area depends on parameters that themselves are dependent
169 * on the size of the LPT area. This function, successively recalculates the LPT
170 * area geometry until the parameters and resultant geometry are consistent.
172 * This function returns %0 on success and a negative error code on failure.
174 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175 int *big_lpt)
177 int i, lebs_needed;
178 long long sz;
180 /* Start by assuming the minimum number of LPT LEBs */
181 c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182 c->main_lebs = *main_lebs - c->lpt_lebs;
183 if (c->main_lebs <= 0)
184 return -EINVAL;
186 /* And assume we will use the small LPT model */
187 c->big_lpt = 0;
190 * Calculate the geometry based on assumptions above and then see if it
191 * makes sense
193 do_calc_lpt_geom(c);
195 /* Small LPT model must have lpt_sz < leb_size */
196 if (c->lpt_sz > c->leb_size) {
197 /* Nope, so try again using big LPT model */
198 c->big_lpt = 1;
199 do_calc_lpt_geom(c);
202 /* Now check there are enough LPT LEBs */
203 for (i = 0; i < 64 ; i++) {
204 sz = c->lpt_sz * 4; /* Allow 4 times the size */
205 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206 if (lebs_needed > c->lpt_lebs) {
207 /* Not enough LPT LEBs so try again with more */
208 c->lpt_lebs = lebs_needed;
209 c->main_lebs = *main_lebs - c->lpt_lebs;
210 if (c->main_lebs <= 0)
211 return -EINVAL;
212 do_calc_lpt_geom(c);
213 continue;
215 if (c->ltab_sz > c->leb_size) {
216 ubifs_err(c, "LPT ltab too big");
217 return -EINVAL;
219 *main_lebs = c->main_lebs;
220 *big_lpt = c->big_lpt;
221 return 0;
223 return -EINVAL;
227 * pack_bits - pack bit fields end-to-end.
228 * @addr: address at which to pack (passed and next address returned)
229 * @pos: bit position at which to pack (passed and next position returned)
230 * @val: value to pack
231 * @nrbits: number of bits of value to pack (1-32)
233 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
235 uint8_t *p = *addr;
236 int b = *pos;
238 ubifs_assert(nrbits > 0);
239 ubifs_assert(nrbits <= 32);
240 ubifs_assert(*pos >= 0);
241 ubifs_assert(*pos < 8);
242 ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
243 if (b) {
244 *p |= ((uint8_t)val) << b;
245 nrbits += b;
246 if (nrbits > 8) {
247 *++p = (uint8_t)(val >>= (8 - b));
248 if (nrbits > 16) {
249 *++p = (uint8_t)(val >>= 8);
250 if (nrbits > 24) {
251 *++p = (uint8_t)(val >>= 8);
252 if (nrbits > 32)
253 *++p = (uint8_t)(val >>= 8);
257 } else {
258 *p = (uint8_t)val;
259 if (nrbits > 8) {
260 *++p = (uint8_t)(val >>= 8);
261 if (nrbits > 16) {
262 *++p = (uint8_t)(val >>= 8);
263 if (nrbits > 24)
264 *++p = (uint8_t)(val >>= 8);
268 b = nrbits & 7;
269 if (b == 0)
270 p++;
271 *addr = p;
272 *pos = b;
276 * ubifs_unpack_bits - unpack bit fields.
277 * @addr: address at which to unpack (passed and next address returned)
278 * @pos: bit position at which to unpack (passed and next position returned)
279 * @nrbits: number of bits of value to unpack (1-32)
281 * This functions returns the value unpacked.
283 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
285 const int k = 32 - nrbits;
286 uint8_t *p = *addr;
287 int b = *pos;
288 uint32_t uninitialized_var(val);
289 const int bytes = (nrbits + b + 7) >> 3;
291 ubifs_assert(nrbits > 0);
292 ubifs_assert(nrbits <= 32);
293 ubifs_assert(*pos >= 0);
294 ubifs_assert(*pos < 8);
295 if (b) {
296 switch (bytes) {
297 case 2:
298 val = p[1];
299 break;
300 case 3:
301 val = p[1] | ((uint32_t)p[2] << 8);
302 break;
303 case 4:
304 val = p[1] | ((uint32_t)p[2] << 8) |
305 ((uint32_t)p[3] << 16);
306 break;
307 case 5:
308 val = p[1] | ((uint32_t)p[2] << 8) |
309 ((uint32_t)p[3] << 16) |
310 ((uint32_t)p[4] << 24);
312 val <<= (8 - b);
313 val |= *p >> b;
314 nrbits += b;
315 } else {
316 switch (bytes) {
317 case 1:
318 val = p[0];
319 break;
320 case 2:
321 val = p[0] | ((uint32_t)p[1] << 8);
322 break;
323 case 3:
324 val = p[0] | ((uint32_t)p[1] << 8) |
325 ((uint32_t)p[2] << 16);
326 break;
327 case 4:
328 val = p[0] | ((uint32_t)p[1] << 8) |
329 ((uint32_t)p[2] << 16) |
330 ((uint32_t)p[3] << 24);
331 break;
334 val <<= k;
335 val >>= k;
336 b = nrbits & 7;
337 p += nrbits >> 3;
338 *addr = p;
339 *pos = b;
340 ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
341 return val;
345 * ubifs_pack_pnode - pack all the bit fields of a pnode.
346 * @c: UBIFS file-system description object
347 * @buf: buffer into which to pack
348 * @pnode: pnode to pack
350 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
351 struct ubifs_pnode *pnode)
353 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
354 int i, pos = 0;
355 uint16_t crc;
357 pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
358 if (c->big_lpt)
359 pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
360 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
361 pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
362 c->space_bits);
363 pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
364 c->space_bits);
365 if (pnode->lprops[i].flags & LPROPS_INDEX)
366 pack_bits(&addr, &pos, 1, 1);
367 else
368 pack_bits(&addr, &pos, 0, 1);
370 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
371 c->pnode_sz - UBIFS_LPT_CRC_BYTES);
372 addr = buf;
373 pos = 0;
374 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
378 * ubifs_pack_nnode - pack all the bit fields of a nnode.
379 * @c: UBIFS file-system description object
380 * @buf: buffer into which to pack
381 * @nnode: nnode to pack
383 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
384 struct ubifs_nnode *nnode)
386 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
387 int i, pos = 0;
388 uint16_t crc;
390 pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
391 if (c->big_lpt)
392 pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
393 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
394 int lnum = nnode->nbranch[i].lnum;
396 if (lnum == 0)
397 lnum = c->lpt_last + 1;
398 pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
399 pack_bits(&addr, &pos, nnode->nbranch[i].offs,
400 c->lpt_offs_bits);
402 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
403 c->nnode_sz - UBIFS_LPT_CRC_BYTES);
404 addr = buf;
405 pos = 0;
406 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
410 * ubifs_pack_ltab - pack the LPT's own lprops table.
411 * @c: UBIFS file-system description object
412 * @buf: buffer into which to pack
413 * @ltab: LPT's own lprops table to pack
415 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
416 struct ubifs_lpt_lprops *ltab)
418 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
419 int i, pos = 0;
420 uint16_t crc;
422 pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
423 for (i = 0; i < c->lpt_lebs; i++) {
424 pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
425 pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
427 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
428 c->ltab_sz - UBIFS_LPT_CRC_BYTES);
429 addr = buf;
430 pos = 0;
431 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
435 * ubifs_pack_lsave - pack the LPT's save table.
