audit: do not call audit_getname on error
[linux-2.6/btrfs-unstable.git] / kernel / auditsc.c
blob9161e70a4379276d5eb26eb1fbb1527d41d80a33
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
71 #include "audit.h"
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81 #define AUDIT_NAMES 5
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
89 /* number of audit rules */
90 int audit_n_rules;
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
95 struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109 struct audit_names {
110 struct list_head list; /* audit_context->names_list */
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
118 u32 osid;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
128 bool should_free;
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
136 #define AUDIT_AUX_IPCPERM 0
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
208 /* Save things to print about task_struct */
209 pid_t pid, ppid;
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
213 int arch;
215 pid_t target_pid;
216 uid_t target_auid;
217 uid_t target_uid;
218 unsigned int target_sessionid;
219 u32 target_sid;
220 char target_comm[TASK_COMM_LEN];
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
224 int tree_count;
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
232 struct {
233 uid_t uid;
234 gid_t gid;
235 umode_t mode;
236 u32 osid;
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
240 umode_t perm_mode;
241 unsigned long qbytes;
242 } ipc;
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
257 struct {
258 int oflag;
259 umode_t mode;
260 struct mq_attr attr;
261 } mq_open;
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
266 struct {
267 int fd;
268 int flags;
269 } mmap;
271 int fds[2];
273 #if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276 #endif
279 static inline int open_arg(int flags, int mask)
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
287 static int audit_match_perm(struct audit_context *ctx, int mask)
289 unsigned n;
290 if (unlikely(!ctx))
291 return 0;
292 n = ctx->major;
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
330 static int audit_match_filetype(struct audit_context *ctx, int val)
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
335 if (unlikely(!ctx))
336 return 0;
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
341 return 1;
344 return 0;
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
384 return 0;
387 static int grow_tree_refs(struct audit_context *ctx)
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
402 #endif
404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
429 ctx->trees = p;
430 ctx->tree_count = count;
431 #endif
434 static void free_tree_refs(struct audit_context *ctx)
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
462 #endif
463 return 0;
466 /* Determine if any context name data matches a rule's watch data */
467 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
468 * otherwise.
470 * If task_creation is true, this is an explicit indication that we are
471 * filtering a task rule at task creation time. This and tsk == current are
472 * the only situations where tsk->cred may be accessed without an rcu read lock.
474 static int audit_filter_rules(struct task_struct *tsk,
475 struct audit_krule *rule,
476 struct audit_context *ctx,
477 struct audit_names *name,
478 enum audit_state *state,
479 bool task_creation)
481 const struct cred *cred;
482 int i, need_sid = 1;
483 u32 sid;
485 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
487 for (i = 0; i < rule->field_count; i++) {
488 struct audit_field *f = &rule->fields[i];
489 struct audit_names *n;
490 int result = 0;
492 switch (f->type) {
493 case AUDIT_PID:
494 result = audit_comparator(tsk->pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = sys_getppid();
500 result = audit_comparator(ctx->ppid, f->op, f->val);
502 break;
503 case AUDIT_UID:
504 result = audit_comparator(cred->uid, f->op, f->val);
505 break;
506 case AUDIT_EUID:
507 result = audit_comparator(cred->euid, f->op, f->val);
508 break;
509 case AUDIT_SUID:
510 result = audit_comparator(cred->suid, f->op, f->val);
511 break;
512 case AUDIT_FSUID:
513 result = audit_comparator(cred->fsuid, f->op, f->val);
514 break;
515 case AUDIT_GID:
516 result = audit_comparator(cred->gid, f->op, f->val);
517 break;
518 case AUDIT_EGID:
519 result = audit_comparator(cred->egid, f->op, f->val);
520 break;
521 case AUDIT_SGID:
522 result = audit_comparator(cred->sgid, f->op, f->val);
523 break;
524 case AUDIT_FSGID:
525 result = audit_comparator(cred->fsgid, f->op, f->val);
526 break;
527 case AUDIT_PERS:
528 result = audit_comparator(tsk->personality, f->op, f->val);
529 break;
530 case AUDIT_ARCH:
531 if (ctx)
532 result = audit_comparator(ctx->arch, f->op, f->val);
533 break;
535 case AUDIT_EXIT:
536 if (ctx && ctx->return_valid)
537 result = audit_comparator(ctx->return_code, f->op, f->val);
538 break;
539 case AUDIT_SUCCESS:
540 if (ctx && ctx->return_valid) {
541 if (f->val)
542 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
543 else
544 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
546 break;
547 case AUDIT_DEVMAJOR:
548 if (name) {
549 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
550 audit_comparator(MAJOR(name->rdev), f->op, f->val))
551 ++result;
552 } else if (ctx) {
553 list_for_each_entry(n, &ctx->names_list, list) {
554 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
555 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
556 ++result;
557 break;
561 break;
562 case AUDIT_DEVMINOR:
563 if (name) {
564 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
565 audit_comparator(MINOR(name->rdev), f->op, f->val))
566 ++result;
567 } else if (ctx) {
568 list_for_each_entry(n, &ctx->names_list, list) {
569 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
570 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
571 ++result;
572 break;
576 break;
577 case AUDIT_INODE:
578 if (name)
579 result = (name->ino == f->val);
580 else if (ctx) {
581 list_for_each_entry(n, &ctx->names_list, list) {
582 if (audit_comparator(n->ino, f->op, f->val)) {
583 ++result;
584 break;
588 break;
589 case AUDIT_OBJ_UID:
590 if (name) {
591 result = audit_comparator(name->uid, f->op, f->val);
592 } else if (ctx) {
593 list_for_each_entry(n, &ctx->names_list, list) {
594 if (audit_comparator(n->uid, f->op, f->val)) {
595 ++result;
596 break;
600 break;
601 case AUDIT_OBJ_GID:
602 if (name) {
603 result = audit_comparator(name->gid, f->op, f->val);
604 } else if (ctx) {
605 list_for_each_entry(n, &ctx->names_list, list) {
606 if (audit_comparator(n->gid, f->op, f->val)) {
607 ++result;
608 break;
612 break;
613 case AUDIT_WATCH:
614 if (name)
615 result = audit_watch_compare(rule->watch, name->ino, name->dev);
616 break;
617 case AUDIT_DIR:
618 if (ctx)
619 result = match_tree_refs(ctx, rule->tree);
620 break;
621 case AUDIT_LOGINUID:
622 result = 0;
623 if (ctx)
624 result = audit_comparator(tsk->loginuid, f->op, f->val);
625 break;
626 case AUDIT_SUBJ_USER:
627 case AUDIT_SUBJ_ROLE:
628 case AUDIT_SUBJ_TYPE:
629 case AUDIT_SUBJ_SEN:
630 case AUDIT_SUBJ_CLR:
631 /* NOTE: this may return negative values indicating
632 a temporary error. We simply treat this as a
633 match for now to avoid losing information that
634 may be wanted. An error message will also be
635 logged upon error */
636 if (f->lsm_rule) {
637 if (need_sid) {
638 security_task_getsecid(tsk, &sid);
639 need_sid = 0;
641 result = security_audit_rule_match(sid, f->type,
642 f->op,
643 f->lsm_rule,
644 ctx);
646 break;
647 case AUDIT_OBJ_USER:
648 case AUDIT_OBJ_ROLE:
649 case AUDIT_OBJ_TYPE:
650 case AUDIT_OBJ_LEV_LOW:
651 case AUDIT_OBJ_LEV_HIGH:
652 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
653 also applies here */
654 if (f->lsm_rule) {
655 /* Find files that match */
656 if (name) {
657 result = security_audit_rule_match(
658 name->osid, f->type, f->op,
659 f->lsm_rule, ctx);
660 } else if (ctx) {
661 list_for_each_entry(n, &ctx->names_list, list) {
662 if (security_audit_rule_match(n->osid, f->type,
663 f->op, f->lsm_rule,
664 ctx)) {
665 ++result;
666 break;
670 /* Find ipc objects that match */
671 if (!ctx || ctx->type != AUDIT_IPC)
672 break;
673 if (security_audit_rule_match(ctx->ipc.osid,
674 f->type, f->op,
675 f->lsm_rule, ctx))
676 ++result;
678 break;
679 case AUDIT_ARG0:
680 case AUDIT_ARG1:
681 case AUDIT_ARG2:
682 case AUDIT_ARG3:
683 if (ctx)
684 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
685 break;
686 case AUDIT_FILTERKEY:
687 /* ignore this field for filtering */
688 result = 1;
689 break;
690 case AUDIT_PERM:
691 result = audit_match_perm(ctx, f->val);
692 break;
693 case AUDIT_FILETYPE:
694 result = audit_match_filetype(ctx, f->val);
695 break;
698 if (!result)
699 return 0;
702 if (ctx) {
703 if (rule->prio <= ctx->prio)
704 return 0;
705 if (rule->filterkey) {
706 kfree(ctx->filterkey);
707 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
709 ctx->prio = rule->prio;
711 switch (rule->action) {
712 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
713 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
715 return 1;
718 /* At process creation time, we can determine if system-call auditing is
719 * completely disabled for this task. Since we only have the task
720 * structure at this point, we can only check uid and gid.
