ARM: perf: remove event limit from pmu_hw_events
[linux-2.6/btrfs-unstable.git] / arch / arm / kernel / perf_event.c
blobe1db55500784e30657153a97c3fc51e99301dea7
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/perf_event.h>
19 #include <linux/platform_device.h>
20 #include <linux/spinlock.h>
21 #include <linux/uaccess.h>
23 #include <asm/cputype.h>
24 #include <asm/irq.h>
25 #include <asm/irq_regs.h>
26 #include <asm/pmu.h>
27 #include <asm/stacktrace.h>
30 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
31 * another platform that supports more, we need to increase this to be the
32 * largest of all platforms.
34 * ARMv7 supports up to 32 events:
35 * cycle counter CCNT + 31 events counters CNT0..30.
36 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
38 #define ARMPMU_MAX_HWEVENTS 32
40 /* The events for a given CPU. */
41 struct cpu_hw_events {
43 * The events that are active on the CPU for the given index.
45 struct perf_event **events;
48 * A 1 bit for an index indicates that the counter is being used for
49 * an event. A 0 means that the counter can be used.
51 unsigned long *used_mask;
54 * Hardware lock to serialize accesses to PMU registers. Needed for the
55 * read/modify/write sequences.
57 raw_spinlock_t pmu_lock;
60 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
61 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64 struct arm_pmu {
65 struct pmu pmu;
66 enum arm_perf_pmu_ids id;
67 enum arm_pmu_type type;
68 cpumask_t active_irqs;
69 const char *name;
70 irqreturn_t (*handle_irq)(int irq_num, void *dev);
71 void (*enable)(struct hw_perf_event *evt, int idx);
72 void (*disable)(struct hw_perf_event *evt, int idx);
73 int (*get_event_idx)(struct cpu_hw_events *cpuc,
74 struct hw_perf_event *hwc);
75 int (*set_event_filter)(struct hw_perf_event *evt,
76 struct perf_event_attr *attr);
77 u32 (*read_counter)(int idx);
78 void (*write_counter)(int idx, u32 val);
79 void (*start)(void);
80 void (*stop)(void);
81 void (*reset)(void *);
82 int (*map_event)(struct perf_event *event);
83 int num_events;
84 atomic_t active_events;
85 struct mutex reserve_mutex;
86 u64 max_period;
87 struct platform_device *plat_device;
88 struct cpu_hw_events *(*get_hw_events)(void);
91 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
93 /* Set at runtime when we know what CPU type we are. */
94 static struct arm_pmu *armpmu;
96 enum arm_perf_pmu_ids
97 armpmu_get_pmu_id(void)
99 int id = -ENODEV;
101 if (armpmu != NULL)
102 id = armpmu->id;
104 return id;
106 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
109 armpmu_get_max_events(void)
111 int max_events = 0;
113 if (armpmu != NULL)
114 max_events = armpmu->num_events;
116 return max_events;
118 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
120 int perf_num_counters(void)
122 return armpmu_get_max_events();
124 EXPORT_SYMBOL_GPL(perf_num_counters);
126 #define HW_OP_UNSUPPORTED 0xFFFF
128 #define C(_x) \
129 PERF_COUNT_HW_CACHE_##_x
131 #define CACHE_OP_UNSUPPORTED 0xFFFF
133 static int
134 armpmu_map_cache_event(const unsigned (*cache_map)
135 [PERF_COUNT_HW_CACHE_MAX]
136 [PERF_COUNT_HW_CACHE_OP_MAX]
137 [PERF_COUNT_HW_CACHE_RESULT_MAX],
138 u64 config)
140 unsigned int cache_type, cache_op, cache_result, ret;
142 cache_type = (config >> 0) & 0xff;
143 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
144 return -EINVAL;
146 cache_op = (config >> 8) & 0xff;
147 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
148 return -EINVAL;
150 cache_result = (config >> 16) & 0xff;
151 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
152 return -EINVAL;
154 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
156 if (ret == CACHE_OP_UNSUPPORTED)
157 return -ENOENT;
159 return ret;
162 static int
163 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
165 int mapping = (*event_map)[config];
166 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
169 static int
170 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
172 return (int)(config & raw_event_mask);
175 static int map_cpu_event(struct perf_event *event,
176 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
177 const unsigned (*cache_map)
178 [PERF_COUNT_HW_CACHE_MAX]
179 [PERF_COUNT_HW_CACHE_OP_MAX]
180 [PERF_COUNT_HW_CACHE_RESULT_MAX],
181 u32 raw_event_mask)
183 u64 config = event->attr.config;