436 * @c: UBIFS file-system description object
437 * @buf: buffer into which to pack
438 * @lsave: LPT's save table to pack
440 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
442 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
443 int i, pos = 0;
444 uint16_t crc;
446 pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
447 for (i = 0; i < c->lsave_cnt; i++)
448 pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
449 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
450 c->lsave_sz - UBIFS_LPT_CRC_BYTES);
451 addr = buf;
452 pos = 0;
453 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
457 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
458 * @c: UBIFS file-system description object
459 * @lnum: LEB number to which to add dirty space
460 * @dirty: amount of dirty space to add
462 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
464 if (!dirty || !lnum)
465 return;
466 dbg_lp("LEB %d add %d to %d",
467 lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
468 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
469 c->ltab[lnum - c->lpt_first].dirty += dirty;
473 * set_ltab - set LPT LEB properties.
474 * @c: UBIFS file-system description object
475 * @lnum: LEB number
476 * @free: amount of free space
477 * @dirty: amount of dirty space
479 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
481 dbg_lp("LEB %d free %d dirty %d to %d %d",
482 lnum, c->ltab[lnum - c->lpt_first].free,
483 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
484 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
485 c->ltab[lnum - c->lpt_first].free = free;
486 c->ltab[lnum - c->lpt_first].dirty = dirty;
490 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
491 * @c: UBIFS file-system description object
492 * @nnode: nnode for which to add dirt
494 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
496 struct ubifs_nnode *np = nnode->parent;
498 if (np)
499 ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
500 c->nnode_sz);
501 else {
502 ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
503 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
504 c->lpt_drty_flgs |= LTAB_DIRTY;
505 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
511 * add_pnode_dirt - add dirty space to LPT LEB properties.
512 * @c: UBIFS file-system description object
513 * @pnode: pnode for which to add dirt
515 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
517 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
518 c->pnode_sz);
522 * calc_nnode_num - calculate nnode number.
523 * @row: the row in the tree (root is zero)
524 * @col: the column in the row (leftmost is zero)
526 * The nnode number is a number that uniquely identifies a nnode and can be used
527 * easily to traverse the tree from the root to that nnode.
529 * This function calculates and returns the nnode number for the nnode at @row
530 * and @col.
532 static int calc_nnode_num(int row, int col)
534 int num, bits;
536 num = 1;
537 while (row--) {
538 bits = (col & (UBIFS_LPT_FANOUT - 1));
539 col >>= UBIFS_LPT_FANOUT_SHIFT;
540 num <<= UBIFS_LPT_FANOUT_SHIFT;
541 num |= bits;
543 return num;
547 * calc_nnode_num_from_parent - calculate nnode number.
548 * @c: UBIFS file-system description object
549 * @parent: parent nnode
550 * @iip: index in parent
552 * The nnode number is a number that uniquely identifies a nnode and can be used
553 * easily to traverse the tree from the root to that nnode.
555 * This function calculates and returns the nnode number based on the parent's
556 * nnode number and the index in parent.
558 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
559 struct ubifs_nnode *parent, int iip)
561 int num, shft;
563 if (!parent)
564 return 1;
565 shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
566 num = parent->num ^ (1 << shft);
567 num |= (UBIFS_LPT_FANOUT + iip) << shft;
568 return num;
572 * calc_pnode_num_from_parent - calculate pnode number.
573 * @c: UBIFS file-system description object
574 * @parent: parent nnode
575 * @iip: index in parent
577 * The pnode number is a number that uniquely identifies a pnode and can be used
578 * easily to traverse the tree from the root to that pnode.
580 * This function calculates and returns the pnode number based on the parent's
581 * nnode number and the index in parent.
583 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
584 struct ubifs_nnode *parent, int iip)
586 int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
588 for (i = 0; i < n; i++) {
589 num <<= UBIFS_LPT_FANOUT_SHIFT;
590 num |= pnum & (UBIFS_LPT_FANOUT - 1);
591 pnum >>= UBIFS_LPT_FANOUT_SHIFT;
593 num <<= UBIFS_LPT_FANOUT_SHIFT;
594 num |= iip;
595 return num;
599 * ubifs_create_dflt_lpt - create default LPT.
600 * @c: UBIFS file-system description object
601 * @main_lebs: number of main area LEBs is passed and returned here
602 * @lpt_first: LEB number of first LPT LEB
603 * @lpt_lebs: number of LEBs for LPT is passed and returned here
604 * @big_lpt: use big LPT model is passed and returned here
606 * This function returns %0 on success and a negative error code on failure.
608 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
609 int *lpt_lebs, int *big_lpt)
611 int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
612 int blnum, boffs, bsz, bcnt;
613 struct ubifs_pnode *pnode = NULL;
614 struct ubifs_nnode *nnode = NULL;
615 void *buf = NULL, *p;
616 struct ubifs_lpt_lprops *ltab = NULL;
617 int *lsave = NULL;
619 err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
620 if (err)
621 return err;
622 *lpt_lebs = c->lpt_lebs;
624 /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
625 c->lpt_first = lpt_first;
626 /* Needed by 'set_ltab()' */
627 c->lpt_last = lpt_first + c->lpt_lebs - 1;
628 /* Needed by 'ubifs_pack_lsave()' */
629 c->main_first = c->leb_cnt - *main_lebs;
631 lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_KERNEL);
632 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
633 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
634 buf = vmalloc(c->leb_size);
635 ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
636 c->lpt_lebs));
637 if (!pnode || !nnode || !buf || !ltab || !lsave) {
638 err = -ENOMEM;
639 goto out;
642 ubifs_assert(!c->ltab);
643 c->ltab = ltab; /* Needed by set_ltab */
645 /* Initialize LPT's own lprops */
646 for (i = 0; i < c->lpt_lebs; i++) {
647 ltab[i].free = c->leb_size;
648 ltab[i].dirty = 0;
649 ltab[i].tgc = 0;
650 ltab[i].cmt = 0;
653 lnum = lpt_first;
654 p = buf;
655 /* Number of leaf nodes (pnodes) */
656 cnt = c->pnode_cnt;
659 * The first pnode contains the LEB properties for the LEBs that contain
660 * the root inode node and the root index node of the index tree.
662 node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
663 iopos = ALIGN(node_sz, c->min_io_size);
664 pnode->lprops[0].free = c->leb_size - iopos;
665 pnode->lprops[0].dirty = iopos - node_sz;
666 pnode->lprops[0].flags = LPROPS_INDEX;
668 node_sz = UBIFS_INO_NODE_SZ;
669 iopos = ALIGN(node_sz, c->min_io_size);
670 pnode->lprops[1].free = c->leb_size - iopos;
671 pnode->lprops[1].dirty = iopos - node_sz;
673 for (i = 2; i < UBIFS_LPT_FANOUT; i++)
674 pnode->lprops[i].free = c->leb_size;
676 /* Add first pnode */
677 ubifs_pack_pnode(c, p, pnode);
678 p += c->pnode_sz;
679 len = c->pnode_sz;
680 pnode->num += 1;
682 /* Reset pnode values for remaining pnodes */
683 pnode->lprops[0].free = c->leb_size;
684 pnode->lprops[0].dirty = 0;
685 pnode->lprops[0].flags = 0;
687 pnode->lprops[1].free = c->leb_size;
688 pnode->lprops[1].dirty = 0;
691 * To calculate the internal node branches, we keep information about
692 * the level below.