722 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
724 struct audit_entry *e;
725 enum audit_state state;
727 rcu_read_lock();
728 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
729 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
730 &state, true)) {
731 if (state == AUDIT_RECORD_CONTEXT)
732 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
733 rcu_read_unlock();
734 return state;
737 rcu_read_unlock();
738 return AUDIT_BUILD_CONTEXT;
741 /* At syscall entry and exit time, this filter is called if the
742 * audit_state is not low enough that auditing cannot take place, but is
743 * also not high enough that we already know we have to write an audit
744 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
746 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
747 struct audit_context *ctx,
748 struct list_head *list)
750 struct audit_entry *e;
751 enum audit_state state;
753 if (audit_pid && tsk->tgid == audit_pid)
754 return AUDIT_DISABLED;
756 rcu_read_lock();
757 if (!list_empty(list)) {
758 int word = AUDIT_WORD(ctx->major);
759 int bit = AUDIT_BIT(ctx->major);
761 list_for_each_entry_rcu(e, list, list) {
762 if ((e->rule.mask[word] & bit) == bit &&
763 audit_filter_rules(tsk, &e->rule, ctx, NULL,
764 &state, false)) {
765 rcu_read_unlock();
766 ctx->current_state = state;
767 return state;
771 rcu_read_unlock();
772 return AUDIT_BUILD_CONTEXT;
776 * Given an audit_name check the inode hash table to see if they match.
777 * Called holding the rcu read lock to protect the use of audit_inode_hash
779 static int audit_filter_inode_name(struct task_struct *tsk,
780 struct audit_names *n,
781 struct audit_context *ctx) {
782 int word, bit;
783 int h = audit_hash_ino((u32)n->ino);
784 struct list_head *list = &audit_inode_hash[h];
785 struct audit_entry *e;
786 enum audit_state state;
788 word = AUDIT_WORD(ctx->major);
789 bit = AUDIT_BIT(ctx->major);
791 if (list_empty(list))
792 return 0;
794 list_for_each_entry_rcu(e, list, list) {
795 if ((e->rule.mask[word] & bit) == bit &&
796 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
797 ctx->current_state = state;
798 return 1;
802 return 0;
805 /* At syscall exit time, this filter is called if any audit_names have been
806 * collected during syscall processing. We only check rules in sublists at hash
807 * buckets applicable to the inode numbers in audit_names.
808 * Regarding audit_state, same rules apply as for audit_filter_syscall().
810 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
812 struct audit_names *n;
814 if (audit_pid && tsk->tgid == audit_pid)
815 return;
817 rcu_read_lock();
819 list_for_each_entry(n, &ctx->names_list, list) {
820 if (audit_filter_inode_name(tsk, n, ctx))
821 break;
823 rcu_read_unlock();
826 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
827 int return_valid,
828 long return_code)
830 struct audit_context *context = tsk->audit_context;
832 if (!context)
833 return NULL;
834 context->return_valid = return_valid;
837 * we need to fix up the return code in the audit logs if the actual
838 * return codes are later going to be fixed up by the arch specific
839 * signal handlers
841 * This is actually a test for:
842 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
843 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
845 * but is faster than a bunch of ||
847 if (unlikely(return_code <= -ERESTARTSYS) &&
848 (return_code >= -ERESTART_RESTARTBLOCK) &&
849 (return_code != -ENOIOCTLCMD))
850 context->return_code = -EINTR;
851 else
852 context->return_code = return_code;
854 if (context->in_syscall && !context->dummy) {
855 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
856 audit_filter_inodes(tsk, context);
859 tsk->audit_context = NULL;
860 return context;
863 static inline void audit_free_names(struct audit_context *context)
865 struct audit_names *n, *next;
867 #if AUDIT_DEBUG == 2
868 if (context->put_count + context->ino_count != context->name_count) {
869 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
870 " name_count=%d put_count=%d"
871 " ino_count=%d [NOT freeing]\n",
872 __FILE__, __LINE__,
873 context->serial, context->major, context->in_syscall,
874 context->name_count, context->put_count,
875 context->ino_count);
876 list_for_each_entry(n, &context->names_list, list) {
877 printk(KERN_ERR "names[%d] = %p = %s\n", i,
878 n->name, n->name ?: "(null)");
880 dump_stack();
881 return;
883 #endif
884 #if AUDIT_DEBUG
885 context->put_count = 0;
886 context->ino_count = 0;
887 #endif
889 list_for_each_entry_safe(n, next, &context->names_list, list) {
890 list_del(&n->list);
891 if (n->name && n->name_put)
892 __putname(n->name);
893 if (n->should_free)
894 kfree(n);
896 context->name_count = 0;
897 path_put(&context->pwd);
898 context->pwd.dentry = NULL;
899 context->pwd.mnt = NULL;
902 static inline void audit_free_aux(struct audit_context *context)
904 struct audit_aux_data *aux;
906 while ((aux = context->aux)) {
907 context->aux = aux->next;
908 kfree(aux);
910 while ((aux = context->aux_pids)) {
911 context->aux_pids = aux->next;
912 kfree(aux);
916 static inline void audit_zero_context(struct audit_context *context,
917 enum audit_state state)
919 memset(context, 0, sizeof(*context));
920 context->state = state;
921 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
924 static inline struct audit_context *audit_alloc_context(enum audit_state state)
926 struct audit_context *context;
928 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
929 return NULL;
930 audit_zero_context(context, state);
931 INIT_LIST_HEAD(&context->killed_trees);
932 INIT_LIST_HEAD(&context->names_list);
933 return context;
937 * audit_alloc - allocate an audit context block for a task
938 * @tsk: task
940 * Filter on the task information and allocate a per-task audit context
941 * if necessary. Doing so turns on system call auditing for the
942 * specified task. This is called from copy_process, so no lock is
943 * needed.
