mfd: rtsx: Add support for rts525A
[linux-2.6/btrfs-unstable.git] / net / bluetooth / hci_conn.c
blobc9b8fa544785df83d1afa02629b6be00a7325934
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI connection handling. */
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
38 struct sco_param {
39 u16 pkt_type;
40 u16 max_latency;
41 u8 retrans_effort;
44 static const struct sco_param esco_param_cvsd[] = {
45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
52 static const struct sco_param sco_param_cvsd[] = {
53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
57 static const struct sco_param esco_param_msbc[] = {
58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
62 static void hci_le_create_connection_cancel(struct hci_conn *conn)
64 hci_send_cmd(conn->hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 0, NULL);
67 static void hci_acl_create_connection(struct hci_conn *conn)
69 struct hci_dev *hdev = conn->hdev;
70 struct inquiry_entry *ie;
71 struct hci_cp_create_conn cp;
73 BT_DBG("hcon %p", conn);
75 conn->state = BT_CONNECT;
76 conn->out = true;
77 conn->role = HCI_ROLE_MASTER;
79 conn->attempt++;
81 conn->link_policy = hdev->link_policy;
83 memset(&cp, 0, sizeof(cp));
84 bacpy(&cp.bdaddr, &conn->dst);
85 cp.pscan_rep_mode = 0x02;
87 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
88 if (ie) {
89 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
90 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
91 cp.pscan_mode = ie->data.pscan_mode;
92 cp.clock_offset = ie->data.clock_offset |
93 cpu_to_le16(0x8000);
96 memcpy(conn->dev_class, ie->data.dev_class, 3);
97 if (ie->data.ssp_mode > 0)
98 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
101 cp.pkt_type = cpu_to_le16(conn->pkt_type);
102 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
103 cp.role_switch = 0x01;
104 else
105 cp.role_switch = 0x00;
107 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
110 static void hci_acl_create_connection_cancel(struct hci_conn *conn)
112 struct hci_cp_create_conn_cancel cp;
114 BT_DBG("hcon %p", conn);
116 if (conn->hdev->hci_ver < BLUETOOTH_VER_1_2)
117 return;
119 bacpy(&cp.bdaddr, &conn->dst);
120 hci_send_cmd(conn->hdev, HCI_OP_CREATE_CONN_CANCEL, sizeof(cp), &cp);
123 static void hci_reject_sco(struct hci_conn *conn)
125 struct hci_cp_reject_sync_conn_req cp;
127 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
128 bacpy(&cp.bdaddr, &conn->dst);
130 hci_send_cmd(conn->hdev, HCI_OP_REJECT_SYNC_CONN_REQ, sizeof(cp), &cp);
133 int hci_disconnect(struct hci_conn *conn, __u8 reason)
135 struct hci_cp_disconnect cp;
137 BT_DBG("hcon %p", conn);
139 /* When we are master of an established connection and it enters
140 * the disconnect timeout, then go ahead and try to read the
141 * current clock offset. Processing of the result is done
142 * within the event handling and hci_clock_offset_evt function.
144 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER) {
145 struct hci_dev *hdev = conn->hdev;
146 struct hci_cp_read_clock_offset clkoff_cp;
148 clkoff_cp.handle = cpu_to_le16(conn->handle);
149 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
150 &clkoff_cp);
153 conn->state = BT_DISCONN;
155 cp.handle = cpu_to_le16(conn->handle);
156 cp.reason = reason;
157 return hci_send_cmd(conn->hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp);
160 static void hci_amp_disconn(struct hci_conn *conn)
162 struct hci_cp_disconn_phy_link cp;
164 BT_DBG("hcon %p", conn);
166 conn->state = BT_DISCONN;
168 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
169 cp.reason = hci_proto_disconn_ind(conn);
170 hci_send_cmd(conn->hdev, HCI_OP_DISCONN_PHY_LINK,
171 sizeof(cp), &cp);
174 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
176 struct hci_dev *hdev = conn->hdev;
177 struct hci_cp_add_sco cp;
179 BT_DBG("hcon %p", conn);
181 conn->state = BT_CONNECT;
