crypto: inside-secure - fix gcc-4.9 warnings
[linux-2.6/btrfs-unstable.git] / drivers / crypto / inside-secure / safexcel_hash.c
blob3980f946874fa08b64288b5d8b04bcac9134a0ad
1 /*
2 * Copyright (C) 2017 Marvell
4 * Antoine Tenart <antoine.tenart@free-electrons.com>
6 * This file is licensed under the terms of the GNU General Public
7 * License version 2. This program is licensed "as is" without any
8 * warranty of any kind, whether express or implied.
9 */
11 #include <crypto/hmac.h>
12 #include <crypto/sha.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
18 #include "safexcel.h"
20 struct safexcel_ahash_ctx {
21 struct safexcel_context base;
22 struct safexcel_crypto_priv *priv;
24 u32 alg;
25 u32 digest;
27 u32 ipad[SHA1_DIGEST_SIZE / sizeof(u32)];
28 u32 opad[SHA1_DIGEST_SIZE / sizeof(u32)];
31 struct safexcel_ahash_req {
32 bool last_req;
33 bool finish;
34 bool hmac;
36 u8 state_sz; /* expected sate size, only set once */
37 u32 state[SHA256_DIGEST_SIZE / sizeof(u32)];
39 u64 len;
40 u64 processed;
42 u8 cache[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
43 u8 cache_next[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
46 struct safexcel_ahash_export_state {
47 u64 len;
48 u64 processed;
50 u32 state[SHA256_DIGEST_SIZE / sizeof(u32)];
51 u8 cache[SHA256_BLOCK_SIZE];
54 static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
55 u32 input_length, u32 result_length)
57 struct safexcel_token *token =
58 (struct safexcel_token *)cdesc->control_data.token;
60 token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
61 token[0].packet_length = input_length;
62 token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
63 token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
65 token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
66 token[1].packet_length = result_length;
67 token[1].stat = EIP197_TOKEN_STAT_LAST_HASH |
68 EIP197_TOKEN_STAT_LAST_PACKET;
69 token[1].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
70 EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
73 static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
74 struct safexcel_ahash_req *req,
75 struct safexcel_command_desc *cdesc,
76 unsigned int digestsize,
77 unsigned int blocksize)
79 int i;
81 cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_OUT;
82 cdesc->control_data.control0 |= ctx->alg;
83 cdesc->control_data.control0 |= ctx->digest;
85 if (ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) {
86 if (req->processed) {
87 if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
88 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(6);
89 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224 ||
90 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
91 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(9);
93 cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT;
94 } else {
95 cdesc->control_data.control0 |= CONTEXT_CONTROL_RESTART_HASH;
98 if (!req->finish)
99 cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH;
102 * Copy the input digest if needed, and setup the context
103 * fields. Do this now as we need it to setup the first command
104 * descriptor.
106 if (req->processed) {
107 for (i = 0; i < digestsize / sizeof(u32); i++)
108 ctx->base.ctxr->data[i] = cpu_to_le32(req->state[i]);
110 if (req->finish)
111 ctx->base.ctxr->data[i] = cpu_to_le32(req->processed / blocksize);
113 } else if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC) {
114 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(10);
116 memcpy(ctx->base.ctxr->data, ctx->ipad, digestsize);
117 memcpy(ctx->base.ctxr->data + digestsize / sizeof(u32),
118 ctx->opad, digestsize);
122 static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
123 struct crypto_async_request *async,
124 bool *should_complete, int *ret)