945 int audit_alloc(struct task_struct *tsk)
947 struct audit_context *context;
948 enum audit_state state;
949 char *key = NULL;
951 if (likely(!audit_ever_enabled))
952 return 0; /* Return if not auditing. */
954 state = audit_filter_task(tsk, &key);
955 if (state == AUDIT_DISABLED)
956 return 0;
958 if (!(context = audit_alloc_context(state))) {
959 kfree(key);
960 audit_log_lost("out of memory in audit_alloc");
961 return -ENOMEM;
963 context->filterkey = key;
965 tsk->audit_context = context;
966 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
967 return 0;
970 static inline void audit_free_context(struct audit_context *context)
972 struct audit_context *previous;
973 int count = 0;
975 do {
976 previous = context->previous;
977 if (previous || (count && count < 10)) {
978 ++count;
979 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
980 " freeing multiple contexts (%d)\n",
981 context->serial, context->major,
982 context->name_count, count);
984 audit_free_names(context);
985 unroll_tree_refs(context, NULL, 0);
986 free_tree_refs(context);
987 audit_free_aux(context);
988 kfree(context->filterkey);
989 kfree(context->sockaddr);
990 kfree(context);
991 context = previous;
992 } while (context);
993 if (count >= 10)
994 printk(KERN_ERR "audit: freed %d contexts\n", count);
997 void audit_log_task_context(struct audit_buffer *ab)
999 char *ctx = NULL;
1000 unsigned len;
1001 int error;
1002 u32 sid;
1004 security_task_getsecid(current, &sid);
1005 if (!sid)
1006 return;
1008 error = security_secid_to_secctx(sid, &ctx, &len);
1009 if (error) {
1010 if (error != -EINVAL)
1011 goto error_path;
1012 return;
1015 audit_log_format(ab, " subj=%s", ctx);
1016 security_release_secctx(ctx, len);
1017 return;
1019 error_path:
1020 audit_panic("error in audit_log_task_context");
1021 return;
1024 EXPORT_SYMBOL(audit_log_task_context);
1026 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1028 char name[sizeof(tsk->comm)];
1029 struct mm_struct *mm = tsk->mm;
1030 struct vm_area_struct *vma;
1032 /* tsk == current */
1034 get_task_comm(name, tsk);
1035 audit_log_format(ab, " comm=");
1036 audit_log_untrustedstring(ab, name);
1038 if (mm) {
1039 down_read(&mm->mmap_sem);
1040 vma = mm->mmap;
1041 while (vma) {
1042 if ((vma->vm_flags & VM_EXECUTABLE) &&
1043 vma->vm_file) {
1044 audit_log_d_path(ab, "exe=",
1045 &vma->vm_file->f_path);
1046 break;
1048 vma = vma->vm_next;
1050 up_read(&mm->mmap_sem);
1052 audit_log_task_context(ab);
1055 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1056 uid_t auid, uid_t uid, unsigned int sessionid,
1057 u32 sid, char *comm)
1059 struct audit_buffer *ab;
1060 char *ctx = NULL;
1061 u32 len;
1062 int rc = 0;
1064 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1065 if (!ab)
1066 return rc;
1068 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1069 uid, sessionid);
1070 if (security_secid_to_secctx(sid, &ctx, &len)) {
1071 audit_log_format(ab, " obj=(none)");
1072 rc = 1;
1073 } else {
1074 audit_log_format(ab, " obj=%s", ctx);
1075 security_release_secctx(ctx, len);
1077 audit_log_format(ab, " ocomm=");
1078 audit_log_untrustedstring(ab, comm);
1079 audit_log_end(ab);
1081 return rc;
1085 * to_send and len_sent accounting are very loose estimates. We aren't
1086 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1087 * within about 500 bytes (next page boundary)
1089 * why snprintf? an int is up to 12 digits long. if we just assumed when
1090 * logging that a[%d]= was going to be 16 characters long we would be wasting
1091 * space in every audit message. In one 7500 byte message we can log up to
1092 * about 1000 min size arguments. That comes down to about 50% waste of space
1093 * if we didn't do the snprintf to find out how long arg_num_len was.
1095 static int audit_log_single_execve_arg(struct audit_context *context,
1096 struct audit_buffer **ab,
1097 int arg_num,
1098 size_t *len_sent,
1099 const char __user *p,
1100 char *buf)
1102 char arg_num_len_buf[12];
1103 const char __user *tmp_p = p;
1104 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1105 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1106 size_t len, len_left, to_send;
1107 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1108 unsigned int i, has_cntl = 0, too_long = 0;
1109 int ret;
1111 /* strnlen_user includes the null we don't want to send */
1112 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1115 * We just created this mm, if we can't find the strings
1116 * we just copied into it something is _very_ wrong. Similar
1117 * for strings that are too long, we should not have created
1118 * any.
1120 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1121 WARN_ON(1);
1122 send_sig(SIGKILL, current, 0);
1123 return -1;
1126 /* walk the whole argument looking for non-ascii chars */
1127 do {
1128 if (len_left > MAX_EXECVE_AUDIT_LEN)
1129 to_send = MAX_EXECVE_AUDIT_LEN;
1130 else
1131 to_send = len_left;
1132 ret = copy_from_user(buf, tmp_p, to_send);
1134 * There is no reason for this copy to be short. We just
1135 * copied them here, and the mm hasn't been exposed to user-
1136 * space yet.
1138 if (ret) {
1139 WARN_ON(1);
1140 send_sig(SIGKILL, current, 0);
1141 return -1;
1143 buf[to_send] = '\0';
1144 has_cntl = audit_string_contains_control(buf, to_send);
1145 if (has_cntl) {
1147 * hex messages get logged as 2 bytes, so we can only
1148 * send half as much in each message
1150 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1151 break;
1153 len_left -= to_send;
1154 tmp_p += to_send;
1155 } while (len_left > 0);
1157 len_left = len;
1159 if (len > max_execve_audit_len)
1160 too_long = 1;
1162 /* rewalk the argument actually logging the message */
1163 for (i = 0; len_left > 0; i++) {
1164 int room_left;
1166 if (len_left > max_execve_audit_len)
1167 to_send = max_execve_audit_len;
1168 else
1169 to_send = len_left;
1171 /* do we have space left to send this argument in this ab? */
1172 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1173 if (has_cntl)
1174 room_left -= (to_send * 2);
1175 else
1176 room_left -= to_send;
1177 if (room_left < 0) {
1178 *len_sent = 0;
1179 audit_log_end(*ab);
1180 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1181 if (!*ab)
1182 return 0;
1186 * first record needs to say how long the original string was
1187 * so we can be sure nothing was lost.
1189 if ((i == 0) && (too_long))
1190 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1191 has_cntl ? 2*len : len);
1194 * normally arguments are small enough to fit and we already
1195 * filled buf above when we checked for control characters
1196 * so don't bother with another copy_from_user
1198 if (len >= max_execve_audit_len)
1199 ret = copy_from_user(buf, p, to_send);
1200 else
1201 ret = 0;
1202 if (ret) {
1203 WARN_ON(1);
1204 send_sig(SIGKILL, current, 0);
1205 return -1;
1207 buf[to_send] = '\0';
1209 /* actually log it */
1210 audit_log_format(*ab, " a%d", arg_num);
1211 if (too_long)
1212 audit_log_format(*ab, "[%d]", i);
1213 audit_log_format(*ab, "=");
1214 if (has_cntl)
1215 audit_log_n_hex(*ab, buf, to_send);
1216 else
1217 audit_log_string(*ab, buf);
1219 p += to_send;
1220 len_left -= to_send;
1221 *len_sent += arg_num_len;
1222 if (has_cntl)
1223 *len_sent += to_send * 2;
1224 else
1225 *len_sent += to_send;
1227 /* include the null we didn't log */
1228 return len + 1;
1231 static void audit_log_execve_info(struct audit_context *context,
1232 struct audit_buffer **ab,
1233 struct audit_aux_data_execve *axi)
1235 int i;
1236 size_t len, len_sent = 0;
1237 const char __user *p;
1238 char *buf;
1240 if (axi->mm != current->mm)
1241 return; /* execve failed, no additional info */
1243 p = (const char __user *)axi->mm->arg_start;
1245 audit_log_format(*ab, "argc=%d", axi->argc);
1248 * we need some kernel buffer to hold the userspace args. Just
1249 * allocate one big one rather than allocating one of the right size
1250 * for every single argument inside audit_log_single_execve_arg()
1251 * should be <8k allocation so should be pretty safe.
