Merge branch 'switchdev-transaction-item-queue'
[linux-2.6/btrfs-unstable.git] / drivers / block / pktcdvd.c
blob7be2375db7f2630e8412bd2c21819ae35a6c8da0
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
71 #include <asm/uaccess.h>
73 #define DRIVER_NAME "pktcdvd"
75 #define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
82 #define pkt_dbg(level, pd, fmt, ...) \
83 do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89 } while (0)
91 #define MAX_SPEED 0xffff
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100 static mempool_t *psd_pool;
102 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
103 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105 /* forward declaration */
106 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
107 static int pkt_remove_dev(dev_t pkt_dev);
108 static int pkt_seq_show(struct seq_file *m, void *p);
110 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
116 * create and register a pktcdvd kernel object.
118 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
119 const char* name,
120 struct kobject* parent,
121 struct kobj_type* ktype)
123 struct pktcdvd_kobj *p;
124 int error;
126 p = kzalloc(sizeof(*p), GFP_KERNEL);
127 if (!p)
128 return NULL;
129 p->pd = pd;
130 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
131 if (error) {
132 kobject_put(&p->kobj);
133 return NULL;
135 kobject_uevent(&p->kobj, KOBJ_ADD);
136 return p;
139 * remove a pktcdvd kernel object.
141 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
143 if (p)
144 kobject_put(&p->kobj);
147 * default release function for pktcdvd kernel objects.
149 static void pkt_kobj_release(struct kobject *kobj)
151 kfree(to_pktcdvdkobj(kobj));
155 /**********************************************************
157 * sysfs interface for pktcdvd
158 * by (C) 2006 Thomas Maier <balagi@justmail.de>
160 **********************************************************/
162 #define DEF_ATTR(_obj,_name,_mode) \
163 static struct attribute _obj = { .name = _name, .mode = _mode }
165 /**********************************************************
166 /sys/class/pktcdvd/pktcdvd[0-7]/
167 stat/reset
168 stat/packets_started
169 stat/packets_finished
170 stat/kb_written
171 stat/kb_read
172 stat/kb_read_gather
173 write_queue/size
174 write_queue/congestion_off
175 write_queue/congestion_on
176 **********************************************************/
178 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
179 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
180 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
181 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
182 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
183 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
185 static struct attribute *kobj_pkt_attrs_stat[] = {
186 &kobj_pkt_attr_st1,
187 &kobj_pkt_attr_st2,
188 &kobj_pkt_attr_st3,
189 &kobj_pkt_attr_st4,
190 &kobj_pkt_attr_st5,
191 &kobj_pkt_attr_st6,
192 NULL
195 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
196 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
197 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
199 static struct attribute *kobj_pkt_attrs_wqueue[] = {
200 &kobj_pkt_attr_wq1,
201 &kobj_pkt_attr_wq2,
202 &kobj_pkt_attr_wq3,
203 NULL
206 static ssize_t kobj_pkt_show(struct kobject *kobj,
207 struct attribute *attr, char *data)
209 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
210 int n = 0;
211 int v;
212 if (strcmp(attr->name, "packets_started") == 0) {
213 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
215 } else if (strcmp(attr->name, "packets_finished") == 0) {
216 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
218 } else if (strcmp(attr->name, "kb_written") == 0) {
219 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
221 } else if (strcmp(attr->name, "kb_read") == 0) {
222 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
224 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
225 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
227 } else if (strcmp(attr->name, "size") == 0) {
228 spin_lock(&pd->lock);
229 v = pd->bio_queue_size;
230 spin_unlock(&pd->lock);
231 n = sprintf(data, "%d\n", v);
233 } else if (strcmp(attr->name, "congestion_off") == 0) {
234 spin_lock(&pd->lock);
235 v = pd->write_congestion_off;
236 spin_unlock(&pd->lock);
237 n = sprintf(data, "%d\n", v);
239 } else if (strcmp(attr->name, "congestion_on") == 0) {
240 spin_lock(&pd->lock);
241 v = pd->write_congestion_on;
242 spin_unlock(&pd->lock);
243 n = sprintf(data, "%d\n", v);
245 return n;
248 static void init_write_congestion_marks(int* lo, int* hi)
250 if (*hi > 0) {
251 *hi = max(*hi, 500);
252 *hi = min(*hi, 1000000);
253 if (*lo <= 0)
254 *lo = *hi - 100;
255 else {
256 *lo = min(*lo, *hi - 100);
257 *lo = max(*lo, 100);
259 } else {
260 *hi = -1;
261 *lo = -1;
265 static ssize_t kobj_pkt_store(struct kobject *kobj,
266 struct attribute *attr,
267 const char *data, size_t len)
269 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
270 int val;
272 if (strcmp(attr->name, "reset") == 0 && len > 0) {
273 pd->stats.pkt_started = 0;
274 pd->stats.pkt_ended = 0;
275 pd->stats.secs_w = 0;
276 pd->stats.secs_rg = 0;
277 pd->stats.secs_r = 0;
279 } else if (strcmp(attr->name, "congestion_off") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_off = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
287 } else if (strcmp(attr->name, "congestion_on") == 0
288 && sscanf(data, "%d", &val) == 1) {
289 spin_lock(&pd->lock);
290 pd->write_congestion_on = val;
291 init_write_congestion_marks(&pd->write_congestion_off,
292 &pd->write_congestion_on);
293 spin_unlock(&pd->lock);
295 return len;
298 static const struct sysfs_ops kobj_pkt_ops = {
299 .show = kobj_pkt_show,
300 .store = kobj_pkt_store
302 static struct kobj_type kobj_pkt_type_stat = {
303 .release = pkt_kobj_release,
304 .sysfs_ops = &kobj_pkt_ops,
305 .default_attrs = kobj_pkt_attrs_stat
307 static struct kobj_type kobj_pkt_type_wqueue = {
308 .release = pkt_kobj_release,
309 .sysfs_ops = &kobj_pkt_ops,
310 .default_attrs = kobj_pkt_attrs_wqueue
313 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
315 if (class_pktcdvd) {
316 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
317 "%s", pd->name);
318 if (IS_ERR(pd->dev))
319 pd->dev = NULL;
321 if (pd->dev) {
322 pd->kobj_stat = pkt_kobj_create(pd, "stat",
323 &pd->dev->kobj,
324 &kobj_pkt_type_stat);
325 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
326 &pd->dev->kobj,
327 &kobj_pkt_type_wqueue);
331 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
333 pkt_kobj_remove(pd->kobj_stat);
334 pkt_kobj_remove(pd->kobj_wqueue);
335 if (class_pktcdvd)
336 device_unregister(pd->dev);
340 /********************************************************************
341 /sys/class/pktcdvd/
342 add map block device
343 remove unmap packet dev
344 device_map show mappings
345 *******************************************************************/
347 static void class_pktcdvd_release(struct class *cls)
349 kfree(cls);
351 static ssize_t class_pktcdvd_show_map(struct class *c,
352 struct class_attribute *attr,
353 char *data)
355 int n = 0;
356 int idx;
357 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
358 for (idx = 0; idx < MAX_WRITERS; idx++) {
359 struct pktcdvd_device *pd = pkt_devs[idx];
360 if (!pd)
361 continue;
362 n += sprintf(data+n, "%s %u:%u %u:%u\n",
363 pd->name,
364 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
365 MAJOR(pd->bdev->bd_dev),
366 MINOR(pd->bdev->bd_dev));
368 mutex_unlock(&ctl_mutex);
369 return n;
372 static ssize_t class_pktcdvd_store_add(struct class *c,
373 struct class_attribute *attr,
374 const char *buf,
375 size_t count)
377 unsigned int major, minor;
379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 /* pkt_setup_dev() expects caller to hold reference to self */
381 if (!try_module_get(THIS_MODULE))
382 return -ENODEV;
384 pkt_setup_dev(MKDEV(major, minor), NULL);
386 module_put(THIS_MODULE);
388 return count;
391 return -EINVAL;
394 static ssize_t class_pktcdvd_store_remove(struct class *c,
395 struct class_attribute *attr,
396 const char *buf,
397 size_t count)
399 unsigned int major, minor;
400 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
401 pkt_remove_dev(MKDEV(major, minor));
402 return count;
404 return -EINVAL;
407 static struct class_attribute class_pktcdvd_attrs[] = {
408 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
409 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
410 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
411 __ATTR_NULL
415 static int pkt_sysfs_init(void)
417 int ret = 0;
420 * create control files in sysfs
421 * /sys/class/pktcdvd/...