185 switch (event->attr.type) {
186 case PERF_TYPE_HARDWARE:
187 return armpmu_map_event(event_map, config);
188 case PERF_TYPE_HW_CACHE:
189 return armpmu_map_cache_event(cache_map, config);
190 case PERF_TYPE_RAW:
191 return armpmu_map_raw_event(raw_event_mask, config);
194 return -ENOENT;
197 static int
198 armpmu_event_set_period(struct perf_event *event,
199 struct hw_perf_event *hwc,
200 int idx)
202 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 s64 left = local64_read(&hwc->period_left);
204 s64 period = hwc->sample_period;
205 int ret = 0;
207 if (unlikely(left <= -period)) {
208 left = period;
209 local64_set(&hwc->period_left, left);
210 hwc->last_period = period;
211 ret = 1;
214 if (unlikely(left <= 0)) {
215 left += period;
216 local64_set(&hwc->period_left, left);
217 hwc->last_period = period;
218 ret = 1;
221 if (left > (s64)armpmu->max_period)
222 left = armpmu->max_period;
224 local64_set(&hwc->prev_count, (u64)-left);
226 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
228 perf_event_update_userpage(event);
230 return ret;
233 static u64
234 armpmu_event_update(struct perf_event *event,
235 struct hw_perf_event *hwc,
236 int idx, int overflow)
238 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
239 u64 delta, prev_raw_count, new_raw_count;
241 again:
242 prev_raw_count = local64_read(&hwc->prev_count);
243 new_raw_count = armpmu->read_counter(idx);
245 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
246 new_raw_count) != prev_raw_count)
247 goto again;
249 new_raw_count &= armpmu->max_period;
250 prev_raw_count &= armpmu->max_period;
252 if (overflow)
253 delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
254 else
255 delta = new_raw_count - prev_raw_count;
257 local64_add(delta, &event->count);
258 local64_sub(delta, &hwc->period_left);
260 return new_raw_count;
263 static void
264 armpmu_read(struct perf_event *event)
266 struct hw_perf_event *hwc = &event->hw;
268 /* Don't read disabled counters! */
269 if (hwc->idx < 0)
270 return;
272 armpmu_event_update(event, hwc, hwc->idx, 0);
275 static void
276 armpmu_stop(struct perf_event *event, int flags)
278 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
279 struct hw_perf_event *hwc = &event->hw;
282 * ARM pmu always has to update the counter, so ignore
283 * PERF_EF_UPDATE, see comments in armpmu_start().
285 if (!(hwc->state & PERF_HES_STOPPED)) {
286 armpmu->disable(hwc, hwc->idx);
287 barrier(); /* why? */
288 armpmu_event_update(event, hwc, hwc->idx, 0);
289 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
293 static void
294 armpmu_start(struct perf_event *event, int flags)
296 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
297 struct hw_perf_event *hwc = &event->hw;
300 * ARM pmu always has to reprogram the period, so ignore
301 * PERF_EF_RELOAD, see the comment below.
303 if (flags & PERF_EF_RELOAD)
304 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
306 hwc->state = 0;
308 * Set the period again. Some counters can't be stopped, so when we
309 * were stopped we simply disabled the IRQ source and the counter
310 * may have been left counting. If we don't do this step then we may
311 * get an interrupt too soon or *way* too late if the overflow has
312 * happened since disabling.
314 armpmu_event_set_period(event, hwc, hwc->idx);
315 armpmu->enable(hwc, hwc->idx);
318 static void
319 armpmu_del(struct perf_event *event, int flags)
321 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
322 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
323 struct hw_perf_event *hwc = &event->hw;
324 int idx = hwc->idx;
326 WARN_ON(idx < 0);
328 armpmu_stop(event, PERF_EF_UPDATE);
329 cpuc->events[idx] = NULL;
330 clear_bit(idx, cpuc->used_mask);
332 perf_event_update_userpage(event);
335 static int
336 armpmu_add(struct perf_event *event, int flags)
338 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
339 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
340 struct hw_perf_event *hwc = &event->hw;
341 int idx;
342 int err = 0;
344 perf_pmu_disable(event->pmu);
346 /* If we don't have a space for the counter then finish early. */
347 idx = armpmu->get_event_idx(cpuc, hwc);
348 if (idx < 0) {
349 err = idx;
350 goto out;
354 * If there is an event in the counter we are going to use then make
355 * sure it is disabled.