182 conn->out = true;
184 conn->attempt++;
186 cp.handle = cpu_to_le16(handle);
187 cp.pkt_type = cpu_to_le16(conn->pkt_type);
189 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
192 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
194 struct hci_dev *hdev = conn->hdev;
195 struct hci_cp_setup_sync_conn cp;
196 const struct sco_param *param;
198 BT_DBG("hcon %p", conn);
200 conn->state = BT_CONNECT;
201 conn->out = true;
203 conn->attempt++;
205 cp.handle = cpu_to_le16(handle);
207 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
208 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
209 cp.voice_setting = cpu_to_le16(conn->setting);
211 switch (conn->setting & SCO_AIRMODE_MASK) {
212 case SCO_AIRMODE_TRANSP:
213 if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
214 return false;
215 param = &esco_param_msbc[conn->attempt - 1];
216 break;
217 case SCO_AIRMODE_CVSD:
218 if (lmp_esco_capable(conn->link)) {
219 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
220 return false;
221 param = &esco_param_cvsd[conn->attempt - 1];
222 } else {
223 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
224 return false;
225 param = &sco_param_cvsd[conn->attempt - 1];
227 break;
228 default:
229 return false;
232 cp.retrans_effort = param->retrans_effort;
233 cp.pkt_type = __cpu_to_le16(param->pkt_type);
234 cp.max_latency = __cpu_to_le16(param->max_latency);
236 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
237 return false;
239 return true;
242 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
243 u16 to_multiplier)
245 struct hci_dev *hdev = conn->hdev;
246 struct hci_conn_params *params;
247 struct hci_cp_le_conn_update cp;
249 hci_dev_lock(hdev);
251 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
252 if (params) {
253 params->conn_min_interval = min;
254 params->conn_max_interval = max;
255 params->conn_latency = latency;
256 params->supervision_timeout = to_multiplier;
259 hci_dev_unlock(hdev);
261 memset(&cp, 0, sizeof(cp));
262 cp.handle = cpu_to_le16(conn->handle);
263 cp.conn_interval_min = cpu_to_le16(min);
264 cp.conn_interval_max = cpu_to_le16(max);
265 cp.conn_latency = cpu_to_le16(latency);
266 cp.supervision_timeout = cpu_to_le16(to_multiplier);
267 cp.min_ce_len = cpu_to_le16(0x0000);
268 cp.max_ce_len = cpu_to_le16(0x0000);
270 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
272 if (params)
273 return 0x01;
275 return 0x00;
278 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
279 __u8 ltk[16])
281 struct hci_dev *hdev = conn->hdev;
282 struct hci_cp_le_start_enc cp;
284 BT_DBG("hcon %p", conn);
286 memset(&cp, 0, sizeof(cp));
288 cp.handle = cpu_to_le16(conn->handle);
289 cp.rand = rand;
290 cp.ediv = ediv;
291 memcpy(cp.ltk, ltk, sizeof(cp.ltk));
293 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
296 /* Device _must_ be locked */
297 void hci_sco_setup(struct hci_conn *conn, __u8 status)
299 struct hci_conn *sco = conn->link;
301 if (!sco)
302 return;
304 BT_DBG("hcon %p", conn);
306 if (!status) {
307 if (lmp_esco_capable(conn->hdev))
308 hci_setup_sync(sco, conn->handle);
309 else
310 hci_add_sco(sco, conn->handle);
311 } else {
312 hci_proto_connect_cfm(sco, status);
313 hci_conn_del(sco);
317 static void hci_conn_timeout(struct work_struct *work)
319 struct hci_conn *conn = container_of(work, struct hci_conn,
320 disc_work.work);
321 int refcnt = atomic_read(&conn->refcnt);
323 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
325 WARN_ON(refcnt < 0);
327 /* FIXME: It was observed that in pairing failed scenario, refcnt
328 * drops below 0. Probably this is because l2cap_conn_del calls
329 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
330 * dropped. After that loop hci_chan_del is called which also drops
331 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
332 * otherwise drop it.