423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 if (!class_pktcdvd)
425 return -ENOMEM;
426 class_pktcdvd->name = DRIVER_NAME;
427 class_pktcdvd->owner = THIS_MODULE;
428 class_pktcdvd->class_release = class_pktcdvd_release;
429 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
430 ret = class_register(class_pktcdvd);
431 if (ret) {
432 kfree(class_pktcdvd);
433 class_pktcdvd = NULL;
434 pr_err("failed to create class pktcdvd\n");
435 return ret;
437 return 0;
440 static void pkt_sysfs_cleanup(void)
442 if (class_pktcdvd)
443 class_destroy(class_pktcdvd);
444 class_pktcdvd = NULL;
447 /********************************************************************
448 entries in debugfs
450 /sys/kernel/debug/pktcdvd[0-7]/
451 info
453 *******************************************************************/
455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
457 return pkt_seq_show(m, p);
460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
462 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
465 static const struct file_operations debug_fops = {
466 .open = pkt_debugfs_fops_open,
467 .read = seq_read,
468 .llseek = seq_lseek,
469 .release = single_release,
470 .owner = THIS_MODULE,
473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
475 if (!pkt_debugfs_root)
476 return;
477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 if (!pd->dfs_d_root)
479 return;
481 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
482 pd->dfs_d_root, pd, &debug_fops);
485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
487 if (!pkt_debugfs_root)
488 return;
489 debugfs_remove(pd->dfs_f_info);
490 debugfs_remove(pd->dfs_d_root);
491 pd->dfs_f_info = NULL;
492 pd->dfs_d_root = NULL;
495 static void pkt_debugfs_init(void)
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
500 static void pkt_debugfs_cleanup(void)
502 debugfs_remove(pkt_debugfs_root);
503 pkt_debugfs_root = NULL;
506 /* ----------------------------------------------------------*/
509 static void pkt_bio_finished(struct pktcdvd_device *pd)
511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 pkt_dbg(2, pd, "queue empty\n");
514 atomic_set(&pd->iosched.attention, 1);
515 wake_up(&pd->wqueue);
520 * Allocate a packet_data struct
522 static struct packet_data *pkt_alloc_packet_data(int frames)
524 int i;
525 struct packet_data *pkt;
527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 if (!pkt)
529 goto no_pkt;
531 pkt->frames = frames;
532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 if (!pkt->w_bio)
534 goto no_bio;
536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 if (!pkt->pages[i])
539 goto no_page;
542 spin_lock_init(&pkt->lock);
543 bio_list_init(&pkt->orig_bios);
545 for (i = 0; i < frames; i++) {
546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 if (!bio)
548 goto no_rd_bio;
550 pkt->r_bios[i] = bio;
553 return pkt;
555 no_rd_bio:
556 for (i = 0; i < frames; i++) {
557 struct bio *bio = pkt->r_bios[i];
558 if (bio)
559 bio_put(bio);
562 no_page:
563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 if (pkt->pages[i])
565 __free_page(pkt->pages[i]);
566 bio_put(pkt->w_bio);
567 no_bio:
568 kfree(pkt);
569 no_pkt:
570 return NULL;
574 * Free a packet_data struct
576 static void pkt_free_packet_data(struct packet_data *pkt)
578 int i;
580 for (i = 0; i < pkt->frames; i++) {
581 struct bio *bio = pkt->r_bios[i];
582 if (bio)
583 bio_put(bio);
585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 __free_page(pkt->pages[i]);
587 bio_put(pkt->w_bio);
588 kfree(pkt);
591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
593 struct packet_data *pkt, *next;
595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 pkt_free_packet_data(pkt);
600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
605 struct packet_data *pkt;
607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
609 while (nr_packets > 0) {
610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 if (!pkt) {
612 pkt_shrink_pktlist(pd);
613 return 0;
615 pkt->id = nr_packets;
616 pkt->pd = pd;
617 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 nr_packets--;
620 return 1;
623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
625 struct rb_node *n = rb_next(&node->rb_node);
626 if (!n)
627 return NULL;
628 return rb_entry(n, struct pkt_rb_node, rb_node);
631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
633 rb_erase(&node->rb_node, &pd->bio_queue);
634 mempool_free(node, pd->rb_pool);
635 pd->bio_queue_size--;
636 BUG_ON(pd->bio_queue_size < 0);
640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
644 struct rb_node *n = pd->bio_queue.rb_node;
645 struct rb_node *next;
646 struct pkt_rb_node *tmp;
648 if (!n) {
649 BUG_ON(pd->bio_queue_size > 0);
650 return NULL;
653 for (;;) {
654 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 if (s <= tmp->bio->bi_iter.bi_sector)
656 next = n->rb_left;
657 else
658 next = n->rb_right;
659 if (!next)
660 break;
661 n = next;
664 if (s > tmp->bio->bi_iter.bi_sector) {
665 tmp = pkt_rbtree_next(tmp);
666 if (!tmp)
667 return NULL;
669 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 return tmp;
674 * Insert a node into the pd->bio_queue rb tree.
676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
678 struct rb_node **p = &pd->bio_queue.rb_node;
679 struct rb_node *parent = NULL;
680 sector_t s = node->bio->bi_iter.bi_sector;
681 struct pkt_rb_node *tmp;
683 while (*p) {
684 parent = *p;
685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 if (s < tmp->bio->bi_iter.bi_sector)
687 p = &(*p)->rb_left;
688 else
689 p = &(*p)->rb_right;
691 rb_link_node(&node->rb_node, parent, p);
692 rb_insert_color(&node->rb_node, &pd->bio_queue);
693 pd->bio_queue_size++;
697 * Send a packet_command to the underlying block device and
698 * wait for completion.
700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
702 struct request_queue *q = bdev_get_queue(pd->bdev);
703 struct request *rq;
704 int ret = 0;
706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 WRITE : READ, __GFP_WAIT);
708 if (IS_ERR(rq))
709 return PTR_ERR(rq);
710 blk_rq_set_block_pc(rq);
712 if (cgc->buflen) {
713 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
714 __GFP_WAIT);
715 if (ret)
716 goto out;
719 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
720 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
722 rq->timeout = 60*HZ;
723 if (cgc->quiet)
724 rq->cmd_flags |= REQ_QUIET;
726 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
727 if (rq->errors)
728 ret = -EIO;
729 out:
730 blk_put_request(rq);
731 return ret;
734 static const char *sense_key_string(__u8 index)
736 static const char * const info[] = {
737 "No sense", "Recovered error", "Not ready",
738 "Medium error", "Hardware error", "Illegal request",
739 "Unit attention", "Data protect", "Blank check",
742 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
746 * A generic sense dump / resolve mechanism should be implemented across
747 * all ATAPI + SCSI devices.
749 static void pkt_dump_sense(struct pktcdvd_device *pd,
750 struct packet_command *cgc)
752 struct request_sense *sense = cgc->sense;
754 if (sense)
755 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
756 CDROM_PACKET_SIZE, cgc->cmd,
757 sense->sense_key, sense->asc, sense->ascq,
758 sense_key_string(sense->sense_key));
759 else
760 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
764 * flush the drive cache to media
766 static int pkt_flush_cache(struct pktcdvd_device *pd)
768 struct packet_command cgc;
770 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
771 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
772 cgc.quiet = 1;
775 * the IMMED bit -- we default to not setting it, although that
776 * would allow a much faster close, this is safer
778 #if 0
779 cgc.cmd[1] = 1 << 1;
780 #endif
781 return pkt_generic_packet(pd, &cgc);
785 * speed is given as the normal factor, e.g. 4 for 4x
787 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
788 unsigned write_speed, unsigned read_speed)
790 struct packet_command cgc;
791 struct request_sense sense;
792 int ret;
794 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
795 cgc.sense = &sense;
796 cgc.cmd[0] = GPCMD_SET_SPEED;
797 cgc.cmd[2] = (read_speed >> 8) & 0xff;
798 cgc.cmd[3] = read_speed & 0xff;
799 cgc.cmd[4] = (write_speed >> 8) & 0xff;
800 cgc.cmd[5] = write_speed & 0xff;
802 if ((ret = pkt_generic_packet(pd, &cgc)))
803 pkt_dump_sense(pd, &cgc);
805 return ret;
809 * Queue a bio for processing by the low-level CD device. Must be called
810 * from process context.
812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
814 spin_lock(&pd->iosched.lock);
815 if (bio_data_dir(bio) == READ)
816 bio_list_add(&pd->iosched.read_queue, bio);
817 else
818 bio_list_add(&pd->iosched.write_queue, bio);
819 spin_unlock(&pd->iosched.lock);
821 atomic_set(&pd->iosched.attention, 1);
822 wake_up(&pd->wqueue);
826 * Process the queued read/write requests. This function handles special
827 * requirements for CDRW drives:
828 * - A cache flush command must be inserted before a read request if the
829 * previous request was a write.
830 * - Switching between reading and writing is slow, so don't do it more often
831 * than necessary.
832 * - Optimize for throughput at the expense of latency. This means that streaming
833 * writes will never be interrupted by a read, but if the drive has to seek
834 * before the next write, switch to reading instead if there are any pending
835 * read requests.
836 * - Set the read speed according to current usage pattern. When only reading
837 * from the device, it's best to use the highest possible read speed, but
838 * when switching often between reading and writing, it's better to have the
839 * same read and write speeds.