357 event->hw.idx = idx;
358 armpmu->disable(hwc, idx);
359 cpuc->events[idx] = event;
361 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
362 if (flags & PERF_EF_START)
363 armpmu_start(event, PERF_EF_RELOAD);
365 /* Propagate our changes to the userspace mapping. */
366 perf_event_update_userpage(event);
368 out:
369 perf_pmu_enable(event->pmu);
370 return err;
373 static int
374 validate_event(struct cpu_hw_events *cpuc,
375 struct perf_event *event)
377 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
378 struct hw_perf_event fake_event = event->hw;
379 struct pmu *leader_pmu = event->group_leader->pmu;
381 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
382 return 1;
384 return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
387 static int
388 validate_group(struct perf_event *event)
390 struct perf_event *sibling, *leader = event->group_leader;
391 struct cpu_hw_events fake_pmu;
393 memset(&fake_pmu, 0, sizeof(fake_pmu));
395 if (!validate_event(&fake_pmu, leader))
396 return -ENOSPC;
398 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
399 if (!validate_event(&fake_pmu, sibling))
400 return -ENOSPC;
403 if (!validate_event(&fake_pmu, event))
404 return -ENOSPC;
406 return 0;
409 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
411 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
412 struct platform_device *plat_device = armpmu->plat_device;
413 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
415 return plat->handle_irq(irq, dev, armpmu->handle_irq);
418 static void
419 armpmu_release_hardware(struct arm_pmu *armpmu)
421 int i, irq, irqs;
422 struct platform_device *pmu_device = armpmu->plat_device;
424 irqs = min(pmu_device->num_resources, num_possible_cpus());
426 for (i = 0; i < irqs; ++i) {
427 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
428 continue;
429 irq = platform_get_irq(pmu_device, i);
430 if (irq >= 0)
431 free_irq(irq, armpmu);
434 release_pmu(armpmu->type);
437 static int
438 armpmu_reserve_hardware(struct arm_pmu *armpmu)
440 struct arm_pmu_platdata *plat;
441 irq_handler_t handle_irq;
442 int i, err, irq, irqs;
443 struct platform_device *pmu_device = armpmu->plat_device;
445 err = reserve_pmu(armpmu->type);
446 if (err) {
447 pr_warning("unable to reserve pmu\n");
448 return err;
451 plat = dev_get_platdata(&pmu_device->dev);
452 if (plat && plat->handle_irq)
453 handle_irq = armpmu_platform_irq;
454 else
455 handle_irq = armpmu->handle_irq;
457 irqs = min(pmu_device->num_resources, num_possible_cpus());
458 if (irqs < 1) {
459 pr_err("no irqs for PMUs defined\n");
460 return -ENODEV;
463 for (i = 0; i < irqs; ++i) {
464 err = 0;
465 irq = platform_get_irq(pmu_device, i);
466 if (irq < 0)
467 continue;
470 * If we have a single PMU interrupt that we can't shift,
471 * assume that we're running on a uniprocessor machine and
472 * continue. Otherwise, continue without this interrupt.
474 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
475 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
476 irq, i);
477 continue;
480 err = request_irq(irq, handle_irq,
481 IRQF_DISABLED | IRQF_NOBALANCING,
482 "arm-pmu", armpmu);
483 if (err) {
484 pr_err("unable to request IRQ%d for ARM PMU counters\n",
485 irq);
486 armpmu_release_hardware(armpmu);
487 return err;
490 cpumask_set_cpu(i, &armpmu->active_irqs);
493 return 0;
496 static void
497 hw_perf_event_destroy(struct perf_event *event)
499 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
500 atomic_t *active_events = &armpmu->active_events;
501 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
503 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
504 armpmu_release_hardware(armpmu);
505 mutex_unlock(pmu_reserve_mutex);
509 static int
510 event_requires_mode_exclusion(struct perf_event_attr *attr)
512 return attr->exclude_idle || attr->exclude_user ||
513 attr->exclude_kernel || attr->exclude_hv;
516 static int
517 __hw_perf_event_init(struct perf_event *event)
519 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
520 struct hw_perf_event *hwc = &event->hw;
521 int mapping, err;
523 mapping = armpmu->map_event(event);
525 if (mapping < 0) {
526 pr_debug("event %x:%llx not supported\n", event->attr.type,
527 event->attr.config);
528 return mapping;
532 * We don't assign an index until we actually place the event onto
533 * hardware. Use -1 to signify that we haven't decided where to put it
534 * yet. For SMP systems, each core has it's own PMU so we can't do any
535 * clever allocation or constraints checking at this point.
