chelsio: Use netdev_<level> and pr_<level>
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_offload.c
blob91d02eb51b8bb2c98c34ce92f9be33c5ecc8e973
1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 #include <linux/list.h>
36 #include <linux/slab.h>
37 #include <net/neighbour.h>
38 #include <linux/notifier.h>
39 #include <linux/atomic.h>
40 #include <linux/proc_fs.h>
41 #include <linux/if_vlan.h>
42 #include <net/netevent.h>
43 #include <linux/highmem.h>
44 #include <linux/vmalloc.h>
45 #include <linux/export.h>
47 #include "common.h"
48 #include "regs.h"
49 #include "cxgb3_ioctl.h"
50 #include "cxgb3_ctl_defs.h"
51 #include "cxgb3_defs.h"
52 #include "l2t.h"
53 #include "firmware_exports.h"
54 #include "cxgb3_offload.h"
56 static LIST_HEAD(client_list);
57 static LIST_HEAD(ofld_dev_list);
58 static DEFINE_MUTEX(cxgb3_db_lock);
60 static DEFINE_RWLOCK(adapter_list_lock);
61 static LIST_HEAD(adapter_list);
63 static const unsigned int MAX_ATIDS = 64 * 1024;
64 static const unsigned int ATID_BASE = 0x10000;
66 static void cxgb_neigh_update(struct neighbour *neigh);
67 static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh,
68 struct dst_entry *new, struct neighbour *new_neigh,
69 const void *daddr);
71 static inline int offload_activated(struct t3cdev *tdev)
73 const struct adapter *adapter = tdev2adap(tdev);
75 return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
78 /**
79 * cxgb3_register_client - register an offload client
80 * @client: the client
82 * Add the client to the client list,
83 * and call backs the client for each activated offload device
85 void cxgb3_register_client(struct cxgb3_client *client)
87 struct t3cdev *tdev;
89 mutex_lock(&cxgb3_db_lock);
90 list_add_tail(&client->client_list, &client_list);
92 if (client->add) {
93 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
94 if (offload_activated(tdev))
95 client->add(tdev);
98 mutex_unlock(&cxgb3_db_lock);
101 EXPORT_SYMBOL(cxgb3_register_client);
104 * cxgb3_unregister_client - unregister an offload client
105 * @client: the client
107 * Remove the client to the client list,
108 * and call backs the client for each activated offload device.
110 void cxgb3_unregister_client(struct cxgb3_client *client)
112 struct t3cdev *tdev;
114 mutex_lock(&cxgb3_db_lock);
115 list_del(&client->client_list);
117 if (client->remove) {
118 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
119 if (offload_activated(tdev))
120 client->remove(tdev);
123 mutex_unlock(&cxgb3_db_lock);
126 EXPORT_SYMBOL(cxgb3_unregister_client);
129 * cxgb3_add_clients - activate registered clients for an offload device
130 * @tdev: the offload device
132 * Call backs all registered clients once a offload device is activated
134 void cxgb3_add_clients(struct t3cdev *tdev)
136 struct cxgb3_client *client;
138 mutex_lock(&cxgb3_db_lock);
139 list_for_each_entry(client, &client_list, client_list) {
140 if (client->add)
141 client->add(tdev);
143 mutex_unlock(&cxgb3_db_lock);
147 * cxgb3_remove_clients - deactivates registered clients
148 * for an offload device
149 * @tdev: the offload device
151 * Call backs all registered clients once a offload device is deactivated
153 void cxgb3_remove_clients(struct t3cdev *tdev)
155 struct cxgb3_client *client;
157 mutex_lock(&cxgb3_db_lock);
158 list_for_each_entry(client, &client_list, client_list) {
159 if (client->remove)
160 client->remove(tdev);
162 mutex_unlock(&cxgb3_db_lock);
165 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
167 struct cxgb3_client *client;
169 mutex_lock(&cxgb3_db_lock);
170 list_for_each_entry(client, &client_list, client_list) {
171 if (client->event_handler)
172 client->event_handler(tdev, event, port);
174 mutex_unlock(&cxgb3_db_lock);
177 static struct net_device *get_iff_from_mac(struct adapter *adapter,
178 const unsigned char *mac,
179 unsigned int vlan)
181 int i;
183 for_each_port(adapter, i) {
184 struct net_device *dev = adapter->port[i];
186 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
187 rcu_read_lock();
188 if (vlan && vlan != VLAN_VID_MASK) {
189 dev = __vlan_find_dev_deep(dev, vlan);
190 } else if (netif_is_bond_slave(dev)) {
191 struct net_device *upper_dev;
193 while ((upper_dev =
194 netdev_master_upper_dev_get_rcu(dev)))
195 dev = upper_dev;
197 rcu_read_unlock();
198 return dev;
201 return NULL;
204 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
205 void *data)
207 int i;
208 int ret = 0;
209 unsigned int val = 0;
210 struct ulp_iscsi_info *uiip = data;
212 switch (req) {
213 case ULP_ISCSI_GET_PARAMS:
214 uiip->pdev = adapter->pdev;
215 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
216 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
217 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
219 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
220 for (i = 0; i < 4; i++, val >>= 8)
221 uiip->pgsz_factor[i] = val & 0xFF;
223 val = t3_read_reg(adapter, A_TP_PARA_REG7);
224 uiip->max_txsz =
225 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
226 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
228 * On tx, the iscsi pdu has to be <= tx page size and has to
229 * fit into the Tx PM FIFO.
