USB: xhci: Remove the arbitrary limit of 15 xHCI ports
[linux-2.6/btrfs-unstable.git] / fs / ceph / mds_client.c
blob24561a557e01c0ae55c35700e2615b318c8cdb4c
1 #include "ceph_debug.h"
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
7 #include "mds_client.h"
8 #include "mon_client.h"
9 #include "super.h"
10 #include "messenger.h"
11 #include "decode.h"
12 #include "auth.h"
13 #include "pagelist.h"
16 * A cluster of MDS (metadata server) daemons is responsible for
17 * managing the file system namespace (the directory hierarchy and
18 * inodes) and for coordinating shared access to storage. Metadata is
19 * partitioning hierarchically across a number of servers, and that
20 * partition varies over time as the cluster adjusts the distribution
21 * in order to balance load.
23 * The MDS client is primarily responsible to managing synchronous
24 * metadata requests for operations like open, unlink, and so forth.
25 * If there is a MDS failure, we find out about it when we (possibly
26 * request and) receive a new MDS map, and can resubmit affected
27 * requests.
29 * For the most part, though, we take advantage of a lossless
30 * communications channel to the MDS, and do not need to worry about
31 * timing out or resubmitting requests.
33 * We maintain a stateful "session" with each MDS we interact with.
34 * Within each session, we sent periodic heartbeat messages to ensure
35 * any capabilities or leases we have been issues remain valid. If
36 * the session times out and goes stale, our leases and capabilities
37 * are no longer valid.
40 static void __wake_requests(struct ceph_mds_client *mdsc,
41 struct list_head *head);
43 const static struct ceph_connection_operations mds_con_ops;
47 * mds reply parsing
51 * parse individual inode info
53 static int parse_reply_info_in(void **p, void *end,
54 struct ceph_mds_reply_info_in *info)
56 int err = -EIO;
58 info->in = *p;
59 *p += sizeof(struct ceph_mds_reply_inode) +
60 sizeof(*info->in->fragtree.splits) *
61 le32_to_cpu(info->in->fragtree.nsplits);
63 ceph_decode_32_safe(p, end, info->symlink_len, bad);
64 ceph_decode_need(p, end, info->symlink_len, bad);
65 info->symlink = *p;
66 *p += info->symlink_len;
68 ceph_decode_32_safe(p, end, info->xattr_len, bad);
69 ceph_decode_need(p, end, info->xattr_len, bad);
70 info->xattr_data = *p;
71 *p += info->xattr_len;
72 return 0;
73 bad:
74 return err;
78 * parse a normal reply, which may contain a (dir+)dentry and/or a
79 * target inode.
81 static int parse_reply_info_trace(void **p, void *end,
82 struct ceph_mds_reply_info_parsed *info)
84 int err;
86 if (info->head->is_dentry) {
87 err = parse_reply_info_in(p, end, &info->diri);
88 if (err < 0)
89 goto out_bad;
91 if (unlikely(*p + sizeof(*info->dirfrag) > end))
92 goto bad;
93 info->dirfrag = *p;
94 *p += sizeof(*info->dirfrag) +
95 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
96 if (unlikely(*p > end))
97 goto bad;
99 ceph_decode_32_safe(p, end, info->dname_len, bad);
100 ceph_decode_need(p, end, info->dname_len, bad);
101 info->dname = *p;
102 *p += info->dname_len;
103 info->dlease = *p;
104 *p += sizeof(*info->dlease);
107 if (info->head->is_target) {
108 err = parse_reply_info_in(p, end, &info->targeti);
109 if (err < 0)
110 goto out_bad;
113 if (unlikely(*p != end))
114 goto bad;
115 return 0;
117 bad:
118 err = -EIO;
119 out_bad:
120 pr_err("problem parsing mds trace %d\n", err);
121 return err;
125 * parse readdir results
127 static int parse_reply_info_dir(void **p, void *end,
128 struct ceph_mds_reply_info_parsed *info)
130 u32 num, i = 0;
131 int err;
133 info->dir_dir = *p;
134 if (*p + sizeof(*info->dir_dir) > end)
135 goto bad;
136 *p += sizeof(*info->dir_dir) +
137 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
138 if (*p > end)
139 goto bad;
141 ceph_decode_need(p, end, sizeof(num) + 2, bad);
142 num = ceph_decode_32(p);
143 info->dir_end = ceph_decode_8(p);
144 info->dir_complete = ceph_decode_8(p);
145 if (num == 0)
146 goto done;
148 /* alloc large array */
149 info->dir_nr = num;
150 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
151 sizeof(*info->dir_dname) +
152 sizeof(*info->dir_dname_len) +
153 sizeof(*info->dir_dlease),
154 GFP_NOFS);
155 if (info->dir_in == NULL) {
156 err = -ENOMEM;
157 goto out_bad;
159 info->dir_dname = (void *)(info->dir_in + num);
160 info->dir_dname_len = (void *)(info->dir_dname + num);
161 info->dir_dlease = (void *)(info->dir_dname_len + num);
163 while (num) {
164 /* dentry */
165 ceph_decode_need(p, end, sizeof(u32)*2, bad);
166 info->dir_dname_len[i] = ceph_decode_32(p);
167 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
168 info->dir_dname[i] = *p;
169 *p += info->dir_dname_len[i];
170 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
171 info->dir_dname[i]);
172 info->dir_dlease[i] = *p;
173 *p += sizeof(struct ceph_mds_reply_lease);
175 /* inode */
176 err = parse_reply_info_in(p, end, &info->dir_in[i]);
177 if (err < 0)
178 goto out_bad;
179 i++;
180 num--;
183 done:
184 if (*p != end)
185 goto bad;
186 return 0;
188 bad:
189 err = -EIO;
190 out_bad:
191 pr_err("problem parsing dir contents %d\n", err);
192 return err;
196 * parse entire mds reply
198 static int parse_reply_info(struct ceph_msg *msg,
199 struct ceph_mds_reply_info_parsed *info)
201 void *p, *end;
202 u32 len;
203 int err;
205 info->head = msg->front.iov_base;
206 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
207 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
209 /* trace */
210 ceph_decode_32_safe(&p, end, len, bad);
211 if (len > 0) {
212 err = parse_reply_info_trace(&p, p+len, info);
213 if (err < 0)
214 goto out_bad;
217 /* dir content */
218 ceph_decode_32_safe(&p, end, len, bad);
219 if (len > 0) {
220 err = parse_reply_info_dir(&p, p+len, info);
221 if (err < 0)
222 goto out_bad;
225 /* snap blob */
226 ceph_decode_32_safe(&p, end, len, bad);
227 info->snapblob_len = len;
228 info->snapblob = p;
229 p += len;
231 if (p != end)
232 goto bad;
233 return 0;
235 bad:
236 err = -EIO;
237 out_bad:
238 pr_err("mds parse_reply err %d\n", err);
239 return err;
242 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
244 kfree(info->dir_in);
249 * sessions
251 static const char *session_state_name(int s)
253 switch (s) {
254 case CEPH_MDS_SESSION_NEW: return "new";
255 case CEPH_MDS_SESSION_OPENING: return "opening";
256 case CEPH_MDS_SESSION_OPEN: return "open";
257 case CEPH_MDS_SESSION_HUNG: return "hung";
258 case CEPH_MDS_SESSION_CLOSING: return "closing";
259 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
260 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
261 default: return "???";
265 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
267 if (atomic_inc_not_zero(&s->s_ref)) {
268 dout("mdsc get_session %p %d -> %d\n", s,
269 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
270 return s;
271 } else {
272 dout("mdsc get_session %p 0 -- FAIL", s);
273 return NULL;
277 void ceph_put_mds_session(struct ceph_mds_session *s)
279 dout("mdsc put_session %p %d -> %d\n", s,
280 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
281 if (atomic_dec_and_test(&s->s_ref)) {
282 if (s->s_authorizer)
283 s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
284 s->s_mdsc->client->monc.auth, s->s_authorizer);
285 kfree(s);
290 * called under mdsc->mutex
292 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
293 int mds)
295 struct ceph_mds_session *session;
297 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
298 return NULL;
299 session = mdsc->sessions[mds];
300 dout("lookup_mds_session %p %d\n", session,
301 atomic_read(&session->s_ref));
302 get_session(session);
303 return session;
306 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
308 if (mds >= mdsc->max_sessions)
309 return false;
310 return mdsc->sessions[mds];
313 static int __verify_registered_session(struct ceph_mds_client *mdsc,
314 struct ceph_mds_session *s)
316 if (s->s_mds >= mdsc->max_sessions ||
317 mdsc->sessions[s->s_mds] != s)
318 return -ENOENT;
319 return 0;
323 * create+register a new session for given mds.
324 * called under mdsc->mutex.
326 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
327 int mds)
329 struct ceph_mds_session *s;
331 s = kzalloc(sizeof(*s), GFP_NOFS);
332 if (!s)
333 return ERR_PTR(-ENOMEM);
334 s->s_mdsc = mdsc;
335 s->s_mds = mds;
336 s->s_state = CEPH_MDS_SESSION_NEW;
337 s->s_ttl = 0;
338 s->s_seq = 0;
339 mutex_init(&s->s_mutex);
341 ceph_con_init(mdsc->client->msgr, &s->s_con);
342 s->s_con.private = s;
343 s->s_con.ops = &mds_con_ops;
344 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
345 s->s_con.peer_name.num = cpu_to_le64(mds);
347 spin_lock_init(&s->s_cap_lock);
348 s->s_cap_gen = 0;
349 s->s_cap_ttl = 0;
350 s->s_renew_requested = 0;
351 s->s_renew_seq = 0;
352 INIT_LIST_HEAD(&s->s_caps);
353 s->s_nr_caps = 0;
354 s->s_trim_caps = 0;
355 atomic_set(&s->s_ref, 1);
356 INIT_LIST_HEAD(&s->s_waiting);
357 INIT_LIST_HEAD(&s->s_unsafe);
358 s->s_num_cap_releases = 0;
359 s->s_cap_iterator = NULL;
360 INIT_LIST_HEAD(&s->s_cap_releases);
361 INIT_LIST_HEAD(&s->s_cap_releases_done);
362 INIT_LIST_HEAD(&s->s_cap_flushing);
363 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
365 dout("register_session mds%d\n", mds);
366 if (mds >= mdsc->max_sessions) {
367 int newmax = 1 << get_count_order(mds+1);
368 struct ceph_mds_session **sa;
370 dout("register_session realloc to %d\n", newmax);
371 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
372 if (sa == NULL)
373 goto fail_realloc;
374 if (mdsc->sessions) {
375 memcpy(sa, mdsc->sessions,
376 mdsc->max_sessions * sizeof(void *));
377 kfree(mdsc->sessions);
379 mdsc->sessions = sa;
380 mdsc->max_sessions = newmax;
382 mdsc->sessions[mds] = s;
383 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
385 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
387 return s;
389 fail_realloc:
390 kfree(s);
391 return ERR_PTR(-ENOMEM);
395 * called under mdsc->mutex
397 static void __unregister_session(struct ceph_mds_client *mdsc,
398 struct ceph_mds_session *s)
400 dout("__unregister_session mds%d %p\n", s->s_mds, s);
401 BUG_ON(mdsc->sessions[s->s_mds] != s);
402 mdsc->sessions[s->s_mds] = NULL;
403 ceph_con_close(&s->s_con);
404 ceph_put_mds_session(s);
408 * drop session refs in request.