694 blnum = lnum; /* LEB number of level below */
695 boffs = 0; /* Offset of level below */
696 bcnt = cnt; /* Number of nodes in level below */
697 bsz = c->pnode_sz; /* Size of nodes in level below */
699 /* Add all remaining pnodes */
700 for (i = 1; i < cnt; i++) {
701 if (len + c->pnode_sz > c->leb_size) {
702 alen = ALIGN(len, c->min_io_size);
703 set_ltab(c, lnum, c->leb_size - alen, alen - len);
704 memset(p, 0xff, alen - len);
705 err = ubifs_leb_change(c, lnum++, buf, alen);
706 if (err)
707 goto out;
708 p = buf;
709 len = 0;
711 ubifs_pack_pnode(c, p, pnode);
712 p += c->pnode_sz;
713 len += c->pnode_sz;
715 * pnodes are simply numbered left to right starting at zero,
716 * which means the pnode number can be used easily to traverse
717 * down the tree to the corresponding pnode.
719 pnode->num += 1;
722 row = 0;
723 for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
724 row += 1;
725 /* Add all nnodes, one level at a time */
726 while (1) {
727 /* Number of internal nodes (nnodes) at next level */
728 cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
729 for (i = 0; i < cnt; i++) {
730 if (len + c->nnode_sz > c->leb_size) {
731 alen = ALIGN(len, c->min_io_size);
732 set_ltab(c, lnum, c->leb_size - alen,
733 alen - len);
734 memset(p, 0xff, alen - len);
735 err = ubifs_leb_change(c, lnum++, buf, alen);
736 if (err)
737 goto out;
738 p = buf;
739 len = 0;
741 /* Only 1 nnode at this level, so it is the root */
742 if (cnt == 1) {
743 c->lpt_lnum = lnum;
744 c->lpt_offs = len;
746 /* Set branches to the level below */
747 for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
748 if (bcnt) {
749 if (boffs + bsz > c->leb_size) {
750 blnum += 1;
751 boffs = 0;
753 nnode->nbranch[j].lnum = blnum;
754 nnode->nbranch[j].offs = boffs;
755 boffs += bsz;
756 bcnt--;
757 } else {
758 nnode->nbranch[j].lnum = 0;
759 nnode->nbranch[j].offs = 0;
762 nnode->num = calc_nnode_num(row, i);
763 ubifs_pack_nnode(c, p, nnode);
764 p += c->nnode_sz;
765 len += c->nnode_sz;
767 /* Only 1 nnode at this level, so it is the root */
768 if (cnt == 1)
769 break;
770 /* Update the information about the level below */
771 bcnt = cnt;
772 bsz = c->nnode_sz;
773 row -= 1;
776 if (*big_lpt) {
777 /* Need to add LPT's save table */
778 if (len + c->lsave_sz > c->leb_size) {
779 alen = ALIGN(len, c->min_io_size);
780 set_ltab(c, lnum, c->leb_size - alen, alen - len);
781 memset(p, 0xff, alen - len);
782 err = ubifs_leb_change(c, lnum++, buf, alen);
783 if (err)
784 goto out;
785 p = buf;
786 len = 0;
789 c->lsave_lnum = lnum;
790 c->lsave_offs = len;
792 for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
793 lsave[i] = c->main_first + i;
794 for (; i < c->lsave_cnt; i++)
795 lsave[i] = c->main_first;
797 ubifs_pack_lsave(c, p, lsave);
798 p += c->lsave_sz;
799 len += c->lsave_sz;
802 /* Need to add LPT's own LEB properties table */
803 if (len + c->ltab_sz > c->leb_size) {
804 alen = ALIGN(len, c->min_io_size);
805 set_ltab(c, lnum, c->leb_size - alen, alen - len);
806 memset(p, 0xff, alen - len);
807 err = ubifs_leb_change(c, lnum++, buf, alen);
808 if (err)
809 goto out;
810 p = buf;
811 len = 0;
814 c->ltab_lnum = lnum;
815 c->ltab_offs = len;
817 /* Update ltab before packing it */
818 len += c->ltab_sz;
819 alen = ALIGN(len, c->min_io_size);
820 set_ltab(c, lnum, c->leb_size - alen, alen - len);
822 ubifs_pack_ltab(c, p, ltab);
823 p += c->ltab_sz;
825 /* Write remaining buffer */
826 memset(p, 0xff, alen - len);
827 err = ubifs_leb_change(c, lnum, buf, alen);
828 if (err)
829 goto out;
831 c->nhead_lnum = lnum;
832 c->nhead_offs = ALIGN(len, c->min_io_size);
834 dbg_lp("space_bits %d", c->space_bits);
835 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
836 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
837 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
838 dbg_lp("pcnt_bits %d", c->pcnt_bits);
839 dbg_lp("lnum_bits %d", c->lnum_bits);
840 dbg_lp("pnode_sz %d", c->pnode_sz);
841 dbg_lp("nnode_sz %d", c->nnode_sz);
842 dbg_lp("ltab_sz %d", c->ltab_sz);
843 dbg_lp("lsave_sz %d", c->lsave_sz);
844 dbg_lp("lsave_cnt %d", c->lsave_cnt);
845 dbg_lp("lpt_hght %d", c->lpt_hght);
846 dbg_lp("big_lpt %d", c->big_lpt);
847 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
848 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
849 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
850 if (c->big_lpt)
851 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
852 out:
853 c->ltab = NULL;
854 kfree(lsave);
855 vfree(ltab);
856 vfree(buf);
857 kfree(nnode);
858 kfree(pnode);
859 return err;
863 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
864 * @c: UBIFS file-system description object
865 * @pnode: pnode
867 * When a pnode is loaded into memory, the LEB properties it contains are added,
868 * by this function, to the LEB category lists and heaps.
870 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
872 int i;
874 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
875 int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
876 int lnum = pnode->lprops[i].lnum;
878 if (!lnum)
879 return;
880 ubifs_add_to_cat(c, &pnode->lprops[i], cat);
885 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
886 * @c: UBIFS file-system description object
887 * @old_pnode: pnode copied
888 * @new_pnode: pnode copy
890 * During commit it is sometimes necessary to copy a pnode
891 * (see dirty_cow_pnode). When that happens, references in
892 * category lists and heaps must be replaced. This function does that.
894 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
895 struct ubifs_pnode *new_pnode)
897 int i;
899 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
900 if (!new_pnode->lprops[i].lnum)
901 return;
902 ubifs_replace_cat(c, &old_pnode->lprops[i],
903 &new_pnode->lprops[i]);
908 * check_lpt_crc - check LPT node crc is correct.
909 * @c: UBIFS file-system description object
910 * @buf: buffer containing node
911 * @len: length of node
913 * This function returns %0 on success and a negative error code on failure.
915 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
917 int pos = 0;
918 uint8_t *addr = buf;
919 uint16_t crc, calc_crc;
921 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
922 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
923 len - UBIFS_LPT_CRC_BYTES);
924 if (crc != calc_crc) {
925 ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
926 crc, calc_crc);
927 dump_stack();
928 return -EINVAL;
930 return 0;
934 * check_lpt_type - check LPT node type is correct.
935 * @c: UBIFS file-system description object
936 * @addr: address of type bit field is passed and returned updated here
937 * @pos: position of type bit field is passed and returned updated here
938 * @type: expected type
940 * This function returns %0 on success and a negative error code on failure.
942 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
943 int *pos, int type)
945 int node_type;
947 node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
948 if (node_type != type) {
949 ubifs_err(c, "invalid type (%d) in LPT node type %d",
950 node_type, type);
951 dump_stack();
952 return -EINVAL;
954 return 0;
958 * unpack_pnode - unpack a pnode.
959 * @c: UBIFS file-system description object
960 * @buf: buffer containing packed pnode to unpack
961 * @pnode: pnode structure to fill
963 * This function returns %0 on success and a negative error code on failure.