537 hwc->idx = -1;
538 hwc->config_base = 0;
539 hwc->config = 0;
540 hwc->event_base = 0;
543 * Check whether we need to exclude the counter from certain modes.
545 if ((!armpmu->set_event_filter ||
546 armpmu->set_event_filter(hwc, &event->attr)) &&
547 event_requires_mode_exclusion(&event->attr)) {
548 pr_debug("ARM performance counters do not support "
549 "mode exclusion\n");
550 return -EPERM;
554 * Store the event encoding into the config_base field.
556 hwc->config_base |= (unsigned long)mapping;
558 if (!hwc->sample_period) {
559 hwc->sample_period = armpmu->max_period;
560 hwc->last_period = hwc->sample_period;
561 local64_set(&hwc->period_left, hwc->sample_period);
564 err = 0;
565 if (event->group_leader != event) {
566 err = validate_group(event);
567 if (err)
568 return -EINVAL;
571 return err;
574 static int armpmu_event_init(struct perf_event *event)
576 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
577 int err = 0;
578 atomic_t *active_events = &armpmu->active_events;
580 if (armpmu->map_event(event) == -ENOENT)
581 return -ENOENT;
583 event->destroy = hw_perf_event_destroy;
585 if (!atomic_inc_not_zero(active_events)) {
586 mutex_lock(&armpmu->reserve_mutex);
587 if (atomic_read(active_events) == 0)
588 err = armpmu_reserve_hardware(armpmu);
590 if (!err)
591 atomic_inc(active_events);
592 mutex_unlock(&armpmu->reserve_mutex);
595 if (err)
596 return err;
598 err = __hw_perf_event_init(event);
599 if (err)
600 hw_perf_event_destroy(event);
602 return err;
605 static void armpmu_enable(struct pmu *pmu)
607 struct arm_pmu *armpmu = to_arm_pmu(pmu);
608 /* Enable all of the perf events on hardware. */
609 int idx, enabled = 0;
610 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
612 for (idx = 0; idx < armpmu->num_events; ++idx) {
613 struct perf_event *event = cpuc->events[idx];
615 if (!event)
616 continue;
618 armpmu->enable(&event->hw, idx);
619 enabled = 1;
622 if (enabled)
623 armpmu->start();
626 static void armpmu_disable(struct pmu *pmu)
628 struct arm_pmu *armpmu = to_arm_pmu(pmu);
629 armpmu->stop();
632 static void __init armpmu_init(struct arm_pmu *armpmu)
634 atomic_set(&armpmu->active_events, 0);
635 mutex_init(&armpmu->reserve_mutex);
637 armpmu->pmu = (struct pmu) {
638 .pmu_enable = armpmu_enable,
639 .pmu_disable = armpmu_disable,
640 .event_init = armpmu_event_init,
641 .add = armpmu_add,
642 .del = armpmu_del,
643 .start = armpmu_start,
644 .stop = armpmu_stop,
645 .read = armpmu_read,
649 static int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
651 armpmu_init(armpmu);
652 return perf_pmu_register(&armpmu->pmu, name, type);
655 /* Include the PMU-specific implementations. */
656 #include "perf_event_xscale.c"
657 #include "perf_event_v6.c"
658 #include "perf_event_v7.c"
661 * Ensure the PMU has sane values out of reset.
662 * This requires SMP to be available, so exists as a separate initcall.
664 static int __init
665 armpmu_reset(void)
667 if (armpmu && armpmu->reset)
668 return on_each_cpu(armpmu->reset, NULL, 1);
669 return 0;
671 arch_initcall(armpmu_reset);
674 * PMU platform driver and devicetree bindings.
676 static struct of_device_id armpmu_of_device_ids[] = {
677 {.compatible = "arm,cortex-a9-pmu"},
678 {.compatible = "arm,cortex-a8-pmu"},
679 {.compatible = "arm,arm1136-pmu"},
680 {.compatible = "arm,arm1176-pmu"},
684 static struct platform_device_id armpmu_plat_device_ids[] = {
685 {.name = "arm-pmu"},
689 static int __devinit armpmu_device_probe(struct platform_device *pdev)
691 armpmu->plat_device = pdev;
692 return 0;
695 static struct platform_driver armpmu_driver = {
696 .driver = {
697 .name = "arm-pmu",
698 .of_match_table = armpmu_of_device_ids,
700 .probe = armpmu_device_probe,
701 .id_table = armpmu_plat_device_ids,
704 static int __init register_pmu_driver(void)
706 return platform_driver_register(&armpmu_driver);
708 device_initcall(register_pmu_driver);
710 static struct cpu_hw_events *armpmu_get_cpu_events(void)
712 return &__get_cpu_var(cpu_hw_events);
715 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
717 int cpu;
718 for_each_possible_cpu(cpu) {
719 struct cpu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
720 events->events = per_cpu(hw_events, cpu);
721 events->used_mask = per_cpu(used_mask, cpu);
722 raw_spin_lock_init(&events->pmu_lock);
724 armpmu->get_hw_events = armpmu_get_cpu_events;
725 armpmu->type = ARM_PMU_DEVICE_CPU;
729 * CPU PMU identification and registration.