231 val = min(adapter->params.tp.tx_pg_size,
232 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
233 uiip->max_txsz = min(val, uiip->max_txsz);
235 /* set MaxRxData to 16224 */
236 val = t3_read_reg(adapter, A_TP_PARA_REG2);
237 if ((val >> S_MAXRXDATA) != 0x3f60) {
238 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
239 val |= V_MAXRXDATA(0x3f60);
240 pr_info("%s, iscsi set MaxRxData to 16224 (0x%x)\n",
241 adapter->name, val);
242 t3_write_reg(adapter, A_TP_PARA_REG2, val);
246 * on rx, the iscsi pdu has to be < rx page size and the
247 * the max rx data length programmed in TP
249 val = min(adapter->params.tp.rx_pg_size,
250 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
251 S_MAXRXDATA) & M_MAXRXDATA);
252 uiip->max_rxsz = min(val, uiip->max_rxsz);
253 break;
254 case ULP_ISCSI_SET_PARAMS:
255 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
256 /* program the ddp page sizes */
257 for (i = 0; i < 4; i++)
258 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
259 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
260 pr_info("%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u\n",
261 adapter->name, val, uiip->pgsz_factor[0],
262 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
263 uiip->pgsz_factor[3]);
264 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
266 break;
267 default:
268 ret = -EOPNOTSUPP;
270 return ret;
273 /* Response queue used for RDMA events. */
274 #define ASYNC_NOTIF_RSPQ 0
276 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
278 int ret = 0;
280 switch (req) {
281 case RDMA_GET_PARAMS: {
282 struct rdma_info *rdma = data;
283 struct pci_dev *pdev = adapter->pdev;
285 rdma->udbell_physbase = pci_resource_start(pdev, 2);
286 rdma->udbell_len = pci_resource_len(pdev, 2);
287 rdma->tpt_base =
288 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
289 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
290 rdma->pbl_base =
291 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
292 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
293 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
294 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
295 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
296 rdma->pdev = pdev;
297 break;
299 case RDMA_CQ_OP:{
300 unsigned long flags;
301 struct rdma_cq_op *rdma = data;
303 /* may be called in any context */
304 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
305 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
306 rdma->credits);
307 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
308 break;
310 case RDMA_GET_MEM:{
311 struct ch_mem_range *t = data;
312 struct mc7 *mem;
314 if ((t->addr & 7) || (t->len & 7))
315 return -EINVAL;
316 if (t->mem_id == MEM_CM)
317 mem = &adapter->cm;
318 else if (t->mem_id == MEM_PMRX)
319 mem = &adapter->pmrx;
320 else if (t->mem_id == MEM_PMTX)
321 mem = &adapter->pmtx;
322 else
323 return -EINVAL;
325 ret =
326 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
327 (u64 *) t->buf);
328 if (ret)
329 return ret;
330 break;
332 case RDMA_CQ_SETUP:{
333 struct rdma_cq_setup *rdma = data;
335 spin_lock_irq(&adapter->sge.reg_lock);
336 ret =
337 t3_sge_init_cqcntxt(adapter, rdma->id,
338 rdma->base_addr, rdma->size,
339 ASYNC_NOTIF_RSPQ,
340 rdma->ovfl_mode, rdma->credits,
341 rdma->credit_thres);
342 spin_unlock_irq(&adapter->sge.reg_lock);
343 break;
345 case RDMA_CQ_DISABLE:
346 spin_lock_irq(&adapter->sge.reg_lock);
347 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
348 spin_unlock_irq(&adapter->sge.reg_lock);
349 break;
350 case RDMA_CTRL_QP_SETUP:{
351 struct rdma_ctrlqp_setup *rdma = data;
353 spin_lock_irq(&adapter->sge.reg_lock);
354 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
355 SGE_CNTXT_RDMA,
356 ASYNC_NOTIF_RSPQ,
357 rdma->base_addr, rdma->size,
358 FW_RI_TID_START, 1, 0);
359 spin_unlock_irq(&adapter->sge.reg_lock);
360 break;
362 case RDMA_GET_MIB: {
363 spin_lock(&adapter->stats_lock);