410 * should be last request ref, or hold mdsc->mutex
412 static void put_request_session(struct ceph_mds_request *req)
414 if (req->r_session) {
415 ceph_put_mds_session(req->r_session);
416 req->r_session = NULL;
420 void ceph_mdsc_release_request(struct kref *kref)
422 struct ceph_mds_request *req = container_of(kref,
423 struct ceph_mds_request,
424 r_kref);
425 if (req->r_request)
426 ceph_msg_put(req->r_request);
427 if (req->r_reply) {
428 ceph_msg_put(req->r_reply);
429 destroy_reply_info(&req->r_reply_info);
431 if (req->r_inode) {
432 ceph_put_cap_refs(ceph_inode(req->r_inode),
433 CEPH_CAP_PIN);
434 iput(req->r_inode);
436 if (req->r_locked_dir)
437 ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
438 CEPH_CAP_PIN);
439 if (req->r_target_inode)
440 iput(req->r_target_inode);
441 if (req->r_dentry)
442 dput(req->r_dentry);
443 if (req->r_old_dentry) {
444 ceph_put_cap_refs(
445 ceph_inode(req->r_old_dentry->d_parent->d_inode),
446 CEPH_CAP_PIN);
447 dput(req->r_old_dentry);
449 kfree(req->r_path1);
450 kfree(req->r_path2);
451 put_request_session(req);
452 ceph_unreserve_caps(&req->r_caps_reservation);
453 kfree(req);
457 * lookup session, bump ref if found.
459 * called under mdsc->mutex.
461 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
462 u64 tid)
464 struct ceph_mds_request *req;
465 struct rb_node *n = mdsc->request_tree.rb_node;
467 while (n) {
468 req = rb_entry(n, struct ceph_mds_request, r_node);
469 if (tid < req->r_tid)
470 n = n->rb_left;
471 else if (tid > req->r_tid)
472 n = n->rb_right;
473 else {
474 ceph_mdsc_get_request(req);
475 return req;
478 return NULL;
481 static void __insert_request(struct ceph_mds_client *mdsc,
482 struct ceph_mds_request *new)
484 struct rb_node **p = &mdsc->request_tree.rb_node;
485 struct rb_node *parent = NULL;
486 struct ceph_mds_request *req = NULL;
488 while (*p) {
489 parent = *p;
490 req = rb_entry(parent, struct ceph_mds_request, r_node);
491 if (new->r_tid < req->r_tid)
492 p = &(*p)->rb_left;
493 else if (new->r_tid > req->r_tid)
494 p = &(*p)->rb_right;
495 else
496 BUG();
499 rb_link_node(&new->r_node, parent, p);
500 rb_insert_color(&new->r_node, &mdsc->request_tree);
504 * Register an in-flight request, and assign a tid. Link to directory
505 * are modifying (if any).
507 * Called under mdsc->mutex.
509 static void __register_request(struct ceph_mds_client *mdsc,
510 struct ceph_mds_request *req,
511 struct inode *dir)
513 req->r_tid = ++mdsc->last_tid;
514 if (req->r_num_caps)
515 ceph_reserve_caps(&req->r_caps_reservation, req->r_num_caps);
516 dout("__register_request %p tid %lld\n", req, req->r_tid);
517 ceph_mdsc_get_request(req);
518 __insert_request(mdsc, req);
520 if (dir) {
521 struct ceph_inode_info *ci = ceph_inode(dir);
523 spin_lock(&ci->i_unsafe_lock);
524 req->r_unsafe_dir = dir;
525 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
526 spin_unlock(&ci->i_unsafe_lock);
530 static void __unregister_request(struct ceph_mds_client *mdsc,
531 struct ceph_mds_request *req)
533 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
534 rb_erase(&req->r_node, &mdsc->request_tree);
535 RB_CLEAR_NODE(&req->r_node);
537 if (req->r_unsafe_dir) {
538 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
540 spin_lock(&ci->i_unsafe_lock);
541 list_del_init(&req->r_unsafe_dir_item);
542 spin_unlock(&ci->i_unsafe_lock);
545 ceph_mdsc_put_request(req);
549 * Choose mds to send request to next. If there is a hint set in the
550 * request (e.g., due to a prior forward hint from the mds), use that.
551 * Otherwise, consult frag tree and/or caps to identify the
552 * appropriate mds. If all else fails, choose randomly.
554 * Called under mdsc->mutex.
556 static int __choose_mds(struct ceph_mds_client *mdsc,
557 struct ceph_mds_request *req)
559 struct inode *inode;
560 struct ceph_inode_info *ci;
561 struct ceph_cap *cap;
562 int mode = req->r_direct_mode;
563 int mds = -1;
564 u32 hash = req->r_direct_hash;
565 bool is_hash = req->r_direct_is_hash;
568 * is there a specific mds we should try? ignore hint if we have
569 * no session and the mds is not up (active or recovering).
571 if (req->r_resend_mds >= 0 &&
572 (__have_session(mdsc, req->r_resend_mds) ||
573 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
574 dout("choose_mds using resend_mds mds%d\n",
575 req->r_resend_mds);
576 return req->r_resend_mds;
579 if (mode == USE_RANDOM_MDS)
580 goto random;
582 inode = NULL;
583 if (req->r_inode) {
584 inode = req->r_inode;
585 } else if (req->r_dentry) {
586 if (req->r_dentry->d_inode) {
587 inode = req->r_dentry->d_inode;
588 } else {
589 inode = req->r_dentry->d_parent->d_inode;
590 hash = req->r_dentry->d_name.hash;
591 is_hash = true;
594 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
595 (int)hash, mode);
596 if (!inode)
597 goto random;
598 ci = ceph_inode(inode);
600 if (is_hash && S_ISDIR(inode->i_mode)) {
601 struct ceph_inode_frag frag;
602 int found;
604 ceph_choose_frag(ci, hash, &frag, &found);
605 if (found) {
606 if (mode == USE_ANY_MDS && frag.ndist > 0) {
607 u8 r;
609 /* choose a random replica */
610 get_random_bytes(&r, 1);
611 r %= frag.ndist;
612 mds = frag.dist[r];
613 dout("choose_mds %p %llx.%llx "
614 "frag %u mds%d (%d/%d)\n",
615 inode, ceph_vinop(inode),
616 frag.frag, frag.mds,
617 (int)r, frag.ndist);
618 return mds;
621 /* since this file/dir wasn't known to be
622 * replicated, then we want to look for the
623 * authoritative mds. */
624 mode = USE_AUTH_MDS;
625 if (frag.mds >= 0) {
626 /* choose auth mds */
627 mds = frag.mds;
628 dout("choose_mds %p %llx.%llx "
629 "frag %u mds%d (auth)\n",
630 inode, ceph_vinop(inode), frag.frag, mds);
631 return mds;
636 spin_lock(&inode->i_lock);
637 cap = NULL;
638 if (mode == USE_AUTH_MDS)
639 cap = ci->i_auth_cap;
640 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
641 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
642 if (!cap) {
643 spin_unlock(&inode->i_lock);
644 goto random;
646 mds = cap->session->s_mds;
647 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
648 inode, ceph_vinop(inode), mds,
649 cap == ci->i_auth_cap ? "auth " : "", cap);
650 spin_unlock(&inode->i_lock);
651 return mds;
653 random:
654 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
655 dout("choose_mds chose random mds%d\n", mds);
656 return mds;
661 * session messages
663 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
665 struct ceph_msg *msg;
666 struct ceph_mds_session_head *h;
668 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), 0, 0, NULL);
669 if (IS_ERR(msg)) {
670 pr_err("create_session_msg ENOMEM creating msg\n");
671 return ERR_PTR(PTR_ERR(msg));
673 h = msg->front.iov_base;
674 h->op = cpu_to_le32(op);
675 h->seq = cpu_to_le64(seq);
676 return msg;
680 * send session open request.
682 * called under mdsc->mutex
684 static int __open_session(struct ceph_mds_client *mdsc,
685 struct ceph_mds_session *session)
687 struct ceph_msg *msg;
688 int mstate;
689 int mds = session->s_mds;
690 int err = 0;
692 /* wait for mds to go active? */
693 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
694 dout("open_session to mds%d (%s)\n", mds,
695 ceph_mds_state_name(mstate));
696 session->s_state = CEPH_MDS_SESSION_OPENING;
697 session->s_renew_requested = jiffies;
699 /* send connect message */
700 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
701 if (IS_ERR(msg)) {
702 err = PTR_ERR(msg);
703 goto out;
705 ceph_con_send(&session->s_con, msg);
707 out:
708 return 0;
712 * session caps
716 * Free preallocated cap messages assigned to this session
718 static void cleanup_cap_releases(struct ceph_mds_session *session)
720 struct ceph_msg *msg;
722 spin_lock(&session->s_cap_lock);
723 while (!list_empty(&session->s_cap_releases)) {
724 msg = list_first_entry(&session->s_cap_releases,
725 struct ceph_msg, list_head);
726 list_del_init(&msg->list_head);
727 ceph_msg_put(msg);
729 while (!list_empty(&session->s_cap_releases_done)) {
730 msg = list_first_entry(&session->s_cap_releases_done,
731 struct ceph_msg, list_head);
732 list_del_init(&msg->list_head);
733 ceph_msg_put(msg);
735 spin_unlock(&session->s_cap_lock);
739 * Helper to safely iterate over all caps associated with a session, with
740 * special care taken to handle a racing __ceph_remove_cap().
742 * Caller must hold session s_mutex.
744 static int iterate_session_caps(struct ceph_mds_session *session,
745 int (*cb)(struct inode *, struct ceph_cap *,
746 void *), void *arg)
748 struct list_head *p;
749 struct ceph_cap *cap;
750 struct inode *inode, *last_inode = NULL;
751 struct ceph_cap *old_cap = NULL;
752 int ret;
754 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
755 spin_lock(&session->s_cap_lock);
756 p = session->s_caps.next;
757 while (p != &session->s_caps) {
758 cap = list_entry(p, struct ceph_cap, session_caps);
759 inode = igrab(&cap->ci->vfs_inode);
760 if (!inode) {
761 p = p->next;
762 continue;
764 session->s_cap_iterator = cap;
765 spin_unlock(&session->s_cap_lock);
767 if (last_inode) {
768 iput(last_inode);
769 last_inode = NULL;
771 if (old_cap) {
772 ceph_put_cap(old_cap);
773 old_cap = NULL;
776 ret = cb(inode, cap, arg);
777 last_inode = inode;
779 spin_lock(&session->s_cap_lock);
780 p = p->next;
781 if (cap->ci == NULL) {
782 dout("iterate_session_caps finishing cap %p removal\n",
783 cap);
784 BUG_ON(cap->session != session);
785 list_del_init(&cap->session_caps);
786 session->s_nr_caps--;
787 cap->session = NULL;
788 old_cap = cap; /* put_cap it w/o locks held */
790 if (ret < 0)
791 goto out;
793 ret = 0;
794 out:
795 session->s_cap_iterator = NULL;
796 spin_unlock(&session->s_cap_lock);
798 if (last_inode)
799 iput(last_inode);
800 if (old_cap)
801 ceph_put_cap(old_cap);
803 return ret;
806 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
807 void *arg)
809 struct ceph_inode_info *ci = ceph_inode(inode);
810 dout("removing cap %p, ci is %p, inode is %p\n",
811 cap, ci, &ci->vfs_inode);
812 ceph_remove_cap(cap);
813 return 0;
817 * caller must hold session s_mutex
819 static void remove_session_caps(struct ceph_mds_session *session)
821 dout("remove_session_caps on %p\n", session);
822 iterate_session_caps(session, remove_session_caps_cb, NULL);
823 BUG_ON(session->s_nr_caps > 0);
824 cleanup_cap_releases(session);
828 * wake up any threads waiting on this session's caps. if the cap is
829 * old (didn't get renewed on the client reconnect), remove it now.