334 if (refcnt > 0)
335 return;
337 switch (conn->state) {
338 case BT_CONNECT:
339 case BT_CONNECT2:
340 if (conn->out) {
341 if (conn->type == ACL_LINK)
342 hci_acl_create_connection_cancel(conn);
343 else if (conn->type == LE_LINK)
344 hci_le_create_connection_cancel(conn);
345 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
346 hci_reject_sco(conn);
348 break;
349 case BT_CONFIG:
350 case BT_CONNECTED:
351 if (conn->type == AMP_LINK) {
352 hci_amp_disconn(conn);
353 } else {
354 __u8 reason = hci_proto_disconn_ind(conn);
355 hci_disconnect(conn, reason);
357 break;
358 default:
359 conn->state = BT_CLOSED;
360 break;
364 /* Enter sniff mode */
365 static void hci_conn_idle(struct work_struct *work)
367 struct hci_conn *conn = container_of(work, struct hci_conn,
368 idle_work.work);
369 struct hci_dev *hdev = conn->hdev;
371 BT_DBG("hcon %p mode %d", conn, conn->mode);
373 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
374 return;
376 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
377 return;
379 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
380 struct hci_cp_sniff_subrate cp;
381 cp.handle = cpu_to_le16(conn->handle);
382 cp.max_latency = cpu_to_le16(0);
383 cp.min_remote_timeout = cpu_to_le16(0);
384 cp.min_local_timeout = cpu_to_le16(0);
385 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
388 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
389 struct hci_cp_sniff_mode cp;
390 cp.handle = cpu_to_le16(conn->handle);
391 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
392 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
393 cp.attempt = cpu_to_le16(4);
394 cp.timeout = cpu_to_le16(1);
395 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
399 static void hci_conn_auto_accept(struct work_struct *work)
401 struct hci_conn *conn = container_of(work, struct hci_conn,
402 auto_accept_work.work);
404 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
405 &conn->dst);
408 static void le_conn_timeout(struct work_struct *work)
410 struct hci_conn *conn = container_of(work, struct hci_conn,
411 le_conn_timeout.work);
412 struct hci_dev *hdev = conn->hdev;
414 BT_DBG("");
416 /* We could end up here due to having done directed advertising,
417 * so clean up the state if necessary. This should however only
418 * happen with broken hardware or if low duty cycle was used
419 * (which doesn't have a timeout of its own).
421 if (conn->role == HCI_ROLE_SLAVE) {
422 u8 enable = 0x00;
423 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
424 &enable);
425 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
426 return;
429 hci_le_create_connection_cancel(conn);
432 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
433 u8 role)
435 struct hci_conn *conn;
437 BT_DBG("%s dst %pMR", hdev->name, dst);
439 conn = kzalloc(sizeof(*conn), GFP_KERNEL);
440 if (!conn)
441 return NULL;
443 bacpy(&conn->dst, dst);
444 bacpy(&conn->src, &hdev->bdaddr);
445 conn->hdev = hdev;
446 conn->type = type;
447 conn->role = role;
448 conn->mode = HCI_CM_ACTIVE;
449 conn->state = BT_OPEN;
450 conn->auth_type = HCI_AT_GENERAL_BONDING;
451 conn->io_capability = hdev->io_capability;
452 conn->remote_auth = 0xff;
453 conn->key_type = 0xff;
454 conn->rssi = HCI_RSSI_INVALID;
455 conn->tx_power = HCI_TX_POWER_INVALID;
456 conn->max_tx_power = HCI_TX_POWER_INVALID;
458 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
459 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
461 if (conn->role == HCI_ROLE_MASTER)
462 conn->out = true;
464 switch (type) {
465 case ACL_LINK:
466 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
467 break;
468 case LE_LINK:
469 /* conn->src should reflect the local identity address */
470 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
471 break;
472 case SCO_LINK:
473 if (lmp_esco_capable(hdev))
474 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
475 (hdev->esco_type & EDR_ESCO_MASK);
476 else
477 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
478 break;
479 case ESCO_LINK:
480 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
481 break;
484 skb_queue_head_init(&conn->data_q);
486 INIT_LIST_HEAD(&conn->chan_list);
488 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
489 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
490 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
491 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
493 atomic_set(&conn->refcnt, 0);
495 hci_dev_hold(hdev);
497 hci_conn_hash_add(hdev, conn);
498 if (hdev->notify)
499 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
501 hci_conn_init_sysfs(conn);
503 return conn;
506 int hci_conn_del(struct hci_conn *conn)
508 struct hci_dev *hdev = conn->hdev;
510 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