841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
844 if (atomic_read(&pd->iosched.attention) == 0)
845 return;
846 atomic_set(&pd->iosched.attention, 0);
848 for (;;) {
849 struct bio *bio;
850 int reads_queued, writes_queued;
852 spin_lock(&pd->iosched.lock);
853 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 spin_unlock(&pd->iosched.lock);
857 if (!reads_queued && !writes_queued)
858 break;
860 if (pd->iosched.writing) {
861 int need_write_seek = 1;
862 spin_lock(&pd->iosched.lock);
863 bio = bio_list_peek(&pd->iosched.write_queue);
864 spin_unlock(&pd->iosched.lock);
865 if (bio && (bio->bi_iter.bi_sector ==
866 pd->iosched.last_write))
867 need_write_seek = 0;
868 if (need_write_seek && reads_queued) {
869 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 pkt_dbg(2, pd, "write, waiting\n");
871 break;
873 pkt_flush_cache(pd);
874 pd->iosched.writing = 0;
876 } else {
877 if (!reads_queued && writes_queued) {
878 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 pkt_dbg(2, pd, "read, waiting\n");
880 break;
882 pd->iosched.writing = 1;
886 spin_lock(&pd->iosched.lock);
887 if (pd->iosched.writing)
888 bio = bio_list_pop(&pd->iosched.write_queue);
889 else
890 bio = bio_list_pop(&pd->iosched.read_queue);
891 spin_unlock(&pd->iosched.lock);
893 if (!bio)
894 continue;
896 if (bio_data_dir(bio) == READ)
897 pd->iosched.successive_reads +=
898 bio->bi_iter.bi_size >> 10;
899 else {
900 pd->iosched.successive_reads = 0;
901 pd->iosched.last_write = bio_end_sector(bio);
903 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 if (pd->read_speed == pd->write_speed) {
905 pd->read_speed = MAX_SPEED;
906 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
908 } else {
909 if (pd->read_speed != pd->write_speed) {
910 pd->read_speed = pd->write_speed;
911 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
915 atomic_inc(&pd->cdrw.pending_bios);
916 generic_make_request(bio);
921 * Special care is needed if the underlying block device has a small
922 * max_phys_segments value.
924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
926 if ((pd->settings.size << 9) / CD_FRAMESIZE
927 <= queue_max_segments(q)) {
929 * The cdrom device can handle one segment/frame
931 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 return 0;
933 } else if ((pd->settings.size << 9) / PAGE_SIZE
934 <= queue_max_segments(q)) {
936 * We can handle this case at the expense of some extra memory
937 * copies during write operations
939 set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 return 0;
941 } else {
942 pkt_err(pd, "cdrom max_phys_segments too small\n");
943 return -EIO;
948 * Copy all data for this packet to pkt->pages[], so that
949 * a) The number of required segments for the write bio is minimized, which
950 * is necessary for some scsi controllers.
951 * b) The data can be used as cache to avoid read requests if we receive a
952 * new write request for the same zone.
954 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
956 int f, p, offs;
958 /* Copy all data to pkt->pages[] */
959 p = 0;
960 offs = 0;
961 for (f = 0; f < pkt->frames; f++) {
962 if (bvec[f].bv_page != pkt->pages[p]) {
963 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
964 void *vto = page_address(pkt->pages[p]) + offs;
965 memcpy(vto, vfrom, CD_FRAMESIZE);
966 kunmap_atomic(vfrom);
967 bvec[f].bv_page = pkt->pages[p];
968 bvec[f].bv_offset = offs;
969 } else {
970 BUG_ON(bvec[f].bv_offset != offs);
972 offs += CD_FRAMESIZE;
973 if (offs >= PAGE_SIZE) {
974 offs = 0;
975 p++;
980 static void pkt_end_io_read(struct bio *bio)
982 struct packet_data *pkt = bio->bi_private;
983 struct pktcdvd_device *pd = pkt->pd;
984 BUG_ON(!pd);
986 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
987 bio, (unsigned long long)pkt->sector,
988 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_error);
990 if (bio->bi_error)
991 atomic_inc(&pkt->io_errors);
992 if (atomic_dec_and_test(&pkt->io_wait)) {
993 atomic_inc(&pkt->run_sm);
994 wake_up(&pd->wqueue);
996 pkt_bio_finished(pd);
999 static void pkt_end_io_packet_write(struct bio *bio)
1001 struct packet_data *pkt = bio->bi_private;
1002 struct pktcdvd_device *pd = pkt->pd;
1003 BUG_ON(!pd);
1005 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_error);
1007 pd->stats.pkt_ended++;
1009 pkt_bio_finished(pd);
1010 atomic_dec(&pkt->io_wait);
1011 atomic_inc(&pkt->run_sm);
1012 wake_up(&pd->wqueue);
1016 * Schedule reads for the holes in a packet
1018 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1020 int frames_read = 0;
1021 struct bio *bio;
1022 int f;
1023 char written[PACKET_MAX_SIZE];
1025 BUG_ON(bio_list_empty(&pkt->orig_bios));
1027 atomic_set(&pkt->io_wait, 0);
1028 atomic_set(&pkt->io_errors, 0);
1031 * Figure out which frames we need to read before we can write.
1033 memset(written, 0, sizeof(written));
1034 spin_lock(&pkt->lock);
1035 bio_list_for_each(bio, &pkt->orig_bios) {
1036 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1037 (CD_FRAMESIZE >> 9);
1038 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1039 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1040 BUG_ON(first_frame < 0);
1041 BUG_ON(first_frame + num_frames > pkt->frames);
1042 for (f = first_frame; f < first_frame + num_frames; f++)
1043 written[f] = 1;
1045 spin_unlock(&pkt->lock);
1047 if (pkt->cache_valid) {
1048 pkt_dbg(2, pd, "zone %llx cached\n",
1049 (unsigned long long)pkt->sector);
1050 goto out_account;
1054 * Schedule reads for missing parts of the packet.
1056 for (f = 0; f < pkt->frames; f++) {
1057 int p, offset;
1059 if (written[f])
1060 continue;
1062 bio = pkt->r_bios[f];
1063 bio_reset(bio);
1064 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1065 bio->bi_bdev = pd->bdev;
1066 bio->bi_end_io = pkt_end_io_read;
1067 bio->bi_private = pkt;
1069 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1070 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1071 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1072 f, pkt->pages[p], offset);
1073 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1074 BUG();
1076 atomic_inc(&pkt->io_wait);
1077 bio->bi_rw = READ;
1078 pkt_queue_bio(pd, bio);
1079 frames_read++;
1082 out_account:
1083 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1084 frames_read, (unsigned long long)pkt->sector);
1085 pd->stats.pkt_started++;
1086 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1090 * Find a packet matching zone, or the least recently used packet if
1091 * there is no match.
1093 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1095 struct packet_data *pkt;
1097 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1098 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1099 list_del_init(&pkt->list);
1100 if (pkt->sector != zone)
1101 pkt->cache_valid = 0;
1102 return pkt;
1105 BUG();
1106 return NULL;
1109 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1111 if (pkt->cache_valid) {
1112 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1113 } else {
1114 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1119 * recover a failed write, query for relocation if possible
1121 * returns 1 if recovery is possible, or 0 if not
1124 static int pkt_start_recovery(struct packet_data *pkt)
1127 * FIXME. We need help from the file system to implement
1128 * recovery handling.
1130 return 0;
1131 #if 0
1132 struct request *rq = pkt->rq;
1133 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1134 struct block_device *pkt_bdev;
1135 struct super_block *sb = NULL;
1136 unsigned long old_block, new_block;
1137 sector_t new_sector;
1139 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1140 if (pkt_bdev) {
1141 sb = get_super(pkt_bdev);
1142 bdput(pkt_bdev);
1145 if (!sb)
1146 return 0;
1148 if (!sb->s_op->relocate_blocks)
1149 goto out;
1151 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1152 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1153 goto out;
1155 new_sector = new_block * (CD_FRAMESIZE >> 9);
1156 pkt->sector = new_sector;
1158 bio_reset(pkt->bio);
1159 pkt->bio->bi_bdev = pd->bdev;
1160 pkt->bio->bi_rw = REQ_WRITE;
1161 pkt->bio->bi_iter.bi_sector = new_sector;
1162 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1163 pkt->bio->bi_vcnt = pkt->frames;
1165 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1166 pkt->bio->bi_private = pkt;
1168 drop_super(sb);
1169 return 1;
1171 out:
1172 drop_super(sb);
1173 return 0;
1174 #endif
1177 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1179 #if PACKET_DEBUG > 1
1180 static const char *state_name[] = {
1181 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1183 enum packet_data_state old_state = pkt->state;
1184 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1185 pkt->id, (unsigned long long)pkt->sector,
1186 state_name[old_state], state_name[state]);
1187 #endif
1188 pkt->state = state;
1192 * Scan the work queue to see if we can start a new packet.
1193 * returns non-zero if any work was done.
1195 static int pkt_handle_queue(struct pktcdvd_device *pd)
1197 struct packet_data *pkt, *p;
1198 struct bio *bio = NULL;
1199 sector_t zone = 0; /* Suppress gcc warning */
1200 struct pkt_rb_node *node, *first_node;
1201 struct rb_node *n;
1202 int wakeup;
1204 atomic_set(&pd->scan_queue, 0);
1206 if (list_empty(&pd->cdrw.pkt_free_list)) {
1207 pkt_dbg(2, pd, "no pkt\n");
1208 return 0;
1212 * Try to find a zone we are not already working on.