831 * caller must hold s_mutex.
833 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
834 void *arg)
836 struct ceph_inode_info *ci = ceph_inode(inode);
838 wake_up(&ci->i_cap_wq);
839 if (arg) {
840 spin_lock(&inode->i_lock);
841 ci->i_wanted_max_size = 0;
842 ci->i_requested_max_size = 0;
843 spin_unlock(&inode->i_lock);
845 return 0;
848 static void wake_up_session_caps(struct ceph_mds_session *session,
849 int reconnect)
851 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
852 iterate_session_caps(session, wake_up_session_cb,
853 (void *)(unsigned long)reconnect);
857 * Send periodic message to MDS renewing all currently held caps. The
858 * ack will reset the expiration for all caps from this session.
860 * caller holds s_mutex
862 static int send_renew_caps(struct ceph_mds_client *mdsc,
863 struct ceph_mds_session *session)
865 struct ceph_msg *msg;
866 int state;
868 if (time_after_eq(jiffies, session->s_cap_ttl) &&
869 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
870 pr_info("mds%d caps stale\n", session->s_mds);
871 session->s_renew_requested = jiffies;
873 /* do not try to renew caps until a recovering mds has reconnected
874 * with its clients. */
875 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
876 if (state < CEPH_MDS_STATE_RECONNECT) {
877 dout("send_renew_caps ignoring mds%d (%s)\n",
878 session->s_mds, ceph_mds_state_name(state));
879 return 0;
882 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
883 ceph_mds_state_name(state));
884 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
885 ++session->s_renew_seq);
886 if (IS_ERR(msg))
887 return PTR_ERR(msg);
888 ceph_con_send(&session->s_con, msg);
889 return 0;
893 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
895 * Called under session->s_mutex
897 static void renewed_caps(struct ceph_mds_client *mdsc,
898 struct ceph_mds_session *session, int is_renew)
900 int was_stale;
901 int wake = 0;
903 spin_lock(&session->s_cap_lock);
904 was_stale = is_renew && (session->s_cap_ttl == 0 ||
905 time_after_eq(jiffies, session->s_cap_ttl));
907 session->s_cap_ttl = session->s_renew_requested +
908 mdsc->mdsmap->m_session_timeout*HZ;
910 if (was_stale) {
911 if (time_before(jiffies, session->s_cap_ttl)) {
912 pr_info("mds%d caps renewed\n", session->s_mds);
913 wake = 1;
914 } else {
915 pr_info("mds%d caps still stale\n", session->s_mds);
918 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
919 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
920 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
921 spin_unlock(&session->s_cap_lock);
923 if (wake)
924 wake_up_session_caps(session, 0);
928 * send a session close request
930 static int request_close_session(struct ceph_mds_client *mdsc,
931 struct ceph_mds_session *session)
933 struct ceph_msg *msg;
934 int err = 0;
936 dout("request_close_session mds%d state %s seq %lld\n",
937 session->s_mds, session_state_name(session->s_state),
938 session->s_seq);
939 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
940 if (IS_ERR(msg))
941 err = PTR_ERR(msg);
942 else
943 ceph_con_send(&session->s_con, msg);
944 return err;
948 * Called with s_mutex held.
950 static int __close_session(struct ceph_mds_client *mdsc,
951 struct ceph_mds_session *session)
953 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
954 return 0;
955 session->s_state = CEPH_MDS_SESSION_CLOSING;
956 return request_close_session(mdsc, session);
960 * Trim old(er) caps.
962 * Because we can't cache an inode without one or more caps, we do
963 * this indirectly: if a cap is unused, we prune its aliases, at which
964 * point the inode will hopefully get dropped to.
966 * Yes, this is a bit sloppy. Our only real goal here is to respond to
967 * memory pressure from the MDS, though, so it needn't be perfect.
969 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
971 struct ceph_mds_session *session = arg;
972 struct ceph_inode_info *ci = ceph_inode(inode);
973 int used, oissued, mine;
975 if (session->s_trim_caps <= 0)
976 return -1;
978 spin_lock(&inode->i_lock);
979 mine = cap->issued | cap->implemented;
980 used = __ceph_caps_used(ci);
981 oissued = __ceph_caps_issued_other(ci, cap);
983 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
984 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
985 ceph_cap_string(used));
986 if (ci->i_dirty_caps)
987 goto out; /* dirty caps */
988 if ((used & ~oissued) & mine)
989 goto out; /* we need these caps */
991 session->s_trim_caps--;
992 if (oissued) {
993 /* we aren't the only cap.. just remove us */
994 __ceph_remove_cap(cap);
995 } else {
996 /* try to drop referring dentries */
997 spin_unlock(&inode->i_lock);
998 d_prune_aliases(inode);
999 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1000 inode, cap, atomic_read(&inode->i_count));
1001 return 0;
1004 out:
1005 spin_unlock(&inode->i_lock);
1006 return 0;
1010 * Trim session cap count down to some max number.
1012 static int trim_caps(struct ceph_mds_client *mdsc,
1013 struct ceph_mds_session *session,
1014 int max_caps)
1016 int trim_caps = session->s_nr_caps - max_caps;
1018 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1019 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1020 if (trim_caps > 0) {
1021 session->s_trim_caps = trim_caps;
1022 iterate_session_caps(session, trim_caps_cb, session);
1023 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1024 session->s_mds, session->s_nr_caps, max_caps,
1025 trim_caps - session->s_trim_caps);
1026 session->s_trim_caps = 0;
1028 return 0;
1032 * Allocate cap_release messages. If there is a partially full message
1033 * in the queue, try to allocate enough to cover it's remainder, so that
1034 * we can send it immediately.
1036 * Called under s_mutex.
1038 static int add_cap_releases(struct ceph_mds_client *mdsc,
1039 struct ceph_mds_session *session,
1040 int extra)
1042 struct ceph_msg *msg;
1043 struct ceph_mds_cap_release *head;
1044 int err = -ENOMEM;
1046 if (extra < 0)
1047 extra = mdsc->client->mount_args->cap_release_safety;
1049 spin_lock(&session->s_cap_lock);
1051 if (!list_empty(&session->s_cap_releases)) {
1052 msg = list_first_entry(&session->s_cap_releases,
1053 struct ceph_msg,
1054 list_head);
1055 head = msg->front.iov_base;
1056 extra += CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1059 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1060 spin_unlock(&session->s_cap_lock);
1061 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1062 0, 0, NULL);
1063 if (!msg)
1064 goto out_unlocked;
1065 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1066 (int)msg->front.iov_len);
1067 head = msg->front.iov_base;
1068 head->num = cpu_to_le32(0);
1069 msg->front.iov_len = sizeof(*head);
1070 spin_lock(&session->s_cap_lock);
1071 list_add(&msg->list_head, &session->s_cap_releases);
1072 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1075 if (!list_empty(&session->s_cap_releases)) {
1076 msg = list_first_entry(&session->s_cap_releases,
1077 struct ceph_msg,
1078 list_head);
1079 head = msg->front.iov_base;
1080 if (head->num) {
1081 dout(" queueing non-full %p (%d)\n", msg,
1082 le32_to_cpu(head->num));
1083 list_move_tail(&msg->list_head,
1084 &session->s_cap_releases_done);
1085 session->s_num_cap_releases -=
1086 CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1089 err = 0;
1090 spin_unlock(&session->s_cap_lock);
1091 out_unlocked:
1092 return err;
1096 * flush all dirty inode data to disk.
1098 * returns true if we've flushed through want_flush_seq
1100 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1102 int mds, ret = 1;
1104 dout("check_cap_flush want %lld\n", want_flush_seq);
1105 mutex_lock(&mdsc->mutex);
1106 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1107 struct ceph_mds_session *session = mdsc->sessions[mds];
1109 if (!session)
1110 continue;
1111 get_session(session);
1112 mutex_unlock(&mdsc->mutex);
1114 mutex_lock(&session->s_mutex);
1115 if (!list_empty(&session->s_cap_flushing)) {
1116 struct ceph_inode_info *ci =
1117 list_entry(session->s_cap_flushing.next,
1118 struct ceph_inode_info,
1119 i_flushing_item);
1120 struct inode *inode = &ci->vfs_inode;
1122 spin_lock(&inode->i_lock);
1123 if (ci->i_cap_flush_seq <= want_flush_seq) {
1124 dout("check_cap_flush still flushing %p "
1125 "seq %lld <= %lld to mds%d\n", inode,
1126 ci->i_cap_flush_seq, want_flush_seq,
1127 session->s_mds);
1128 ret = 0;
1130 spin_unlock(&inode->i_lock);
1132 mutex_unlock(&session->s_mutex);
1133 ceph_put_mds_session(session);
1135 if (!ret)
1136 return ret;
1137 mutex_lock(&mdsc->mutex);
1140 mutex_unlock(&mdsc->mutex);
1141 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1142 return ret;
1146 * called under s_mutex
1148 static void send_cap_releases(struct ceph_mds_client *mdsc,
1149 struct ceph_mds_session *session)
1151 struct ceph_msg *msg;
1153 dout("send_cap_releases mds%d\n", session->s_mds);
1154 while (1) {
1155 spin_lock(&session->s_cap_lock);
1156 if (list_empty(&session->s_cap_releases_done))
1157 break;
1158 msg = list_first_entry(&session->s_cap_releases_done,
1159 struct ceph_msg, list_head);
1160 list_del_init(&msg->list_head);
1161 spin_unlock(&session->s_cap_lock);
1162 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1163 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1164 ceph_con_send(&session->s_con, msg);
1166 spin_unlock(&session->s_cap_lock);
1170 * requests
1174 * Create an mds request.
1176 struct ceph_mds_request *
1177 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1179 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1181 if (!req)
1182 return ERR_PTR(-ENOMEM);
1184 req->r_started = jiffies;
1185 req->r_resend_mds = -1;
1186 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1187 req->r_fmode = -1;
1188 kref_init(&req->r_kref);
1189 INIT_LIST_HEAD(&req->r_wait);
1190 init_completion(&req->r_completion);
1191 init_completion(&req->r_safe_completion);
1192 INIT_LIST_HEAD(&req->r_unsafe_item);
1194 req->r_op = op;
1195 req->r_direct_mode = mode;
1196 return req;
1200 * return oldest (lowest) request, tid in request tree, 0 if none.