1253 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1254 if (!buf) {
1255 audit_panic("out of memory for argv string\n");
1256 return;
1259 for (i = 0; i < axi->argc; i++) {
1260 len = audit_log_single_execve_arg(context, ab, i,
1261 &len_sent, p, buf);
1262 if (len <= 0)
1263 break;
1264 p += len;
1266 kfree(buf);
1269 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1271 int i;
1273 audit_log_format(ab, " %s=", prefix);
1274 CAP_FOR_EACH_U32(i) {
1275 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1279 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1281 kernel_cap_t *perm = &name->fcap.permitted;
1282 kernel_cap_t *inh = &name->fcap.inheritable;
1283 int log = 0;
1285 if (!cap_isclear(*perm)) {
1286 audit_log_cap(ab, "cap_fp", perm);
1287 log = 1;
1289 if (!cap_isclear(*inh)) {
1290 audit_log_cap(ab, "cap_fi", inh);
1291 log = 1;
1294 if (log)
1295 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1298 static void show_special(struct audit_context *context, int *call_panic)
1300 struct audit_buffer *ab;
1301 int i;
1303 ab = audit_log_start(context, GFP_KERNEL, context->type);
1304 if (!ab)
1305 return;
1307 switch (context->type) {
1308 case AUDIT_SOCKETCALL: {
1309 int nargs = context->socketcall.nargs;
1310 audit_log_format(ab, "nargs=%d", nargs);
1311 for (i = 0; i < nargs; i++)
1312 audit_log_format(ab, " a%d=%lx", i,
1313 context->socketcall.args[i]);
1314 break; }
1315 case AUDIT_IPC: {
1316 u32 osid = context->ipc.osid;
1318 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1319 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1320 if (osid) {
1321 char *ctx = NULL;
1322 u32 len;
1323 if (security_secid_to_secctx(osid, &ctx, &len)) {
1324 audit_log_format(ab, " osid=%u", osid);
1325 *call_panic = 1;
1326 } else {
1327 audit_log_format(ab, " obj=%s", ctx);
1328 security_release_secctx(ctx, len);
1331 if (context->ipc.has_perm) {
1332 audit_log_end(ab);
1333 ab = audit_log_start(context, GFP_KERNEL,
1334 AUDIT_IPC_SET_PERM);
1335 audit_log_format(ab,
1336 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1337 context->ipc.qbytes,
1338 context->ipc.perm_uid,
1339 context->ipc.perm_gid,
1340 context->ipc.perm_mode);
1341 if (!ab)
1342 return;
1344 break; }
1345 case AUDIT_MQ_OPEN: {
1346 audit_log_format(ab,
1347 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1348 "mq_msgsize=%ld mq_curmsgs=%ld",
1349 context->mq_open.oflag, context->mq_open.mode,
1350 context->mq_open.attr.mq_flags,
1351 context->mq_open.attr.mq_maxmsg,
1352 context->mq_open.attr.mq_msgsize,
1353 context->mq_open.attr.mq_curmsgs);
1354 break; }
1355 case AUDIT_MQ_SENDRECV: {
1356 audit_log_format(ab,
1357 "mqdes=%d msg_len=%zd msg_prio=%u "
1358 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1359 context->mq_sendrecv.mqdes,
1360 context->mq_sendrecv.msg_len,
1361 context->mq_sendrecv.msg_prio,
1362 context->mq_sendrecv.abs_timeout.tv_sec,
1363 context->mq_sendrecv.abs_timeout.tv_nsec);
1364 break; }
1365 case AUDIT_MQ_NOTIFY: {
1366 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1367 context->mq_notify.mqdes,
1368 context->mq_notify.sigev_signo);
1369 break; }
1370 case AUDIT_MQ_GETSETATTR: {
1371 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1372 audit_log_format(ab,
1373 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1374 "mq_curmsgs=%ld ",
1375 context->mq_getsetattr.mqdes,
1376 attr->mq_flags, attr->mq_maxmsg,
1377 attr->mq_msgsize, attr->mq_curmsgs);
1378 break; }
1379 case AUDIT_CAPSET: {
1380 audit_log_format(ab, "pid=%d", context->capset.pid);
1381 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1382 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1383 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1384 break; }
1385 case AUDIT_MMAP: {
1386 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1387 context->mmap.flags);
1388 break; }
1390 audit_log_end(ab);
1393 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1394 int record_num, int *call_panic)
1396 struct audit_buffer *ab;
1397 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1398 if (!ab)
1399 return; /* audit_panic has been called */
1401 audit_log_format(ab, "item=%d", record_num);
1403 if (n->name) {
1404 switch (n->name_len) {
1405 case AUDIT_NAME_FULL:
1406 /* log the full path */
1407 audit_log_format(ab, " name=");
1408 audit_log_untrustedstring(ab, n->name);
1409 break;
1410 case 0:
1411 /* name was specified as a relative path and the
1412 * directory component is the cwd */
1413 audit_log_d_path(ab, "name=", &context->pwd);
1414 break;
1415 default:
1416 /* log the name's directory component */
1417 audit_log_format(ab, " name=");
1418 audit_log_n_untrustedstring(ab, n->name,
1419 n->name_len);
1421 } else
1422 audit_log_format(ab, " name=(null)");
1424 if (n->ino != (unsigned long)-1) {
1425 audit_log_format(ab, " inode=%lu"
1426 " dev=%02x:%02x mode=%#ho"
1427 " ouid=%u ogid=%u rdev=%02x:%02x",
1428 n->ino,
1429 MAJOR(n->dev),
1430 MINOR(n->dev),
1431 n->mode,
1432 n->uid,
1433 n->gid,
1434 MAJOR(n->rdev),
1435 MINOR(n->rdev));
1437 if (n->osid != 0) {
1438 char *ctx = NULL;
1439 u32 len;
1440 if (security_secid_to_secctx(
1441 n->osid, &ctx, &len)) {
1442 audit_log_format(ab, " osid=%u", n->osid);
1443 *call_panic = 2;
1444 } else {
1445 audit_log_format(ab, " obj=%s", ctx);
1446 security_release_secctx(ctx, len);
1450 audit_log_fcaps(ab, n);
1452 audit_log_end(ab);
1455 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1457 const struct cred *cred;
1458 int i, call_panic = 0;
1459 struct audit_buffer *ab;
1460 struct audit_aux_data *aux;
1461 const char *tty;
1462 struct audit_names *n;
1464 /* tsk == current */
1465 context->pid = tsk->pid;
1466 if (!context->ppid)
1467 context->ppid = sys_getppid();
1468 cred = current_cred();
1469 context->uid = cred->uid;
1470 context->gid = cred->gid;
1471 context->euid = cred->euid;
1472 context->suid = cred->suid;
1473 context->fsuid = cred->fsuid;
1474 context->egid = cred->egid;
1475 context->sgid = cred->sgid;
1476 context->fsgid = cred->fsgid;
1477 context->personality = tsk->personality;
1479 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1480 if (!ab)
1481 return; /* audit_panic has been called */
1482 audit_log_format(ab, "arch=%x syscall=%d",
1483 context->arch, context->major);
1484 if (context->personality != PER_LINUX)
1485 audit_log_format(ab, " per=%lx", context->personality);
1486 if (context->return_valid)
1487 audit_log_format(ab, " success=%s exit=%ld",
1488 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1489 context->return_code);
1491 spin_lock_irq(&tsk->sighand->siglock);
1492 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1493 tty = tsk->signal->tty->name;
1494 else
1495 tty = "(none)";
1496 spin_unlock_irq(&tsk->sighand->siglock);
1498 audit_log_format(ab,
1499 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1500 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1501 " euid=%u suid=%u fsuid=%u"
1502 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1503 context->argv[0],
1504 context->argv[1],
1505 context->argv[2],
1506 context->argv[3],
1507 context->name_count,
1508 context->ppid,
1509 context->pid,
1510 tsk->loginuid,