364 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
365 spin_unlock(&adapter->stats_lock);
366 break;
368 default:
369 ret = -EOPNOTSUPP;
371 return ret;
374 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
376 struct adapter *adapter = tdev2adap(tdev);
377 struct tid_range *tid;
378 struct mtutab *mtup;
379 struct iff_mac *iffmacp;
380 struct ddp_params *ddpp;
381 struct adap_ports *ports;
382 struct ofld_page_info *rx_page_info;
383 struct tp_params *tp = &adapter->params.tp;
384 int i;
386 switch (req) {
387 case GET_MAX_OUTSTANDING_WR:
388 *(unsigned int *)data = FW_WR_NUM;
389 break;
390 case GET_WR_LEN:
391 *(unsigned int *)data = WR_FLITS;
392 break;
393 case GET_TX_MAX_CHUNK:
394 *(unsigned int *)data = 1 << 20; /* 1MB */
395 break;
396 case GET_TID_RANGE:
397 tid = data;
398 tid->num = t3_mc5_size(&adapter->mc5) -
399 adapter->params.mc5.nroutes -
400 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
401 tid->base = 0;
402 break;
403 case GET_STID_RANGE:
404 tid = data;
405 tid->num = adapter->params.mc5.nservers;
406 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
407 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
408 break;
409 case GET_L2T_CAPACITY:
410 *(unsigned int *)data = 2048;
411 break;
412 case GET_MTUS:
413 mtup = data;
414 mtup->size = NMTUS;
415 mtup->mtus = adapter->params.mtus;
416 break;
417 case GET_IFF_FROM_MAC:
418 iffmacp = data;
419 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
420 iffmacp->vlan_tag &
421 VLAN_VID_MASK);
422 break;
423 case GET_DDP_PARAMS:
424 ddpp = data;
425 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
426 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
427 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
428 break;
429 case GET_PORTS:
430 ports = data;
431 ports->nports = adapter->params.nports;
432 for_each_port(adapter, i)
433 ports->lldevs[i] = adapter->port[i];
434 break;
435 case ULP_ISCSI_GET_PARAMS:
436 case ULP_ISCSI_SET_PARAMS:
437 if (!offload_running(adapter))
438 return -EAGAIN;
439 return cxgb_ulp_iscsi_ctl(adapter, req, data);
440 case RDMA_GET_PARAMS:
441 case RDMA_CQ_OP:
442 case RDMA_CQ_SETUP:
443 case RDMA_CQ_DISABLE:
444 case RDMA_CTRL_QP_SETUP:
445 case RDMA_GET_MEM:
446 case RDMA_GET_MIB:
447 if (!offload_running(adapter))
448 return -EAGAIN;
449 return cxgb_rdma_ctl(adapter, req, data);
450 case GET_RX_PAGE_INFO:
451 rx_page_info = data;
452 rx_page_info->page_size = tp->rx_pg_size;
453 rx_page_info->num = tp->rx_num_pgs;
454 break;
455 case GET_ISCSI_IPV4ADDR: {
456 struct iscsi_ipv4addr *p = data;
457 struct port_info *pi = netdev_priv(p->dev);
458 p->ipv4addr = pi->iscsi_ipv4addr;
459 break;
461 case GET_EMBEDDED_INFO: {
462 struct ch_embedded_info *e = data;
464 spin_lock(&adapter->stats_lock);
465 t3_get_fw_version(adapter, &e->fw_vers);
466 t3_get_tp_version(adapter, &e->tp_vers);
467 spin_unlock(&adapter->stats_lock);
468 break;
470 default:
471 return -EOPNOTSUPP;
473 return 0;
477 * Dummy handler for Rx offload packets in case we get an offload packet before
478 * proper processing is setup. This complains and drops the packet as it isn't
479 * normal to get offload packets at this stage.
481 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
482 int n)
484 while (n--)
485 dev_kfree_skb_any(skbs[n]);
486 return 0;
489 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
493 void cxgb3_set_dummy_ops(struct t3cdev *dev)
495 dev->recv = rx_offload_blackhole;
496 dev->neigh_update = dummy_neigh_update;
500 * Free an active-open TID.
502 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
504 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
505 union active_open_entry *p = atid2entry(t, atid);
506 void *ctx = p->t3c_tid.ctx;
508 spin_lock_bh(&t->atid_lock);
509 p->next = t->afree;
510 t->afree = p;
511 t->atids_in_use--;
512 spin_unlock_bh(&t->atid_lock);
514 return ctx;
517 EXPORT_SYMBOL(cxgb3_free_atid);
520 * Free a server TID and return it to the free pool.