1214 spin_lock(&pd->lock);
1215 first_node = pkt_rbtree_find(pd, pd->current_sector);
1216 if (!first_node) {
1217 n = rb_first(&pd->bio_queue);
1218 if (n)
1219 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1221 node = first_node;
1222 while (node) {
1223 bio = node->bio;
1224 zone = get_zone(bio->bi_iter.bi_sector, pd);
1225 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1226 if (p->sector == zone) {
1227 bio = NULL;
1228 goto try_next_bio;
1231 break;
1232 try_next_bio:
1233 node = pkt_rbtree_next(node);
1234 if (!node) {
1235 n = rb_first(&pd->bio_queue);
1236 if (n)
1237 node = rb_entry(n, struct pkt_rb_node, rb_node);
1239 if (node == first_node)
1240 node = NULL;
1242 spin_unlock(&pd->lock);
1243 if (!bio) {
1244 pkt_dbg(2, pd, "no bio\n");
1245 return 0;
1248 pkt = pkt_get_packet_data(pd, zone);
1250 pd->current_sector = zone + pd->settings.size;
1251 pkt->sector = zone;
1252 BUG_ON(pkt->frames != pd->settings.size >> 2);
1253 pkt->write_size = 0;
1256 * Scan work queue for bios in the same zone and link them
1257 * to this packet.
1259 spin_lock(&pd->lock);
1260 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1261 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1262 bio = node->bio;
1263 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1264 get_zone(bio->bi_iter.bi_sector, pd));
1265 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1266 break;
1267 pkt_rbtree_erase(pd, node);
1268 spin_lock(&pkt->lock);
1269 bio_list_add(&pkt->orig_bios, bio);
1270 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1271 spin_unlock(&pkt->lock);
1273 /* check write congestion marks, and if bio_queue_size is
1274 below, wake up any waiters */
1275 wakeup = (pd->write_congestion_on > 0
1276 && pd->bio_queue_size <= pd->write_congestion_off);
1277 spin_unlock(&pd->lock);
1278 if (wakeup) {
1279 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1280 BLK_RW_ASYNC);
1283 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1284 pkt_set_state(pkt, PACKET_WAITING_STATE);
1285 atomic_set(&pkt->run_sm, 1);
1287 spin_lock(&pd->cdrw.active_list_lock);
1288 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1289 spin_unlock(&pd->cdrw.active_list_lock);
1291 return 1;
1295 * Assemble a bio to write one packet and queue the bio for processing
1296 * by the underlying block device.
1298 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1300 int f;
1301 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1303 bio_reset(pkt->w_bio);
1304 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1305 pkt->w_bio->bi_bdev = pd->bdev;
1306 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1307 pkt->w_bio->bi_private = pkt;
1309 /* XXX: locking? */
1310 for (f = 0; f < pkt->frames; f++) {
1311 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1312 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1313 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1314 BUG();
1316 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1319 * Fill-in bvec with data from orig_bios.
1321 spin_lock(&pkt->lock);
1322 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1324 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1325 spin_unlock(&pkt->lock);
1327 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1328 pkt->write_size, (unsigned long long)pkt->sector);
1330 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1331 pkt_make_local_copy(pkt, bvec);
1332 pkt->cache_valid = 1;
1333 } else {
1334 pkt->cache_valid = 0;
1337 /* Start the write request */
1338 atomic_set(&pkt->io_wait, 1);
1339 pkt->w_bio->bi_rw = WRITE;
1340 pkt_queue_bio(pd, pkt->w_bio);
1343 static void pkt_finish_packet(struct packet_data *pkt, int error)
1345 struct bio *bio;
1347 if (error)
1348 pkt->cache_valid = 0;
1350 /* Finish all bios corresponding to this packet */
1351 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1352 bio->bi_error = error;
1353 bio_endio(bio);
1357 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1359 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1361 for (;;) {
1362 switch (pkt->state) {
1363 case PACKET_WAITING_STATE:
1364 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1365 return;
1367 pkt->sleep_time = 0;
1368 pkt_gather_data(pd, pkt);
1369 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1370 break;
1372 case PACKET_READ_WAIT_STATE:
1373 if (atomic_read(&pkt->io_wait) > 0)
1374 return;
1376 if (atomic_read(&pkt->io_errors) > 0) {
1377 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1378 } else {
1379 pkt_start_write(pd, pkt);
1381 break;
1383 case PACKET_WRITE_WAIT_STATE:
1384 if (atomic_read(&pkt->io_wait) > 0)
1385 return;
1387 if (!pkt->w_bio->bi_error) {
1388 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1389 } else {
1390 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1392 break;
1394 case PACKET_RECOVERY_STATE:
1395 if (pkt_start_recovery(pkt)) {
1396 pkt_start_write(pd, pkt);
1397 } else {
1398 pkt_dbg(2, pd, "No recovery possible\n");
1399 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1401 break;
1403 case PACKET_FINISHED_STATE:
1404 pkt_finish_packet(pkt, pkt->w_bio->bi_error);
1405 return;
1407 default:
1408 BUG();
1409 break;
1414 static void pkt_handle_packets(struct pktcdvd_device *pd)
1416 struct packet_data *pkt, *next;
1419 * Run state machine for active packets
1421 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1422 if (atomic_read(&pkt->run_sm) > 0) {
1423 atomic_set(&pkt->run_sm, 0);
1424 pkt_run_state_machine(pd, pkt);
1429 * Move no longer active packets to the free list
1431 spin_lock(&pd->cdrw.active_list_lock);
1432 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1433 if (pkt->state == PACKET_FINISHED_STATE) {
1434 list_del(&pkt->list);
1435 pkt_put_packet_data(pd, pkt);
1436 pkt_set_state(pkt, PACKET_IDLE_STATE);
1437 atomic_set(&pd->scan_queue, 1);
1440 spin_unlock(&pd->cdrw.active_list_lock);
1443 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1445 struct packet_data *pkt;
1446 int i;
1448 for (i = 0; i < PACKET_NUM_STATES; i++)
1449 states[i] = 0;
1451 spin_lock(&pd->cdrw.active_list_lock);
1452 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1453 states[pkt->state]++;
1455 spin_unlock(&pd->cdrw.active_list_lock);
1459 * kcdrwd is woken up when writes have been queued for one of our
1460 * registered devices
1462 static int kcdrwd(void *foobar)
1464 struct pktcdvd_device *pd = foobar;
1465 struct packet_data *pkt;
1466 long min_sleep_time, residue;
1468 set_user_nice(current, MIN_NICE);
1469 set_freezable();
1471 for (;;) {
1472 DECLARE_WAITQUEUE(wait, current);
1475 * Wait until there is something to do
1477 add_wait_queue(&pd->wqueue, &wait);
1478 for (;;) {
1479 set_current_state(TASK_INTERRUPTIBLE);
1481 /* Check if we need to run pkt_handle_queue */
1482 if (atomic_read(&pd->scan_queue) > 0)
1483 goto work_to_do;
1485 /* Check if we need to run the state machine for some packet */
1486 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1487 if (atomic_read(&pkt->run_sm) > 0)
1488 goto work_to_do;
1491 /* Check if we need to process the iosched queues */
1492 if (atomic_read(&pd->iosched.attention) != 0)
1493 goto work_to_do;
1495 /* Otherwise, go to sleep */
1496 if (PACKET_DEBUG > 1) {
1497 int states[PACKET_NUM_STATES];
1498 pkt_count_states(pd, states);
1499 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1500 states[0], states[1], states[2],
1501 states[3], states[4], states[5]);
1504 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1505 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1506 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1507 min_sleep_time = pkt->sleep_time;
1510 pkt_dbg(2, pd, "sleeping\n");
1511 residue = schedule_timeout(min_sleep_time);
1512 pkt_dbg(2, pd, "wake up\n");
1514 /* make swsusp happy with our thread */
1515 try_to_freeze();
1517 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1518 if (!pkt->sleep_time)
1519 continue;
1520 pkt->sleep_time -= min_sleep_time - residue;
1521 if (pkt->sleep_time <= 0) {
1522 pkt->sleep_time = 0;
1523 atomic_inc(&pkt->run_sm);
1527 if (kthread_should_stop())
1528 break;
1530 work_to_do:
1531 set_current_state(TASK_RUNNING);
1532 remove_wait_queue(&pd->wqueue, &wait);
1534 if (kthread_should_stop())
1535 break;
1538 * if pkt_handle_queue returns true, we can queue
1539 * another request.