1202 * called under mdsc->mutex.
1204 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1206 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1207 return NULL;
1208 return rb_entry(rb_first(&mdsc->request_tree),
1209 struct ceph_mds_request, r_node);
1212 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1214 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1216 if (req)
1217 return req->r_tid;
1218 return 0;
1222 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1223 * on build_path_from_dentry in fs/cifs/dir.c.
1225 * If @stop_on_nosnap, generate path relative to the first non-snapped
1226 * inode.
1228 * Encode hidden .snap dirs as a double /, i.e.
1229 * foo/.snap/bar -> foo//bar
1231 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1232 int stop_on_nosnap)
1234 struct dentry *temp;
1235 char *path;
1236 int len, pos;
1238 if (dentry == NULL)
1239 return ERR_PTR(-EINVAL);
1241 retry:
1242 len = 0;
1243 for (temp = dentry; !IS_ROOT(temp);) {
1244 struct inode *inode = temp->d_inode;
1245 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1246 len++; /* slash only */
1247 else if (stop_on_nosnap && inode &&
1248 ceph_snap(inode) == CEPH_NOSNAP)
1249 break;
1250 else
1251 len += 1 + temp->d_name.len;
1252 temp = temp->d_parent;
1253 if (temp == NULL) {
1254 pr_err("build_path_dentry corrupt dentry %p\n", dentry);
1255 return ERR_PTR(-EINVAL);
1258 if (len)
1259 len--; /* no leading '/' */
1261 path = kmalloc(len+1, GFP_NOFS);
1262 if (path == NULL)
1263 return ERR_PTR(-ENOMEM);
1264 pos = len;
1265 path[pos] = 0; /* trailing null */
1266 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1267 struct inode *inode = temp->d_inode;
1269 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1270 dout("build_path_dentry path+%d: %p SNAPDIR\n",
1271 pos, temp);
1272 } else if (stop_on_nosnap && inode &&
1273 ceph_snap(inode) == CEPH_NOSNAP) {
1274 break;
1275 } else {
1276 pos -= temp->d_name.len;
1277 if (pos < 0)
1278 break;
1279 strncpy(path + pos, temp->d_name.name,
1280 temp->d_name.len);
1281 dout("build_path_dentry path+%d: %p '%.*s'\n",
1282 pos, temp, temp->d_name.len, path + pos);
1284 if (pos)
1285 path[--pos] = '/';
1286 temp = temp->d_parent;
1287 if (temp == NULL) {
1288 pr_err("build_path_dentry corrupt dentry\n");
1289 kfree(path);
1290 return ERR_PTR(-EINVAL);
1293 if (pos != 0) {
1294 pr_err("build_path_dentry did not end path lookup where "
1295 "expected, namelen is %d, pos is %d\n", len, pos);
1296 /* presumably this is only possible if racing with a
1297 rename of one of the parent directories (we can not
1298 lock the dentries above us to prevent this, but
1299 retrying should be harmless) */
1300 kfree(path);
1301 goto retry;
1304 *base = ceph_ino(temp->d_inode);
1305 *plen = len;
1306 dout("build_path_dentry on %p %d built %llx '%.*s'\n",
1307 dentry, atomic_read(&dentry->d_count), *base, len, path);
1308 return path;
1311 static int build_dentry_path(struct dentry *dentry,
1312 const char **ppath, int *ppathlen, u64 *pino,
1313 int *pfreepath)
1315 char *path;
1317 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1318 *pino = ceph_ino(dentry->d_parent->d_inode);
1319 *ppath = dentry->d_name.name;
1320 *ppathlen = dentry->d_name.len;
1321 return 0;
1323 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1324 if (IS_ERR(path))
1325 return PTR_ERR(path);
1326 *ppath = path;
1327 *pfreepath = 1;
1328 return 0;
1331 static int build_inode_path(struct inode *inode,
1332 const char **ppath, int *ppathlen, u64 *pino,
1333 int *pfreepath)
1335 struct dentry *dentry;
1336 char *path;
1338 if (ceph_snap(inode) == CEPH_NOSNAP) {
1339 *pino = ceph_ino(inode);
1340 *ppathlen = 0;
1341 return 0;
1343 dentry = d_find_alias(inode);
1344 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1345 dput(dentry);
1346 if (IS_ERR(path))
1347 return PTR_ERR(path);
1348 *ppath = path;
1349 *pfreepath = 1;
1350 return 0;
1354 * request arguments may be specified via an inode *, a dentry *, or
1355 * an explicit ino+path.
1357 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1358 const char *rpath, u64 rino,
1359 const char **ppath, int *pathlen,
1360 u64 *ino, int *freepath)
1362 int r = 0;
1364 if (rinode) {
1365 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1366 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1367 ceph_snap(rinode));
1368 } else if (rdentry) {
1369 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1370 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1371 *ppath);
1372 } else if (rpath) {
1373 *ino = rino;
1374 *ppath = rpath;
1375 *pathlen = strlen(rpath);
1376 dout(" path %.*s\n", *pathlen, rpath);
1379 return r;
1383 * called under mdsc->mutex
1385 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1386 struct ceph_mds_request *req,
1387 int mds)
1389 struct ceph_msg *msg;
1390 struct ceph_mds_request_head *head;
1391 const char *path1 = NULL;
1392 const char *path2 = NULL;
1393 u64 ino1 = 0, ino2 = 0;
1394 int pathlen1 = 0, pathlen2 = 0;
1395 int freepath1 = 0, freepath2 = 0;
1396 int len;
1397 u16 releases;
1398 void *p, *end;
1399 int ret;
1401 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1402 req->r_path1, req->r_ino1.ino,
1403 &path1, &pathlen1, &ino1, &freepath1);
1404 if (ret < 0) {
1405 msg = ERR_PTR(ret);
1406 goto out;
1409 ret = set_request_path_attr(NULL, req->r_old_dentry,
1410 req->r_path2, req->r_ino2.ino,
1411 &path2, &pathlen2, &ino2, &freepath2);
1412 if (ret < 0) {
1413 msg = ERR_PTR(ret);
1414 goto out_free1;
1417 len = sizeof(*head) +
1418 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1420 /* calculate (max) length for cap releases */
1421 len += sizeof(struct ceph_mds_request_release) *
1422 (!!req->r_inode_drop + !!req->r_dentry_drop +
1423 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1424 if (req->r_dentry_drop)
1425 len += req->r_dentry->d_name.len;
1426 if (req->r_old_dentry_drop)
1427 len += req->r_old_dentry->d_name.len;
1429 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, 0, 0, NULL);
1430 if (IS_ERR(msg))
1431 goto out_free2;
1433 msg->hdr.tid = cpu_to_le64(req->r_tid);
1435 head = msg->front.iov_base;
1436 p = msg->front.iov_base + sizeof(*head);
1437 end = msg->front.iov_base + msg->front.iov_len;
1439 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1440 head->op = cpu_to_le32(req->r_op);
1441 head->caller_uid = cpu_to_le32(current_fsuid());
1442 head->caller_gid = cpu_to_le32(current_fsgid());
1443 head->args = req->r_args;
1445 ceph_encode_filepath(&p, end, ino1, path1);
1446 ceph_encode_filepath(&p, end, ino2, path2);
1448 /* cap releases */
1449 releases = 0;
1450 if (req->r_inode_drop)
1451 releases += ceph_encode_inode_release(&p,
1452 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1453 mds, req->r_inode_drop, req->r_inode_unless, 0);
1454 if (req->r_dentry_drop)
1455 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1456 mds, req->r_dentry_drop, req->r_dentry_unless);
1457 if (req->r_old_dentry_drop)
1458 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1459 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1460 if (req->r_old_inode_drop)
1461 releases += ceph_encode_inode_release(&p,
1462 req->r_old_dentry->d_inode,
1463 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1464 head->num_releases = cpu_to_le16(releases);
1466 BUG_ON(p > end);
1467 msg->front.iov_len = p - msg->front.iov_base;
1468 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1470 msg->pages = req->r_pages;
1471 msg->nr_pages = req->r_num_pages;
1472 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1473 msg->hdr.data_off = cpu_to_le16(0);
1475 out_free2:
1476 if (freepath2)
1477 kfree((char *)path2);
1478 out_free1:
1479 if (freepath1)
1480 kfree((char *)path1);
1481 out:
1482 return msg;
1486 * called under mdsc->mutex if error, under no mutex if
1487 * success.
1489 static void complete_request(struct ceph_mds_client *mdsc,
1490 struct ceph_mds_request *req)
1492 if (req->r_callback)
1493 req->r_callback(mdsc, req);
1494 else
1495 complete(&req->r_completion);
1499 * called under mdsc->mutex
1501 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1502 struct ceph_mds_request *req,
1503 int mds)
1505 struct ceph_mds_request_head *rhead;
1506 struct ceph_msg *msg;
1507 int flags = 0;
1509 req->r_mds = mds;
1510 req->r_attempts++;
1511 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1512 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1514 if (req->r_request) {
1515 ceph_msg_put(req->r_request);
1516 req->r_request = NULL;
1518 msg = create_request_message(mdsc, req, mds);
1519 if (IS_ERR(msg)) {
1520 req->r_reply = ERR_PTR(PTR_ERR(msg));
1521 complete_request(mdsc, req);
1522 return -PTR_ERR(msg);
1524 req->r_request = msg;
1526 rhead = msg->front.iov_base;
1527 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1528 if (req->r_got_unsafe)
1529 flags |= CEPH_MDS_FLAG_REPLAY;
1530 if (req->r_locked_dir)
1531 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1532 rhead->flags = cpu_to_le32(flags);
1533 rhead->num_fwd = req->r_num_fwd;
1534 rhead->num_retry = req->r_attempts - 1;
1536 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1538 if (req->r_target_inode && req->r_got_unsafe)
1539 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1540 else
1541 rhead->ino = 0;
1542 return 0;
1546 * send request, or put it on the appropriate wait list.