512 cancel_delayed_work_sync(&conn->disc_work);
513 cancel_delayed_work_sync(&conn->auto_accept_work);
514 cancel_delayed_work_sync(&conn->idle_work);
516 if (conn->type == ACL_LINK) {
517 struct hci_conn *sco = conn->link;
518 if (sco)
519 sco->link = NULL;
521 /* Unacked frames */
522 hdev->acl_cnt += conn->sent;
523 } else if (conn->type == LE_LINK) {
524 cancel_delayed_work(&conn->le_conn_timeout);
526 if (hdev->le_pkts)
527 hdev->le_cnt += conn->sent;
528 else
529 hdev->acl_cnt += conn->sent;
530 } else {
531 struct hci_conn *acl = conn->link;
532 if (acl) {
533 acl->link = NULL;
534 hci_conn_drop(acl);
538 hci_chan_list_flush(conn);
540 if (conn->amp_mgr)
541 amp_mgr_put(conn->amp_mgr);
543 hci_conn_hash_del(hdev, conn);
544 if (hdev->notify)
545 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
547 skb_queue_purge(&conn->data_q);
549 hci_conn_del_sysfs(conn);
551 debugfs_remove_recursive(conn->debugfs);
553 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
554 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
556 hci_dev_put(hdev);
558 hci_conn_put(conn);
560 return 0;
563 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src)
565 int use_src = bacmp(src, BDADDR_ANY);
566 struct hci_dev *hdev = NULL, *d;
568 BT_DBG("%pMR -> %pMR", src, dst);
570 read_lock(&hci_dev_list_lock);
572 list_for_each_entry(d, &hci_dev_list, list) {
573 if (!test_bit(HCI_UP, &d->flags) ||
574 test_bit(HCI_USER_CHANNEL, &d->dev_flags) ||
575 d->dev_type != HCI_BREDR)
576 continue;
578 /* Simple routing:
579 * No source address - find interface with bdaddr != dst
580 * Source address - find interface with bdaddr == src
583 if (use_src) {
584 if (!bacmp(&d->bdaddr, src)) {
585 hdev = d; break;
587 } else {
588 if (bacmp(&d->bdaddr, dst)) {
589 hdev = d; break;
594 if (hdev)
595 hdev = hci_dev_hold(hdev);
597 read_unlock(&hci_dev_list_lock);
598 return hdev;
600 EXPORT_SYMBOL(hci_get_route);
602 /* This function requires the caller holds hdev->lock */
603 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
605 struct hci_dev *hdev = conn->hdev;
606 struct hci_conn_params *params;
608 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
609 conn->dst_type);
610 if (params && params->conn) {
611 hci_conn_drop(params->conn);
612 hci_conn_put(params->conn);
613 params->conn = NULL;
616 conn->state = BT_CLOSED;
618 mgmt_connect_failed(hdev, &conn->dst, conn->type, conn->dst_type,
619 status);
621 hci_proto_connect_cfm(conn, status);
623 hci_conn_del(conn);
625 /* Since we may have temporarily stopped the background scanning in
626 * favor of connection establishment, we should restart it.
628 hci_update_background_scan(hdev);
630 /* Re-enable advertising in case this was a failed connection
631 * attempt as a peripheral.
633 mgmt_reenable_advertising(hdev);
636 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
638 struct hci_conn *conn;
640 if (status == 0)
641 return;
643 BT_ERR("HCI request failed to create LE connection: status 0x%2.2x",
644 status);
646 hci_dev_lock(hdev);
648 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
649 if (!conn)
650 goto done;
652 hci_le_conn_failed(conn, status);
654 done:
655 hci_dev_unlock(hdev);
658 static void hci_req_add_le_create_conn(struct hci_request *req,
659 struct hci_conn *conn)
661 struct hci_cp_le_create_conn cp;
662 struct hci_dev *hdev = conn->hdev;
663 u8 own_addr_type;
665 memset(&cp, 0, sizeof(cp));
667 /* Update random address, but set require_privacy to false so
668 * that we never connect with an non-resolvable address.
670 if (hci_update_random_address(req, false, &own_addr_type))
671 return;
673 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval);
674 cp.scan_window = cpu_to_le16(hdev->le_scan_window);
675 bacpy(&cp.peer_addr, &conn->dst);
676 cp.peer_addr_type = conn->dst_type;
677 cp.own_address_type = own_addr_type;
678 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
679 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
680 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
681 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
682 cp.min_ce_len = cpu_to_le16(0x0000);
683 cp.max_ce_len = cpu_to_le16(0x0000);
685 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
687 conn->state = BT_CONNECT;
690 static void hci_req_directed_advertising(struct hci_request *req,
691 struct hci_conn *conn)
693 struct hci_dev *hdev = req->hdev;
694 struct hci_cp_le_set_adv_param cp;
695 u8 own_addr_type;
696 u8 enable;
698 /* Clear the HCI_LE_ADV bit temporarily so that the
699 * hci_update_random_address knows that it's safe to go ahead
700 * and write a new random address. The flag will be set back on
701 * as soon as the SET_ADV_ENABLE HCI command completes.