126 struct safexcel_result_desc *rdesc;
127 struct ahash_request *areq = ahash_request_cast(async);
128 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
129 struct safexcel_ahash_req *sreq = ahash_request_ctx(areq);
130 int cache_len, result_sz = sreq->state_sz;
132 *ret = 0;
134 spin_lock_bh(&priv->ring[ring].egress_lock);
135 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
136 if (IS_ERR(rdesc)) {
137 dev_err(priv->dev,
138 "hash: result: could not retrieve the result descriptor\n");
139 *ret = PTR_ERR(rdesc);
140 } else if (rdesc->result_data.error_code) {
141 dev_err(priv->dev,
142 "hash: result: result descriptor error (%d)\n",
143 rdesc->result_data.error_code);
144 *ret = -EINVAL;
147 safexcel_complete(priv, ring);
148 spin_unlock_bh(&priv->ring[ring].egress_lock);
150 if (sreq->finish)
151 result_sz = crypto_ahash_digestsize(ahash);
152 memcpy(sreq->state, areq->result, result_sz);
154 dma_unmap_sg(priv->dev, areq->src,
155 sg_nents_for_len(areq->src, areq->nbytes), DMA_TO_DEVICE);
157 safexcel_free_context(priv, async, sreq->state_sz);
159 cache_len = sreq->len - sreq->processed;
160 if (cache_len)
161 memcpy(sreq->cache, sreq->cache_next, cache_len);
163 *should_complete = true;
165 return 1;
168 static int safexcel_ahash_send(struct crypto_async_request *async, int ring,
169 struct safexcel_request *request, int *commands,
170 int *results)
172 struct ahash_request *areq = ahash_request_cast(async);
173 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
174 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
175 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
176 struct safexcel_crypto_priv *priv = ctx->priv;
177 struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
178 struct safexcel_result_desc *rdesc;
179 struct scatterlist *sg;
180 int i, nents, queued, len, cache_len, extra, n_cdesc = 0, ret = 0;
182 queued = len = req->len - req->processed;
183 if (queued < crypto_ahash_blocksize(ahash))
184 cache_len = queued;
185 else
186 cache_len = queued - areq->nbytes;
189 * If this is not the last request and the queued data does not fit
190 * into full blocks, cache it for the next send() call.
192 extra = queued & (crypto_ahash_blocksize(ahash) - 1);
193 if (!req->last_req && extra) {
194 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
195 req->cache_next, extra, areq->nbytes - extra);
197 queued -= extra;
198 len -= extra;
201 spin_lock_bh(&priv->ring[ring].egress_lock);
203 /* Add a command descriptor for the cached data, if any */
204 if (cache_len) {
205 ctx->base.cache = kzalloc(cache_len, EIP197_GFP_FLAGS(*async));
206 if (!ctx->base.cache) {
207 ret = -ENOMEM;
208 goto unlock;
210 memcpy(ctx->base.cache, req->cache, cache_len);
211 ctx->base.cache_dma = dma_map_single(priv->dev, ctx->base.cache,
212 cache_len, DMA_TO_DEVICE);
213 if (dma_mapping_error(priv->dev, ctx->base.cache_dma)) {
214 ret = -EINVAL;
215 goto free_cache;
218 ctx->base.cache_sz = cache_len;
219 first_cdesc = safexcel_add_cdesc(priv, ring, 1,
220 (cache_len == len),
221 ctx->base.cache_dma,
222 cache_len, len,
223 ctx->base.ctxr_dma);
224 if (IS_ERR(first_cdesc)) {
225 ret = PTR_ERR(first_cdesc);
226 goto unmap_cache;
228 n_cdesc++;
230 queued -= cache_len;
231 if (!queued)
232 goto send_command;
235 /* Now handle the current ahash request buffer(s) */
236 nents = dma_map_sg(priv->dev, areq->src,
237 sg_nents_for_len(areq->src, areq->nbytes),
238 DMA_TO_DEVICE);
239 if (!nents) {
240 ret = -ENOMEM;
241 goto cdesc_rollback;
244 for_each_sg(areq->src, sg, nents, i) {
245 int sglen = sg_dma_len(sg);
247 /* Do not overflow the request */
248 if (queued - sglen < 0)
249 sglen = queued;
251 cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
252 !(queued - sglen), sg_dma_address(sg),