1541 while (pkt_handle_queue(pd))
1545 * Handle packet state machine
1547 pkt_handle_packets(pd);
1550 * Handle iosched queues
1552 pkt_iosched_process_queue(pd);
1555 return 0;
1558 static void pkt_print_settings(struct pktcdvd_device *pd)
1560 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1561 pd->settings.fp ? "Fixed" : "Variable",
1562 pd->settings.size >> 2,
1563 pd->settings.block_mode == 8 ? '1' : '2');
1566 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1568 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1570 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1571 cgc->cmd[2] = page_code | (page_control << 6);
1572 cgc->cmd[7] = cgc->buflen >> 8;
1573 cgc->cmd[8] = cgc->buflen & 0xff;
1574 cgc->data_direction = CGC_DATA_READ;
1575 return pkt_generic_packet(pd, cgc);
1578 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1580 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1581 memset(cgc->buffer, 0, 2);
1582 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1583 cgc->cmd[1] = 0x10; /* PF */
1584 cgc->cmd[7] = cgc->buflen >> 8;
1585 cgc->cmd[8] = cgc->buflen & 0xff;
1586 cgc->data_direction = CGC_DATA_WRITE;
1587 return pkt_generic_packet(pd, cgc);
1590 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1592 struct packet_command cgc;
1593 int ret;
1595 /* set up command and get the disc info */
1596 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1597 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1598 cgc.cmd[8] = cgc.buflen = 2;
1599 cgc.quiet = 1;
1601 if ((ret = pkt_generic_packet(pd, &cgc)))
1602 return ret;
1604 /* not all drives have the same disc_info length, so requeue
1605 * packet with the length the drive tells us it can supply
1607 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1608 sizeof(di->disc_information_length);
1610 if (cgc.buflen > sizeof(disc_information))
1611 cgc.buflen = sizeof(disc_information);
1613 cgc.cmd[8] = cgc.buflen;
1614 return pkt_generic_packet(pd, &cgc);
1617 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1619 struct packet_command cgc;
1620 int ret;
1622 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1623 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1624 cgc.cmd[1] = type & 3;
1625 cgc.cmd[4] = (track & 0xff00) >> 8;
1626 cgc.cmd[5] = track & 0xff;
1627 cgc.cmd[8] = 8;
1628 cgc.quiet = 1;
1630 if ((ret = pkt_generic_packet(pd, &cgc)))
1631 return ret;
1633 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1634 sizeof(ti->track_information_length);
1636 if (cgc.buflen > sizeof(track_information))
1637 cgc.buflen = sizeof(track_information);
1639 cgc.cmd[8] = cgc.buflen;
1640 return pkt_generic_packet(pd, &cgc);
1643 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1644 long *last_written)
1646 disc_information di;
1647 track_information ti;
1648 __u32 last_track;
1649 int ret = -1;
1651 if ((ret = pkt_get_disc_info(pd, &di)))
1652 return ret;
1654 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1655 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1656 return ret;
1658 /* if this track is blank, try the previous. */
1659 if (ti.blank) {
1660 last_track--;
1661 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1662 return ret;
1665 /* if last recorded field is valid, return it. */
1666 if (ti.lra_v) {
1667 *last_written = be32_to_cpu(ti.last_rec_address);
1668 } else {
1669 /* make it up instead */
1670 *last_written = be32_to_cpu(ti.track_start) +
1671 be32_to_cpu(ti.track_size);
1672 if (ti.free_blocks)
1673 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1675 return 0;
1679 * write mode select package based on pd->settings
1681 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1683 struct packet_command cgc;
1684 struct request_sense sense;
1685 write_param_page *wp;
1686 char buffer[128];
1687 int ret, size;
1689 /* doesn't apply to DVD+RW or DVD-RAM */
1690 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1691 return 0;
1693 memset(buffer, 0, sizeof(buffer));
1694 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1695 cgc.sense = &sense;
1696 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1697 pkt_dump_sense(pd, &cgc);
1698 return ret;
1701 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1702 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1703 if (size > sizeof(buffer))
1704 size = sizeof(buffer);
1707 * now get it all
1709 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1710 cgc.sense = &sense;
1711 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1712 pkt_dump_sense(pd, &cgc);
1713 return ret;
1717 * write page is offset header + block descriptor length
1719 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1721 wp->fp = pd->settings.fp;
1722 wp->track_mode = pd->settings.track_mode;
1723 wp->write_type = pd->settings.write_type;
1724 wp->data_block_type = pd->settings.block_mode;
1726 wp->multi_session = 0;
1728 #ifdef PACKET_USE_LS
1729 wp->link_size = 7;
1730 wp->ls_v = 1;
1731 #endif
1733 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1734 wp->session_format = 0;
1735 wp->subhdr2 = 0x20;
1736 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1737 wp->session_format = 0x20;
1738 wp->subhdr2 = 8;
1739 #if 0
1740 wp->mcn[0] = 0x80;
1741 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1742 #endif
1743 } else {
1745 * paranoia
1747 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1748 return 1;
1750 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1752 cgc.buflen = cgc.cmd[8] = size;
1753 if ((ret = pkt_mode_select(pd, &cgc))) {
1754 pkt_dump_sense(pd, &cgc);
1755 return ret;
1758 pkt_print_settings(pd);
1759 return 0;
1763 * 1 -- we can write to this track, 0 -- we can't
1765 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1767 switch (pd->mmc3_profile) {
1768 case 0x1a: /* DVD+RW */
1769 case 0x12: /* DVD-RAM */
1770 /* The track is always writable on DVD+RW/DVD-RAM */
1771 return 1;
1772 default:
1773 break;
1776 if (!ti->packet || !ti->fp)
1777 return 0;
1780 * "good" settings as per Mt Fuji.
1782 if (ti->rt == 0 && ti->blank == 0)
1783 return 1;
1785 if (ti->rt == 0 && ti->blank == 1)
1786 return 1;
1788 if (ti->rt == 1 && ti->blank == 0)
1789 return 1;
1791 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1792 return 0;
1796 * 1 -- we can write to this disc, 0 -- we can't
1798 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1800 switch (pd->mmc3_profile) {
1801 case 0x0a: /* CD-RW */
1802 case 0xffff: /* MMC3 not supported */
1803 break;
1804 case 0x1a: /* DVD+RW */
1805 case 0x13: /* DVD-RW */
1806 case 0x12: /* DVD-RAM */
1807 return 1;
1808 default:
1809 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1810 pd->mmc3_profile);
1811 return 0;
1815 * for disc type 0xff we should probably reserve a new track.
1816 * but i'm not sure, should we leave this to user apps? probably.
1818 if (di->disc_type == 0xff) {
1819 pkt_notice(pd, "unknown disc - no track?\n");
1820 return 0;
1823 if (di->disc_type != 0x20 && di->disc_type != 0) {
1824 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1825 return 0;
1828 if (di->erasable == 0) {
1829 pkt_notice(pd, "disc not erasable\n");
1830 return 0;
1833 if (di->border_status == PACKET_SESSION_RESERVED) {
1834 pkt_err(pd, "can't write to last track (reserved)\n");
1835 return 0;
1838 return 1;
1841 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1843 struct packet_command cgc;
1844 unsigned char buf[12];
1845 disc_information di;
1846 track_information ti;
1847 int ret, track;
1849 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1850 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1851 cgc.cmd[8] = 8;
1852 ret = pkt_generic_packet(pd, &cgc);
1853 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1855 memset(&di, 0, sizeof(disc_information));
1856 memset(&ti, 0, sizeof(track_information));
1858 if ((ret = pkt_get_disc_info(pd, &di))) {
1859 pkt_err(pd, "failed get_disc\n");
1860 return ret;
1863 if (!pkt_writable_disc(pd, &di))
1864 return -EROFS;
1866 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1868 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1869 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1870 pkt_err(pd, "failed get_track\n");
1871 return ret;
1874 if (!pkt_writable_track(pd, &ti)) {
1875 pkt_err(pd, "can't write to this track\n");
1876 return -EROFS;
1880 * we keep packet size in 512 byte units, makes it easier to
1881 * deal with request calculations.
1883 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1884 if (pd->settings.size == 0) {
1885 pkt_notice(pd, "detected zero packet size!\n");
1886 return -ENXIO;
1888 if (pd->settings.size > PACKET_MAX_SECTORS) {
1889 pkt_err(pd, "packet size is too big\n");
1890 return -EROFS;
1892 pd->settings.fp = ti.fp;
1893 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1895 if (ti.nwa_v) {
1896 pd->nwa = be32_to_cpu(ti.next_writable);
1897 set_bit(PACKET_NWA_VALID, &pd->flags);
1901 * in theory we could use lra on -RW media as well and just zero
1902 * blocks that haven't been written yet, but in practice that
1903 * is just a no-go. we'll use that for -R, naturally.