731 static int __init
732 init_hw_perf_events(void)
734 unsigned long cpuid = read_cpuid_id();
735 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
736 unsigned long part_number = (cpuid & 0xFFF0);
738 /* ARM Ltd CPUs. */
739 if (0x41 == implementor) {
740 switch (part_number) {
741 case 0xB360: /* ARM1136 */
742 case 0xB560: /* ARM1156 */
743 case 0xB760: /* ARM1176 */
744 armpmu = armv6pmu_init();
745 break;
746 case 0xB020: /* ARM11mpcore */
747 armpmu = armv6mpcore_pmu_init();
748 break;
749 case 0xC080: /* Cortex-A8 */
750 armpmu = armv7_a8_pmu_init();
751 break;
752 case 0xC090: /* Cortex-A9 */
753 armpmu = armv7_a9_pmu_init();
754 break;
755 case 0xC050: /* Cortex-A5 */
756 armpmu = armv7_a5_pmu_init();
757 break;
758 case 0xC0F0: /* Cortex-A15 */
759 armpmu = armv7_a15_pmu_init();
760 break;
762 /* Intel CPUs [xscale]. */
763 } else if (0x69 == implementor) {
764 part_number = (cpuid >> 13) & 0x7;
765 switch (part_number) {
766 case 1:
767 armpmu = xscale1pmu_init();
768 break;
769 case 2:
770 armpmu = xscale2pmu_init();
771 break;
775 if (armpmu) {
776 pr_info("enabled with %s PMU driver, %d counters available\n",
777 armpmu->name, armpmu->num_events);
778 cpu_pmu_init(armpmu);
779 armpmu_register(armpmu, "cpu", PERF_TYPE_RAW);
780 } else {
781 pr_info("no hardware support available\n");
784 return 0;
786 early_initcall(init_hw_perf_events);
789 * Callchain handling code.
793 * The registers we're interested in are at the end of the variable
794 * length saved register structure. The fp points at the end of this
795 * structure so the address of this struct is:
796 * (struct frame_tail *)(xxx->fp)-1
798 * This code has been adapted from the ARM OProfile support.
800 struct frame_tail {
801 struct frame_tail __user *fp;
802 unsigned long sp;
803 unsigned long lr;
804 } __attribute__((packed));
807 * Get the return address for a single stackframe and return a pointer to the
808 * next frame tail.
810 static struct frame_tail __user *
811 user_backtrace(struct frame_tail __user *tail,
812 struct perf_callchain_entry *entry)
814 struct frame_tail buftail;
816 /* Also check accessibility of one struct frame_tail beyond */
817 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
818 return NULL;
819 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
820 return NULL;
822 perf_callchain_store(entry, buftail.lr);
825 * Frame pointers should strictly progress back up the stack
826 * (towards higher addresses).
828 if (tail + 1 >= buftail.fp)
829 return NULL;
831 return buftail.fp - 1;
834 void
835 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
837 struct frame_tail __user *tail;
840 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
842 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
843 tail && !((unsigned long)tail & 0x3))
844 tail = user_backtrace(tail, entry);
848 * Gets called by walk_stackframe() for every stackframe. This will be called
849 * whist unwinding the stackframe and is like a subroutine return so we use
850 * the PC.
852 static int
853 callchain_trace(struct stackframe *fr,
854 void *data)
856 struct perf_callchain_entry *entry = data;
857 perf_callchain_store(entry, fr->pc);
858 return 0;
861 void
862 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
864 struct stackframe fr;
866 fr.fp = regs->ARM_fp;
867 fr.sp = regs->ARM_sp;
868 fr.lr = regs->ARM_lr;
869 fr.pc = regs->ARM_pc;
870 walk_stackframe(&fr, callchain_trace, entry);