253 sglen, len, ctx->base.ctxr_dma);
254 if (IS_ERR(cdesc)) {
255 ret = PTR_ERR(cdesc);
256 goto cdesc_rollback;
258 n_cdesc++;
260 if (n_cdesc == 1)
261 first_cdesc = cdesc;
263 queued -= sglen;
264 if (!queued)
265 break;
268 send_command:
269 /* Setup the context options */
270 safexcel_context_control(ctx, req, first_cdesc, req->state_sz,
271 crypto_ahash_blocksize(ahash));
273 /* Add the token */
274 safexcel_hash_token(first_cdesc, len, req->state_sz);
276 ctx->base.result_dma = dma_map_single(priv->dev, areq->result,
277 req->state_sz, DMA_FROM_DEVICE);
278 if (dma_mapping_error(priv->dev, ctx->base.result_dma)) {
279 ret = -EINVAL;
280 goto cdesc_rollback;
283 /* Add a result descriptor */
284 rdesc = safexcel_add_rdesc(priv, ring, 1, 1, ctx->base.result_dma,
285 req->state_sz);
286 if (IS_ERR(rdesc)) {
287 ret = PTR_ERR(rdesc);
288 goto cdesc_rollback;
291 spin_unlock_bh(&priv->ring[ring].egress_lock);
293 req->processed += len;
294 request->req = &areq->base;
295 ctx->base.handle_result = safexcel_handle_result;
297 *commands = n_cdesc;
298 *results = 1;
299 return 0;
301 cdesc_rollback:
302 for (i = 0; i < n_cdesc; i++)
303 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
304 unmap_cache:
305 if (ctx->base.cache_dma) {
306 dma_unmap_single(priv->dev, ctx->base.cache_dma,
307 ctx->base.cache_sz, DMA_TO_DEVICE);
308 ctx->base.cache_sz = 0;
310 free_cache:
311 if (ctx->base.cache) {
312 kfree(ctx->base.cache);
313 ctx->base.cache = NULL;
316 unlock:
317 spin_unlock_bh(&priv->ring[ring].egress_lock);
318 return ret;
321 static inline bool safexcel_ahash_needs_inv_get(struct ahash_request *areq)
323 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
324 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
325 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
326 unsigned int state_w_sz = req->state_sz / sizeof(u32);
327 int i;
329 for (i = 0; i < state_w_sz; i++)
330 if (ctx->base.ctxr->data[i] != cpu_to_le32(req->state[i]))
331 return true;
333 if (ctx->base.ctxr->data[state_w_sz] !=
334 cpu_to_le32(req->processed / crypto_ahash_blocksize(ahash)))
335 return true;
337 return false;
340 static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
341 int ring,
342 struct crypto_async_request *async,
343 bool *should_complete, int *ret)
345 struct safexcel_result_desc *rdesc;
346 struct ahash_request *areq = ahash_request_cast(async);
347 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
348 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
349 int enq_ret;
351 *ret = 0;
353 spin_lock_bh(&priv->ring[ring].egress_lock);
354 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
355 if (IS_ERR(rdesc)) {
356 dev_err(priv->dev,
357 "hash: invalidate: could not retrieve the result descriptor\n");
358 *ret = PTR_ERR(rdesc);
359 } else if (rdesc->result_data.error_code) {
360 dev_err(priv->dev,
361 "hash: invalidate: result descriptor error (%d)\n",
362 rdesc->result_data.error_code);
363 *ret = -EINVAL;
366 safexcel_complete(priv, ring);
367 spin_unlock_bh(&priv->ring[ring].egress_lock);
369 if (ctx->base.exit_inv) {
370 dma_pool_free(priv->context_pool, ctx->base.ctxr,
371 ctx->base.ctxr_dma);
373 *should_complete = true;
374 return 1;
377 ring = safexcel_select_ring(priv);
378 ctx->base.ring = ring;
379 ctx->base.needs_inv = false;
380 ctx->base.send = safexcel_ahash_send;
382 spin_lock_bh(&priv->ring[ring].queue_lock);
383 enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
384 spin_unlock_bh(&priv->ring[ring].queue_lock);
386 if (enq_ret != -EINPROGRESS)
387 *ret = enq_ret;
389 if (!priv->ring[ring].need_dequeue)
390 safexcel_dequeue(priv, ring);
392 *should_complete = false;
394 return 1;
397 static int safexcel_ahash_send_inv(struct crypto_async_request *async,
398 int ring, struct safexcel_request *request,