1511 context->uid,
1512 context->gid,
1513 context->euid, context->suid, context->fsuid,
1514 context->egid, context->sgid, context->fsgid, tty,
1515 tsk->sessionid);
1518 audit_log_task_info(ab, tsk);
1519 audit_log_key(ab, context->filterkey);
1520 audit_log_end(ab);
1522 for (aux = context->aux; aux; aux = aux->next) {
1524 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1525 if (!ab)
1526 continue; /* audit_panic has been called */
1528 switch (aux->type) {
1530 case AUDIT_EXECVE: {
1531 struct audit_aux_data_execve *axi = (void *)aux;
1532 audit_log_execve_info(context, &ab, axi);
1533 break; }
1535 case AUDIT_BPRM_FCAPS: {
1536 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1537 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1538 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1539 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1540 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1541 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1542 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1543 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1544 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1545 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1546 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1547 break; }
1550 audit_log_end(ab);
1553 if (context->type)
1554 show_special(context, &call_panic);
1556 if (context->fds[0] >= 0) {
1557 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1558 if (ab) {
1559 audit_log_format(ab, "fd0=%d fd1=%d",
1560 context->fds[0], context->fds[1]);
1561 audit_log_end(ab);
1565 if (context->sockaddr_len) {
1566 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1567 if (ab) {
1568 audit_log_format(ab, "saddr=");
1569 audit_log_n_hex(ab, (void *)context->sockaddr,
1570 context->sockaddr_len);
1571 audit_log_end(ab);
1575 for (aux = context->aux_pids; aux; aux = aux->next) {
1576 struct audit_aux_data_pids *axs = (void *)aux;
1578 for (i = 0; i < axs->pid_count; i++)
1579 if (audit_log_pid_context(context, axs->target_pid[i],
1580 axs->target_auid[i],
1581 axs->target_uid[i],
1582 axs->target_sessionid[i],
1583 axs->target_sid[i],
1584 axs->target_comm[i]))
1585 call_panic = 1;
1588 if (context->target_pid &&
1589 audit_log_pid_context(context, context->target_pid,
1590 context->target_auid, context->target_uid,
1591 context->target_sessionid,
1592 context->target_sid, context->target_comm))
1593 call_panic = 1;
1595 if (context->pwd.dentry && context->pwd.mnt) {
1596 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1597 if (ab) {
1598 audit_log_d_path(ab, "cwd=", &context->pwd);
1599 audit_log_end(ab);
1603 i = 0;
1604 list_for_each_entry(n, &context->names_list, list)
1605 audit_log_name(context, n, i++, &call_panic);
1607 /* Send end of event record to help user space know we are finished */
1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1609 if (ab)
1610 audit_log_end(ab);
1611 if (call_panic)
1612 audit_panic("error converting sid to string");
1616 * audit_free - free a per-task audit context
1617 * @tsk: task whose audit context block to free
1619 * Called from copy_process and do_exit
1621 void __audit_free(struct task_struct *tsk)
1623 struct audit_context *context;
1625 context = audit_get_context(tsk, 0, 0);
1626 if (!context)
1627 return;
1629 /* Check for system calls that do not go through the exit
1630 * function (e.g., exit_group), then free context block.
1631 * We use GFP_ATOMIC here because we might be doing this
1632 * in the context of the idle thread */
1633 /* that can happen only if we are called from do_exit() */
1634 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1635 audit_log_exit(context, tsk);
1636 if (!list_empty(&context->killed_trees))
1637 audit_kill_trees(&context->killed_trees);
1639 audit_free_context(context);
1643 * audit_syscall_entry - fill in an audit record at syscall entry
1644 * @arch: architecture type
1645 * @major: major syscall type (function)
1646 * @a1: additional syscall register 1
1647 * @a2: additional syscall register 2
1648 * @a3: additional syscall register 3
1649 * @a4: additional syscall register 4
1651 * Fill in audit context at syscall entry. This only happens if the
1652 * audit context was created when the task was created and the state or
1653 * filters demand the audit context be built. If the state from the
1654 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1655 * then the record will be written at syscall exit time (otherwise, it
1656 * will only be written if another part of the kernel requests that it
1657 * be written).
1659 void __audit_syscall_entry(int arch, int major,
1660 unsigned long a1, unsigned long a2,
1661 unsigned long a3, unsigned long a4)
1663 struct task_struct *tsk = current;
1664 struct audit_context *context = tsk->audit_context;
1665 enum audit_state state;
1667 if (!context)
1668 return;
1671 * This happens only on certain architectures that make system
1672 * calls in kernel_thread via the entry.S interface, instead of
1673 * with direct calls. (If you are porting to a new
1674 * architecture, hitting this condition can indicate that you
1675 * got the _exit/_leave calls backward in entry.S.)
1677 * i386 no
1678 * x86_64 no
1679 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1681 * This also happens with vm86 emulation in a non-nested manner
1682 * (entries without exits), so this case must be caught.
1684 if (context->in_syscall) {
1685 struct audit_context *newctx;
1687 #if AUDIT_DEBUG
1688 printk(KERN_ERR
1689 "audit(:%d) pid=%d in syscall=%d;"
1690 " entering syscall=%d\n",
1691 context->serial, tsk->pid, context->major, major);
1692 #endif
1693 newctx = audit_alloc_context(context->state);
1694 if (newctx) {
1695 newctx->previous = context;
1696 context = newctx;
1697 tsk->audit_context = newctx;
1698 } else {
1699 /* If we can't alloc a new context, the best we
1700 * can do is to leak memory (any pending putname
1701 * will be lost). The only other alternative is
1702 * to abandon auditing. */
1703 audit_zero_context(context, context->state);
1706 BUG_ON(context->in_syscall || context->name_count);
1708 if (!audit_enabled)
1709 return;
1711 context->arch = arch;
1712 context->major = major;
1713 context->argv[0] = a1;
1714 context->argv[1] = a2;
1715 context->argv[2] = a3;
1716 context->argv[3] = a4;
1718 state = context->state;
1719 context->dummy = !audit_n_rules;
1720 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1721 context->prio = 0;
1722 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1724 if (state == AUDIT_DISABLED)
1725 return;
1727 context->serial = 0;
1728 context->ctime = CURRENT_TIME;
1729 context->in_syscall = 1;
1730 context->current_state = state;
1731 context->ppid = 0;
1735 * audit_syscall_exit - deallocate audit context after a system call
1736 * @pt_regs: syscall registers
1738 * Tear down after system call. If the audit context has been marked as
1739 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1740 * filtering, or because some other part of the kernel write an audit
1741 * message), then write out the syscall information. In call cases,
1742 * free the names stored from getname().