522 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
524 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
525 union listen_entry *p = stid2entry(t, stid);
527 spin_lock_bh(&t->stid_lock);
528 p->next = t->sfree;
529 t->sfree = p;
530 t->stids_in_use--;
531 spin_unlock_bh(&t->stid_lock);
534 EXPORT_SYMBOL(cxgb3_free_stid);
536 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
537 void *ctx, unsigned int tid)
539 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
541 t->tid_tab[tid].client = client;
542 t->tid_tab[tid].ctx = ctx;
543 atomic_inc(&t->tids_in_use);
546 EXPORT_SYMBOL(cxgb3_insert_tid);
549 * Populate a TID_RELEASE WR. The skb must be already propely sized.
551 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
553 struct cpl_tid_release *req;
555 skb->priority = CPL_PRIORITY_SETUP;
556 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
557 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
558 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
561 static void t3_process_tid_release_list(struct work_struct *work)
563 struct t3c_data *td = container_of(work, struct t3c_data,
564 tid_release_task);
565 struct sk_buff *skb;
566 struct t3cdev *tdev = td->dev;
569 spin_lock_bh(&td->tid_release_lock);
570 while (td->tid_release_list) {
571 struct t3c_tid_entry *p = td->tid_release_list;
573 td->tid_release_list = p->ctx;
574 spin_unlock_bh(&td->tid_release_lock);
576 skb = alloc_skb(sizeof(struct cpl_tid_release),
577 GFP_KERNEL);
578 if (!skb)
579 skb = td->nofail_skb;
580 if (!skb) {
581 spin_lock_bh(&td->tid_release_lock);
582 p->ctx = (void *)td->tid_release_list;
583 td->tid_release_list = p;
584 break;
586 mk_tid_release(skb, p - td->tid_maps.tid_tab);
587 cxgb3_ofld_send(tdev, skb);
588 p->ctx = NULL;
589 if (skb == td->nofail_skb)
590 td->nofail_skb =
591 alloc_skb(sizeof(struct cpl_tid_release),
592 GFP_KERNEL);
593 spin_lock_bh(&td->tid_release_lock);
595 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
596 spin_unlock_bh(&td->tid_release_lock);
598 if (!td->nofail_skb)
599 td->nofail_skb =
600 alloc_skb(sizeof(struct cpl_tid_release),
601 GFP_KERNEL);
604 /* use ctx as a next pointer in the tid release list */
605 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
607 struct t3c_data *td = T3C_DATA(tdev);
608 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
610 spin_lock_bh(&td->tid_release_lock);
611 p->ctx = (void *)td->tid_release_list;
612 p->client = NULL;
613 td->tid_release_list = p;
614 if (!p->ctx || td->release_list_incomplete)
615 schedule_work(&td->tid_release_task);
616 spin_unlock_bh(&td->tid_release_lock);
619 EXPORT_SYMBOL(cxgb3_queue_tid_release);
622 * Remove a tid from the TID table. A client may defer processing its last
623 * CPL message if it is locked at the time it arrives, and while the message
624 * sits in the client's backlog the TID may be reused for another connection.
625 * To handle this we atomically switch the TID association if it still points
626 * to the original client context.
628 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
630 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
632 BUG_ON(tid >= t->ntids);
633 if (tdev->type == T3A)
634 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
635 else {
636 struct sk_buff *skb;
638 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
639 if (likely(skb)) {
640 mk_tid_release(skb, tid);
641 cxgb3_ofld_send(tdev, skb);
642 t->tid_tab[tid].ctx = NULL;
643 } else
644 cxgb3_queue_tid_release(tdev, tid);
646 atomic_dec(&t->tids_in_use);
649 EXPORT_SYMBOL(cxgb3_remove_tid);
651 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
652 void *ctx)
654 int atid = -1;
655 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
657 spin_lock_bh(&t->atid_lock);
658 if (t->afree &&
659 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
660 t->ntids) {
661 union active_open_entry *p = t->afree;
663 atid = (p - t->atid_tab) + t->atid_base;
664 t->afree = p->next;
665 p->t3c_tid.ctx = ctx;
666 p->t3c_tid.client = client;
667 t->atids_in_use++;
669 spin_unlock_bh(&t->atid_lock);
670 return atid;
673 EXPORT_SYMBOL(cxgb3_alloc_atid);
675 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
676 void *ctx)
678 int stid = -1;
679 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
681 spin_lock_bh(&t->stid_lock);
682 if (t->sfree) {
683 union listen_entry *p = t->sfree;
685 stid = (p - t->stid_tab) + t->stid_base;
686 t->sfree = p->next;
687 p->t3c_tid.ctx = ctx;
688 p->t3c_tid.client = client;
689 t->stids_in_use++;
691 spin_unlock_bh(&t->stid_lock);
692 return stid;
695 EXPORT_SYMBOL(cxgb3_alloc_stid);
697 /* Get the t3cdev associated with a net_device */
698 struct t3cdev *dev2t3cdev(struct net_device *dev)
700 const struct port_info *pi = netdev_priv(dev);
702 return (struct t3cdev *)pi->adapter;
705 EXPORT_SYMBOL(dev2t3cdev);
707 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
709 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
711 if (rpl->status != CPL_ERR_NONE)
712 pr_err("Unexpected SMT_WRITE_RPL status %u for entry %u\n",
713 rpl->status, GET_TID(rpl));
715 return CPL_RET_BUF_DONE;
718 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
720 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
722 if (rpl->status != CPL_ERR_NONE)
723 pr_err("Unexpected L2T_WRITE_RPL status %u for entry %u\n",
724 rpl->status, GET_TID(rpl));
726 return CPL_RET_BUF_DONE;
729 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
731 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
733 if (rpl->status != CPL_ERR_NONE)
734 pr_err("Unexpected RTE_WRITE_RPL status %u for entry %u\n",
735 rpl->status, GET_TID(rpl));
737 return CPL_RET_BUF_DONE;
740 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
742 struct cpl_act_open_rpl *rpl = cplhdr(skb);
743 unsigned int atid = G_TID(ntohl(rpl->atid));