965 static int unpack_pnode(const struct ubifs_info *c, void *buf,
966 struct ubifs_pnode *pnode)
968 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
969 int i, pos = 0, err;
971 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
972 if (err)
973 return err;
974 if (c->big_lpt)
975 pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
976 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
977 struct ubifs_lprops * const lprops = &pnode->lprops[i];
979 lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
980 lprops->free <<= 3;
981 lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
982 lprops->dirty <<= 3;
984 if (ubifs_unpack_bits(&addr, &pos, 1))
985 lprops->flags = LPROPS_INDEX;
986 else
987 lprops->flags = 0;
988 lprops->flags |= ubifs_categorize_lprops(c, lprops);
990 err = check_lpt_crc(c, buf, c->pnode_sz);
991 return err;
995 * ubifs_unpack_nnode - unpack a nnode.
996 * @c: UBIFS file-system description object
997 * @buf: buffer containing packed nnode to unpack
998 * @nnode: nnode structure to fill
1000 * This function returns %0 on success and a negative error code on failure.
1002 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1003 struct ubifs_nnode *nnode)
1005 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1006 int i, pos = 0, err;
1008 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1009 if (err)
1010 return err;
1011 if (c->big_lpt)
1012 nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1013 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1014 int lnum;
1016 lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1017 c->lpt_first;
1018 if (lnum == c->lpt_last + 1)
1019 lnum = 0;
1020 nnode->nbranch[i].lnum = lnum;
1021 nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1022 c->lpt_offs_bits);
1024 err = check_lpt_crc(c, buf, c->nnode_sz);
1025 return err;
1029 * unpack_ltab - unpack the LPT's own lprops table.
1030 * @c: UBIFS file-system description object
1031 * @buf: buffer from which to unpack
1033 * This function returns %0 on success and a negative error code on failure.
1035 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1037 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1038 int i, pos = 0, err;
1040 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1041 if (err)
1042 return err;
1043 for (i = 0; i < c->lpt_lebs; i++) {
1044 int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1045 int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1047 if (free < 0 || free > c->leb_size || dirty < 0 ||
1048 dirty > c->leb_size || free + dirty > c->leb_size)
1049 return -EINVAL;
1051 c->ltab[i].free = free;
1052 c->ltab[i].dirty = dirty;
1053 c->ltab[i].tgc = 0;
1054 c->ltab[i].cmt = 0;
1056 err = check_lpt_crc(c, buf, c->ltab_sz);
1057 return err;
1061 * unpack_lsave - unpack the LPT's save table.
1062 * @c: UBIFS file-system description object
1063 * @buf: buffer from which to unpack
1065 * This function returns %0 on success and a negative error code on failure.
1067 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1069 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1070 int i, pos = 0, err;
1072 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1073 if (err)
1074 return err;
1075 for (i = 0; i < c->lsave_cnt; i++) {
1076 int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1078 if (lnum < c->main_first || lnum >= c->leb_cnt)
1079 return -EINVAL;
1080 c->lsave[i] = lnum;
1082 err = check_lpt_crc(c, buf, c->lsave_sz);
1083 return err;
1087 * validate_nnode - validate a nnode.
1088 * @c: UBIFS file-system description object
1089 * @nnode: nnode to validate
1090 * @parent: parent nnode (or NULL for the root nnode)
1091 * @iip: index in parent
1093 * This function returns %0 on success and a negative error code on failure.
1095 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1096 struct ubifs_nnode *parent, int iip)
1098 int i, lvl, max_offs;
1100 if (c->big_lpt) {
1101 int num = calc_nnode_num_from_parent(c, parent, iip);
1103 if (nnode->num != num)
1104 return -EINVAL;
1106 lvl = parent ? parent->level - 1 : c->lpt_hght;
1107 if (lvl < 1)
1108 return -EINVAL;
1109 if (lvl == 1)
1110 max_offs = c->leb_size - c->pnode_sz;
1111 else
1112 max_offs = c->leb_size - c->nnode_sz;
1113 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1114 int lnum = nnode->nbranch[i].lnum;
1115 int offs = nnode->nbranch[i].offs;
1117 if (lnum == 0) {
1118 if (offs != 0)
1119 return -EINVAL;
1120 continue;
1122 if (lnum < c->lpt_first || lnum > c->lpt_last)
1123 return -EINVAL;
1124 if (offs < 0 || offs > max_offs)
1125 return -EINVAL;
1127 return 0;
1131 * validate_pnode - validate a pnode.
1132 * @c: UBIFS file-system description object
1133 * @pnode: pnode to validate
1134 * @parent: parent nnode
1135 * @iip: index in parent
1137 * This function returns %0 on success and a negative error code on failure.
1139 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1140 struct ubifs_nnode *parent, int iip)
1142 int i;
1144 if (c->big_lpt) {
1145 int num = calc_pnode_num_from_parent(c, parent, iip);
1147 if (pnode->num != num)
1148 return -EINVAL;
1150 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1151 int free = pnode->lprops[i].free;
1152 int dirty = pnode->lprops[i].dirty;
1154 if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1155 (free & 7))
1156 return -EINVAL;
1157 if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1158 return -EINVAL;
1159 if (dirty + free > c->leb_size)
1160 return -EINVAL;
1162 return 0;
1166 * set_pnode_lnum - set LEB numbers on a pnode.
1167 * @c: UBIFS file-system description object
1168 * @pnode: pnode to update
1170 * This function calculates the LEB numbers for the LEB properties it contains
1171 * based on the pnode number.
1173 static void set_pnode_lnum(const struct ubifs_info *c,
1174 struct ubifs_pnode *pnode)
1176 int i, lnum;
1178 lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1179 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1180 if (lnum >= c->leb_cnt)
1181 return;
1182 pnode->lprops[i].lnum = lnum++;
1187 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1188 * @c: UBIFS file-system description object
1189 * @parent: parent nnode (or NULL for the root)
1190 * @iip: index in parent
1192 * This function returns %0 on success and a negative error code on failure.
1194 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1196 struct ubifs_nbranch *branch = NULL;
1197 struct ubifs_nnode *nnode = NULL;
1198 void *buf = c->lpt_nod_buf;
1199 int err, lnum, offs;
1201 if (parent) {
1202 branch = &parent->nbranch[iip];
1203 lnum = branch->lnum;
1204 offs = branch->offs;
1205 } else {
1206 lnum = c->lpt_lnum;
1207 offs = c->lpt_offs;
1209 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1210 if (!nnode) {
1211 err = -ENOMEM;
1212 goto out;
1214 if (lnum == 0) {
1216 * This nnode was not written which just means that the LEB
1217 * properties in the subtree below it describe empty LEBs. We
1218 * make the nnode as though we had read it, which in fact means
1219 * doing almost nothing.
1221 if (c->big_lpt)
1222 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1223 } else {
1224 err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1225 if (err)
1226 goto out;
1227 err = ubifs_unpack_nnode(c, buf, nnode);
1228 if (err)
1229 goto out;
1231 err = validate_nnode(c, nnode, parent, iip);
1232 if (err)
1233 goto out;
1234 if (!c->big_lpt)
1235 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1236 if (parent) {
1237 branch->nnode = nnode;
1238 nnode->level = parent->level - 1;
1239 } else {
1240 c->nroot = nnode;
1241 nnode->level = c->lpt_hght;
1243 nnode->parent = parent;
1244 nnode->iip = iip;
1245 return 0;
1247 out:
1248 ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1249 dump_stack();
1250 kfree(nnode);
1251 return err;
1255 * read_pnode - read a pnode from flash and link it to the tree in memory.