399 int *commands, int *results)
401 struct ahash_request *areq = ahash_request_cast(async);
402 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
403 int ret;
405 ctx->base.handle_result = safexcel_handle_inv_result;
406 ret = safexcel_invalidate_cache(async, &ctx->base, ctx->priv,
407 ctx->base.ctxr_dma, ring, request);
408 if (unlikely(ret))
409 return ret;
411 *commands = 1;
412 *results = 1;
414 return 0;
417 static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
419 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
420 struct safexcel_crypto_priv *priv = ctx->priv;
421 struct ahash_request req;
422 struct safexcel_inv_result result = {};
423 int ring = ctx->base.ring;
425 memset(&req, 0, sizeof(struct ahash_request));
427 /* create invalidation request */
428 init_completion(&result.completion);
429 ahash_request_set_callback(&req, CRYPTO_TFM_REQ_MAY_BACKLOG,
430 safexcel_inv_complete, &result);
432 ahash_request_set_tfm(&req, __crypto_ahash_cast(tfm));
433 ctx = crypto_tfm_ctx(req.base.tfm);
434 ctx->base.exit_inv = true;
435 ctx->base.send = safexcel_ahash_send_inv;
437 spin_lock_bh(&priv->ring[ring].queue_lock);
438 crypto_enqueue_request(&priv->ring[ring].queue, &req.base);
439 spin_unlock_bh(&priv->ring[ring].queue_lock);
441 if (!priv->ring[ring].need_dequeue)
442 safexcel_dequeue(priv, ring);
444 wait_for_completion_interruptible(&result.completion);
446 if (result.error) {
447 dev_warn(priv->dev, "hash: completion error (%d)\n",
448 result.error);
449 return result.error;
452 return 0;
455 static int safexcel_ahash_cache(struct ahash_request *areq)
457 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
458 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
459 int queued, cache_len;
461 cache_len = req->len - areq->nbytes - req->processed;
462 queued = req->len - req->processed;
465 * In case there isn't enough bytes to proceed (less than a
466 * block size), cache the data until we have enough.
468 if (cache_len + areq->nbytes <= crypto_ahash_blocksize(ahash)) {
469 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
470 req->cache + cache_len,
471 areq->nbytes, 0);
472 return areq->nbytes;
475 /* We could'nt cache all the data */
476 return -E2BIG;
479 static int safexcel_ahash_enqueue(struct ahash_request *areq)
481 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
482 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
483 struct safexcel_crypto_priv *priv = ctx->priv;
484 int ret, ring;
486 ctx->base.send = safexcel_ahash_send;
488 if (req->processed && ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED)
489 ctx->base.needs_inv = safexcel_ahash_needs_inv_get(areq);
491 if (ctx->base.ctxr) {
492 if (ctx->base.needs_inv)
493 ctx->base.send = safexcel_ahash_send_inv;
494 } else {
495 ctx->base.ring = safexcel_select_ring(priv);
496 ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
497 EIP197_GFP_FLAGS(areq->base),
498 &ctx->base.ctxr_dma);
499 if (!ctx->base.ctxr)
500 return -ENOMEM;
503 ring = ctx->base.ring;
505 spin_lock_bh(&priv->ring[ring].queue_lock);
506 ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
507 spin_unlock_bh(&priv->ring[ring].queue_lock);
509 if (!priv->ring[ring].need_dequeue)
510 safexcel_dequeue(priv, ring);
512 return ret;
515 static int safexcel_ahash_update(struct ahash_request *areq)
517 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
518 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
519 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
521 /* If the request is 0 length, do nothing */
522 if (!areq->nbytes)
523 return 0;
525 req->len += areq->nbytes;
527 safexcel_ahash_cache(areq);
530 * We're not doing partial updates when performing an hmac request.
531 * Everything will be handled by the final() call.