744 struct t3c_tid_entry *t3c_tid;
746 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
747 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
748 t3c_tid->client->handlers &&
749 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
750 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
751 t3c_tid->
752 ctx);
753 } else {
754 pr_err("%s: received clientless CPL command 0x%x\n",
755 dev->name, CPL_ACT_OPEN_RPL);
756 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
760 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
762 union opcode_tid *p = cplhdr(skb);
763 unsigned int stid = G_TID(ntohl(p->opcode_tid));
764 struct t3c_tid_entry *t3c_tid;
766 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
767 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
768 t3c_tid->client->handlers[p->opcode]) {
769 return t3c_tid->client->handlers[p->opcode] (dev, skb,
770 t3c_tid->ctx);
771 } else {
772 pr_err("%s: received clientless CPL command 0x%x\n",
773 dev->name, p->opcode);
774 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
778 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
780 union opcode_tid *p = cplhdr(skb);
781 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
782 struct t3c_tid_entry *t3c_tid;
784 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
785 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
786 t3c_tid->client->handlers[p->opcode]) {
787 return t3c_tid->client->handlers[p->opcode]
788 (dev, skb, t3c_tid->ctx);
789 } else {
790 pr_err("%s: received clientless CPL command 0x%x\n",
791 dev->name, p->opcode);
792 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
796 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
798 struct cpl_pass_accept_req *req = cplhdr(skb);
799 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
800 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
801 struct t3c_tid_entry *t3c_tid;
802 unsigned int tid = GET_TID(req);
804 if (unlikely(tid >= t->ntids)) {
805 printk("%s: passive open TID %u too large\n",
806 dev->name, tid);
807 t3_fatal_err(tdev2adap(dev));
808 return CPL_RET_BUF_DONE;
811 t3c_tid = lookup_stid(t, stid);
812 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
813 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
814 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
815 (dev, skb, t3c_tid->ctx);
816 } else {
817 pr_err("%s: received clientless CPL command 0x%x\n",
818 dev->name, CPL_PASS_ACCEPT_REQ);
819 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
824 * Returns an sk_buff for a reply CPL message of size len. If the input
825 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
826 * is allocated. The input skb must be of size at least len. Note that this
827 * operation does not destroy the original skb data even if it decides to reuse
828 * the buffer.
830 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
831 gfp_t gfp)
833 if (likely(!skb_cloned(skb))) {
834 BUG_ON(skb->len < len);
835 __skb_trim(skb, len);
836 skb_get(skb);
837 } else {
838 skb = alloc_skb(len, gfp);
839 if (skb)
840 __skb_put(skb, len);
842 return skb;
845 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
847 union opcode_tid *p = cplhdr(skb);
848 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
849 struct t3c_tid_entry *t3c_tid;
851 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
852 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
853 t3c_tid->client->handlers[p->opcode]) {
854 return t3c_tid->client->handlers[p->opcode]
855 (dev, skb, t3c_tid->ctx);
856 } else {
857 struct cpl_abort_req_rss *req = cplhdr(skb);
858 struct cpl_abort_rpl *rpl;
859 struct sk_buff *reply_skb;
860 unsigned int tid = GET_TID(req);
861 u8 cmd = req->status;
863 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
864 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
865 goto out;
867 reply_skb = cxgb3_get_cpl_reply_skb(skb,
868 sizeof(struct
869 cpl_abort_rpl),
870 GFP_ATOMIC);
872 if (!reply_skb) {
873 printk("do_abort_req_rss: couldn't get skb!\n");
874 goto out;
876 reply_skb->priority = CPL_PRIORITY_DATA;
877 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
878 rpl = cplhdr(reply_skb);
879 rpl->wr.wr_hi =
880 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
881 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
882 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
883 rpl->cmd = cmd;
884 cxgb3_ofld_send(dev, reply_skb);
885 out:
886 return CPL_RET_BUF_DONE;
890 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
892 struct cpl_act_establish *req = cplhdr(skb);
893 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
894 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
895 struct t3c_tid_entry *t3c_tid;
896 unsigned int tid = GET_TID(req);
898 if (unlikely(tid >= t->ntids)) {
899 printk("%s: active establish TID %u too large\n",
900 dev->name, tid);
901 t3_fatal_err(tdev2adap(dev));
902 return CPL_RET_BUF_DONE;
905 t3c_tid = lookup_atid(t, atid);
906 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
907 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
908 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
909 (dev, skb, t3c_tid->ctx);
910 } else {
911 pr_err("%s: received clientless CPL command 0x%x\n",
912 dev->name, CPL_ACT_ESTABLISH);
913 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
917 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
919 struct cpl_trace_pkt *p = cplhdr(skb);
921 skb->protocol = htons(0xffff);
922 skb->dev = dev->lldev;
923 skb_pull(skb, sizeof(*p));
924 skb_reset_mac_header(skb);
925 netif_receive_skb(skb);
926 return 0;
930 * That skb would better have come from process_responses() where we abuse
931 * ->priority and ->csum to carry our data. NB: if we get to per-arch
932 * ->csum, the things might get really interesting here.