703 clear_bit(HCI_LE_ADV, &hdev->dev_flags);
705 /* Set require_privacy to false so that the remote device has a
706 * chance of identifying us.
708 if (hci_update_random_address(req, false, &own_addr_type) < 0)
709 return;
711 memset(&cp, 0, sizeof(cp));
712 cp.type = LE_ADV_DIRECT_IND;
713 cp.own_address_type = own_addr_type;
714 cp.direct_addr_type = conn->dst_type;
715 bacpy(&cp.direct_addr, &conn->dst);
716 cp.channel_map = hdev->le_adv_channel_map;
718 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
720 enable = 0x01;
721 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
723 conn->state = BT_CONNECT;
726 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
727 u8 dst_type, u8 sec_level, u16 conn_timeout,
728 u8 role)
730 struct hci_conn_params *params;
731 struct hci_conn *conn;
732 struct smp_irk *irk;
733 struct hci_request req;
734 int err;
736 /* Some devices send ATT messages as soon as the physical link is
737 * established. To be able to handle these ATT messages, the user-
738 * space first establishes the connection and then starts the pairing
739 * process.
741 * So if a hci_conn object already exists for the following connection
742 * attempt, we simply update pending_sec_level and auth_type fields
743 * and return the object found.
745 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, dst);
746 if (conn) {
747 conn->pending_sec_level = sec_level;
748 goto done;
751 /* Since the controller supports only one LE connection attempt at a
752 * time, we return -EBUSY if there is any connection attempt running.
754 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
755 if (conn)
756 return ERR_PTR(-EBUSY);
758 /* When given an identity address with existing identity
759 * resolving key, the connection needs to be established
760 * to a resolvable random address.
762 * This uses the cached random resolvable address from
763 * a previous scan. When no cached address is available,
764 * try connecting to the identity address instead.
766 * Storing the resolvable random address is required here
767 * to handle connection failures. The address will later
768 * be resolved back into the original identity address
769 * from the connect request.
771 irk = hci_find_irk_by_addr(hdev, dst, dst_type);
772 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
773 dst = &irk->rpa;
774 dst_type = ADDR_LE_DEV_RANDOM;
777 conn = hci_conn_add(hdev, LE_LINK, dst, role);
778 if (!conn)
779 return ERR_PTR(-ENOMEM);
781 conn->dst_type = dst_type;
782 conn->sec_level = BT_SECURITY_LOW;
783 conn->pending_sec_level = sec_level;
784 conn->conn_timeout = conn_timeout;
786 hci_req_init(&req, hdev);
788 /* Disable advertising if we're active. For master role
789 * connections most controllers will refuse to connect if
790 * advertising is enabled, and for slave role connections we
791 * anyway have to disable it in order to start directed
792 * advertising.
794 if (test_bit(HCI_LE_ADV, &hdev->dev_flags)) {
795 u8 enable = 0x00;
796 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
797 &enable);
800 /* If requested to connect as slave use directed advertising */
801 if (conn->role == HCI_ROLE_SLAVE) {
802 /* If we're active scanning most controllers are unable
803 * to initiate advertising. Simply reject the attempt.
805 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags) &&
806 hdev->le_scan_type == LE_SCAN_ACTIVE) {
807 skb_queue_purge(&req.cmd_q);
808 hci_conn_del(conn);
809 return ERR_PTR(-EBUSY);
812 hci_req_directed_advertising(&req, conn);
813 goto create_conn;
816 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
817 if (params) {
818 conn->le_conn_min_interval = params->conn_min_interval;
819 conn->le_conn_max_interval = params->conn_max_interval;
820 conn->le_conn_latency = params->conn_latency;
821 conn->le_supv_timeout = params->supervision_timeout;
822 } else {
823 conn->le_conn_min_interval = hdev->le_conn_min_interval;
824 conn->le_conn_max_interval = hdev->le_conn_max_interval;
825 conn->le_conn_latency = hdev->le_conn_latency;
826 conn->le_supv_timeout = hdev->le_supv_timeout;
829 /* If controller is scanning, we stop it since some controllers are
830 * not able to scan and connect at the same time. Also set the
831 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
832 * handler for scan disabling knows to set the correct discovery
833 * state.