1744 void __audit_syscall_exit(int success, long return_code)
1746 struct task_struct *tsk = current;
1747 struct audit_context *context;
1749 if (success)
1750 success = AUDITSC_SUCCESS;
1751 else
1752 success = AUDITSC_FAILURE;
1754 context = audit_get_context(tsk, success, return_code);
1755 if (!context)
1756 return;
1758 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1759 audit_log_exit(context, tsk);
1761 context->in_syscall = 0;
1762 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1764 if (!list_empty(&context->killed_trees))
1765 audit_kill_trees(&context->killed_trees);
1767 if (context->previous) {
1768 struct audit_context *new_context = context->previous;
1769 context->previous = NULL;
1770 audit_free_context(context);
1771 tsk->audit_context = new_context;
1772 } else {
1773 audit_free_names(context);
1774 unroll_tree_refs(context, NULL, 0);
1775 audit_free_aux(context);
1776 context->aux = NULL;
1777 context->aux_pids = NULL;
1778 context->target_pid = 0;
1779 context->target_sid = 0;
1780 context->sockaddr_len = 0;
1781 context->type = 0;
1782 context->fds[0] = -1;
1783 if (context->state != AUDIT_RECORD_CONTEXT) {
1784 kfree(context->filterkey);
1785 context->filterkey = NULL;
1787 tsk->audit_context = context;
1791 static inline void handle_one(const struct inode *inode)
1793 #ifdef CONFIG_AUDIT_TREE
1794 struct audit_context *context;
1795 struct audit_tree_refs *p;
1796 struct audit_chunk *chunk;
1797 int count;
1798 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1799 return;
1800 context = current->audit_context;
1801 p = context->trees;
1802 count = context->tree_count;
1803 rcu_read_lock();
1804 chunk = audit_tree_lookup(inode);
1805 rcu_read_unlock();
1806 if (!chunk)
1807 return;
1808 if (likely(put_tree_ref(context, chunk)))
1809 return;
1810 if (unlikely(!grow_tree_refs(context))) {
1811 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1812 audit_set_auditable(context);
1813 audit_put_chunk(chunk);
1814 unroll_tree_refs(context, p, count);
1815 return;
1817 put_tree_ref(context, chunk);
1818 #endif
1821 static void handle_path(const struct dentry *dentry)
1823 #ifdef CONFIG_AUDIT_TREE
1824 struct audit_context *context;
1825 struct audit_tree_refs *p;
1826 const struct dentry *d, *parent;
1827 struct audit_chunk *drop;
1828 unsigned long seq;
1829 int count;
1831 context = current->audit_context;
1832 p = context->trees;
1833 count = context->tree_count;
1834 retry:
1835 drop = NULL;
1836 d = dentry;
1837 rcu_read_lock();
1838 seq = read_seqbegin(&rename_lock);
1839 for(;;) {
1840 struct inode *inode = d->d_inode;
1841 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1842 struct audit_chunk *chunk;
1843 chunk = audit_tree_lookup(inode);
1844 if (chunk) {
1845 if (unlikely(!put_tree_ref(context, chunk))) {
1846 drop = chunk;
1847 break;
1851 parent = d->d_parent;
1852 if (parent == d)
1853 break;
1854 d = parent;
1856 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1857 rcu_read_unlock();
1858 if (!drop) {
1859 /* just a race with rename */
1860 unroll_tree_refs(context, p, count);
1861 goto retry;
1863 audit_put_chunk(drop);
1864 if (grow_tree_refs(context)) {
1865 /* OK, got more space */
1866 unroll_tree_refs(context, p, count);
1867 goto retry;
1869 /* too bad */
1870 printk(KERN_WARNING
1871 "out of memory, audit has lost a tree reference\n");
1872 unroll_tree_refs(context, p, count);
1873 audit_set_auditable(context);
1874 return;
1876 rcu_read_unlock();
1877 #endif
1880 static struct audit_names *audit_alloc_name(struct audit_context *context)
1882 struct audit_names *aname;
1884 if (context->name_count < AUDIT_NAMES) {
1885 aname = &context->preallocated_names[context->name_count];
1886 memset(aname, 0, sizeof(*aname));
1887 } else {
1888 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1889 if (!aname)
1890 return NULL;
1891 aname->should_free = true;
1894 aname->ino = (unsigned long)-1;
1895 list_add_tail(&aname->list, &context->names_list);
1897 context->name_count++;
1898 #if AUDIT_DEBUG
1899 context->ino_count++;
1900 #endif
1901 return aname;
1905 * audit_getname - add a name to the list
1906 * @name: name to add
1908 * Add a name to the list of audit names for this context.
1909 * Called from fs/namei.c:getname().
1911 void __audit_getname(const char *name)
1913 struct audit_context *context = current->audit_context;
1914 struct audit_names *n;
1916 if (!context->in_syscall) {
1917 #if AUDIT_DEBUG == 2
1918 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1919 __FILE__, __LINE__, context->serial, name);
1920 dump_stack();
1921 #endif
1922 return;
1925 n = audit_alloc_name(context);
1926 if (!n)
1927 return;
1929 n->name = name;
1930 n->name_len = AUDIT_NAME_FULL;
1931 n->name_put = true;
1933 if (!context->pwd.dentry)
1934 get_fs_pwd(current->fs, &context->pwd);
1937 /* audit_putname - intercept a putname request
1938 * @name: name to intercept and delay for putname
1940 * If we have stored the name from getname in the audit context,
1941 * then we delay the putname until syscall exit.
1942 * Called from include/linux/fs.h:putname().
1944 void audit_putname(const char *name)
1946 struct audit_context *context = current->audit_context;
1948 BUG_ON(!context);
1949 if (!context->in_syscall) {
1950 #if AUDIT_DEBUG == 2
1951 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1952 __FILE__, __LINE__, context->serial, name);
1953 if (context->name_count) {
1954 struct audit_names *n;
1955 int i;
1957 list_for_each_entry(n, &context->names_list, list)
1958 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1959 n->name, n->name ?: "(null)");
1961 #endif
1962 __putname(name);
1964 #if AUDIT_DEBUG
1965 else {
1966 ++context->put_count;
1967 if (context->put_count > context->name_count) {
1968 printk(KERN_ERR "%s:%d(:%d): major=%d"
1969 " in_syscall=%d putname(%p) name_count=%d"
1970 " put_count=%d\n",
1971 __FILE__, __LINE__,
1972 context->serial, context->major,
1973 context->in_syscall, name, context->name_count,
1974 context->put_count);
1975 dump_stack();
1978 #endif
1981 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1983 struct cpu_vfs_cap_data caps;
1984 int rc;
1986 if (!dentry)
1987 return 0;
1989 rc = get_vfs_caps_from_disk(dentry, &caps);
1990 if (rc)
1991 return rc;
1993 name->fcap.permitted = caps.permitted;
1994 name->fcap.inheritable = caps.inheritable;
1995 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1996 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1998 return 0;
2002 /* Copy inode data into an audit_names. */
2003 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2004 const struct inode *inode)
2006 name->ino = inode->i_ino;
2007 name->dev = inode->i_sb->s_dev;
2008 name->mode = inode->i_mode;
2009 name->uid = inode->i_uid;
2010 name->gid = inode->i_gid;
2011 name->rdev = inode->i_rdev;
2012 security_inode_getsecid(inode, &name->osid);
2013 audit_copy_fcaps(name, dentry);
2017 * audit_inode - store the inode and device from a lookup
2018 * @name: name being audited
2019 * @dentry: dentry being audited
2021 * Called from fs/namei.c:path_lookup().
2023 void __audit_inode(const char *name, const struct dentry *dentry)
2025 struct audit_context *context = current->audit_context;
2026 const struct inode *inode = dentry->d_inode;
2027 struct audit_names *n;
2029 if (!context->in_syscall)
2030 return;
2032 list_for_each_entry_reverse(n, &context->names_list, list) {
2033 if (n->name && (n->name == name))
2034 goto out;
2037 /* unable to find the name from a previous getname() */
2038 n = audit_alloc_name(context);
2039 if (!n)
2040 return;
2041 out:
2042 handle_path(dentry);
2043 audit_copy_inode(n, dentry, inode);
2047 * audit_inode_child - collect inode info for created/removed objects
2048 * @dentry: dentry being audited
2049 * @parent: inode of dentry parent
2051 * For syscalls that create or remove filesystem objects, audit_inode
2052 * can only collect information for the filesystem object's parent.