1548 static int __do_request(struct ceph_mds_client *mdsc,
1549 struct ceph_mds_request *req)
1551 struct ceph_mds_session *session = NULL;
1552 int mds = -1;
1553 int err = -EAGAIN;
1555 if (req->r_reply)
1556 goto out;
1558 if (req->r_timeout &&
1559 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1560 dout("do_request timed out\n");
1561 err = -EIO;
1562 goto finish;
1565 mds = __choose_mds(mdsc, req);
1566 if (mds < 0 ||
1567 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1568 dout("do_request no mds or not active, waiting for map\n");
1569 list_add(&req->r_wait, &mdsc->waiting_for_map);
1570 goto out;
1573 /* get, open session */
1574 session = __ceph_lookup_mds_session(mdsc, mds);
1575 if (!session) {
1576 session = register_session(mdsc, mds);
1577 if (IS_ERR(session)) {
1578 err = PTR_ERR(session);
1579 goto finish;
1582 dout("do_request mds%d session %p state %s\n", mds, session,
1583 session_state_name(session->s_state));
1584 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1585 session->s_state != CEPH_MDS_SESSION_HUNG) {
1586 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1587 session->s_state == CEPH_MDS_SESSION_CLOSING)
1588 __open_session(mdsc, session);
1589 list_add(&req->r_wait, &session->s_waiting);
1590 goto out_session;
1593 /* send request */
1594 req->r_session = get_session(session);
1595 req->r_resend_mds = -1; /* forget any previous mds hint */
1597 if (req->r_request_started == 0) /* note request start time */
1598 req->r_request_started = jiffies;
1600 err = __prepare_send_request(mdsc, req, mds);
1601 if (!err) {
1602 ceph_msg_get(req->r_request);
1603 ceph_con_send(&session->s_con, req->r_request);
1606 out_session:
1607 ceph_put_mds_session(session);
1608 out:
1609 return err;
1611 finish:
1612 req->r_reply = ERR_PTR(err);
1613 complete_request(mdsc, req);
1614 goto out;
1618 * called under mdsc->mutex
1620 static void __wake_requests(struct ceph_mds_client *mdsc,
1621 struct list_head *head)
1623 struct ceph_mds_request *req, *nreq;
1625 list_for_each_entry_safe(req, nreq, head, r_wait) {
1626 list_del_init(&req->r_wait);
1627 __do_request(mdsc, req);
1632 * Wake up threads with requests pending for @mds, so that they can
1633 * resubmit their requests to a possibly different mds. If @all is set,
1634 * wake up if their requests has been forwarded to @mds, too.
1636 static void kick_requests(struct ceph_mds_client *mdsc, int mds, int all)
1638 struct ceph_mds_request *req;
1639 struct rb_node *p;
1641 dout("kick_requests mds%d\n", mds);
1642 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1643 req = rb_entry(p, struct ceph_mds_request, r_node);
1644 if (req->r_got_unsafe)
1645 continue;
1646 if (req->r_session &&
1647 req->r_session->s_mds == mds) {
1648 dout(" kicking tid %llu\n", req->r_tid);
1649 put_request_session(req);
1650 __do_request(mdsc, req);
1655 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1656 struct ceph_mds_request *req)
1658 dout("submit_request on %p\n", req);
1659 mutex_lock(&mdsc->mutex);
1660 __register_request(mdsc, req, NULL);
1661 __do_request(mdsc, req);
1662 mutex_unlock(&mdsc->mutex);
1666 * Synchrously perform an mds request. Take care of all of the
1667 * session setup, forwarding, retry details.
1669 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1670 struct inode *dir,
1671 struct ceph_mds_request *req)
1673 int err;
1675 dout("do_request on %p\n", req);
1677 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1678 if (req->r_inode)
1679 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1680 if (req->r_locked_dir)
1681 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1682 if (req->r_old_dentry)
1683 ceph_get_cap_refs(
1684 ceph_inode(req->r_old_dentry->d_parent->d_inode),
1685 CEPH_CAP_PIN);
1687 /* issue */
1688 mutex_lock(&mdsc->mutex);
1689 __register_request(mdsc, req, dir);
1690 __do_request(mdsc, req);
1692 /* wait */
1693 if (!req->r_reply) {
1694 mutex_unlock(&mdsc->mutex);
1695 if (req->r_timeout) {
1696 err = (long)wait_for_completion_interruptible_timeout(
1697 &req->r_completion, req->r_timeout);
1698 if (err == 0)
1699 req->r_reply = ERR_PTR(-EIO);
1700 else if (err < 0)
1701 req->r_reply = ERR_PTR(err);
1702 } else {
1703 err = wait_for_completion_interruptible(
1704 &req->r_completion);
1705 if (err)
1706 req->r_reply = ERR_PTR(err);
1708 mutex_lock(&mdsc->mutex);
1711 if (IS_ERR(req->r_reply)) {
1712 err = PTR_ERR(req->r_reply);
1713 req->r_reply = NULL;
1715 if (err == -ERESTARTSYS) {
1716 /* aborted */
1717 req->r_aborted = true;
1719 if (req->r_locked_dir &&
1720 (req->r_op & CEPH_MDS_OP_WRITE)) {
1721 struct ceph_inode_info *ci =
1722 ceph_inode(req->r_locked_dir);
1724 dout("aborted, clearing I_COMPLETE on %p\n",
1725 req->r_locked_dir);
1726 spin_lock(&req->r_locked_dir->i_lock);
1727 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1728 ci->i_release_count++;
1729 spin_unlock(&req->r_locked_dir->i_lock);
1731 } else {
1732 /* clean up this request */
1733 __unregister_request(mdsc, req);
1734 if (!list_empty(&req->r_unsafe_item))
1735 list_del_init(&req->r_unsafe_item);
1736 complete(&req->r_safe_completion);
1738 } else if (req->r_err) {
1739 err = req->r_err;
1740 } else {
1741 err = le32_to_cpu(req->r_reply_info.head->result);
1743 mutex_unlock(&mdsc->mutex);
1745 dout("do_request %p done, result %d\n", req, err);
1746 return err;
1750 * Handle mds reply.
1752 * We take the session mutex and parse and process the reply immediately.
1753 * This preserves the logical ordering of replies, capabilities, etc., sent
1754 * by the MDS as they are applied to our local cache.
1756 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1758 struct ceph_mds_client *mdsc = session->s_mdsc;
1759 struct ceph_mds_request *req;
1760 struct ceph_mds_reply_head *head = msg->front.iov_base;
1761 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
1762 u64 tid;
1763 int err, result;
1764 int mds = session->s_mds;
1766 if (msg->front.iov_len < sizeof(*head)) {
1767 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1768 ceph_msg_dump(msg);
1769 return;
1772 /* get request, session */
1773 tid = le64_to_cpu(msg->hdr.tid);
1774 mutex_lock(&mdsc->mutex);
1775 req = __lookup_request(mdsc, tid);
1776 if (!req) {
1777 dout("handle_reply on unknown tid %llu\n", tid);
1778 mutex_unlock(&mdsc->mutex);
1779 return;
1781 dout("handle_reply %p\n", req);
1783 /* correct session? */
1784 if (req->r_session != session) {
1785 pr_err("mdsc_handle_reply got %llu on session mds%d"
1786 " not mds%d\n", tid, session->s_mds,
1787 req->r_session ? req->r_session->s_mds : -1);
1788 mutex_unlock(&mdsc->mutex);
1789 goto out;
1792 /* dup? */
1793 if ((req->r_got_unsafe && !head->safe) ||
1794 (req->r_got_safe && head->safe)) {
1795 pr_warning("got a dup %s reply on %llu from mds%d\n",
1796 head->safe ? "safe" : "unsafe", tid, mds);
1797 mutex_unlock(&mdsc->mutex);
1798 goto out;
1801 result = le32_to_cpu(head->result);
1804 * Tolerate 2 consecutive ESTALEs from the same mds.
1805 * FIXME: we should be looking at the cap migrate_seq.
1807 if (result == -ESTALE) {
1808 req->r_direct_mode = USE_AUTH_MDS;
1809 req->r_num_stale++;
1810 if (req->r_num_stale <= 2) {
1811 __do_request(mdsc, req);
1812 mutex_unlock(&mdsc->mutex);
1813 goto out;
1815 } else {
1816 req->r_num_stale = 0;
1819 if (head->safe) {
1820 req->r_got_safe = true;
1821 __unregister_request(mdsc, req);
1822 complete(&req->r_safe_completion);
1824 if (req->r_got_unsafe) {
1826 * We already handled the unsafe response, now do the
1827 * cleanup. No need to examine the response; the MDS
1828 * doesn't include any result info in the safe
1829 * response. And even if it did, there is nothing
1830 * useful we could do with a revised return value.
1832 dout("got safe reply %llu, mds%d\n", tid, mds);
1833 list_del_init(&req->r_unsafe_item);
1835 /* last unsafe request during umount? */
1836 if (mdsc->stopping && !__get_oldest_req(mdsc))
1837 complete(&mdsc->safe_umount_waiters);
1838 mutex_unlock(&mdsc->mutex);
1839 goto out;
1843 BUG_ON(req->r_reply);
1845 if (!head->safe) {
1846 req->r_got_unsafe = true;
1847 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
1850 dout("handle_reply tid %lld result %d\n", tid, result);
1851 rinfo = &req->r_reply_info;
1852 err = parse_reply_info(msg, rinfo);
1853 mutex_unlock(&mdsc->mutex);
1855 mutex_lock(&session->s_mutex);
1856 if (err < 0) {
1857 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
1858 ceph_msg_dump(msg);
1859 goto out_err;
1862 /* snap trace */
1863 if (rinfo->snapblob_len) {
1864 down_write(&mdsc->snap_rwsem);
1865 ceph_update_snap_trace(mdsc, rinfo->snapblob,
1866 rinfo->snapblob + rinfo->snapblob_len,
1867 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
1868 downgrade_write(&mdsc->snap_rwsem);
1869 } else {
1870 down_read(&mdsc->snap_rwsem);
1873 /* insert trace into our cache */
1874 err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
1875 if (err == 0) {
1876 if (result == 0 && rinfo->dir_nr)
1877 ceph_readdir_prepopulate(req, req->r_session);
1878 ceph_unreserve_caps(&req->r_caps_reservation);
1881 up_read(&mdsc->snap_rwsem);
1882 out_err:
1883 if (err) {
1884 req->r_err = err;
1885 } else {
1886 req->r_reply = msg;
1887 ceph_msg_get(msg);
1890 add_cap_releases(mdsc, req->r_session, -1);
1891 mutex_unlock(&session->s_mutex);
1893 /* kick calling process */
1894 complete_request(mdsc, req);
1895 out:
1896 ceph_mdsc_put_request(req);
1897 return;
1903 * handle mds notification that our request has been forwarded.