835 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags)) {
836 hci_req_add_le_scan_disable(&req);
837 set_bit(HCI_LE_SCAN_INTERRUPTED, &hdev->dev_flags);
840 hci_req_add_le_create_conn(&req, conn);
842 create_conn:
843 err = hci_req_run(&req, create_le_conn_complete);
844 if (err) {
845 hci_conn_del(conn);
846 return ERR_PTR(err);
849 done:
850 hci_conn_hold(conn);
851 return conn;
854 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
855 u8 sec_level, u8 auth_type)
857 struct hci_conn *acl;
859 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags))
860 return ERR_PTR(-EOPNOTSUPP);
862 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
863 if (!acl) {
864 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
865 if (!acl)
866 return ERR_PTR(-ENOMEM);
869 hci_conn_hold(acl);
871 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
872 acl->sec_level = BT_SECURITY_LOW;
873 acl->pending_sec_level = sec_level;
874 acl->auth_type = auth_type;
875 hci_acl_create_connection(acl);
878 return acl;
881 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
882 __u16 setting)
884 struct hci_conn *acl;
885 struct hci_conn *sco;
887 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING);
888 if (IS_ERR(acl))
889 return acl;
891 sco = hci_conn_hash_lookup_ba(hdev, type, dst);
892 if (!sco) {
893 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
894 if (!sco) {
895 hci_conn_drop(acl);
896 return ERR_PTR(-ENOMEM);
900 acl->link = sco;
901 sco->link = acl;
903 hci_conn_hold(sco);
905 sco->setting = setting;
907 if (acl->state == BT_CONNECTED &&
908 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
909 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
910 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
912 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
913 /* defer SCO setup until mode change completed */
914 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
915 return sco;
918 hci_sco_setup(acl, 0x00);
921 return sco;
924 /* Check link security requirement */
925 int hci_conn_check_link_mode(struct hci_conn *conn)
927 BT_DBG("hcon %p", conn);
929 /* In Secure Connections Only mode, it is required that Secure
930 * Connections is used and the link is encrypted with AES-CCM
931 * using a P-256 authenticated combination key.
933 if (test_bit(HCI_SC_ONLY, &conn->hdev->flags)) {
934 if (!hci_conn_sc_enabled(conn) ||
935 !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
936 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
937 return 0;
940 if (hci_conn_ssp_enabled(conn) &&
941 !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
942 return 0;
944 return 1;
947 /* Authenticate remote device */
948 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
950 BT_DBG("hcon %p", conn);
952 if (conn->pending_sec_level > sec_level)
953 sec_level = conn->pending_sec_level;
955 if (sec_level > conn->sec_level)
956 conn->pending_sec_level = sec_level;
957 else if (test_bit(HCI_CONN_AUTH, &conn->flags))
958 return 1;
960 /* Make sure we preserve an existing MITM requirement*/
961 auth_type |= (conn->auth_type & 0x01);
963 conn->auth_type = auth_type;
965 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
966 struct hci_cp_auth_requested cp;
968 cp.handle = cpu_to_le16(conn->handle);
969 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
970 sizeof(cp), &cp);
972 /* If we're already encrypted set the REAUTH_PEND flag,
973 * otherwise set the ENCRYPT_PEND.
975 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
976 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
977 else
978 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
981 return 0;
984 /* Encrypt the the link */
985 static void hci_conn_encrypt(struct hci_conn *conn)
987 BT_DBG("hcon %p", conn);
989 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
990 struct hci_cp_set_conn_encrypt cp;
991 cp.handle = cpu_to_le16(conn->handle);
992 cp.encrypt = 0x01;
993 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
994 &cp);
998 /* Enable security */
999 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1000 bool initiator)
1002 BT_DBG("hcon %p", conn);
1004 if (conn->type == LE_LINK)
1005 return smp_conn_security(conn, sec_level);
1007 /* For sdp we don't need the link key. */
1008 if (sec_level == BT_SECURITY_SDP)
1009 return 1;
1011 /* For non 2.1 devices and low security level we don't need the link
1012 key. */
1013 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1014 return 1;
1016 /* For other security levels we need the link key. */
1017 if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1018 goto auth;
1020 /* An authenticated FIPS approved combination key has sufficient
1021 * security for security level 4. */
1022 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1023 sec_level == BT_SECURITY_FIPS)
1024 goto encrypt;
1026 /* An authenticated combination key has sufficient security for
1027 security level 3. */
1028 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1029 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1030 sec_level == BT_SECURITY_HIGH)
1031 goto encrypt;
1033 /* An unauthenticated combination key has sufficient security for
1034 security level 1 and 2. */
1035 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1036 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1037 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1038 goto encrypt;
1040 /* A combination key has always sufficient security for the security
1041 levels 1 or 2. High security level requires the combination key
1042 is generated using maximum PIN code length (16).