2053 * This call updates the audit context with the child's information.
2054 * Syscalls that create a new filesystem object must be hooked after
2055 * the object is created. Syscalls that remove a filesystem object
2056 * must be hooked prior, in order to capture the target inode during
2057 * unsuccessful attempts.
2059 void __audit_inode_child(const struct dentry *dentry,
2060 const struct inode *parent)
2062 struct audit_context *context = current->audit_context;
2063 const char *found_parent = NULL, *found_child = NULL;
2064 const struct inode *inode = dentry->d_inode;
2065 const char *dname = dentry->d_name.name;
2066 struct audit_names *n;
2067 int dirlen = 0;
2069 if (!context->in_syscall)
2070 return;
2072 if (inode)
2073 handle_one(inode);
2075 /* parent is more likely, look for it first */
2076 list_for_each_entry(n, &context->names_list, list) {
2077 if (!n->name)
2078 continue;
2080 if (n->ino == parent->i_ino &&
2081 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2082 n->name_len = dirlen; /* update parent data in place */
2083 found_parent = n->name;
2084 goto add_names;
2088 /* no matching parent, look for matching child */
2089 list_for_each_entry(n, &context->names_list, list) {
2090 if (!n->name)
2091 continue;
2093 /* strcmp() is the more likely scenario */
2094 if (!strcmp(dname, n->name) ||
2095 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2096 if (inode)
2097 audit_copy_inode(n, NULL, inode);
2098 else
2099 n->ino = (unsigned long)-1;
2100 found_child = n->name;
2101 goto add_names;
2105 add_names:
2106 if (!found_parent) {
2107 n = audit_alloc_name(context);
2108 if (!n)
2109 return;
2110 audit_copy_inode(n, NULL, parent);
2113 if (!found_child) {
2114 n = audit_alloc_name(context);
2115 if (!n)
2116 return;
2118 /* Re-use the name belonging to the slot for a matching parent
2119 * directory. All names for this context are relinquished in
2120 * audit_free_names() */
2121 if (found_parent) {
2122 n->name = found_parent;
2123 n->name_len = AUDIT_NAME_FULL;
2124 /* don't call __putname() */
2125 n->name_put = false;
2128 if (inode)
2129 audit_copy_inode(n, NULL, inode);
2132 EXPORT_SYMBOL_GPL(__audit_inode_child);
2135 * auditsc_get_stamp - get local copies of audit_context values
2136 * @ctx: audit_context for the task
2137 * @t: timespec to store time recorded in the audit_context
2138 * @serial: serial value that is recorded in the audit_context
2140 * Also sets the context as auditable.
2142 int auditsc_get_stamp(struct audit_context *ctx,
2143 struct timespec *t, unsigned int *serial)
2145 if (!ctx->in_syscall)
2146 return 0;
2147 if (!ctx->serial)
2148 ctx->serial = audit_serial();
2149 t->tv_sec = ctx->ctime.tv_sec;
2150 t->tv_nsec = ctx->ctime.tv_nsec;
2151 *serial = ctx->serial;
2152 if (!ctx->prio) {
2153 ctx->prio = 1;
2154 ctx->current_state = AUDIT_RECORD_CONTEXT;
2156 return 1;
2159 /* global counter which is incremented every time something logs in */
2160 static atomic_t session_id = ATOMIC_INIT(0);
2163 * audit_set_loginuid - set current task's audit_context loginuid
2164 * @loginuid: loginuid value
2166 * Returns 0.
2168 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2170 int audit_set_loginuid(uid_t loginuid)
2172 struct task_struct *task = current;
2173 struct audit_context *context = task->audit_context;
2174 unsigned int sessionid;
2176 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2177 if (task->loginuid != -1)
2178 return -EPERM;
2179 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2180 if (!capable(CAP_AUDIT_CONTROL))
2181 return -EPERM;
2182 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2184 sessionid = atomic_inc_return(&session_id);
2185 if (context && context->in_syscall) {
2186 struct audit_buffer *ab;
2188 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2189 if (ab) {
2190 audit_log_format(ab, "login pid=%d uid=%u "
2191 "old auid=%u new auid=%u"
2192 " old ses=%u new ses=%u",
2193 task->pid, task_uid(task),
2194 task->loginuid, loginuid,
2195 task->sessionid, sessionid);
2196 audit_log_end(ab);
2199 task->sessionid = sessionid;
2200 task->loginuid = loginuid;
2201 return 0;
2205 * __audit_mq_open - record audit data for a POSIX MQ open
2206 * @oflag: open flag
2207 * @mode: mode bits
2208 * @attr: queue attributes
2211 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2213 struct audit_context *context = current->audit_context;
2215 if (attr)
2216 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2217 else
2218 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2220 context->mq_open.oflag = oflag;
2221 context->mq_open.mode = mode;
2223 context->type = AUDIT_MQ_OPEN;
2227 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2228 * @mqdes: MQ descriptor
2229 * @msg_len: Message length
2230 * @msg_prio: Message priority
2231 * @abs_timeout: Message timeout in absolute time
2234 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2235 const struct timespec *abs_timeout)
2237 struct audit_context *context = current->audit_context;
2238 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2240 if (abs_timeout)
2241 memcpy(p, abs_timeout, sizeof(struct timespec));
2242 else
2243 memset(p, 0, sizeof(struct timespec));
2245 context->mq_sendrecv.mqdes = mqdes;
2246 context->mq_sendrecv.msg_len = msg_len;
2247 context->mq_sendrecv.msg_prio = msg_prio;
2249 context->type = AUDIT_MQ_SENDRECV;
2253 * __audit_mq_notify - record audit data for a POSIX MQ notify
2254 * @mqdes: MQ descriptor
2255 * @notification: Notification event
2259 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2261 struct audit_context *context = current->audit_context;
2263 if (notification)
2264 context->mq_notify.sigev_signo = notification->sigev_signo;
2265 else
2266 context->mq_notify.sigev_signo = 0;
2268 context->mq_notify.mqdes = mqdes;
2269 context->type = AUDIT_MQ_NOTIFY;
2273 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2274 * @mqdes: MQ descriptor
2275 * @mqstat: MQ flags
2278 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2280 struct audit_context *context = current->audit_context;
2281 context->mq_getsetattr.mqdes = mqdes;
2282 context->mq_getsetattr.mqstat = *mqstat;
2283 context->type = AUDIT_MQ_GETSETATTR;
2287 * audit_ipc_obj - record audit data for ipc object
2288 * @ipcp: ipc permissions
2291 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2293 struct audit_context *context = current->audit_context;
2294 context->ipc.uid = ipcp->uid;
2295 context->ipc.gid = ipcp->gid;
2296 context->ipc.mode = ipcp->mode;
2297 context->ipc.has_perm = 0;
2298 security_ipc_getsecid(ipcp, &context->ipc.osid);
2299 context->type = AUDIT_IPC;
2303 * audit_ipc_set_perm - record audit data for new ipc permissions
2304 * @qbytes: msgq bytes
2305 * @uid: msgq user id
2306 * @gid: msgq group id
2307 * @mode: msgq mode (permissions)
2309 * Called only after audit_ipc_obj().