1905 static void handle_forward(struct ceph_mds_client *mdsc,
1906 struct ceph_mds_session *session,
1907 struct ceph_msg *msg)
1909 struct ceph_mds_request *req;
1910 u64 tid = le64_to_cpu(msg->hdr.tid);
1911 u32 next_mds;
1912 u32 fwd_seq;
1913 int err = -EINVAL;
1914 void *p = msg->front.iov_base;
1915 void *end = p + msg->front.iov_len;
1917 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
1918 next_mds = ceph_decode_32(&p);
1919 fwd_seq = ceph_decode_32(&p);
1921 mutex_lock(&mdsc->mutex);
1922 req = __lookup_request(mdsc, tid);
1923 if (!req) {
1924 dout("forward %llu to mds%d - req dne\n", tid, next_mds);
1925 goto out; /* dup reply? */
1928 if (fwd_seq <= req->r_num_fwd) {
1929 dout("forward %llu to mds%d - old seq %d <= %d\n",
1930 tid, next_mds, req->r_num_fwd, fwd_seq);
1931 } else {
1932 /* resend. forward race not possible; mds would drop */
1933 dout("forward %llu to mds%d (we resend)\n", tid, next_mds);
1934 req->r_num_fwd = fwd_seq;
1935 req->r_resend_mds = next_mds;
1936 put_request_session(req);
1937 __do_request(mdsc, req);
1939 ceph_mdsc_put_request(req);
1940 out:
1941 mutex_unlock(&mdsc->mutex);
1942 return;
1944 bad:
1945 pr_err("mdsc_handle_forward decode error err=%d\n", err);
1949 * handle a mds session control message
1951 static void handle_session(struct ceph_mds_session *session,
1952 struct ceph_msg *msg)
1954 struct ceph_mds_client *mdsc = session->s_mdsc;
1955 u32 op;
1956 u64 seq;
1957 int mds = session->s_mds;
1958 struct ceph_mds_session_head *h = msg->front.iov_base;
1959 int wake = 0;
1961 /* decode */
1962 if (msg->front.iov_len != sizeof(*h))
1963 goto bad;
1964 op = le32_to_cpu(h->op);
1965 seq = le64_to_cpu(h->seq);
1967 mutex_lock(&mdsc->mutex);
1968 if (op == CEPH_SESSION_CLOSE)
1969 __unregister_session(mdsc, session);
1970 /* FIXME: this ttl calculation is generous */
1971 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
1972 mutex_unlock(&mdsc->mutex);
1974 mutex_lock(&session->s_mutex);
1976 dout("handle_session mds%d %s %p state %s seq %llu\n",
1977 mds, ceph_session_op_name(op), session,
1978 session_state_name(session->s_state), seq);
1980 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
1981 session->s_state = CEPH_MDS_SESSION_OPEN;
1982 pr_info("mds%d came back\n", session->s_mds);
1985 switch (op) {
1986 case CEPH_SESSION_OPEN:
1987 session->s_state = CEPH_MDS_SESSION_OPEN;
1988 renewed_caps(mdsc, session, 0);
1989 wake = 1;
1990 if (mdsc->stopping)
1991 __close_session(mdsc, session);
1992 break;
1994 case CEPH_SESSION_RENEWCAPS:
1995 if (session->s_renew_seq == seq)
1996 renewed_caps(mdsc, session, 1);
1997 break;
1999 case CEPH_SESSION_CLOSE:
2000 remove_session_caps(session);
2001 wake = 1; /* for good measure */
2002 complete(&mdsc->session_close_waiters);
2003 kick_requests(mdsc, mds, 0); /* cur only */
2004 break;
2006 case CEPH_SESSION_STALE:
2007 pr_info("mds%d caps went stale, renewing\n",
2008 session->s_mds);
2009 spin_lock(&session->s_cap_lock);
2010 session->s_cap_gen++;
2011 session->s_cap_ttl = 0;
2012 spin_unlock(&session->s_cap_lock);
2013 send_renew_caps(mdsc, session);
2014 break;
2016 case CEPH_SESSION_RECALL_STATE:
2017 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2018 break;
2020 default:
2021 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2022 WARN_ON(1);
2025 mutex_unlock(&session->s_mutex);
2026 if (wake) {
2027 mutex_lock(&mdsc->mutex);
2028 __wake_requests(mdsc, &session->s_waiting);
2029 mutex_unlock(&mdsc->mutex);
2031 return;
2033 bad:
2034 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2035 (int)msg->front.iov_len);
2036 ceph_msg_dump(msg);
2037 return;
2042 * called under session->mutex.
2044 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2045 struct ceph_mds_session *session)
2047 struct ceph_mds_request *req, *nreq;
2048 int err;
2050 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2052 mutex_lock(&mdsc->mutex);
2053 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2054 err = __prepare_send_request(mdsc, req, session->s_mds);
2055 if (!err) {
2056 ceph_msg_get(req->r_request);
2057 ceph_con_send(&session->s_con, req->r_request);
2060 mutex_unlock(&mdsc->mutex);
2064 * Encode information about a cap for a reconnect with the MDS.
2066 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2067 void *arg)
2069 struct ceph_mds_cap_reconnect rec;
2070 struct ceph_inode_info *ci;
2071 struct ceph_pagelist *pagelist = arg;
2072 char *path;
2073 int pathlen, err;
2074 u64 pathbase;
2075 struct dentry *dentry;
2077 ci = cap->ci;
2079 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2080 inode, ceph_vinop(inode), cap, cap->cap_id,
2081 ceph_cap_string(cap->issued));
2082 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2083 if (err)
2084 return err;
2086 dentry = d_find_alias(inode);
2087 if (dentry) {
2088 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2089 if (IS_ERR(path)) {
2090 err = PTR_ERR(path);
2091 BUG_ON(err);
2093 } else {
2094 path = NULL;
2095 pathlen = 0;
2097 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2098 if (err)
2099 goto out;
2101 spin_lock(&inode->i_lock);
2102 cap->seq = 0; /* reset cap seq */
2103 cap->issue_seq = 0; /* and issue_seq */
2104 rec.cap_id = cpu_to_le64(cap->cap_id);
2105 rec.pathbase = cpu_to_le64(pathbase);
2106 rec.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2107 rec.issued = cpu_to_le32(cap->issued);
2108 rec.size = cpu_to_le64(inode->i_size);
2109 ceph_encode_timespec(&rec.mtime, &inode->i_mtime);
2110 ceph_encode_timespec(&rec.atime, &inode->i_atime);
2111 rec.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2112 spin_unlock(&inode->i_lock);
2114 err = ceph_pagelist_append(pagelist, &rec, sizeof(rec));
2116 out:
2117 kfree(path);
2118 dput(dentry);
2119 return err;
2124 * If an MDS fails and recovers, clients need to reconnect in order to
2125 * reestablish shared state. This includes all caps issued through
2126 * this session _and_ the snap_realm hierarchy. Because it's not
2127 * clear which snap realms the mds cares about, we send everything we
2128 * know about.. that ensures we'll then get any new info the
2129 * recovering MDS might have.
2131 * This is a relatively heavyweight operation, but it's rare.
2133 * called with mdsc->mutex held.
2135 static void send_mds_reconnect(struct ceph_mds_client *mdsc, int mds)
2137 struct ceph_mds_session *session = NULL;
2138 struct ceph_msg *reply;
2139 struct rb_node *p;
2140 int err = -ENOMEM;
2141 struct ceph_pagelist *pagelist;
2143 pr_info("reconnect to recovering mds%d\n", mds);
2145 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2146 if (!pagelist)
2147 goto fail_nopagelist;
2148 ceph_pagelist_init(pagelist);
2150 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, 0, 0, NULL);
2151 if (IS_ERR(reply)) {
2152 err = PTR_ERR(reply);
2153 goto fail_nomsg;
2156 /* find session */
2157 session = __ceph_lookup_mds_session(mdsc, mds);
2158 mutex_unlock(&mdsc->mutex); /* drop lock for duration */
2160 if (session) {
2161 mutex_lock(&session->s_mutex);
2163 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2164 session->s_seq = 0;
2166 ceph_con_open(&session->s_con,
2167 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2169 /* replay unsafe requests */
2170 replay_unsafe_requests(mdsc, session);
2171 } else {
2172 dout("no session for mds%d, will send short reconnect\n",
2173 mds);
2176 down_read(&mdsc->snap_rwsem);
2178 if (!session)
2179 goto send;
2180 dout("session %p state %s\n", session,
2181 session_state_name(session->s_state));
2183 /* traverse this session's caps */
2184 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2185 if (err)
2186 goto fail;
2187 err = iterate_session_caps(session, encode_caps_cb, pagelist);
2188 if (err < 0)
2189 goto fail;
2192 * snaprealms. we provide mds with the ino, seq (version), and
2193 * parent for all of our realms. If the mds has any newer info,
2194 * it will tell us.
2196 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2197 struct ceph_snap_realm *realm =
2198 rb_entry(p, struct ceph_snap_realm, node);
2199 struct ceph_mds_snaprealm_reconnect sr_rec;
2201 dout(" adding snap realm %llx seq %lld parent %llx\n",
2202 realm->ino, realm->seq, realm->parent_ino);
2203 sr_rec.ino = cpu_to_le64(realm->ino);
2204 sr_rec.seq = cpu_to_le64(realm->seq);
2205 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2206 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2207 if (err)
2208 goto fail;
2211 send:
2212 reply->pagelist = pagelist;
2213 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2214 reply->nr_pages = calc_pages_for(0, pagelist->length);
2215 ceph_con_send(&session->s_con, reply);
2217 session->s_state = CEPH_MDS_SESSION_OPEN;
2218 mutex_unlock(&session->s_mutex);
2220 mutex_lock(&mdsc->mutex);
2221 __wake_requests(mdsc, &session->s_waiting);
2222 mutex_unlock(&mdsc->mutex);
2224 ceph_put_mds_session(session);
2226 up_read(&mdsc->snap_rwsem);
2227 mutex_lock(&mdsc->mutex);
2228 return;
2230 fail:
2231 ceph_msg_put(reply);
2232 up_read(&mdsc->snap_rwsem);
2233 mutex_unlock(&session->s_mutex);
2234 ceph_put_mds_session(session);
2235 fail_nomsg:
2236 ceph_pagelist_release(pagelist);
2237 kfree(pagelist);
2238 fail_nopagelist:
2239 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2240 mutex_lock(&mdsc->mutex);
2241 return;
2246 * compare old and new mdsmaps, kicking requests
2247 * and closing out old connections as necessary
2249 * called under mdsc->mutex.
2251 static void check_new_map(struct ceph_mds_client *mdsc,
2252 struct ceph_mdsmap *newmap,
2253 struct ceph_mdsmap *oldmap)
2255 int i;
2256 int oldstate, newstate;
2257 struct ceph_mds_session *s;
2259 dout("check_new_map new %u old %u\n",
2260 newmap->m_epoch, oldmap->m_epoch);
2262 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2263 if (mdsc->sessions[i] == NULL)
2264 continue;
2265 s = mdsc->sessions[i];
2266 oldstate = ceph_mdsmap_get_state(oldmap, i);
2267 newstate = ceph_mdsmap_get_state(newmap, i);
2269 dout("check_new_map mds%d state %s -> %s (session %s)\n",
2270 i, ceph_mds_state_name(oldstate),
2271 ceph_mds_state_name(newstate),
2272 session_state_name(s->s_state));
2274 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2275 ceph_mdsmap_get_addr(newmap, i),
2276 sizeof(struct ceph_entity_addr))) {
2277 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2278 /* the session never opened, just close it
2279 * out now */
2280 __wake_requests(mdsc, &s->s_waiting);
2281 __unregister_session(mdsc, s);
2282 } else {
2283 /* just close it */
2284 mutex_unlock(&mdsc->mutex);
2285 mutex_lock(&s->s_mutex);
2286 mutex_lock(&mdsc->mutex);
2287 ceph_con_close(&s->s_con);
2288 mutex_unlock(&s->s_mutex);
2289 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2292 /* kick any requests waiting on the recovering mds */
2293 kick_requests(mdsc, i, 1);
2294 } else if (oldstate == newstate) {
2295 continue; /* nothing new with this mds */
2299 * send reconnect?
2301 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2302 newstate >= CEPH_MDS_STATE_RECONNECT)
2303 send_mds_reconnect(mdsc, i);
2306 * kick requests on any mds that has gone active.
2308 * kick requests on cur or forwarder: we may have sent
2309 * the request to mds1, mds1 told us it forwarded it
2310 * to mds2, but then we learn mds1 failed and can't be
2311 * sure it successfully forwarded our request before
2312 * it died.