1043 For pre 2.1 units. */
1044 if (conn->key_type == HCI_LK_COMBINATION &&
1045 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1046 conn->pin_length == 16))
1047 goto encrypt;
1049 auth:
1050 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1051 return 0;
1053 if (initiator)
1054 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1056 if (!hci_conn_auth(conn, sec_level, auth_type))
1057 return 0;
1059 encrypt:
1060 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1061 return 1;
1063 hci_conn_encrypt(conn);
1064 return 0;
1066 EXPORT_SYMBOL(hci_conn_security);
1068 /* Check secure link requirement */
1069 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1071 BT_DBG("hcon %p", conn);
1073 /* Accept if non-secure or higher security level is required */
1074 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1075 return 1;
1077 /* Accept if secure or higher security level is already present */
1078 if (conn->sec_level == BT_SECURITY_HIGH ||
1079 conn->sec_level == BT_SECURITY_FIPS)
1080 return 1;
1082 /* Reject not secure link */
1083 return 0;
1085 EXPORT_SYMBOL(hci_conn_check_secure);
1087 /* Switch role */
1088 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1090 BT_DBG("hcon %p", conn);
1092 if (role == conn->role)
1093 return 1;
1095 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1096 struct hci_cp_switch_role cp;
1097 bacpy(&cp.bdaddr, &conn->dst);
1098 cp.role = role;
1099 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1102 return 0;
1104 EXPORT_SYMBOL(hci_conn_switch_role);
1106 /* Enter active mode */
1107 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1109 struct hci_dev *hdev = conn->hdev;
1111 BT_DBG("hcon %p mode %d", conn, conn->mode);
1113 if (conn->mode != HCI_CM_SNIFF)
1114 goto timer;
1116 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1117 goto timer;
1119 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1120 struct hci_cp_exit_sniff_mode cp;
1121 cp.handle = cpu_to_le16(conn->handle);
1122 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1125 timer:
1126 if (hdev->idle_timeout > 0)
1127 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1128 msecs_to_jiffies(hdev->idle_timeout));
1131 /* Drop all connection on the device */
1132 void hci_conn_hash_flush(struct hci_dev *hdev)
1134 struct hci_conn_hash *h = &hdev->conn_hash;
1135 struct hci_conn *c, *n;
1137 BT_DBG("hdev %s", hdev->name);
1139 list_for_each_entry_safe(c, n, &h->list, list) {
1140 c->state = BT_CLOSED;
1142 hci_proto_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1143 hci_conn_del(c);
1147 /* Check pending connect attempts */
1148 void hci_conn_check_pending(struct hci_dev *hdev)
1150 struct hci_conn *conn;
1152 BT_DBG("hdev %s", hdev->name);
1154 hci_dev_lock(hdev);
1156 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1157 if (conn)
1158 hci_acl_create_connection(conn);
1160 hci_dev_unlock(hdev);
1163 static u32 get_link_mode(struct hci_conn *conn)
1165 u32 link_mode = 0;
1167 if (conn->role == HCI_ROLE_MASTER)
1168 link_mode |= HCI_LM_MASTER;
1170 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1171 link_mode |= HCI_LM_ENCRYPT;
1173 if (test_bit(HCI_CONN_AUTH, &conn->flags))
1174 link_mode |= HCI_LM_AUTH;
1176 if (test_bit(HCI_CONN_SECURE, &conn->flags))
1177 link_mode |= HCI_LM_SECURE;
1179 if (test_bit(HCI_CONN_FIPS, &conn->flags))
1180 link_mode |= HCI_LM_FIPS;
1182 return link_mode;
1185 int hci_get_conn_list(void __user *arg)
1187 struct hci_conn *c;
1188 struct hci_conn_list_req req, *cl;
1189 struct hci_conn_info *ci;
1190 struct hci_dev *hdev;
1191 int n = 0, size, err;
1193 if (copy_from_user(&req, arg, sizeof(req)))
1194 return -EFAULT;
1196 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1197 return -EINVAL;