935 static inline u32 get_hwtid(struct sk_buff *skb)
937 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
940 static inline u32 get_opcode(struct sk_buff *skb)
942 return G_OPCODE(ntohl((__force __be32)skb->csum));
945 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
947 unsigned int hwtid = get_hwtid(skb);
948 unsigned int opcode = get_opcode(skb);
949 struct t3c_tid_entry *t3c_tid;
951 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
952 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
953 t3c_tid->client->handlers[opcode]) {
954 return t3c_tid->client->handlers[opcode] (dev, skb,
955 t3c_tid->ctx);
956 } else {
957 pr_err("%s: received clientless CPL command 0x%x\n",
958 dev->name, opcode);
959 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
963 static int nb_callback(struct notifier_block *self, unsigned long event,
964 void *ctx)
966 switch (event) {
967 case (NETEVENT_NEIGH_UPDATE):{
968 cxgb_neigh_update((struct neighbour *)ctx);
969 break;
971 case (NETEVENT_REDIRECT):{
972 struct netevent_redirect *nr = ctx;
973 cxgb_redirect(nr->old, nr->old_neigh,
974 nr->new, nr->new_neigh,
975 nr->daddr);
976 cxgb_neigh_update(nr->new_neigh);
977 break;
979 default:
980 break;
982 return 0;
985 static struct notifier_block nb = {
986 .notifier_call = nb_callback
990 * Process a received packet with an unknown/unexpected CPL opcode.
992 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
994 pr_err("%s: received bad CPL command 0x%x\n", dev->name, *skb->data);
995 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
999 * Handlers for each CPL opcode
1001 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
1004 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
1005 * to unregister an existing handler.
1007 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1009 if (opcode < NUM_CPL_CMDS)
1010 cpl_handlers[opcode] = h ? h : do_bad_cpl;
1011 else
1012 pr_err("T3C: handler registration for opcode %x failed\n",
1013 opcode);
1016 EXPORT_SYMBOL(t3_register_cpl_handler);
1019 * T3CDEV's receive method.
1021 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1023 while (n--) {
1024 struct sk_buff *skb = *skbs++;
1025 unsigned int opcode = get_opcode(skb);
1026 int ret = cpl_handlers[opcode] (dev, skb);
1028 #if VALIDATE_TID
1029 if (ret & CPL_RET_UNKNOWN_TID) {
1030 union opcode_tid *p = cplhdr(skb);
1032 pr_err("%s: CPL message (opcode %u) had unknown TID %u\n",
1033 dev->name, opcode, G_TID(ntohl(p->opcode_tid)));
1035 #endif
1036 if (ret & CPL_RET_BUF_DONE)
1037 kfree_skb(skb);
1039 return 0;
1043 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1045 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1047 int r;
1049 local_bh_disable();
1050 r = dev->send(dev, skb);
1051 local_bh_enable();
1052 return r;
1055 EXPORT_SYMBOL(cxgb3_ofld_send);
1057 static int is_offloading(struct net_device *dev)
1059 struct adapter *adapter;
1060 int i;
1062 read_lock_bh(&adapter_list_lock);
1063 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1064 for_each_port(adapter, i) {
1065 if (dev == adapter->port[i]) {
1066 read_unlock_bh(&adapter_list_lock);
1067 return 1;
1071 read_unlock_bh(&adapter_list_lock);
1072 return 0;
1075 static void cxgb_neigh_update(struct neighbour *neigh)
1077 struct net_device *dev;
1079 if (!neigh)
1080 return;
1081 dev = neigh->dev;
1082 if (dev && (is_offloading(dev))) {
1083 struct t3cdev *tdev = dev2t3cdev(dev);
1085 BUG_ON(!tdev);