1256 * @c: UBIFS file-system description object
1257 * @parent: parent nnode
1258 * @iip: index in parent
1260 * This function returns %0 on success and a negative error code on failure.
1262 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1264 struct ubifs_nbranch *branch;
1265 struct ubifs_pnode *pnode = NULL;
1266 void *buf = c->lpt_nod_buf;
1267 int err, lnum, offs;
1269 branch = &parent->nbranch[iip];
1270 lnum = branch->lnum;
1271 offs = branch->offs;
1272 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1273 if (!pnode)
1274 return -ENOMEM;
1276 if (lnum == 0) {
1278 * This pnode was not written which just means that the LEB
1279 * properties in it describe empty LEBs. We make the pnode as
1280 * though we had read it.
1282 int i;
1284 if (c->big_lpt)
1285 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1286 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1287 struct ubifs_lprops * const lprops = &pnode->lprops[i];
1289 lprops->free = c->leb_size;
1290 lprops->flags = ubifs_categorize_lprops(c, lprops);
1292 } else {
1293 err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1294 if (err)
1295 goto out;
1296 err = unpack_pnode(c, buf, pnode);
1297 if (err)
1298 goto out;
1300 err = validate_pnode(c, pnode, parent, iip);
1301 if (err)
1302 goto out;
1303 if (!c->big_lpt)
1304 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1305 branch->pnode = pnode;
1306 pnode->parent = parent;
1307 pnode->iip = iip;
1308 set_pnode_lnum(c, pnode);
1309 c->pnodes_have += 1;
1310 return 0;
1312 out:
1313 ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1314 ubifs_dump_pnode(c, pnode, parent, iip);
1315 dump_stack();
1316 ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1317 kfree(pnode);
1318 return err;
1322 * read_ltab - read LPT's own lprops table.
1323 * @c: UBIFS file-system description object
1325 * This function returns %0 on success and a negative error code on failure.
1327 static int read_ltab(struct ubifs_info *c)
1329 int err;
1330 void *buf;
1332 buf = vmalloc(c->ltab_sz);
1333 if (!buf)
1334 return -ENOMEM;
1335 err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1336 if (err)
1337 goto out;
1338 err = unpack_ltab(c, buf);
1339 out:
1340 vfree(buf);
1341 return err;
1345 * read_lsave - read LPT's save table.
1346 * @c: UBIFS file-system description object
1348 * This function returns %0 on success and a negative error code on failure.
1350 static int read_lsave(struct ubifs_info *c)
1352 int err, i;
1353 void *buf;
1355 buf = vmalloc(c->lsave_sz);
1356 if (!buf)
1357 return -ENOMEM;
1358 err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1359 c->lsave_sz, 1);
1360 if (err)
1361 goto out;
1362 err = unpack_lsave(c, buf);
1363 if (err)
1364 goto out;
1365 for (i = 0; i < c->lsave_cnt; i++) {
1366 int lnum = c->lsave[i];
1367 struct ubifs_lprops *lprops;
1370 * Due to automatic resizing, the values in the lsave table
1371 * could be beyond the volume size - just ignore them.
1373 if (lnum >= c->leb_cnt)
1374 continue;
1375 lprops = ubifs_lpt_lookup(c, lnum);
1376 if (IS_ERR(lprops)) {
1377 err = PTR_ERR(lprops);
1378 goto out;
1381 out:
1382 vfree(buf);
1383 return err;
1387 * ubifs_get_nnode - get a nnode.
1388 * @c: UBIFS file-system description object
1389 * @parent: parent nnode (or NULL for the root)
1390 * @iip: index in parent
1392 * This function returns a pointer to the nnode on success or a negative error
1393 * code on failure.
1395 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1396 struct ubifs_nnode *parent, int iip)
1398 struct ubifs_nbranch *branch;
1399 struct ubifs_nnode *nnode;
1400 int err;
1402 branch = &parent->nbranch[iip];
1403 nnode = branch->nnode;
1404 if (nnode)
1405 return nnode;
1406 err = ubifs_read_nnode(c, parent, iip);
1407 if (err)
1408 return ERR_PTR(err);
1409 return branch->nnode;
1413 * ubifs_get_pnode - get a pnode.
1414 * @c: UBIFS file-system description object
1415 * @parent: parent nnode
1416 * @iip: index in parent
1418 * This function returns a pointer to the pnode on success or a negative error
1419 * code on failure.
1421 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1422 struct ubifs_nnode *parent, int iip)
1424 struct ubifs_nbranch *branch;
1425 struct ubifs_pnode *pnode;
1426 int err;
1428 branch = &parent->nbranch[iip];
1429 pnode = branch->pnode;
1430 if (pnode)
1431 return pnode;
1432 err = read_pnode(c, parent, iip);
1433 if (err)
1434 return ERR_PTR(err);
1435 update_cats(c, branch->pnode);
1436 return branch->pnode;
1440 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1441 * @c: UBIFS file-system description object
1442 * @lnum: LEB number to lookup
1444 * This function returns a pointer to the LEB properties on success or a
1445 * negative error code on failure.
1447 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1449 int err, i, h, iip, shft;
1450 struct ubifs_nnode *nnode;
1451 struct ubifs_pnode *pnode;
1453 if (!c->nroot) {
1454 err = ubifs_read_nnode(c, NULL, 0);
1455 if (err)
1456 return ERR_PTR(err);
1458 nnode = c->nroot;
1459 i = lnum - c->main_first;
1460 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1461 for (h = 1; h < c->lpt_hght; h++) {
1462 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1463 shft -= UBIFS_LPT_FANOUT_SHIFT;
1464 nnode = ubifs_get_nnode(c, nnode, iip);
1465 if (IS_ERR(nnode))
1466 return ERR_CAST(nnode);
1468 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1469 pnode = ubifs_get_pnode(c, nnode, iip);
1470 if (IS_ERR(pnode))
1471 return ERR_CAST(pnode);
1472 iip = (i & (UBIFS_LPT_FANOUT - 1));
1473 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1474 pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1475 pnode->lprops[iip].flags);
1476 return &pnode->lprops[iip];
1480 * dirty_cow_nnode - ensure a nnode is not being committed.
1481 * @c: UBIFS file-system description object
1482 * @nnode: nnode to check
1484 * Returns dirtied nnode on success or negative error code on failure.
1486 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1487 struct ubifs_nnode *nnode)
1489 struct ubifs_nnode *n;
1490 int i;
1492 if (!test_bit(COW_CNODE, &nnode->flags)) {
1493 /* nnode is not being committed */
1494 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1495 c->dirty_nn_cnt += 1;
1496 ubifs_add_nnode_dirt(c, nnode);
1498 return nnode;
1501 /* nnode is being committed, so copy it */
1502 n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS);
1503 if (unlikely(!n))
1504 return ERR_PTR(-ENOMEM);
1506 n->cnext = NULL;
1507 __set_bit(DIRTY_CNODE, &n->flags);
1508 __clear_bit(COW_CNODE, &n->flags);
1510 /* The children now have new parent */
1511 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1512 struct ubifs_nbranch *branch = &n->nbranch[i];
1514 if (branch->cnode)
1515 branch->cnode->parent = n;
1518 ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1519 __set_bit(OBSOLETE_CNODE, &nnode->flags);
1521 c->dirty_nn_cnt += 1;
1522 ubifs_add_nnode_dirt(c, nnode);
1523 if (nnode->parent)
1524 nnode->parent->nbranch[n->iip].nnode = n;
1525 else
1526 c->nroot = n;
1527 return n;
1531 * dirty_cow_pnode - ensure a pnode is not being committed.
