at24: enable ACPI device found on Galileo Gen2
[linux-2.6/btrfs-unstable.git] / drivers / misc / eeprom / at24.c
blob5d7c0900fa1b129c8bf103d3eddd03cbd92fe80d
1 /*
2 * at24.c - handle most I2C EEPROMs
4 * Copyright (C) 2005-2007 David Brownell
5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/sysfs.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/of.h>
24 #include <linux/acpi.h>
25 #include <linux/i2c.h>
26 #include <linux/platform_data/at24.h>
29 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
30 * Differences between different vendor product lines (like Atmel AT24C or
31 * MicroChip 24LC, etc) won't much matter for typical read/write access.
32 * There are also I2C RAM chips, likewise interchangeable. One example
33 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
35 * However, misconfiguration can lose data. "Set 16-bit memory address"
36 * to a part with 8-bit addressing will overwrite data. Writing with too
37 * big a page size also loses data. And it's not safe to assume that the
38 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
39 * uses 0x51, for just one example.
41 * Accordingly, explicit board-specific configuration data should be used
42 * in almost all cases. (One partial exception is an SMBus used to access
43 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
45 * So this driver uses "new style" I2C driver binding, expecting to be
46 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
47 * similar kernel-resident tables; or, configuration data coming from
48 * a bootloader.
50 * Other than binding model, current differences from "eeprom" driver are
51 * that this one handles write access and isn't restricted to 24c02 devices.
52 * It also handles larger devices (32 kbit and up) with two-byte addresses,
53 * which won't work on pure SMBus systems.
56 struct at24_data {
57 struct at24_platform_data chip;
58 struct memory_accessor macc;
59 int use_smbus;
60 int use_smbus_write;
63 * Lock protects against activities from other Linux tasks,
64 * but not from changes by other I2C masters.
66 struct mutex lock;
67 struct bin_attribute bin;
69 u8 *writebuf;
70 unsigned write_max;
71 unsigned num_addresses;
74 * Some chips tie up multiple I2C addresses; dummy devices reserve
75 * them for us, and we'll use them with SMBus calls.
77 struct i2c_client *client[];
81 * This parameter is to help this driver avoid blocking other drivers out
82 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
83 * clock, one 256 byte read takes about 1/43 second which is excessive;
84 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
85 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
87 * This value is forced to be a power of two so that writes align on pages.
89 static unsigned io_limit = 128;
90 module_param(io_limit, uint, 0);
91 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
94 * Specs often allow 5 msec for a page write, sometimes 20 msec;
95 * it's important to recover from write timeouts.
97 static unsigned write_timeout = 25;
98 module_param(write_timeout, uint, 0);
99 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
101 #define AT24_SIZE_BYTELEN 5
102 #define AT24_SIZE_FLAGS 8
104 #define AT24_BITMASK(x) (BIT(x) - 1)
106 /* create non-zero magic value for given eeprom parameters */
107 #define AT24_DEVICE_MAGIC(_len, _flags) \
108 ((1 << AT24_SIZE_FLAGS | (_flags)) \
109 << AT24_SIZE_BYTELEN | ilog2(_len))
111 static const struct i2c_device_id at24_ids[] = {
112 /* needs 8 addresses as A0-A2 are ignored */
113 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
114 /* old variants can't be handled with this generic entry! */
115 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
116 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
117 /* spd is a 24c02 in memory DIMMs */
118 { "spd", AT24_DEVICE_MAGIC(2048 / 8,
119 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
120 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
121 /* 24rf08 quirk is handled at i2c-core */
122 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
123 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
124 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
125 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
126 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
127 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
128 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
129 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
130 { "at24", 0 },
131 { /* END OF LIST */ }
133 MODULE_DEVICE_TABLE(i2c, at24_ids);
135 static const struct acpi_device_id at24_acpi_ids[] = {
136 { "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
139 MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
141 /*-------------------------------------------------------------------------*/
144 * This routine supports chips which consume multiple I2C addresses. It
145 * computes the addressing information to be used for a given r/w request.
146 * Assumes that sanity checks for offset happened at sysfs-layer.
148 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
149 unsigned *offset)
151 unsigned i;
153 if (at24->chip.flags & AT24_FLAG_ADDR16) {
154 i = *offset >> 16;
155 *offset &= 0xffff;
156 } else {
157 i = *offset >> 8;
158 *offset &= 0xff;
161 return at24->client[i];
164 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
165 unsigned offset, size_t count)
167 struct i2c_msg msg[2];
168 u8 msgbuf[2];
169 struct i2c_client *client;
170 unsigned long timeout, read_time;
171 int status, i;
173 memset(msg, 0, sizeof(msg));
176 * REVISIT some multi-address chips don't rollover page reads to
177 * the next slave address, so we may need to truncate the count.