1199 size = sizeof(req) + req.conn_num * sizeof(*ci);
1201 cl = kmalloc(size, GFP_KERNEL);
1202 if (!cl)
1203 return -ENOMEM;
1205 hdev = hci_dev_get(req.dev_id);
1206 if (!hdev) {
1207 kfree(cl);
1208 return -ENODEV;
1211 ci = cl->conn_info;
1213 hci_dev_lock(hdev);
1214 list_for_each_entry(c, &hdev->conn_hash.list, list) {
1215 bacpy(&(ci + n)->bdaddr, &c->dst);
1216 (ci + n)->handle = c->handle;
1217 (ci + n)->type = c->type;
1218 (ci + n)->out = c->out;
1219 (ci + n)->state = c->state;
1220 (ci + n)->link_mode = get_link_mode(c);
1221 if (++n >= req.conn_num)
1222 break;
1224 hci_dev_unlock(hdev);
1226 cl->dev_id = hdev->id;
1227 cl->conn_num = n;
1228 size = sizeof(req) + n * sizeof(*ci);
1230 hci_dev_put(hdev);
1232 err = copy_to_user(arg, cl, size);
1233 kfree(cl);
1235 return err ? -EFAULT : 0;
1238 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1240 struct hci_conn_info_req req;
1241 struct hci_conn_info ci;
1242 struct hci_conn *conn;
1243 char __user *ptr = arg + sizeof(req);
1245 if (copy_from_user(&req, arg, sizeof(req)))
1246 return -EFAULT;
1248 hci_dev_lock(hdev);
1249 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1250 if (conn) {
1251 bacpy(&ci.bdaddr, &conn->dst);
1252 ci.handle = conn->handle;
1253 ci.type = conn->type;
1254 ci.out = conn->out;
1255 ci.state = conn->state;
1256 ci.link_mode = get_link_mode(conn);
1258 hci_dev_unlock(hdev);
1260 if (!conn)
1261 return -ENOENT;
1263 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1266 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1268 struct hci_auth_info_req req;
1269 struct hci_conn *conn;
1271 if (copy_from_user(&req, arg, sizeof(req)))
1272 return -EFAULT;
1274 hci_dev_lock(hdev);
1275 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1276 if (conn)
1277 req.type = conn->auth_type;
1278 hci_dev_unlock(hdev);
1280 if (!conn)
1281 return -ENOENT;
1283 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1286 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1288 struct hci_dev *hdev = conn->hdev;
1289 struct hci_chan *chan;
1291 BT_DBG("%s hcon %p", hdev->name, conn);
1293 if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1294 BT_DBG("Refusing to create new hci_chan");
1295 return NULL;
1298 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1299 if (!chan)
1300 return NULL;
1302 chan->conn = hci_conn_get(conn);
1303 skb_queue_head_init(&chan->data_q);
1304 chan->state = BT_CONNECTED;
1306 list_add_rcu(&chan->list, &conn->chan_list);
1308 return chan;
1311 void hci_chan_del(struct hci_chan *chan)
1313 struct hci_conn *conn = chan->conn;
1314 struct hci_dev *hdev = conn->hdev;
1316 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1318 list_del_rcu(&chan->list);
1320 synchronize_rcu();
1322 /* Prevent new hci_chan's to be created for this hci_conn */
1323 set_bit(HCI_CONN_DROP, &conn->flags);
1325 hci_conn_put(conn);
1327 skb_queue_purge(&chan->data_q);
1328 kfree(chan);
1331 void hci_chan_list_flush(struct hci_conn *conn)
1333 struct hci_chan *chan, *n;
1335 BT_DBG("hcon %p", conn);
1337 list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1338 hci_chan_del(chan);
1341 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1342 __u16 handle)
1344 struct hci_chan *hchan;
1346 list_for_each_entry(hchan, &hcon->chan_list, list) {
1347 if (hchan->handle == handle)
1348 return hchan;
1351 return NULL;
1354 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1356 struct hci_conn_hash *h = &hdev->conn_hash;
1357 struct hci_conn *hcon;
1358 struct hci_chan *hchan = NULL;
1360 rcu_read_lock();
1362 list_for_each_entry_rcu(hcon, &h->list, list) {
1363 hchan = __hci_chan_lookup_handle(hcon, handle);
1364 if (hchan)
1365 break;
1368 rcu_read_unlock();
1370 return hchan;