1532 * @c: UBIFS file-system description object
1533 * @pnode: pnode to check
1535 * Returns dirtied pnode on success or negative error code on failure.
1537 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1538 struct ubifs_pnode *pnode)
1540 struct ubifs_pnode *p;
1542 if (!test_bit(COW_CNODE, &pnode->flags)) {
1543 /* pnode is not being committed */
1544 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1545 c->dirty_pn_cnt += 1;
1546 add_pnode_dirt(c, pnode);
1548 return pnode;
1551 /* pnode is being committed, so copy it */
1552 p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS);
1553 if (unlikely(!p))
1554 return ERR_PTR(-ENOMEM);
1556 p->cnext = NULL;
1557 __set_bit(DIRTY_CNODE, &p->flags);
1558 __clear_bit(COW_CNODE, &p->flags);
1559 replace_cats(c, pnode, p);
1561 ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1562 __set_bit(OBSOLETE_CNODE, &pnode->flags);
1564 c->dirty_pn_cnt += 1;
1565 add_pnode_dirt(c, pnode);
1566 pnode->parent->nbranch[p->iip].pnode = p;
1567 return p;
1571 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1572 * @c: UBIFS file-system description object
1573 * @lnum: LEB number to lookup
1575 * This function returns a pointer to the LEB properties on success or a
1576 * negative error code on failure.
1578 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1580 int err, i, h, iip, shft;
1581 struct ubifs_nnode *nnode;
1582 struct ubifs_pnode *pnode;
1584 if (!c->nroot) {
1585 err = ubifs_read_nnode(c, NULL, 0);
1586 if (err)
1587 return ERR_PTR(err);
1589 nnode = c->nroot;
1590 nnode = dirty_cow_nnode(c, nnode);
1591 if (IS_ERR(nnode))
1592 return ERR_CAST(nnode);
1593 i = lnum - c->main_first;
1594 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1595 for (h = 1; h < c->lpt_hght; h++) {
1596 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1597 shft -= UBIFS_LPT_FANOUT_SHIFT;
1598 nnode = ubifs_get_nnode(c, nnode, iip);
1599 if (IS_ERR(nnode))
1600 return ERR_CAST(nnode);
1601 nnode = dirty_cow_nnode(c, nnode);
1602 if (IS_ERR(nnode))
1603 return ERR_CAST(nnode);
1605 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1606 pnode = ubifs_get_pnode(c, nnode, iip);
1607 if (IS_ERR(pnode))
1608 return ERR_CAST(pnode);
1609 pnode = dirty_cow_pnode(c, pnode);
1610 if (IS_ERR(pnode))
1611 return ERR_CAST(pnode);
1612 iip = (i & (UBIFS_LPT_FANOUT - 1));
1613 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1614 pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1615 pnode->lprops[iip].flags);
1616 ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1617 return &pnode->lprops[iip];
1621 * lpt_init_rd - initialize the LPT for reading.
1622 * @c: UBIFS file-system description object
1624 * This function returns %0 on success and a negative error code on failure.
1626 static int lpt_init_rd(struct ubifs_info *c)
1628 int err, i;
1630 c->ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1631 c->lpt_lebs));
1632 if (!c->ltab)
1633 return -ENOMEM;
1635 i = max_t(int, c->nnode_sz, c->pnode_sz);
1636 c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1637 if (!c->lpt_nod_buf)
1638 return -ENOMEM;
1640 for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1641 c->lpt_heap[i].arr = kmalloc_array(LPT_HEAP_SZ,
1642 sizeof(void *),
1643 GFP_KERNEL);
1644 if (!c->lpt_heap[i].arr)
1645 return -ENOMEM;
1646 c->lpt_heap[i].cnt = 0;
1647 c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1650 c->dirty_idx.arr = kmalloc_array(LPT_HEAP_SZ, sizeof(void *),
1651 GFP_KERNEL);
1652 if (!c->dirty_idx.arr)
1653 return -ENOMEM;
1654 c->dirty_idx.cnt = 0;
1655 c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1657 err = read_ltab(c);
1658 if (err)
1659 return err;
1661 dbg_lp("space_bits %d", c->space_bits);
1662 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1663 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1664 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1665 dbg_lp("pcnt_bits %d", c->pcnt_bits);
1666 dbg_lp("lnum_bits %d", c->lnum_bits);
1667 dbg_lp("pnode_sz %d", c->pnode_sz);
1668 dbg_lp("nnode_sz %d", c->nnode_sz);
1669 dbg_lp("ltab_sz %d", c->ltab_sz);
1670 dbg_lp("lsave_sz %d", c->lsave_sz);
1671 dbg_lp("lsave_cnt %d", c->lsave_cnt);
1672 dbg_lp("lpt_hght %d", c->lpt_hght);
1673 dbg_lp("big_lpt %d", c->big_lpt);
1674 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1675 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1676 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1677 if (c->big_lpt)
1678 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1680 return 0;
1684 * lpt_init_wr - initialize the LPT for writing.
1685 * @c: UBIFS file-system description object
1687 * 'lpt_init_rd()' must have been called already.
1689 * This function returns %0 on success and a negative error code on failure.
1691 static int lpt_init_wr(struct ubifs_info *c)
1693 int err, i;
1695 c->ltab_cmt = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1696 c->lpt_lebs));
1697 if (!c->ltab_cmt)
1698 return -ENOMEM;
1700 c->lpt_buf = vmalloc(c->leb_size);
1701 if (!c->lpt_buf)
1702 return -ENOMEM;
1704 if (c->big_lpt) {
1705 c->lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_NOFS);
1706 if (!c->lsave)
1707 return -ENOMEM;
1708 err = read_lsave(c);
1709 if (err)
1710 return err;
1713 for (i = 0; i < c->lpt_lebs; i++)
1714 if (c->ltab[i].free == c->leb_size) {
1715 err = ubifs_leb_unmap(c, i + c->lpt_first);
1716 if (err)
1717 return err;
1720 return 0;
1724 * ubifs_lpt_init - initialize the LPT.
1725 * @c: UBIFS file-system description object
1726 * @rd: whether to initialize lpt for reading
1727 * @wr: whether to initialize lpt for writing
1729 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1730 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1731 * true.
1733 * This function returns %0 on success and a negative error code on failure.
1735 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1737 int err;
1739 if (rd) {
1740 err = lpt_init_rd(c);
1741 if (err)
1742 goto out_err;
1745 if (wr) {
1746 err = lpt_init_wr(c);
1747 if (err)
1748 goto out_err;
1751 return 0;
1753 out_err:
1754 if (wr)
1755 ubifs_lpt_free(c, 1);
1756 if (rd)
1757 ubifs_lpt_free(c, 0);
1758 return err;
1762 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1763 * @nnode: where to keep a nnode
1764 * @pnode: where to keep a pnode
1765 * @cnode: where to keep a cnode
1766 * @in_tree: is the node in the tree in memory
1767 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1768 * the tree
1769 * @ptr.pnode: ditto for pnode
1770 * @ptr.cnode: ditto for cnode
1772 struct lpt_scan_node {
1773 union {
1774 struct ubifs_nnode nnode;
1775 struct ubifs_pnode pnode;
1776 struct ubifs_cnode cnode;
1778 int in_tree;
1779 union {
1780 struct ubifs_nnode *nnode;
1781 struct ubifs_pnode *pnode;
1782 struct ubifs_cnode *cnode;
1783 } ptr;
1787 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1788 * @c: the UBIFS file-system description object
1789 * @path: where to put the nnode
1790 * @parent: parent of the nnode
1791 * @iip: index in parent of the nnode
1793 * This function returns a pointer to the nnode on success or a negative error
1794 * code on failure.