533 if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC)
534 return 0;
536 if (req->hmac)
537 return safexcel_ahash_enqueue(areq);
539 if (!req->last_req &&
540 req->len - req->processed > crypto_ahash_blocksize(ahash))
541 return safexcel_ahash_enqueue(areq);
543 return 0;
546 static int safexcel_ahash_final(struct ahash_request *areq)
548 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
549 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
551 req->last_req = true;
552 req->finish = true;
554 /* If we have an overall 0 length request */
555 if (!(req->len + areq->nbytes)) {
556 if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
557 memcpy(areq->result, sha1_zero_message_hash,
558 SHA1_DIGEST_SIZE);
559 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
560 memcpy(areq->result, sha224_zero_message_hash,
561 SHA224_DIGEST_SIZE);
562 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
563 memcpy(areq->result, sha256_zero_message_hash,
564 SHA256_DIGEST_SIZE);
566 return 0;
569 return safexcel_ahash_enqueue(areq);
572 static int safexcel_ahash_finup(struct ahash_request *areq)
574 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
576 req->last_req = true;
577 req->finish = true;
579 safexcel_ahash_update(areq);
580 return safexcel_ahash_final(areq);
583 static int safexcel_ahash_export(struct ahash_request *areq, void *out)
585 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
586 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
587 struct safexcel_ahash_export_state *export = out;
589 export->len = req->len;
590 export->processed = req->processed;
592 memcpy(export->state, req->state, req->state_sz);
593 memset(export->cache, 0, crypto_ahash_blocksize(ahash));
594 memcpy(export->cache, req->cache, crypto_ahash_blocksize(ahash));
596 return 0;
599 static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
601 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
602 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
603 const struct safexcel_ahash_export_state *export = in;
604 int ret;
606 ret = crypto_ahash_init(areq);
607 if (ret)
608 return ret;
610 req->len = export->len;
611 req->processed = export->processed;
613 memcpy(req->cache, export->cache, crypto_ahash_blocksize(ahash));
614 memcpy(req->state, export->state, req->state_sz);
616 return 0;
619 static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
621 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
622 struct safexcel_alg_template *tmpl =
623 container_of(__crypto_ahash_alg(tfm->__crt_alg),
624 struct safexcel_alg_template, alg.ahash);
626 ctx->priv = tmpl->priv;
628 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
629 sizeof(struct safexcel_ahash_req));
630 return 0;
633 static int safexcel_sha1_init(struct ahash_request *areq)
635 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
636 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
638 memset(req, 0, sizeof(*req));
640 req->state[0] = SHA1_H0;
641 req->state[1] = SHA1_H1;
642 req->state[2] = SHA1_H2;
643 req->state[3] = SHA1_H3;
644 req->state[4] = SHA1_H4;
646 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
647 ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
648 req->state_sz = SHA1_DIGEST_SIZE;
650 return 0;
653 static int safexcel_sha1_digest(struct ahash_request *areq)
655 int ret = safexcel_sha1_init(areq);
657 if (ret)
658 return ret;
660 return safexcel_ahash_finup(areq);
663 static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
665 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
666 struct safexcel_crypto_priv *priv = ctx->priv;
667 int ret;
669 /* context not allocated, skip invalidation */
670 if (!ctx->base.ctxr)
671 return;
673 ret = safexcel_ahash_exit_inv(tfm);
674 if (ret)
675 dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
678 struct safexcel_alg_template safexcel_alg_sha1 = {
679 .type = SAFEXCEL_ALG_TYPE_AHASH,
680 .alg.ahash = {
681 .init = safexcel_sha1_init,
682 .update = safexcel_ahash_update,
683 .final = safexcel_ahash_final,
684 .finup = safexcel_ahash_finup,
685 .digest = safexcel_sha1_digest,
686 .export = safexcel_ahash_export,
687 .import = safexcel_ahash_import,
688 .halg = {
689 .digestsize = SHA1_DIGEST_SIZE,
690 .statesize = sizeof(struct safexcel_ahash_export_state),
691 .base = {
692 .cra_name = "sha1",
693 .cra_driver_name = "safexcel-sha1",
694 .cra_priority = 300,
695 .cra_flags = CRYPTO_ALG_ASYNC |
696 CRYPTO_ALG_KERN_DRIVER_ONLY,
697 .cra_blocksize = SHA1_BLOCK_SIZE,