1086 t3_l2t_update(tdev, neigh);
1090 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1092 struct sk_buff *skb;
1093 struct cpl_set_tcb_field *req;
1095 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1096 if (!skb) {
1097 pr_err("%s: cannot allocate skb!\n", __func__);
1098 return;
1100 skb->priority = CPL_PRIORITY_CONTROL;
1101 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1102 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1103 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1104 req->reply = 0;
1105 req->cpu_idx = 0;
1106 req->word = htons(W_TCB_L2T_IX);
1107 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1108 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1109 tdev->send(tdev, skb);
1112 static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh,
1113 struct dst_entry *new, struct neighbour *new_neigh,
1114 const void *daddr)
1116 struct net_device *olddev, *newdev;
1117 struct tid_info *ti;
1118 struct t3cdev *tdev;
1119 u32 tid;
1120 int update_tcb;
1121 struct l2t_entry *e;
1122 struct t3c_tid_entry *te;
1124 olddev = old_neigh->dev;
1125 newdev = new_neigh->dev;
1127 if (!is_offloading(olddev))
1128 return;
1129 if (!is_offloading(newdev)) {
1130 pr_warn("%s: Redirect to non-offload device ignored\n",
1131 __func__);
1132 return;
1134 tdev = dev2t3cdev(olddev);
1135 BUG_ON(!tdev);
1136 if (tdev != dev2t3cdev(newdev)) {
1137 pr_warn("%s: Redirect to different offload device ignored\n",
1138 __func__);
1139 return;
1142 /* Add new L2T entry */
1143 e = t3_l2t_get(tdev, new, newdev, daddr);
1144 if (!e) {
1145 pr_err("%s: couldn't allocate new l2t entry!\n", __func__);
1146 return;
1149 /* Walk tid table and notify clients of dst change. */
1150 ti = &(T3C_DATA(tdev))->tid_maps;
1151 for (tid = 0; tid < ti->ntids; tid++) {
1152 te = lookup_tid(ti, tid);
1153 BUG_ON(!te);
1154 if (te && te->ctx && te->client && te->client->redirect) {
1155 update_tcb = te->client->redirect(te->ctx, old, new, e);
1156 if (update_tcb) {
1157 rcu_read_lock();
1158 l2t_hold(L2DATA(tdev), e);
1159 rcu_read_unlock();
1160 set_l2t_ix(tdev, tid, e);
1164 l2t_release(tdev, e);
1168 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1169 * The allocated memory is cleared.
1171 void *cxgb_alloc_mem(unsigned long size)
1173 void *p = kzalloc(size, GFP_KERNEL);
1175 if (!p)
1176 p = vzalloc(size);
1177 return p;
1181 * Free memory allocated through t3_alloc_mem().
1183 void cxgb_free_mem(void *addr)
1185 if (is_vmalloc_addr(addr))
1186 vfree(addr);
1187 else
1188 kfree(addr);
1192 * Allocate and initialize the TID tables. Returns 0 on success.
1194 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1195 unsigned int natids, unsigned int nstids,
1196 unsigned int atid_base, unsigned int stid_base)
1198 unsigned long size = ntids * sizeof(*t->tid_tab) +
1199 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1201 t->tid_tab = cxgb_alloc_mem(size);
1202 if (!t->tid_tab)
1203 return -ENOMEM;
1205 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1206 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1207 t->ntids = ntids;
1208 t->nstids = nstids;
1209 t->stid_base = stid_base;
1210 t->sfree = NULL;
1211 t->natids = natids;
1212 t->atid_base = atid_base;
1213 t->afree = NULL;
1214 t->stids_in_use = t->atids_in_use = 0;
1215 atomic_set(&t->tids_in_use, 0);
1216 spin_lock_init(&t->stid_lock);
1217 spin_lock_init(&t->atid_lock);
1220 * Setup the free lists for stid_tab and atid_tab.