1905 if (ti.lra_v) {
1906 pd->lra = be32_to_cpu(ti.last_rec_address);
1907 set_bit(PACKET_LRA_VALID, &pd->flags);
1908 } else {
1909 pd->lra = 0xffffffff;
1910 set_bit(PACKET_LRA_VALID, &pd->flags);
1914 * fine for now
1916 pd->settings.link_loss = 7;
1917 pd->settings.write_type = 0; /* packet */
1918 pd->settings.track_mode = ti.track_mode;
1921 * mode1 or mode2 disc
1923 switch (ti.data_mode) {
1924 case PACKET_MODE1:
1925 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1926 break;
1927 case PACKET_MODE2:
1928 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1929 break;
1930 default:
1931 pkt_err(pd, "unknown data mode\n");
1932 return -EROFS;
1934 return 0;
1938 * enable/disable write caching on drive
1940 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1941 int set)
1943 struct packet_command cgc;
1944 struct request_sense sense;
1945 unsigned char buf[64];
1946 int ret;
1948 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1949 cgc.sense = &sense;
1950 cgc.buflen = pd->mode_offset + 12;
1953 * caching mode page might not be there, so quiet this command
1955 cgc.quiet = 1;
1957 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1958 return ret;
1960 buf[pd->mode_offset + 10] |= (!!set << 2);
1962 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1963 ret = pkt_mode_select(pd, &cgc);
1964 if (ret) {
1965 pkt_err(pd, "write caching control failed\n");
1966 pkt_dump_sense(pd, &cgc);
1967 } else if (!ret && set)
1968 pkt_notice(pd, "enabled write caching\n");
1969 return ret;
1972 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1974 struct packet_command cgc;
1976 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1977 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1978 cgc.cmd[4] = lockflag ? 1 : 0;
1979 return pkt_generic_packet(pd, &cgc);
1983 * Returns drive maximum write speed
1985 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1986 unsigned *write_speed)
1988 struct packet_command cgc;
1989 struct request_sense sense;
1990 unsigned char buf[256+18];
1991 unsigned char *cap_buf;
1992 int ret, offset;
1994 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1995 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1996 cgc.sense = &sense;
1998 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1999 if (ret) {
2000 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2001 sizeof(struct mode_page_header);
2002 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2003 if (ret) {
2004 pkt_dump_sense(pd, &cgc);
2005 return ret;
2009 offset = 20; /* Obsoleted field, used by older drives */
2010 if (cap_buf[1] >= 28)
2011 offset = 28; /* Current write speed selected */
2012 if (cap_buf[1] >= 30) {
2013 /* If the drive reports at least one "Logical Unit Write
2014 * Speed Performance Descriptor Block", use the information
2015 * in the first block. (contains the highest speed)
2017 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2018 if (num_spdb > 0)
2019 offset = 34;
2022 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2023 return 0;
2026 /* These tables from cdrecord - I don't have orange book */
2027 /* standard speed CD-RW (1-4x) */
2028 static char clv_to_speed[16] = {
2029 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2030 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2032 /* high speed CD-RW (-10x) */
2033 static char hs_clv_to_speed[16] = {
2034 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2035 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2037 /* ultra high speed CD-RW */
2038 static char us_clv_to_speed[16] = {
2039 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2040 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2044 * reads the maximum media speed from ATIP
2046 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2047 unsigned *speed)
2049 struct packet_command cgc;
2050 struct request_sense sense;
2051 unsigned char buf[64];
2052 unsigned int size, st, sp;
2053 int ret;
2055 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2056 cgc.sense = &sense;
2057 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2058 cgc.cmd[1] = 2;
2059 cgc.cmd[2] = 4; /* READ ATIP */
2060 cgc.cmd[8] = 2;
2061 ret = pkt_generic_packet(pd, &cgc);
2062 if (ret) {
2063 pkt_dump_sense(pd, &cgc);
2064 return ret;
2066 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2067 if (size > sizeof(buf))
2068 size = sizeof(buf);
2070 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2071 cgc.sense = &sense;
2072 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2073 cgc.cmd[1] = 2;
2074 cgc.cmd[2] = 4;
2075 cgc.cmd[8] = size;
2076 ret = pkt_generic_packet(pd, &cgc);
2077 if (ret) {
2078 pkt_dump_sense(pd, &cgc);
2079 return ret;
2082 if (!(buf[6] & 0x40)) {
2083 pkt_notice(pd, "disc type is not CD-RW\n");
2084 return 1;
2086 if (!(buf[6] & 0x4)) {
2087 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2088 return 1;
2091 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2093 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2095 /* Info from cdrecord */
2096 switch (st) {
2097 case 0: /* standard speed */
2098 *speed = clv_to_speed[sp];
2099 break;
2100 case 1: /* high speed */
2101 *speed = hs_clv_to_speed[sp];
2102 break;
2103 case 2: /* ultra high speed */
2104 *speed = us_clv_to_speed[sp];
2105 break;
2106 default:
2107 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2108 return 1;
2110 if (*speed) {
2111 pkt_info(pd, "maximum media speed: %d\n", *speed);
2112 return 0;
2113 } else {
2114 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2115 return 1;
2119 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2121 struct packet_command cgc;
2122 struct request_sense sense;
2123 int ret;
2125 pkt_dbg(2, pd, "Performing OPC\n");
2127 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2128 cgc.sense = &sense;
2129 cgc.timeout = 60*HZ;
2130 cgc.cmd[0] = GPCMD_SEND_OPC;
2131 cgc.cmd[1] = 1;
2132 if ((ret = pkt_generic_packet(pd, &cgc)))
2133 pkt_dump_sense(pd, &cgc);
2134 return ret;
2137 static int pkt_open_write(struct pktcdvd_device *pd)
2139 int ret;
2140 unsigned int write_speed, media_write_speed, read_speed;
2142 if ((ret = pkt_probe_settings(pd))) {
2143 pkt_dbg(2, pd, "failed probe\n");
2144 return ret;
2147 if ((ret = pkt_set_write_settings(pd))) {
2148 pkt_dbg(1, pd, "failed saving write settings\n");
2149 return -EIO;
2152 pkt_write_caching(pd, USE_WCACHING);
2154 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2155 write_speed = 16 * 177;
2156 switch (pd->mmc3_profile) {
2157 case 0x13: /* DVD-RW */
2158 case 0x1a: /* DVD+RW */
2159 case 0x12: /* DVD-RAM */
2160 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2161 break;
2162 default:
2163 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2164 media_write_speed = 16;
2165 write_speed = min(write_speed, media_write_speed * 177);
2166 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2167 break;
2169 read_speed = write_speed;
2171 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2172 pkt_dbg(1, pd, "couldn't set write speed\n");
2173 return -EIO;
2175 pd->write_speed = write_speed;
2176 pd->read_speed = read_speed;
2178 if ((ret = pkt_perform_opc(pd))) {
2179 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2182 return 0;
2186 * called at open time.
2188 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2190 int ret;
2191 long lba;
2192 struct request_queue *q;
2195 * We need to re-open the cdrom device without O_NONBLOCK to be able
2196 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2197 * so bdget() can't fail.
2199 bdget(pd->bdev->bd_dev);
2200 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2201 goto out;
2203 if ((ret = pkt_get_last_written(pd, &lba))) {
2204 pkt_err(pd, "pkt_get_last_written failed\n");
2205 goto out_putdev;
2208 set_capacity(pd->disk, lba << 2);
2209 set_capacity(pd->bdev->bd_disk, lba << 2);
2210 bd_set_size(pd->bdev, (loff_t)lba << 11);
2212 q = bdev_get_queue(pd->bdev);
2213 if (write) {
2214 if ((ret = pkt_open_write(pd)))
2215 goto out_putdev;
2217 * Some CDRW drives can not handle writes larger than one packet,
2218 * even if the size is a multiple of the packet size.
2220 spin_lock_irq(q->queue_lock);
2221 blk_queue_max_hw_sectors(q, pd->settings.size);
2222 spin_unlock_irq(q->queue_lock);
2223 set_bit(PACKET_WRITABLE, &pd->flags);
2224 } else {
2225 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2226 clear_bit(PACKET_WRITABLE, &pd->flags);
2229 if ((ret = pkt_set_segment_merging(pd, q)))
2230 goto out_putdev;
2232 if (write) {
2233 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2234 pkt_err(pd, "not enough memory for buffers\n");
2235 ret = -ENOMEM;
2236 goto out_putdev;
2238 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2241 return 0;
2243 out_putdev:
2244 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2245 out:
2246 return ret;
2250 * called when the device is closed. makes sure that the device flushes
2251 * the internal cache before we close.
2253 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2255 if (flush && pkt_flush_cache(pd))
2256 pkt_dbg(1, pd, "not flushing cache\n");
2258 pkt_lock_door(pd, 0);
2260 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2261 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2263 pkt_shrink_pktlist(pd);
2266 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2268 if (dev_minor >= MAX_WRITERS)
2269 return NULL;
2270 return pkt_devs[dev_minor];
2273 static int pkt_open(struct block_device *bdev, fmode_t mode)
2275 struct pktcdvd_device *pd = NULL;
2276 int ret;
2278 mutex_lock(&pktcdvd_mutex);
2279 mutex_lock(&ctl_mutex);
2280 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2281 if (!pd) {
2282 ret = -ENODEV;
2283 goto out;
2285 BUG_ON(pd->refcnt < 0);
2287 pd->refcnt++;
2288 if (pd->refcnt > 1) {
2289 if ((mode & FMODE_WRITE) &&
2290 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2291 ret = -EBUSY;
2292 goto out_dec;
2294 } else {
2295 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2296 if (ret)
2297 goto out_dec;
2299 * needed here as well, since ext2 (among others) may change
2300 * the blocksize at mount time
2302 set_blocksize(bdev, CD_FRAMESIZE);
2305 mutex_unlock(&ctl_mutex);
2306 mutex_unlock(&pktcdvd_mutex);
2307 return 0;
2309 out_dec:
2310 pd->refcnt--;
2311 out:
2312 mutex_unlock(&ctl_mutex);
2313 mutex_unlock(&pktcdvd_mutex);
2314 return ret;
2317 static void pkt_close(struct gendisk *disk, fmode_t mode)
2319 struct pktcdvd_device *pd = disk->private_data;
2321 mutex_lock(&pktcdvd_mutex);
2322 mutex_lock(&ctl_mutex);
2323 pd->refcnt--;
2324 BUG_ON(pd->refcnt < 0);
2325 if (pd->refcnt == 0) {
2326 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2327 pkt_release_dev(pd, flush);
2329 mutex_unlock(&ctl_mutex);
2330 mutex_unlock(&pktcdvd_mutex);
2334 static void pkt_end_io_read_cloned(struct bio *bio)
2336 struct packet_stacked_data *psd = bio->bi_private;
2337 struct pktcdvd_device *pd = psd->pd;
2339 psd->bio->bi_error = bio->bi_error;
2340 bio_put(bio);
2341 bio_endio(psd->bio);
2342 mempool_free(psd, psd_pool);
2343 pkt_bio_finished(pd);
2346 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2348 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2349 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2351 psd->pd = pd;
2352 psd->bio = bio;
2353 cloned_bio->bi_bdev = pd->bdev;
2354 cloned_bio->bi_private = psd;
2355 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2356 pd->stats.secs_r += bio_sectors(bio);
2357 pkt_queue_bio(pd, cloned_bio);
2360 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2362 struct pktcdvd_device *pd = q->queuedata;
2363 sector_t zone;
2364 struct packet_data *pkt;
2365 int was_empty, blocked_bio;
2366 struct pkt_rb_node *node;
2368 zone = get_zone(bio->bi_iter.bi_sector, pd);
2371 * If we find a matching packet in state WAITING or READ_WAIT, we can
2372 * just append this bio to that packet.