178 * Those chips might need another quirk flag.
180 * If the real hardware used four adjacent 24c02 chips and that
181 * were misconfigured as one 24c08, that would be a similar effect:
182 * one "eeprom" file not four, but larger reads would fail when
183 * they crossed certain pages.
187 * Slave address and byte offset derive from the offset. Always
188 * set the byte address; on a multi-master board, another master
189 * may have changed the chip's "current" address pointer.
191 client = at24_translate_offset(at24, &offset);
193 if (count > io_limit)
194 count = io_limit;
196 if (at24->use_smbus) {
197 /* Smaller eeproms can work given some SMBus extension calls */
198 if (count > I2C_SMBUS_BLOCK_MAX)
199 count = I2C_SMBUS_BLOCK_MAX;
200 } else {
202 * When we have a better choice than SMBus calls, use a
203 * combined I2C message. Write address; then read up to
204 * io_limit data bytes. Note that read page rollover helps us
205 * here (unlike writes). msgbuf is u8 and will cast to our
206 * needs.
208 i = 0;
209 if (at24->chip.flags & AT24_FLAG_ADDR16)
210 msgbuf[i++] = offset >> 8;
211 msgbuf[i++] = offset;
213 msg[0].addr = client->addr;
214 msg[0].buf = msgbuf;
215 msg[0].len = i;
217 msg[1].addr = client->addr;
218 msg[1].flags = I2C_M_RD;
219 msg[1].buf = buf;
220 msg[1].len = count;
224 * Reads fail if the previous write didn't complete yet. We may
225 * loop a few times until this one succeeds, waiting at least
226 * long enough for one entire page write to work.
228 timeout = jiffies + msecs_to_jiffies(write_timeout);
229 do {
230 read_time = jiffies;
231 if (at24->use_smbus) {
232 status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
233 count, buf);
234 } else {
235 status = i2c_transfer(client->adapter, msg, 2);
236 if (status == 2)
237 status = count;
239 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
240 count, offset, status, jiffies);
242 if (status == count)
243 return count;
245 /* REVISIT: at HZ=100, this is sloooow */
246 msleep(1);
247 } while (time_before(read_time, timeout));
249 return -ETIMEDOUT;
252 static ssize_t at24_read(struct at24_data *at24,
253 char *buf, loff_t off, size_t count)
255 ssize_t retval = 0;
257 if (unlikely(!count))
258 return count;
261 * Read data from chip, protecting against concurrent updates
262 * from this host, but not from other I2C masters.
264 mutex_lock(&at24->lock);
266 while (count) {
267 ssize_t status;
269 status = at24_eeprom_read(at24, buf, off, count);
270 if (status <= 0) {
271 if (retval == 0)
272 retval = status;
273 break;
275 buf += status;
276 off += status;
277 count -= status;
278 retval += status;
281 mutex_unlock(&at24->lock);
283 return retval;
286 static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
287 struct bin_attribute *attr,
288 char *buf, loff_t off, size_t count)
290 struct at24_data *at24;
292 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
293 return at24_read(at24, buf, off, count);
298 * Note that if the hardware write-protect pin is pulled high, the whole
299 * chip is normally write protected. But there are plenty of product
300 * variants here, including OTP fuses and partial chip protect.
302 * We only use page mode writes; the alternative is sloooow. This routine
303 * writes at most one page.
305 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
306 unsigned offset, size_t count)
308 struct i2c_client *client;
309 struct i2c_msg msg;
310 ssize_t status = 0;
311 unsigned long timeout, write_time;
312 unsigned next_page;
314 /* Get corresponding I2C address and adjust offset */
315 client = at24_translate_offset(at24, &offset);
317 /* write_max is at most a page */
318 if (count > at24->write_max)
319 count = at24->write_max;
321 /* Never roll over backwards, to the start of this page */
322 next_page = roundup(offset + 1, at24->chip.page_size);
323 if (offset + count > next_page)
324 count = next_page - offset;
326 /* If we'll use I2C calls for I/O, set up the message */
327 if (!at24->use_smbus) {
328 int i = 0;
330 msg.addr = client->addr;
331 msg.flags = 0;
333 /* msg.buf is u8 and casts will mask the values */
334 msg.buf = at24->writebuf;
335 if (at24->chip.flags & AT24_FLAG_ADDR16)
336 msg.buf[i++] = offset >> 8;
338 msg.buf[i++] = offset;
339 memcpy(&msg.buf[i], buf, count);
340 msg.len = i + count;
344 * Writes fail if the previous one didn't complete yet. We may
345 * loop a few times until this one succeeds, waiting at least
346 * long enough for one entire page write to work.