2314 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2315 newstate >= CEPH_MDS_STATE_ACTIVE) {
2316 pr_info("mds%d reconnect completed\n", s->s_mds);
2317 kick_requests(mdsc, i, 1);
2318 ceph_kick_flushing_caps(mdsc, s);
2319 wake_up_session_caps(s, 1);
2327 * leases
2331 * caller must hold session s_mutex, dentry->d_lock
2333 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2335 struct ceph_dentry_info *di = ceph_dentry(dentry);
2337 ceph_put_mds_session(di->lease_session);
2338 di->lease_session = NULL;
2341 static void handle_lease(struct ceph_mds_client *mdsc,
2342 struct ceph_mds_session *session,
2343 struct ceph_msg *msg)
2345 struct super_block *sb = mdsc->client->sb;
2346 struct inode *inode;
2347 struct ceph_inode_info *ci;
2348 struct dentry *parent, *dentry;
2349 struct ceph_dentry_info *di;
2350 int mds = session->s_mds;
2351 struct ceph_mds_lease *h = msg->front.iov_base;
2352 struct ceph_vino vino;
2353 int mask;
2354 struct qstr dname;
2355 int release = 0;
2357 dout("handle_lease from mds%d\n", mds);
2359 /* decode */
2360 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2361 goto bad;
2362 vino.ino = le64_to_cpu(h->ino);
2363 vino.snap = CEPH_NOSNAP;
2364 mask = le16_to_cpu(h->mask);
2365 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2366 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2367 if (dname.len != get_unaligned_le32(h+1))
2368 goto bad;
2370 mutex_lock(&session->s_mutex);
2371 session->s_seq++;
2373 /* lookup inode */
2374 inode = ceph_find_inode(sb, vino);
2375 dout("handle_lease '%s', mask %d, ino %llx %p\n",
2376 ceph_lease_op_name(h->action), mask, vino.ino, inode);
2377 if (inode == NULL) {
2378 dout("handle_lease no inode %llx\n", vino.ino);
2379 goto release;
2381 ci = ceph_inode(inode);
2383 /* dentry */
2384 parent = d_find_alias(inode);
2385 if (!parent) {
2386 dout("no parent dentry on inode %p\n", inode);
2387 WARN_ON(1);
2388 goto release; /* hrm... */
2390 dname.hash = full_name_hash(dname.name, dname.len);
2391 dentry = d_lookup(parent, &dname);
2392 dput(parent);
2393 if (!dentry)
2394 goto release;
2396 spin_lock(&dentry->d_lock);
2397 di = ceph_dentry(dentry);
2398 switch (h->action) {
2399 case CEPH_MDS_LEASE_REVOKE:
2400 if (di && di->lease_session == session) {
2401 h->seq = cpu_to_le32(di->lease_seq);
2402 __ceph_mdsc_drop_dentry_lease(dentry);
2404 release = 1;
2405 break;
2407 case CEPH_MDS_LEASE_RENEW:
2408 if (di && di->lease_session == session &&
2409 di->lease_gen == session->s_cap_gen &&
2410 di->lease_renew_from &&
2411 di->lease_renew_after == 0) {
2412 unsigned long duration =
2413 le32_to_cpu(h->duration_ms) * HZ / 1000;
2415 di->lease_seq = le32_to_cpu(h->seq);
2416 dentry->d_time = di->lease_renew_from + duration;
2417 di->lease_renew_after = di->lease_renew_from +
2418 (duration >> 1);
2419 di->lease_renew_from = 0;
2421 break;
2423 spin_unlock(&dentry->d_lock);
2424 dput(dentry);
2426 if (!release)
2427 goto out;
2429 release:
2430 /* let's just reuse the same message */
2431 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2432 ceph_msg_get(msg);
2433 ceph_con_send(&session->s_con, msg);
2435 out:
2436 iput(inode);
2437 mutex_unlock(&session->s_mutex);
2438 return;
2440 bad:
2441 pr_err("corrupt lease message\n");
2442 ceph_msg_dump(msg);
2445 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2446 struct inode *inode,
2447 struct dentry *dentry, char action,
2448 u32 seq)
2450 struct ceph_msg *msg;
2451 struct ceph_mds_lease *lease;
2452 int len = sizeof(*lease) + sizeof(u32);
2453 int dnamelen = 0;
2455 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2456 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2457 dnamelen = dentry->d_name.len;
2458 len += dnamelen;
2460 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, 0, 0, NULL);
2461 if (IS_ERR(msg))
2462 return;
2463 lease = msg->front.iov_base;
2464 lease->action = action;
2465 lease->mask = cpu_to_le16(CEPH_LOCK_DN);
2466 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2467 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2468 lease->seq = cpu_to_le32(seq);
2469 put_unaligned_le32(dnamelen, lease + 1);
2470 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2473 * if this is a preemptive lease RELEASE, no need to
2474 * flush request stream, since the actual request will
2475 * soon follow.
2477 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2479 ceph_con_send(&session->s_con, msg);
2483 * Preemptively release a lease we expect to invalidate anyway.
2484 * Pass @inode always, @dentry is optional.
2486 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2487 struct dentry *dentry, int mask)
2489 struct ceph_dentry_info *di;
2490 struct ceph_mds_session *session;
2491 u32 seq;
2493 BUG_ON(inode == NULL);
2494 BUG_ON(dentry == NULL);
2495 BUG_ON(mask != CEPH_LOCK_DN);
2497 /* is dentry lease valid? */
2498 spin_lock(&dentry->d_lock);
2499 di = ceph_dentry(dentry);
2500 if (!di || !di->lease_session ||
2501 di->lease_session->s_mds < 0 ||
2502 di->lease_gen != di->lease_session->s_cap_gen ||
2503 !time_before(jiffies, dentry->d_time)) {
2504 dout("lease_release inode %p dentry %p -- "
2505 "no lease on %d\n",
2506 inode, dentry, mask);
2507 spin_unlock(&dentry->d_lock);
2508 return;
2511 /* we do have a lease on this dentry; note mds and seq */
2512 session = ceph_get_mds_session(di->lease_session);
2513 seq = di->lease_seq;
2514 __ceph_mdsc_drop_dentry_lease(dentry);
2515 spin_unlock(&dentry->d_lock);
2517 dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2518 inode, dentry, mask, session->s_mds);
2519 ceph_mdsc_lease_send_msg(session, inode, dentry,
2520 CEPH_MDS_LEASE_RELEASE, seq);
2521 ceph_put_mds_session(session);
2525 * drop all leases (and dentry refs) in preparation for umount
2527 static void drop_leases(struct ceph_mds_client *mdsc)
2529 int i;
2531 dout("drop_leases\n");
2532 mutex_lock(&mdsc->mutex);
2533 for (i = 0; i < mdsc->max_sessions; i++) {
2534 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2535 if (!s)
2536 continue;
2537 mutex_unlock(&mdsc->mutex);
2538 mutex_lock(&s->s_mutex);
2539 mutex_unlock(&s->s_mutex);
2540 ceph_put_mds_session(s);
2541 mutex_lock(&mdsc->mutex);
2543 mutex_unlock(&mdsc->mutex);
2549 * delayed work -- periodically trim expired leases, renew caps with mds
2551 static void schedule_delayed(struct ceph_mds_client *mdsc)
2553 int delay = 5;
2554 unsigned hz = round_jiffies_relative(HZ * delay);
2555 schedule_delayed_work(&mdsc->delayed_work, hz);
2558 static void delayed_work(struct work_struct *work)
2560 int i;
2561 struct ceph_mds_client *mdsc =
2562 container_of(work, struct ceph_mds_client, delayed_work.work);
2563 int renew_interval;
2564 int renew_caps;
2566 dout("mdsc delayed_work\n");
2567 ceph_check_delayed_caps(mdsc);
2569 mutex_lock(&mdsc->mutex);
2570 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2571 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2572 mdsc->last_renew_caps);
2573 if (renew_caps)
2574 mdsc->last_renew_caps = jiffies;
2576 for (i = 0; i < mdsc->max_sessions; i++) {
2577 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2578 if (s == NULL)
2579 continue;
2580 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2581 dout("resending session close request for mds%d\n",
2582 s->s_mds);
2583 request_close_session(mdsc, s);
2584 ceph_put_mds_session(s);
2585 continue;
2587 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2588 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2589 s->s_state = CEPH_MDS_SESSION_HUNG;
2590 pr_info("mds%d hung\n", s->s_mds);
2593 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2594 /* this mds is failed or recovering, just wait */
2595 ceph_put_mds_session(s);
2596 continue;
2598 mutex_unlock(&mdsc->mutex);
2600 mutex_lock(&s->s_mutex);
2601 if (renew_caps)
2602 send_renew_caps(mdsc, s);
2603 else
2604 ceph_con_keepalive(&s->s_con);
2605 add_cap_releases(mdsc, s, -1);
2606 send_cap_releases(mdsc, s);
2607 mutex_unlock(&s->s_mutex);
2608 ceph_put_mds_session(s);
2610 mutex_lock(&mdsc->mutex);
2612 mutex_unlock(&mdsc->mutex);
2614 schedule_delayed(mdsc);
2618 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2620 mdsc->client = client;
2621 mutex_init(&mdsc->mutex);
2622 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2623 init_completion(&mdsc->safe_umount_waiters);
2624 init_completion(&mdsc->session_close_waiters);
2625 INIT_LIST_HEAD(&mdsc->waiting_for_map);
2626 mdsc->sessions = NULL;
2627 mdsc->max_sessions = 0;
2628 mdsc->stopping = 0;
2629 init_rwsem(&mdsc->snap_rwsem);
2630 mdsc->snap_realms = RB_ROOT;
2631 INIT_LIST_HEAD(&mdsc->snap_empty);
2632 spin_lock_init(&mdsc->snap_empty_lock);
2633 mdsc->last_tid = 0;
2634 mdsc->request_tree = RB_ROOT;
2635 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2636 mdsc->last_renew_caps = jiffies;
2637 INIT_LIST_HEAD(&mdsc->cap_delay_list);
2638 spin_lock_init(&mdsc->cap_delay_lock);
2639 INIT_LIST_HEAD(&mdsc->snap_flush_list);
2640 spin_lock_init(&mdsc->snap_flush_lock);
2641 mdsc->cap_flush_seq = 0;
2642 INIT_LIST_HEAD(&mdsc->cap_dirty);
2643 mdsc->num_cap_flushing = 0;
2644 spin_lock_init(&mdsc->cap_dirty_lock);
2645 init_waitqueue_head(&mdsc->cap_flushing_wq);
2646 spin_lock_init(&mdsc->dentry_lru_lock);
2647 INIT_LIST_HEAD(&mdsc->dentry_lru);
2648 return 0;
2652 * Wait for safe replies on open mds requests. If we time out, drop
2653 * all requests from the tree to avoid dangling dentry refs.
2655 static void wait_requests(struct ceph_mds_client *mdsc)
2657 struct ceph_mds_request *req;
2658 struct ceph_client *client = mdsc->client;
2660 mutex_lock(&mdsc->mutex);
2661 if (__get_oldest_req(mdsc)) {
2662 mutex_unlock(&mdsc->mutex);
2664 dout("wait_requests waiting for requests\n");
2665 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2666 client->mount_args->mount_timeout * HZ);
2668 /* tear down remaining requests */
2669 mutex_lock(&mdsc->mutex);
2670 while ((req = __get_oldest_req(mdsc))) {
2671 dout("wait_requests timed out on tid %llu\n",
2672 req->r_tid);
2673 __unregister_request(mdsc, req);
2676 mutex_unlock(&mdsc->mutex);
2677 dout("wait_requests done\n");
2681 * called before mount is ro, and before dentries are torn down.