1222 if (nstids) {
1223 while (--nstids)
1224 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1225 t->sfree = t->stid_tab;
1227 if (natids) {
1228 while (--natids)
1229 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1230 t->afree = t->atid_tab;
1232 return 0;
1235 static void free_tid_maps(struct tid_info *t)
1237 cxgb_free_mem(t->tid_tab);
1240 static inline void add_adapter(struct adapter *adap)
1242 write_lock_bh(&adapter_list_lock);
1243 list_add_tail(&adap->adapter_list, &adapter_list);
1244 write_unlock_bh(&adapter_list_lock);
1247 static inline void remove_adapter(struct adapter *adap)
1249 write_lock_bh(&adapter_list_lock);
1250 list_del(&adap->adapter_list);
1251 write_unlock_bh(&adapter_list_lock);
1254 int cxgb3_offload_activate(struct adapter *adapter)
1256 struct t3cdev *dev = &adapter->tdev;
1257 int natids, err;
1258 struct t3c_data *t;
1259 struct tid_range stid_range, tid_range;
1260 struct mtutab mtutab;
1261 unsigned int l2t_capacity;
1263 t = kzalloc(sizeof(*t), GFP_KERNEL);
1264 if (!t)
1265 return -ENOMEM;
1267 err = -EOPNOTSUPP;
1268 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1269 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1270 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1271 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1272 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1273 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1274 goto out_free;
1276 err = -ENOMEM;
1277 RCU_INIT_POINTER(dev->l2opt, t3_init_l2t(l2t_capacity));
1278 if (!L2DATA(dev))
1279 goto out_free;
1281 natids = min(tid_range.num / 2, MAX_ATIDS);
1282 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1283 stid_range.num, ATID_BASE, stid_range.base);
1284 if (err)
1285 goto out_free_l2t;
1287 t->mtus = mtutab.mtus;
1288 t->nmtus = mtutab.size;
1290 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1291 spin_lock_init(&t->tid_release_lock);
1292 INIT_LIST_HEAD(&t->list_node);
1293 t->dev = dev;
1295 T3C_DATA(dev) = t;
1296 dev->recv = process_rx;
1297 dev->neigh_update = t3_l2t_update;
1299 /* Register netevent handler once */
1300 if (list_empty(&adapter_list))
1301 register_netevent_notifier(&nb);
1303 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1304 t->release_list_incomplete = 0;
1306 add_adapter(adapter);
1307 return 0;
1309 out_free_l2t:
1310 t3_free_l2t(L2DATA(dev));
1311 RCU_INIT_POINTER(dev->l2opt, NULL);
1312 out_free:
1313 kfree(t);
1314 return err;
1317 static void clean_l2_data(struct rcu_head *head)
1319 struct l2t_data *d = container_of(head, struct l2t_data, rcu_head);
1320 t3_free_l2t(d);
1324 void cxgb3_offload_deactivate(struct adapter *adapter)
1326 struct t3cdev *tdev = &adapter->tdev;
1327 struct t3c_data *t = T3C_DATA(tdev);
1328 struct l2t_data *d;
1330 remove_adapter(adapter);
1331 if (list_empty(&adapter_list))
1332 unregister_netevent_notifier(&nb);
1334 free_tid_maps(&t->tid_maps);
1335 T3C_DATA(tdev) = NULL;
1336 rcu_read_lock();
1337 d = L2DATA(tdev);
1338 rcu_read_unlock();
1339 RCU_INIT_POINTER(tdev->l2opt, NULL);
1340 call_rcu(&d->rcu_head, clean_l2_data);
1341 if (t->nofail_skb)
1342 kfree_skb(t->nofail_skb);
1343 kfree(t);
1346 static inline void register_tdev(struct t3cdev *tdev)
1348 static int unit;
1350 mutex_lock(&cxgb3_db_lock);
1351 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1352 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1353 mutex_unlock(&cxgb3_db_lock);
1356 static inline void unregister_tdev(struct t3cdev *tdev)
1358 mutex_lock(&cxgb3_db_lock);
1359 list_del(&tdev->ofld_dev_list);
1360 mutex_unlock(&cxgb3_db_lock);
1363 static inline int adap2type(struct adapter *adapter)
1365 int type = 0;
1367 switch (adapter->params.rev) {
1368 case T3_REV_A:
1369 type = T3A;
1370 break;
1371 case T3_REV_B:
1372 case T3_REV_B2:
1373 type = T3B;
1374 break;
1375 case T3_REV_C:
1376 type = T3C;
1377 break;
1379 return type;
1382 void cxgb3_adapter_ofld(struct adapter *adapter)
1384 struct t3cdev *tdev = &adapter->tdev;
1386 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1388 cxgb3_set_dummy_ops(tdev);
1389 tdev->send = t3_offload_tx;
1390 tdev->ctl = cxgb_offload_ctl;
1391 tdev->type = adap2type(adapter);
1393 register_tdev(tdev);
1396 void cxgb3_adapter_unofld(struct adapter *adapter)
1398 struct t3cdev *tdev = &adapter->tdev;
1400 tdev->recv = NULL;
1401 tdev->neigh_update = NULL;
1403 unregister_tdev(tdev);
1406 void __init cxgb3_offload_init(void)
1408 int i;
1410 for (i = 0; i < NUM_CPL_CMDS; ++i)
1411 cpl_handlers[i] = do_bad_cpl;
1413 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1414 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1415 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1416 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1417 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1418 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1419 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1420 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1421 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1422 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1423 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1424 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1425 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1426 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1427 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1428 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1429 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1430 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1431 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1432 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1433 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1434 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1435 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1436 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1437 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1438 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);