2374 spin_lock(&pd->cdrw.active_list_lock);
2375 blocked_bio = 0;
2376 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2377 if (pkt->sector == zone) {
2378 spin_lock(&pkt->lock);
2379 if ((pkt->state == PACKET_WAITING_STATE) ||
2380 (pkt->state == PACKET_READ_WAIT_STATE)) {
2381 bio_list_add(&pkt->orig_bios, bio);
2382 pkt->write_size +=
2383 bio->bi_iter.bi_size / CD_FRAMESIZE;
2384 if ((pkt->write_size >= pkt->frames) &&
2385 (pkt->state == PACKET_WAITING_STATE)) {
2386 atomic_inc(&pkt->run_sm);
2387 wake_up(&pd->wqueue);
2389 spin_unlock(&pkt->lock);
2390 spin_unlock(&pd->cdrw.active_list_lock);
2391 return;
2392 } else {
2393 blocked_bio = 1;
2395 spin_unlock(&pkt->lock);
2398 spin_unlock(&pd->cdrw.active_list_lock);
2401 * Test if there is enough room left in the bio work queue
2402 * (queue size >= congestion on mark).
2403 * If not, wait till the work queue size is below the congestion off mark.
2405 spin_lock(&pd->lock);
2406 if (pd->write_congestion_on > 0
2407 && pd->bio_queue_size >= pd->write_congestion_on) {
2408 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2409 do {
2410 spin_unlock(&pd->lock);
2411 congestion_wait(BLK_RW_ASYNC, HZ);
2412 spin_lock(&pd->lock);
2413 } while(pd->bio_queue_size > pd->write_congestion_off);
2415 spin_unlock(&pd->lock);
2418 * No matching packet found. Store the bio in the work queue.
2420 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2421 node->bio = bio;
2422 spin_lock(&pd->lock);
2423 BUG_ON(pd->bio_queue_size < 0);
2424 was_empty = (pd->bio_queue_size == 0);
2425 pkt_rbtree_insert(pd, node);
2426 spin_unlock(&pd->lock);
2429 * Wake up the worker thread.
2431 atomic_set(&pd->scan_queue, 1);
2432 if (was_empty) {
2433 /* This wake_up is required for correct operation */
2434 wake_up(&pd->wqueue);
2435 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2437 * This wake up is not required for correct operation,
2438 * but improves performance in some cases.
2440 wake_up(&pd->wqueue);
2444 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2446 struct pktcdvd_device *pd;
2447 char b[BDEVNAME_SIZE];
2448 struct bio *split;
2450 blk_queue_bounce(q, &bio);
2452 blk_queue_split(q, &bio, q->bio_split);
2454 pd = q->queuedata;
2455 if (!pd) {
2456 pr_err("%s incorrect request queue\n",
2457 bdevname(bio->bi_bdev, b));
2458 goto end_io;
2461 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2462 (unsigned long long)bio->bi_iter.bi_sector,
2463 (unsigned long long)bio_end_sector(bio));
2466 * Clone READ bios so we can have our own bi_end_io callback.
2468 if (bio_data_dir(bio) == READ) {
2469 pkt_make_request_read(pd, bio);
2470 return;
2473 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2474 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2475 (unsigned long long)bio->bi_iter.bi_sector);
2476 goto end_io;
2479 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2480 pkt_err(pd, "wrong bio size\n");
2481 goto end_io;
2484 do {
2485 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2486 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2488 if (last_zone != zone) {
2489 BUG_ON(last_zone != zone + pd->settings.size);
2491 split = bio_split(bio, last_zone -
2492 bio->bi_iter.bi_sector,
2493 GFP_NOIO, fs_bio_set);
2494 bio_chain(split, bio);
2495 } else {
2496 split = bio;
2499 pkt_make_request_write(q, split);
2500 } while (split != bio);
2502 return;
2503 end_io:
2504 bio_io_error(bio);
2509 static void pkt_init_queue(struct pktcdvd_device *pd)
2511 struct request_queue *q = pd->disk->queue;
2513 blk_queue_make_request(q, pkt_make_request);
2514 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2515 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2516 q->queuedata = pd;
2519 static int pkt_seq_show(struct seq_file *m, void *p)
2521 struct pktcdvd_device *pd = m->private;
2522 char *msg;
2523 char bdev_buf[BDEVNAME_SIZE];
2524 int states[PACKET_NUM_STATES];
2526 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2527 bdevname(pd->bdev, bdev_buf));
2529 seq_printf(m, "\nSettings:\n");
2530 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2532 if (pd->settings.write_type == 0)
2533 msg = "Packet";
2534 else
2535 msg = "Unknown";
2536 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2538 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2539 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2541 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2543 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2544 msg = "Mode 1";
2545 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2546 msg = "Mode 2";
2547 else
2548 msg = "Unknown";
2549 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2551 seq_printf(m, "\nStatistics:\n");
2552 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2553 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2554 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2555 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2556 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2558 seq_printf(m, "\nMisc:\n");
2559 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2560 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2561 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2562 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2563 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2564 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2566 seq_printf(m, "\nQueue state:\n");
2567 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2568 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2569 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2571 pkt_count_states(pd, states);
2572 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2573 states[0], states[1], states[2], states[3], states[4], states[5]);
2575 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2576 pd->write_congestion_off,
2577 pd->write_congestion_on);
2578 return 0;
2581 static int pkt_seq_open(struct inode *inode, struct file *file)
2583 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2586 static const struct file_operations pkt_proc_fops = {
2587 .open = pkt_seq_open,
2588 .read = seq_read,
2589 .llseek = seq_lseek,
2590 .release = single_release
2593 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2595 int i;
2596 int ret = 0;
2597 char b[BDEVNAME_SIZE];
2598 struct block_device *bdev;
2600 if (pd->pkt_dev == dev) {
2601 pkt_err(pd, "recursive setup not allowed\n");
2602 return -EBUSY;
2604 for (i = 0; i < MAX_WRITERS; i++) {
2605 struct pktcdvd_device *pd2 = pkt_devs[i];
2606 if (!pd2)
2607 continue;
2608 if (pd2->bdev->bd_dev == dev) {
2609 pkt_err(pd, "%s already setup\n",
2610 bdevname(pd2->bdev, b));
2611 return -EBUSY;
2613 if (pd2->pkt_dev == dev) {
2614 pkt_err(pd, "can't chain pktcdvd devices\n");
2615 return -EBUSY;
2619 bdev = bdget(dev);
2620 if (!bdev)
2621 return -ENOMEM;
2622 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2623 if (ret)
2624 return ret;
2626 /* This is safe, since we have a reference from open(). */
2627 __module_get(THIS_MODULE);
2629 pd->bdev = bdev;
2630 set_blocksize(bdev, CD_FRAMESIZE);
2632 pkt_init_queue(pd);
2634 atomic_set(&pd->cdrw.pending_bios, 0);
2635 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2636 if (IS_ERR(pd->cdrw.thread)) {
2637 pkt_err(pd, "can't start kernel thread\n");
2638 ret = -ENOMEM;
2639 goto out_mem;
2642 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2643 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2644 return 0;
2646 out_mem:
2647 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2648 /* This is safe: open() is still holding a reference. */
2649 module_put(THIS_MODULE);
2650 return ret;
2653 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2655 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2656 int ret;
2658 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2659 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2661 mutex_lock(&pktcdvd_mutex);
2662 switch (cmd) {
2663 case CDROMEJECT:
2665 * The door gets locked when the device is opened, so we
2666 * have to unlock it or else the eject command fails.