1796 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1797 struct lpt_scan_node *path,
1798 struct ubifs_nnode *parent, int iip)
1800 struct ubifs_nbranch *branch;
1801 struct ubifs_nnode *nnode;
1802 void *buf = c->lpt_nod_buf;
1803 int err;
1805 branch = &parent->nbranch[iip];
1806 nnode = branch->nnode;
1807 if (nnode) {
1808 path->in_tree = 1;
1809 path->ptr.nnode = nnode;
1810 return nnode;
1812 nnode = &path->nnode;
1813 path->in_tree = 0;
1814 path->ptr.nnode = nnode;
1815 memset(nnode, 0, sizeof(struct ubifs_nnode));
1816 if (branch->lnum == 0) {
1818 * This nnode was not written which just means that the LEB
1819 * properties in the subtree below it describe empty LEBs. We
1820 * make the nnode as though we had read it, which in fact means
1821 * doing almost nothing.
1823 if (c->big_lpt)
1824 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1825 } else {
1826 err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1827 c->nnode_sz, 1);
1828 if (err)
1829 return ERR_PTR(err);
1830 err = ubifs_unpack_nnode(c, buf, nnode);
1831 if (err)
1832 return ERR_PTR(err);
1834 err = validate_nnode(c, nnode, parent, iip);
1835 if (err)
1836 return ERR_PTR(err);
1837 if (!c->big_lpt)
1838 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1839 nnode->level = parent->level - 1;
1840 nnode->parent = parent;
1841 nnode->iip = iip;
1842 return nnode;
1846 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1847 * @c: the UBIFS file-system description object
1848 * @path: where to put the pnode
1849 * @parent: parent of the pnode
1850 * @iip: index in parent of the pnode
1852 * This function returns a pointer to the pnode on success or a negative error
1853 * code on failure.
1855 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1856 struct lpt_scan_node *path,
1857 struct ubifs_nnode *parent, int iip)
1859 struct ubifs_nbranch *branch;
1860 struct ubifs_pnode *pnode;
1861 void *buf = c->lpt_nod_buf;
1862 int err;
1864 branch = &parent->nbranch[iip];
1865 pnode = branch->pnode;
1866 if (pnode) {
1867 path->in_tree = 1;
1868 path->ptr.pnode = pnode;
1869 return pnode;
1871 pnode = &path->pnode;
1872 path->in_tree = 0;
1873 path->ptr.pnode = pnode;
1874 memset(pnode, 0, sizeof(struct ubifs_pnode));
1875 if (branch->lnum == 0) {
1877 * This pnode was not written which just means that the LEB
1878 * properties in it describe empty LEBs. We make the pnode as
1879 * though we had read it.
1881 int i;
1883 if (c->big_lpt)
1884 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1885 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1886 struct ubifs_lprops * const lprops = &pnode->lprops[i];
1888 lprops->free = c->leb_size;
1889 lprops->flags = ubifs_categorize_lprops(c, lprops);
1891 } else {
1892 ubifs_assert(branch->lnum >= c->lpt_first &&
1893 branch->lnum <= c->lpt_last);
1894 ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1895 err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1896 c->pnode_sz, 1);
1897 if (err)
1898 return ERR_PTR(err);
1899 err = unpack_pnode(c, buf, pnode);
1900 if (err)
1901 return ERR_PTR(err);
1903 err = validate_pnode(c, pnode, parent, iip);
1904 if (err)
1905 return ERR_PTR(err);
1906 if (!c->big_lpt)
1907 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1908 pnode->parent = parent;
1909 pnode->iip = iip;
1910 set_pnode_lnum(c, pnode);
1911 return pnode;
1915 * ubifs_lpt_scan_nolock - scan the LPT.
1916 * @c: the UBIFS file-system description object
1917 * @start_lnum: LEB number from which to start scanning
1918 * @end_lnum: LEB number at which to stop scanning
1919 * @scan_cb: callback function called for each lprops
1920 * @data: data to be passed to the callback function
1922 * This function returns %0 on success and a negative error code on failure.
1924 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1925 ubifs_lpt_scan_callback scan_cb, void *data)
1927 int err = 0, i, h, iip, shft;
1928 struct ubifs_nnode *nnode;
1929 struct ubifs_pnode *pnode;
1930 struct lpt_scan_node *path;
1932 if (start_lnum == -1) {
1933 start_lnum = end_lnum + 1;
1934 if (start_lnum >= c->leb_cnt)
1935 start_lnum = c->main_first;
1938 ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1939 ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1941 if (!c->nroot) {
1942 err = ubifs_read_nnode(c, NULL, 0);
1943 if (err)
1944 return err;
1947 path = kmalloc_array(c->lpt_hght + 1, sizeof(struct lpt_scan_node),
1948 GFP_NOFS);
1949 if (!path)
1950 return -ENOMEM;
1952 path[0].ptr.nnode = c->nroot;
1953 path[0].in_tree = 1;
1954 again:
1955 /* Descend to the pnode containing start_lnum */
1956 nnode = c->nroot;
1957 i = start_lnum - c->main_first;
1958 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1959 for (h = 1; h < c->lpt_hght; h++) {
1960 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1961 shft -= UBIFS_LPT_FANOUT_SHIFT;
1962 nnode = scan_get_nnode(c, path + h, nnode, iip);
1963 if (IS_ERR(nnode)) {
1964 err = PTR_ERR(nnode);
1965 goto out;
1968 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1969 pnode = scan_get_pnode(c, path + h, nnode, iip);
1970 if (IS_ERR(pnode)) {
1971 err = PTR_ERR(pnode);
1972 goto out;
1974 iip = (i & (UBIFS_LPT_FANOUT - 1));
1976 /* Loop for each lprops */
1977 while (1) {
1978 struct ubifs_lprops *lprops = &pnode->lprops[iip];
1979 int ret, lnum = lprops->lnum;
1981 ret = scan_cb(c, lprops, path[h].in_tree, data);
1982 if (ret < 0) {
1983 err = ret;
1984 goto out;
1986 if (ret & LPT_SCAN_ADD) {
1987 /* Add all the nodes in path to the tree in memory */
1988 for (h = 1; h < c->lpt_hght; h++) {
1989 const size_t sz = sizeof(struct ubifs_nnode);
1990 struct ubifs_nnode *parent;
1992 if (path[h].in_tree)
1993 continue;
1994 nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1995 if (!nnode) {
1996 err = -ENOMEM;
1997 goto out;
1999 parent = nnode->parent;
2000 parent->nbranch[nnode->iip].nnode = nnode;
2001 path[h].ptr.nnode = nnode;
2002 path[h].in_tree = 1;
2003 path[h + 1].cnode.parent = nnode;
2005 if (path[h].in_tree)
2006 ubifs_ensure_cat(c, lprops);
2007 else {
2008 const size_t sz = sizeof(struct ubifs_pnode);
2009 struct ubifs_nnode *parent;
2011 pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2012 if (!pnode) {
2013 err = -ENOMEM;
2014 goto out;
2016 parent = pnode->parent;
2017 parent->nbranch[pnode->iip].pnode = pnode;
2018 path[h].ptr.pnode = pnode;
2019 path[h].in_tree = 1;
2020 update_cats(c, pnode);
2021 c->pnodes_have += 1;
2023 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2024 c->nroot, 0, 0);
2025 if (err)
2026 goto out;
2027 err = dbg_check_cats(c);
2028 if (err)
2029 goto out;
2031 if (ret & LPT_SCAN_STOP) {
2032 err = 0;
2033 break;
2035 /* Get the next lprops */
2036 if (lnum == end_lnum) {
2038 * We got to the end without finding what we were
2039 * looking for
2041 err = -ENOSPC;
2042 goto out;
2044 if (lnum + 1 >= c->leb_cnt) {
2045 /* Wrap-around to the beginning */
2046 start_lnum = c->main_first;
2047 goto again;
2049 if (iip + 1 < UBIFS_LPT_FANOUT) {
2050 /* Next lprops is in the same pnode */
2051 iip += 1;
2052 continue;
2054 /* We need to get the next pnode. Go up until we can go right */
2055 iip = pnode->iip;
2056 while (1) {
2057 h -= 1;
2058 ubifs_assert(h >= 0);
2059 nnode = path[h].ptr.nnode;
2060 if (iip + 1 < UBIFS_LPT_FANOUT)
2061 break;
2062 iip = nnode->iip;
2064 /* Go right */
2065 iip += 1;
2066 /* Descend to the pnode */
2067 h += 1;
2068 for (; h < c->lpt_hght; h++) {
2069 nnode = scan_get_nnode(c, path + h, nnode, iip);
2070 if (IS_ERR(nnode)) {
2071 err = PTR_ERR(nnode);
2072 goto out;
2074 iip = 0;
2076 pnode = scan_get_pnode(c, path + h, nnode, iip);
2077 if (IS_ERR(pnode)) {
2078 err = PTR_ERR(pnode);
2079 goto out;
2081 iip = 0;
2083 out:
2084 kfree(path);
2085 return err;
2089 * dbg_chk_pnode - check a pnode.