348 timeout = jiffies + msecs_to_jiffies(write_timeout);
349 do {
350 write_time = jiffies;
351 if (at24->use_smbus_write) {
352 switch (at24->use_smbus_write) {
353 case I2C_SMBUS_I2C_BLOCK_DATA:
354 status = i2c_smbus_write_i2c_block_data(client,
355 offset, count, buf);
356 break;
357 case I2C_SMBUS_BYTE_DATA:
358 status = i2c_smbus_write_byte_data(client,
359 offset, buf[0]);
360 break;
363 if (status == 0)
364 status = count;
365 } else {
366 status = i2c_transfer(client->adapter, &msg, 1);
367 if (status == 1)
368 status = count;
370 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
371 count, offset, status, jiffies);
373 if (status == count)
374 return count;
376 /* REVISIT: at HZ=100, this is sloooow */
377 msleep(1);
378 } while (time_before(write_time, timeout));
380 return -ETIMEDOUT;
383 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
384 size_t count)
386 ssize_t retval = 0;
388 if (unlikely(!count))
389 return count;
392 * Write data to chip, protecting against concurrent updates
393 * from this host, but not from other I2C masters.
395 mutex_lock(&at24->lock);
397 while (count) {
398 ssize_t status;
400 status = at24_eeprom_write(at24, buf, off, count);
401 if (status <= 0) {
402 if (retval == 0)
403 retval = status;
404 break;
406 buf += status;
407 off += status;
408 count -= status;
409 retval += status;
412 mutex_unlock(&at24->lock);
414 return retval;
417 static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
418 struct bin_attribute *attr,
419 char *buf, loff_t off, size_t count)
421 struct at24_data *at24;
423 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
424 return at24_write(at24, buf, off, count);
427 /*-------------------------------------------------------------------------*/
430 * This lets other kernel code access the eeprom data. For example, it
431 * might hold a board's Ethernet address, or board-specific calibration
432 * data generated on the manufacturing floor.
435 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
436 off_t offset, size_t count)
438 struct at24_data *at24 = container_of(macc, struct at24_data, macc);
440 return at24_read(at24, buf, offset, count);
443 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
444 off_t offset, size_t count)
446 struct at24_data *at24 = container_of(macc, struct at24_data, macc);
448 return at24_write(at24, buf, offset, count);
451 /*-------------------------------------------------------------------------*/
453 #ifdef CONFIG_OF
454 static void at24_get_ofdata(struct i2c_client *client,
455 struct at24_platform_data *chip)
457 const __be32 *val;
458 struct device_node *node = client->dev.of_node;
460 if (node) {
461 if (of_get_property(node, "read-only", NULL))
462 chip->flags |= AT24_FLAG_READONLY;
463 val = of_get_property(node, "pagesize", NULL);
464 if (val)
465 chip->page_size = be32_to_cpup(val);
468 #else
469 static void at24_get_ofdata(struct i2c_client *client,
470 struct at24_platform_data *chip)
472 #endif /* CONFIG_OF */
474 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
476 struct at24_platform_data chip;
477 kernel_ulong_t magic = 0;
478 bool writable;
479 int use_smbus = 0;
480 int use_smbus_write = 0;
481 struct at24_data *at24;
482 int err;
483 unsigned i, num_addresses;
485 if (client->dev.platform_data) {
486 chip = *(struct at24_platform_data *)client->dev.platform_data;
487 } else {
488 if (id) {
489 magic = id->driver_data;
490 } else {
491 const struct acpi_device_id *aid;
493 aid = acpi_match_device(at24_acpi_ids, &client->dev);
494 if (aid)
495 magic = aid->driver_data;
497 if (!magic)
498 return -ENODEV;
500 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
501 magic >>= AT24_SIZE_BYTELEN;
502 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
504 * This is slow, but we can't know all eeproms, so we better
505 * play safe. Specifying custom eeprom-types via platform_data
506 * is recommended anyhow.