2668 if (pd->refcnt == 1)
2669 pkt_lock_door(pd, 0);
2670 /* fallthru */
2672 * forward selected CDROM ioctls to CD-ROM, for UDF
2674 case CDROMMULTISESSION:
2675 case CDROMREADTOCENTRY:
2676 case CDROM_LAST_WRITTEN:
2677 case CDROM_SEND_PACKET:
2678 case SCSI_IOCTL_SEND_COMMAND:
2679 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2680 break;
2682 default:
2683 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2684 ret = -ENOTTY;
2686 mutex_unlock(&pktcdvd_mutex);
2688 return ret;
2691 static unsigned int pkt_check_events(struct gendisk *disk,
2692 unsigned int clearing)
2694 struct pktcdvd_device *pd = disk->private_data;
2695 struct gendisk *attached_disk;
2697 if (!pd)
2698 return 0;
2699 if (!pd->bdev)
2700 return 0;
2701 attached_disk = pd->bdev->bd_disk;
2702 if (!attached_disk || !attached_disk->fops->check_events)
2703 return 0;
2704 return attached_disk->fops->check_events(attached_disk, clearing);
2707 static const struct block_device_operations pktcdvd_ops = {
2708 .owner = THIS_MODULE,
2709 .open = pkt_open,
2710 .release = pkt_close,
2711 .ioctl = pkt_ioctl,
2712 .check_events = pkt_check_events,
2715 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2717 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2721 * Set up mapping from pktcdvd device to CD-ROM device.
2723 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2725 int idx;
2726 int ret = -ENOMEM;
2727 struct pktcdvd_device *pd;
2728 struct gendisk *disk;
2730 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2732 for (idx = 0; idx < MAX_WRITERS; idx++)
2733 if (!pkt_devs[idx])
2734 break;
2735 if (idx == MAX_WRITERS) {
2736 pr_err("max %d writers supported\n", MAX_WRITERS);
2737 ret = -EBUSY;
2738 goto out_mutex;
2741 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2742 if (!pd)
2743 goto out_mutex;
2745 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2746 sizeof(struct pkt_rb_node));
2747 if (!pd->rb_pool)
2748 goto out_mem;
2750 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2751 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2752 spin_lock_init(&pd->cdrw.active_list_lock);
2754 spin_lock_init(&pd->lock);
2755 spin_lock_init(&pd->iosched.lock);
2756 bio_list_init(&pd->iosched.read_queue);
2757 bio_list_init(&pd->iosched.write_queue);
2758 sprintf(pd->name, DRIVER_NAME"%d", idx);
2759 init_waitqueue_head(&pd->wqueue);
2760 pd->bio_queue = RB_ROOT;
2762 pd->write_congestion_on = write_congestion_on;
2763 pd->write_congestion_off = write_congestion_off;
2765 disk = alloc_disk(1);
2766 if (!disk)
2767 goto out_mem;
2768 pd->disk = disk;
2769 disk->major = pktdev_major;
2770 disk->first_minor = idx;
2771 disk->fops = &pktcdvd_ops;
2772 disk->flags = GENHD_FL_REMOVABLE;
2773 strcpy(disk->disk_name, pd->name);
2774 disk->devnode = pktcdvd_devnode;
2775 disk->private_data = pd;
2776 disk->queue = blk_alloc_queue(GFP_KERNEL);
2777 if (!disk->queue)
2778 goto out_mem2;
2780 pd->pkt_dev = MKDEV(pktdev_major, idx);
2781 ret = pkt_new_dev(pd, dev);
2782 if (ret)
2783 goto out_new_dev;
2785 /* inherit events of the host device */
2786 disk->events = pd->bdev->bd_disk->events;
2787 disk->async_events = pd->bdev->bd_disk->async_events;
2789 add_disk(disk);
2791 pkt_sysfs_dev_new(pd);
2792 pkt_debugfs_dev_new(pd);
2794 pkt_devs[idx] = pd;
2795 if (pkt_dev)
2796 *pkt_dev = pd->pkt_dev;
2798 mutex_unlock(&ctl_mutex);
2799 return 0;
2801 out_new_dev:
2802 blk_cleanup_queue(disk->queue);
2803 out_mem2:
2804 put_disk(disk);
2805 out_mem:
2806 if (pd->rb_pool)
2807 mempool_destroy(pd->rb_pool);
2808 kfree(pd);
2809 out_mutex:
2810 mutex_unlock(&ctl_mutex);
2811 pr_err("setup of pktcdvd device failed\n");
2812 return ret;
2816 * Tear down mapping from pktcdvd device to CD-ROM device.
2818 static int pkt_remove_dev(dev_t pkt_dev)
2820 struct pktcdvd_device *pd;
2821 int idx;
2822 int ret = 0;
2824 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2826 for (idx = 0; idx < MAX_WRITERS; idx++) {
2827 pd = pkt_devs[idx];
2828 if (pd && (pd->pkt_dev == pkt_dev))
2829 break;
2831 if (idx == MAX_WRITERS) {
2832 pr_debug("dev not setup\n");
2833 ret = -ENXIO;
2834 goto out;
2837 if (pd->refcnt > 0) {
2838 ret = -EBUSY;
2839 goto out;
2841 if (!IS_ERR(pd->cdrw.thread))
2842 kthread_stop(pd->cdrw.thread);
2844 pkt_devs[idx] = NULL;
2846 pkt_debugfs_dev_remove(pd);
2847 pkt_sysfs_dev_remove(pd);
2849 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2851 remove_proc_entry(pd->name, pkt_proc);
2852 pkt_dbg(1, pd, "writer unmapped\n");
2854 del_gendisk(pd->disk);
2855 blk_cleanup_queue(pd->disk->queue);
2856 put_disk(pd->disk);
2858 mempool_destroy(pd->rb_pool);
2859 kfree(pd);
2861 /* This is safe: open() is still holding a reference. */
2862 module_put(THIS_MODULE);
2864 out:
2865 mutex_unlock(&ctl_mutex);
2866 return ret;
2869 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2871 struct pktcdvd_device *pd;
2873 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2875 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2876 if (pd) {
2877 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2878 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2879 } else {
2880 ctrl_cmd->dev = 0;
2881 ctrl_cmd->pkt_dev = 0;
2883 ctrl_cmd->num_devices = MAX_WRITERS;
2885 mutex_unlock(&ctl_mutex);
2888 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2890 void __user *argp = (void __user *)arg;
2891 struct pkt_ctrl_command ctrl_cmd;
2892 int ret = 0;
2893 dev_t pkt_dev = 0;
2895 if (cmd != PACKET_CTRL_CMD)
2896 return -ENOTTY;
2898 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2899 return -EFAULT;
2901 switch (ctrl_cmd.command) {
2902 case PKT_CTRL_CMD_SETUP:
2903 if (!capable(CAP_SYS_ADMIN))
2904 return -EPERM;
2905 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2906 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2907 break;
2908 case PKT_CTRL_CMD_TEARDOWN:
2909 if (!capable(CAP_SYS_ADMIN))
2910 return -EPERM;
2911 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2912 break;
2913 case PKT_CTRL_CMD_STATUS:
2914 pkt_get_status(&ctrl_cmd);
2915 break;
2916 default:
2917 return -ENOTTY;
2920 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2921 return -EFAULT;
2922 return ret;
2925 #ifdef CONFIG_COMPAT
2926 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2928 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2930 #endif
2932 static const struct file_operations pkt_ctl_fops = {
2933 .open = nonseekable_open,
2934 .unlocked_ioctl = pkt_ctl_ioctl,
2935 #ifdef CONFIG_COMPAT
2936 .compat_ioctl = pkt_ctl_compat_ioctl,
2937 #endif
2938 .owner = THIS_MODULE,
2939 .llseek = no_llseek,
2942 static struct miscdevice pkt_misc = {
2943 .minor = MISC_DYNAMIC_MINOR,
2944 .name = DRIVER_NAME,
2945 .nodename = "pktcdvd/control",
2946 .fops = &pkt_ctl_fops
2949 static int __init pkt_init(void)
2951 int ret;
2953 mutex_init(&ctl_mutex);
2955 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2956 sizeof(struct packet_stacked_data));
2957 if (!psd_pool)
2958 return -ENOMEM;
2960 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2961 if (ret < 0) {
2962 pr_err("unable to register block device\n");
2963 goto out2;
2965 if (!pktdev_major)
2966 pktdev_major = ret;
2968 ret = pkt_sysfs_init();
2969 if (ret)
2970 goto out;
2972 pkt_debugfs_init();
2974 ret = misc_register(&pkt_misc);
2975 if (ret) {
2976 pr_err("unable to register misc device\n");
2977 goto out_misc;
2980 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2982 return 0;
2984 out_misc:
2985 pkt_debugfs_cleanup();
2986 pkt_sysfs_cleanup();
2987 out:
2988 unregister_blkdev(pktdev_major, DRIVER_NAME);
2989 out2:
2990 mempool_destroy(psd_pool);
2991 return ret;
2994 static void __exit pkt_exit(void)
2996 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2997 misc_deregister(&pkt_misc);
2999 pkt_debugfs_cleanup();
3000 pkt_sysfs_cleanup();
3002 unregister_blkdev(pktdev_major, DRIVER_NAME);
3003 mempool_destroy(psd_pool);
3006 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3007 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3008 MODULE_LICENSE("GPL");
3010 module_init(pkt_init);
3011 module_exit(pkt_exit);