2090 * @c: the UBIFS file-system description object
2091 * @pnode: pnode to check
2092 * @col: pnode column
2094 * This function returns %0 on success and a negative error code on failure.
2096 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2097 int col)
2099 int i;
2101 if (pnode->num != col) {
2102 ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2103 pnode->num, col, pnode->parent->num, pnode->iip);
2104 return -EINVAL;
2106 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2107 struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2108 int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2109 c->main_first;
2110 int found, cat = lprops->flags & LPROPS_CAT_MASK;
2111 struct ubifs_lpt_heap *heap;
2112 struct list_head *list = NULL;
2114 if (lnum >= c->leb_cnt)
2115 continue;
2116 if (lprops->lnum != lnum) {
2117 ubifs_err(c, "bad LEB number %d expected %d",
2118 lprops->lnum, lnum);
2119 return -EINVAL;
2121 if (lprops->flags & LPROPS_TAKEN) {
2122 if (cat != LPROPS_UNCAT) {
2123 ubifs_err(c, "LEB %d taken but not uncat %d",
2124 lprops->lnum, cat);
2125 return -EINVAL;
2127 continue;
2129 if (lprops->flags & LPROPS_INDEX) {
2130 switch (cat) {
2131 case LPROPS_UNCAT:
2132 case LPROPS_DIRTY_IDX:
2133 case LPROPS_FRDI_IDX:
2134 break;
2135 default:
2136 ubifs_err(c, "LEB %d index but cat %d",
2137 lprops->lnum, cat);
2138 return -EINVAL;
2140 } else {
2141 switch (cat) {
2142 case LPROPS_UNCAT:
2143 case LPROPS_DIRTY:
2144 case LPROPS_FREE:
2145 case LPROPS_EMPTY:
2146 case LPROPS_FREEABLE:
2147 break;
2148 default:
2149 ubifs_err(c, "LEB %d not index but cat %d",
2150 lprops->lnum, cat);
2151 return -EINVAL;
2154 switch (cat) {
2155 case LPROPS_UNCAT:
2156 list = &c->uncat_list;
2157 break;
2158 case LPROPS_EMPTY:
2159 list = &c->empty_list;
2160 break;
2161 case LPROPS_FREEABLE:
2162 list = &c->freeable_list;
2163 break;
2164 case LPROPS_FRDI_IDX:
2165 list = &c->frdi_idx_list;
2166 break;
2168 found = 0;
2169 switch (cat) {
2170 case LPROPS_DIRTY:
2171 case LPROPS_DIRTY_IDX:
2172 case LPROPS_FREE:
2173 heap = &c->lpt_heap[cat - 1];
2174 if (lprops->hpos < heap->cnt &&
2175 heap->arr[lprops->hpos] == lprops)
2176 found = 1;
2177 break;
2178 case LPROPS_UNCAT:
2179 case LPROPS_EMPTY:
2180 case LPROPS_FREEABLE:
2181 case LPROPS_FRDI_IDX:
2182 list_for_each_entry(lp, list, list)
2183 if (lprops == lp) {
2184 found = 1;
2185 break;
2187 break;
2189 if (!found) {
2190 ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2191 lprops->lnum, cat);
2192 return -EINVAL;
2194 switch (cat) {
2195 case LPROPS_EMPTY:
2196 if (lprops->free != c->leb_size) {
2197 ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2198 lprops->lnum, cat, lprops->free,
2199 lprops->dirty);
2200 return -EINVAL;
2202 break;
2203 case LPROPS_FREEABLE:
2204 case LPROPS_FRDI_IDX:
2205 if (lprops->free + lprops->dirty != c->leb_size) {
2206 ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2207 lprops->lnum, cat, lprops->free,
2208 lprops->dirty);
2209 return -EINVAL;
2211 break;
2214 return 0;
2218 * dbg_check_lpt_nodes - check nnodes and pnodes.
2219 * @c: the UBIFS file-system description object
2220 * @cnode: next cnode (nnode or pnode) to check
2221 * @row: row of cnode (root is zero)
2222 * @col: column of cnode (leftmost is zero)
2224 * This function returns %0 on success and a negative error code on failure.
2226 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2227 int row, int col)
2229 struct ubifs_nnode *nnode, *nn;
2230 struct ubifs_cnode *cn;
2231 int num, iip = 0, err;
2233 if (!dbg_is_chk_lprops(c))
2234 return 0;
2236 while (cnode) {
2237 ubifs_assert(row >= 0);
2238 nnode = cnode->parent;
2239 if (cnode->level) {
2240 /* cnode is a nnode */
2241 num = calc_nnode_num(row, col);
2242 if (cnode->num != num) {
2243 ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2244 cnode->num, num,
2245 (nnode ? nnode->num : 0), cnode->iip);
2246 return -EINVAL;
2248 nn = (struct ubifs_nnode *)cnode;
2249 while (iip < UBIFS_LPT_FANOUT) {
2250 cn = nn->nbranch[iip].cnode;
2251 if (cn) {
2252 /* Go down */
2253 row += 1;
2254 col <<= UBIFS_LPT_FANOUT_SHIFT;
2255 col += iip;
2256 iip = 0;
2257 cnode = cn;
2258 break;
2260 /* Go right */
2261 iip += 1;
2263 if (iip < UBIFS_LPT_FANOUT)
2264 continue;
2265 } else {
2266 struct ubifs_pnode *pnode;
2268 /* cnode is a pnode */
2269 pnode = (struct ubifs_pnode *)cnode;
2270 err = dbg_chk_pnode(c, pnode, col);
2271 if (err)
2272 return err;
2274 /* Go up and to the right */
2275 row -= 1;
2276 col >>= UBIFS_LPT_FANOUT_SHIFT;
2277 iip = cnode->iip + 1;
2278 cnode = (struct ubifs_cnode *)nnode;
2280 return 0;