2682 * (hmm, does this still race with new lookups?)
2684 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2686 dout("pre_umount\n");
2687 mdsc->stopping = 1;
2689 drop_leases(mdsc);
2690 ceph_flush_dirty_caps(mdsc);
2691 wait_requests(mdsc);
2695 * wait for all write mds requests to flush.
2697 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2699 struct ceph_mds_request *req = NULL, *nextreq;
2700 struct rb_node *n;
2702 mutex_lock(&mdsc->mutex);
2703 dout("wait_unsafe_requests want %lld\n", want_tid);
2704 restart:
2705 req = __get_oldest_req(mdsc);
2706 while (req && req->r_tid <= want_tid) {
2707 /* find next request */
2708 n = rb_next(&req->r_node);
2709 if (n)
2710 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
2711 else
2712 nextreq = NULL;
2713 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
2714 /* write op */
2715 ceph_mdsc_get_request(req);
2716 if (nextreq)
2717 ceph_mdsc_get_request(nextreq);
2718 mutex_unlock(&mdsc->mutex);
2719 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
2720 req->r_tid, want_tid);
2721 wait_for_completion(&req->r_safe_completion);
2722 mutex_lock(&mdsc->mutex);
2723 ceph_mdsc_put_request(req);
2724 if (!nextreq)
2725 break; /* next dne before, so we're done! */
2726 if (RB_EMPTY_NODE(&nextreq->r_node)) {
2727 /* next request was removed from tree */
2728 ceph_mdsc_put_request(nextreq);
2729 goto restart;
2731 ceph_mdsc_put_request(nextreq); /* won't go away */
2733 req = nextreq;
2735 mutex_unlock(&mdsc->mutex);
2736 dout("wait_unsafe_requests done\n");
2739 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
2741 u64 want_tid, want_flush;
2743 dout("sync\n");
2744 mutex_lock(&mdsc->mutex);
2745 want_tid = mdsc->last_tid;
2746 want_flush = mdsc->cap_flush_seq;
2747 mutex_unlock(&mdsc->mutex);
2748 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
2750 ceph_flush_dirty_caps(mdsc);
2752 wait_unsafe_requests(mdsc, want_tid);
2753 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
2758 * called after sb is ro.
2760 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
2762 struct ceph_mds_session *session;
2763 int i;
2764 int n;
2765 struct ceph_client *client = mdsc->client;
2766 unsigned long started, timeout = client->mount_args->mount_timeout * HZ;
2768 dout("close_sessions\n");
2770 mutex_lock(&mdsc->mutex);
2772 /* close sessions */
2773 started = jiffies;
2774 while (time_before(jiffies, started + timeout)) {
2775 dout("closing sessions\n");
2776 n = 0;
2777 for (i = 0; i < mdsc->max_sessions; i++) {
2778 session = __ceph_lookup_mds_session(mdsc, i);
2779 if (!session)
2780 continue;
2781 mutex_unlock(&mdsc->mutex);
2782 mutex_lock(&session->s_mutex);
2783 __close_session(mdsc, session);
2784 mutex_unlock(&session->s_mutex);
2785 ceph_put_mds_session(session);
2786 mutex_lock(&mdsc->mutex);
2787 n++;
2789 if (n == 0)
2790 break;
2792 if (client->mount_state == CEPH_MOUNT_SHUTDOWN)
2793 break;
2795 dout("waiting for sessions to close\n");
2796 mutex_unlock(&mdsc->mutex);
2797 wait_for_completion_timeout(&mdsc->session_close_waiters,
2798 timeout);
2799 mutex_lock(&mdsc->mutex);
2802 /* tear down remaining sessions */
2803 for (i = 0; i < mdsc->max_sessions; i++) {
2804 if (mdsc->sessions[i]) {
2805 session = get_session(mdsc->sessions[i]);
2806 __unregister_session(mdsc, session);
2807 mutex_unlock(&mdsc->mutex);
2808 mutex_lock(&session->s_mutex);
2809 remove_session_caps(session);
2810 mutex_unlock(&session->s_mutex);
2811 ceph_put_mds_session(session);
2812 mutex_lock(&mdsc->mutex);
2816 WARN_ON(!list_empty(&mdsc->cap_delay_list));
2818 mutex_unlock(&mdsc->mutex);
2820 ceph_cleanup_empty_realms(mdsc);
2822 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2824 dout("stopped\n");
2827 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
2829 dout("stop\n");
2830 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2831 if (mdsc->mdsmap)
2832 ceph_mdsmap_destroy(mdsc->mdsmap);
2833 kfree(mdsc->sessions);
2838 * handle mds map update.
2840 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
2842 u32 epoch;
2843 u32 maplen;
2844 void *p = msg->front.iov_base;
2845 void *end = p + msg->front.iov_len;
2846 struct ceph_mdsmap *newmap, *oldmap;
2847 struct ceph_fsid fsid;
2848 int err = -EINVAL;
2850 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
2851 ceph_decode_copy(&p, &fsid, sizeof(fsid));
2852 if (ceph_check_fsid(mdsc->client, &fsid) < 0)
2853 return;
2854 epoch = ceph_decode_32(&p);
2855 maplen = ceph_decode_32(&p);
2856 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
2858 /* do we need it? */
2859 ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
2860 mutex_lock(&mdsc->mutex);
2861 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
2862 dout("handle_map epoch %u <= our %u\n",
2863 epoch, mdsc->mdsmap->m_epoch);
2864 mutex_unlock(&mdsc->mutex);
2865 return;
2868 newmap = ceph_mdsmap_decode(&p, end);
2869 if (IS_ERR(newmap)) {
2870 err = PTR_ERR(newmap);
2871 goto bad_unlock;
2874 /* swap into place */
2875 if (mdsc->mdsmap) {
2876 oldmap = mdsc->mdsmap;
2877 mdsc->mdsmap = newmap;
2878 check_new_map(mdsc, newmap, oldmap);
2879 ceph_mdsmap_destroy(oldmap);
2880 } else {
2881 mdsc->mdsmap = newmap; /* first mds map */
2883 mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
2885 __wake_requests(mdsc, &mdsc->waiting_for_map);
2887 mutex_unlock(&mdsc->mutex);
2888 schedule_delayed(mdsc);
2889 return;
2891 bad_unlock:
2892 mutex_unlock(&mdsc->mutex);
2893 bad:
2894 pr_err("error decoding mdsmap %d\n", err);
2895 return;
2898 static struct ceph_connection *con_get(struct ceph_connection *con)
2900 struct ceph_mds_session *s = con->private;
2902 if (get_session(s)) {
2903 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
2904 return con;
2906 dout("mdsc con_get %p FAIL\n", s);
2907 return NULL;
2910 static void con_put(struct ceph_connection *con)
2912 struct ceph_mds_session *s = con->private;
2914 ceph_put_mds_session(s);
2915 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
2919 * if the client is unresponsive for long enough, the mds will kill
2920 * the session entirely.
2922 static void peer_reset(struct ceph_connection *con)
2924 struct ceph_mds_session *s = con->private;
2926 pr_err("mds%d gave us the boot. IMPLEMENT RECONNECT.\n",
2927 s->s_mds);
2930 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
2932 struct ceph_mds_session *s = con->private;
2933 struct ceph_mds_client *mdsc = s->s_mdsc;
2934 int type = le16_to_cpu(msg->hdr.type);
2936 mutex_lock(&mdsc->mutex);
2937 if (__verify_registered_session(mdsc, s) < 0) {
2938 mutex_unlock(&mdsc->mutex);
2939 goto out;
2941 mutex_unlock(&mdsc->mutex);
2943 switch (type) {
2944 case CEPH_MSG_MDS_MAP:
2945 ceph_mdsc_handle_map(mdsc, msg);
2946 break;
2947 case CEPH_MSG_CLIENT_SESSION:
2948 handle_session(s, msg);
2949 break;
2950 case CEPH_MSG_CLIENT_REPLY:
2951 handle_reply(s, msg);
2952 break;
2953 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
2954 handle_forward(mdsc, s, msg);
2955 break;
2956 case CEPH_MSG_CLIENT_CAPS:
2957 ceph_handle_caps(s, msg);
2958 break;
2959 case CEPH_MSG_CLIENT_SNAP:
2960 ceph_handle_snap(mdsc, s, msg);
2961 break;
2962 case CEPH_MSG_CLIENT_LEASE:
2963 handle_lease(mdsc, s, msg);
2964 break;
2966 default:
2967 pr_err("received unknown message type %d %s\n", type,
2968 ceph_msg_type_name(type));
2970 out:
2971 ceph_msg_put(msg);
2975 * authentication
2977 static int get_authorizer(struct ceph_connection *con,
2978 void **buf, int *len, int *proto,
2979 void **reply_buf, int *reply_len, int force_new)
2981 struct ceph_mds_session *s = con->private;
2982 struct ceph_mds_client *mdsc = s->s_mdsc;
2983 struct ceph_auth_client *ac = mdsc->client->monc.auth;
2984 int ret = 0;
2986 if (force_new && s->s_authorizer) {
2987 ac->ops->destroy_authorizer(ac, s->s_authorizer);
2988 s->s_authorizer = NULL;
2990 if (s->s_authorizer == NULL) {
2991 if (ac->ops->create_authorizer) {
2992 ret = ac->ops->create_authorizer(
2993 ac, CEPH_ENTITY_TYPE_MDS,
2994 &s->s_authorizer,
2995 &s->s_authorizer_buf,
2996 &s->s_authorizer_buf_len,
2997 &s->s_authorizer_reply_buf,
2998 &s->s_authorizer_reply_buf_len);
2999 if (ret)
3000 return ret;
3004 *proto = ac->protocol;
3005 *buf = s->s_authorizer_buf;
3006 *len = s->s_authorizer_buf_len;
3007 *reply_buf = s->s_authorizer_reply_buf;
3008 *reply_len = s->s_authorizer_reply_buf_len;
3009 return 0;
3013 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3015 struct ceph_mds_session *s = con->private;
3016 struct ceph_mds_client *mdsc = s->s_mdsc;
3017 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3019 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3022 static int invalidate_authorizer(struct ceph_connection *con)
3024 struct ceph_mds_session *s = con->private;
3025 struct ceph_mds_client *mdsc = s->s_mdsc;
3026 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3028 if (ac->ops->invalidate_authorizer)
3029 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3031 return ceph_monc_validate_auth(&mdsc->client->monc);
3034 const static struct ceph_connection_operations mds_con_ops = {
3035 .get = con_get,
3036 .put = con_put,
3037 .dispatch = dispatch,
3038 .get_authorizer = get_authorizer,
3039 .verify_authorizer_reply = verify_authorizer_reply,
3040 .invalidate_authorizer = invalidate_authorizer,
3041 .peer_reset = peer_reset,
3047 /* eof */