508 chip.page_size = 1;
510 /* update chipdata if OF is present */
511 at24_get_ofdata(client, &chip);
513 chip.setup = NULL;
514 chip.context = NULL;
517 if (!is_power_of_2(chip.byte_len))
518 dev_warn(&client->dev,
519 "byte_len looks suspicious (no power of 2)!\n");
520 if (!chip.page_size) {
521 dev_err(&client->dev, "page_size must not be 0!\n");
522 return -EINVAL;
524 if (!is_power_of_2(chip.page_size))
525 dev_warn(&client->dev,
526 "page_size looks suspicious (no power of 2)!\n");
528 /* Use I2C operations unless we're stuck with SMBus extensions. */
529 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
530 if (chip.flags & AT24_FLAG_ADDR16)
531 return -EPFNOSUPPORT;
533 if (i2c_check_functionality(client->adapter,
534 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
535 use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
536 } else if (i2c_check_functionality(client->adapter,
537 I2C_FUNC_SMBUS_READ_WORD_DATA)) {
538 use_smbus = I2C_SMBUS_WORD_DATA;
539 } else if (i2c_check_functionality(client->adapter,
540 I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
541 use_smbus = I2C_SMBUS_BYTE_DATA;
542 } else {
543 return -EPFNOSUPPORT;
547 /* Use I2C operations unless we're stuck with SMBus extensions. */
548 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
549 if (i2c_check_functionality(client->adapter,
550 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
551 use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
552 } else if (i2c_check_functionality(client->adapter,
553 I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
554 use_smbus_write = I2C_SMBUS_BYTE_DATA;
555 chip.page_size = 1;
559 if (chip.flags & AT24_FLAG_TAKE8ADDR)
560 num_addresses = 8;
561 else
562 num_addresses = DIV_ROUND_UP(chip.byte_len,
563 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
565 at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
566 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
567 if (!at24)
568 return -ENOMEM;
570 mutex_init(&at24->lock);
571 at24->use_smbus = use_smbus;
572 at24->use_smbus_write = use_smbus_write;
573 at24->chip = chip;
574 at24->num_addresses = num_addresses;
577 * Export the EEPROM bytes through sysfs, since that's convenient.
578 * By default, only root should see the data (maybe passwords etc)
580 sysfs_bin_attr_init(&at24->bin);
581 at24->bin.attr.name = "eeprom";
582 at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
583 at24->bin.read = at24_bin_read;
584 at24->bin.size = chip.byte_len;
586 at24->macc.read = at24_macc_read;
588 writable = !(chip.flags & AT24_FLAG_READONLY);
589 if (writable) {
590 if (!use_smbus || use_smbus_write) {
592 unsigned write_max = chip.page_size;
594 at24->macc.write = at24_macc_write;
596 at24->bin.write = at24_bin_write;
597 at24->bin.attr.mode |= S_IWUSR;
599 if (write_max > io_limit)
600 write_max = io_limit;
601 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
602 write_max = I2C_SMBUS_BLOCK_MAX;
603 at24->write_max = write_max;
605 /* buffer (data + address at the beginning) */
606 at24->writebuf = devm_kzalloc(&client->dev,
607 write_max + 2, GFP_KERNEL);
608 if (!at24->writebuf)
609 return -ENOMEM;
610 } else {
611 dev_warn(&client->dev,
612 "cannot write due to controller restrictions.");
616 at24->client[0] = client;
618 /* use dummy devices for multiple-address chips */
619 for (i = 1; i < num_addresses; i++) {
620 at24->client[i] = i2c_new_dummy(client->adapter,
621 client->addr + i);
622 if (!at24->client[i]) {
623 dev_err(&client->dev, "address 0x%02x unavailable\n",
624 client->addr + i);
625 err = -EADDRINUSE;
626 goto err_clients;
630 err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
631 if (err)
632 goto err_clients;
634 i2c_set_clientdata(client, at24);
636 dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n",
637 at24->bin.size, client->name,
638 writable ? "writable" : "read-only", at24->write_max);
639 if (use_smbus == I2C_SMBUS_WORD_DATA ||
640 use_smbus == I2C_SMBUS_BYTE_DATA) {
641 dev_notice(&client->dev, "Falling back to %s reads, "
642 "performance will suffer\n", use_smbus ==
643 I2C_SMBUS_WORD_DATA ? "word" : "byte");
646 /* export data to kernel code */
647 if (chip.setup)
648 chip.setup(&at24->macc, chip.context);
650 return 0;
652 err_clients:
653 for (i = 1; i < num_addresses; i++)
654 if (at24->client[i])
655 i2c_unregister_device(at24->client[i]);
657 return err;
660 static int at24_remove(struct i2c_client *client)
662 struct at24_data *at24;
663 int i;
665 at24 = i2c_get_clientdata(client);
666 sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
668 for (i = 1; i < at24->num_addresses; i++)
669 i2c_unregister_device(at24->client[i]);
671 return 0;
674 /*-------------------------------------------------------------------------*/
676 static struct i2c_driver at24_driver = {
677 .driver = {
678 .name = "at24",
679 .acpi_match_table = ACPI_PTR(at24_acpi_ids),
681 .probe = at24_probe,
682 .remove = at24_remove,
683 .id_table = at24_ids,
686 static int __init at24_init(void)
688 if (!io_limit) {
689 pr_err("at24: io_limit must not be 0!\n");
690 return -EINVAL;
693 io_limit = rounddown_pow_of_two(io_limit);
694 return i2c_add_driver(&at24_driver);
696 module_init(at24_init);
698 static void __exit at24_exit(void)
700 i2c_del_driver(&at24_driver);
702 module_exit(at24_exit);
704 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
705 MODULE_AUTHOR("David Brownell and Wolfram Sang");
706 MODULE_LICENSE("GPL");