2311 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2313 struct audit_context *context = current->audit_context;
2315 context->ipc.qbytes = qbytes;
2316 context->ipc.perm_uid = uid;
2317 context->ipc.perm_gid = gid;
2318 context->ipc.perm_mode = mode;
2319 context->ipc.has_perm = 1;
2322 int __audit_bprm(struct linux_binprm *bprm)
2324 struct audit_aux_data_execve *ax;
2325 struct audit_context *context = current->audit_context;
2327 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2328 if (!ax)
2329 return -ENOMEM;
2331 ax->argc = bprm->argc;
2332 ax->envc = bprm->envc;
2333 ax->mm = bprm->mm;
2334 ax->d.type = AUDIT_EXECVE;
2335 ax->d.next = context->aux;
2336 context->aux = (void *)ax;
2337 return 0;
2342 * audit_socketcall - record audit data for sys_socketcall
2343 * @nargs: number of args
2344 * @args: args array
2347 void __audit_socketcall(int nargs, unsigned long *args)
2349 struct audit_context *context = current->audit_context;
2351 context->type = AUDIT_SOCKETCALL;
2352 context->socketcall.nargs = nargs;
2353 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2357 * __audit_fd_pair - record audit data for pipe and socketpair
2358 * @fd1: the first file descriptor
2359 * @fd2: the second file descriptor
2362 void __audit_fd_pair(int fd1, int fd2)
2364 struct audit_context *context = current->audit_context;
2365 context->fds[0] = fd1;
2366 context->fds[1] = fd2;
2370 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2371 * @len: data length in user space
2372 * @a: data address in kernel space
2374 * Returns 0 for success or NULL context or < 0 on error.
2376 int __audit_sockaddr(int len, void *a)
2378 struct audit_context *context = current->audit_context;
2380 if (!context->sockaddr) {
2381 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2382 if (!p)
2383 return -ENOMEM;
2384 context->sockaddr = p;
2387 context->sockaddr_len = len;
2388 memcpy(context->sockaddr, a, len);
2389 return 0;
2392 void __audit_ptrace(struct task_struct *t)
2394 struct audit_context *context = current->audit_context;
2396 context->target_pid = t->pid;
2397 context->target_auid = audit_get_loginuid(t);
2398 context->target_uid = task_uid(t);
2399 context->target_sessionid = audit_get_sessionid(t);
2400 security_task_getsecid(t, &context->target_sid);
2401 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2405 * audit_signal_info - record signal info for shutting down audit subsystem
2406 * @sig: signal value
2407 * @t: task being signaled
2409 * If the audit subsystem is being terminated, record the task (pid)
2410 * and uid that is doing that.
2412 int __audit_signal_info(int sig, struct task_struct *t)
2414 struct audit_aux_data_pids *axp;
2415 struct task_struct *tsk = current;
2416 struct audit_context *ctx = tsk->audit_context;
2417 uid_t uid = current_uid(), t_uid = task_uid(t);
2419 if (audit_pid && t->tgid == audit_pid) {
2420 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2421 audit_sig_pid = tsk->pid;
2422 if (tsk->loginuid != -1)
2423 audit_sig_uid = tsk->loginuid;
2424 else
2425 audit_sig_uid = uid;
2426 security_task_getsecid(tsk, &audit_sig_sid);
2428 if (!audit_signals || audit_dummy_context())
2429 return 0;
2432 /* optimize the common case by putting first signal recipient directly
2433 * in audit_context */
2434 if (!ctx->target_pid) {
2435 ctx->target_pid = t->tgid;
2436 ctx->target_auid = audit_get_loginuid(t);
2437 ctx->target_uid = t_uid;
2438 ctx->target_sessionid = audit_get_sessionid(t);
2439 security_task_getsecid(t, &ctx->target_sid);
2440 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2441 return 0;
2444 axp = (void *)ctx->aux_pids;
2445 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2446 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2447 if (!axp)
2448 return -ENOMEM;
2450 axp->d.type = AUDIT_OBJ_PID;
2451 axp->d.next = ctx->aux_pids;
2452 ctx->aux_pids = (void *)axp;
2454 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2456 axp->target_pid[axp->pid_count] = t->tgid;
2457 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2458 axp->target_uid[axp->pid_count] = t_uid;
2459 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2460 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2461 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2462 axp->pid_count++;
2464 return 0;
2468 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2469 * @bprm: pointer to the bprm being processed
2470 * @new: the proposed new credentials
2471 * @old: the old credentials
2473 * Simply check if the proc already has the caps given by the file and if not
2474 * store the priv escalation info for later auditing at the end of the syscall
2476 * -Eric
2478 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2479 const struct cred *new, const struct cred *old)
2481 struct audit_aux_data_bprm_fcaps *ax;
2482 struct audit_context *context = current->audit_context;
2483 struct cpu_vfs_cap_data vcaps;
2484 struct dentry *dentry;
2486 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2487 if (!ax)
2488 return -ENOMEM;
2490 ax->d.type = AUDIT_BPRM_FCAPS;
2491 ax->d.next = context->aux;
2492 context->aux = (void *)ax;
2494 dentry = dget(bprm->file->f_dentry);
2495 get_vfs_caps_from_disk(dentry, &vcaps);
2496 dput(dentry);
2498 ax->fcap.permitted = vcaps.permitted;
2499 ax->fcap.inheritable = vcaps.inheritable;
2500 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2501 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2503 ax->old_pcap.permitted = old->cap_permitted;
2504 ax->old_pcap.inheritable = old->cap_inheritable;
2505 ax->old_pcap.effective = old->cap_effective;
2507 ax->new_pcap.permitted = new->cap_permitted;
2508 ax->new_pcap.inheritable = new->cap_inheritable;
2509 ax->new_pcap.effective = new->cap_effective;
2510 return 0;
2514 * __audit_log_capset - store information about the arguments to the capset syscall
2515 * @pid: target pid of the capset call
2516 * @new: the new credentials
2517 * @old: the old (current) credentials
2519 * Record the aguments userspace sent to sys_capset for later printing by the
2520 * audit system if applicable
2522 void __audit_log_capset(pid_t pid,
2523 const struct cred *new, const struct cred *old)
2525 struct audit_context *context = current->audit_context;
2526 context->capset.pid = pid;
2527 context->capset.cap.effective = new->cap_effective;
2528 context->capset.cap.inheritable = new->cap_effective;
2529 context->capset.cap.permitted = new->cap_permitted;
2530 context->type = AUDIT_CAPSET;
2533 void __audit_mmap_fd(int fd, int flags)
2535 struct audit_context *context = current->audit_context;
2536 context->mmap.fd = fd;
2537 context->mmap.flags = flags;
2538 context->type = AUDIT_MMAP;
2541 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2543 uid_t auid, uid;
2544 gid_t gid;
2545 unsigned int sessionid;
2547 auid = audit_get_loginuid(current);
2548 sessionid = audit_get_sessionid(current);
2549 current_uid_gid(&uid, &gid);
2551 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2552 auid, uid, gid, sessionid);
2553 audit_log_task_context(ab);
2554 audit_log_format(ab, " pid=%d comm=", current->pid);
2555 audit_log_untrustedstring(ab, current->comm);
2556 audit_log_format(ab, " reason=");
2557 audit_log_string(ab, reason);
2558 audit_log_format(ab, " sig=%ld", signr);
2561 * audit_core_dumps - record information about processes that end abnormally
2562 * @signr: signal value
2564 * If a process ends with a core dump, something fishy is going on and we
2565 * should record the event for investigation.
2567 void audit_core_dumps(long signr)
2569 struct audit_buffer *ab;
2571 if (!audit_enabled)
2572 return;
2574 if (signr == SIGQUIT) /* don't care for those */
2575 return;
2577 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2578 audit_log_abend(ab, "memory violation", signr);
2579 audit_log_end(ab);
2582 void __audit_seccomp(unsigned long syscall)
2584 struct audit_buffer *ab;
2586 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2587 audit_log_abend(ab, "seccomp", SIGKILL);
2588 audit_log_format(ab, " syscall=%ld", syscall);
2589 audit_log_end(ab);
2592 struct list_head *audit_killed_trees(void)
2594 struct audit_context *ctx = current->audit_context;
2595 if (likely(!ctx || !ctx->in_syscall))
2596 return NULL;
2597 return &ctx->killed_trees;