698 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
699 .cra_init = safexcel_ahash_cra_init,
700 .cra_exit = safexcel_ahash_cra_exit,
701 .cra_module = THIS_MODULE,
707 static int safexcel_hmac_sha1_init(struct ahash_request *areq)
709 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
711 safexcel_sha1_init(areq);
712 ctx->digest = CONTEXT_CONTROL_DIGEST_HMAC;
713 return 0;
716 static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
718 int ret = safexcel_hmac_sha1_init(areq);
720 if (ret)
721 return ret;
723 return safexcel_ahash_finup(areq);
726 struct safexcel_ahash_result {
727 struct completion completion;
728 int error;
731 static void safexcel_ahash_complete(struct crypto_async_request *req, int error)
733 struct safexcel_ahash_result *result = req->data;
735 if (error == -EINPROGRESS)
736 return;
738 result->error = error;
739 complete(&result->completion);
742 static int safexcel_hmac_init_pad(struct ahash_request *areq,
743 unsigned int blocksize, const u8 *key,
744 unsigned int keylen, u8 *ipad, u8 *opad)
746 struct safexcel_ahash_result result;
747 struct scatterlist sg;
748 int ret, i;
749 u8 *keydup;
751 if (keylen <= blocksize) {
752 memcpy(ipad, key, keylen);
753 } else {
754 keydup = kmemdup(key, keylen, GFP_KERNEL);
755 if (!keydup)
756 return -ENOMEM;
758 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
759 safexcel_ahash_complete, &result);
760 sg_init_one(&sg, keydup, keylen);
761 ahash_request_set_crypt(areq, &sg, ipad, keylen);
762 init_completion(&result.completion);
764 ret = crypto_ahash_digest(areq);
765 if (ret == -EINPROGRESS) {
766 wait_for_completion_interruptible(&result.completion);
767 ret = result.error;
770 /* Avoid leaking */
771 memzero_explicit(keydup, keylen);
772 kfree(keydup);
774 if (ret)
775 return ret;
777 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
780 memset(ipad + keylen, 0, blocksize - keylen);
781 memcpy(opad, ipad, blocksize);
783 for (i = 0; i < blocksize; i++) {
784 ipad[i] ^= HMAC_IPAD_VALUE;
785 opad[i] ^= HMAC_OPAD_VALUE;
788 return 0;
791 static int safexcel_hmac_init_iv(struct ahash_request *areq,
792 unsigned int blocksize, u8 *pad, void *state)
794 struct safexcel_ahash_result result;
795 struct safexcel_ahash_req *req;
796 struct scatterlist sg;
797 int ret;
799 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
800 safexcel_ahash_complete, &result);
801 sg_init_one(&sg, pad, blocksize);
802 ahash_request_set_crypt(areq, &sg, pad, blocksize);
803 init_completion(&result.completion);
805 ret = crypto_ahash_init(areq);
806 if (ret)
807 return ret;
809 req = ahash_request_ctx(areq);
810 req->hmac = true;
811 req->last_req = true;
813 ret = crypto_ahash_update(areq);
814 if (ret && ret != -EINPROGRESS)
815 return ret;
817 wait_for_completion_interruptible(&result.completion);
818 if (result.error)
819 return result.error;
821 return crypto_ahash_export(areq, state);
824 static int safexcel_hmac_setkey(const char *alg, const u8 *key,
825 unsigned int keylen, void *istate, void *ostate)
827 struct ahash_request *areq;
828 struct crypto_ahash *tfm;
829 unsigned int blocksize;
830 u8 *ipad, *opad;
831 int ret;
833 tfm = crypto_alloc_ahash(alg, CRYPTO_ALG_TYPE_AHASH,
834 CRYPTO_ALG_TYPE_AHASH_MASK);
835 if (IS_ERR(tfm))
836 return PTR_ERR(tfm);
838 areq = ahash_request_alloc(tfm, GFP_KERNEL);
839 if (!areq) {
840 ret = -ENOMEM;
841 goto free_ahash;
844 crypto_ahash_clear_flags(tfm, ~0);
845 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
847 ipad = kzalloc(2 * blocksize, GFP_KERNEL);
848 if (!ipad) {
849 ret = -ENOMEM;
850 goto free_request;
853 opad = ipad + blocksize;
855 ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
856 if (ret)
857 goto free_ipad;
859 ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
860 if (ret)
861 goto free_ipad;
863 ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
865 free_ipad:
866 kfree(ipad);
867 free_request:
868 ahash_request_free(areq);
869 free_ahash:
870 crypto_free_ahash(tfm);
872 return ret;
875 static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
876 unsigned int keylen)
878 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
879 struct safexcel_ahash_export_state istate, ostate;
880 int ret, i;
882 ret = safexcel_hmac_setkey("safexcel-sha1", key, keylen, &istate, &ostate);
883 if (ret)
884 return ret;
886 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++) {
887 if (ctx->ipad[i] != le32_to_cpu(istate.state[i]) ||
888 ctx->opad[i] != le32_to_cpu(ostate.state[i])) {
889 ctx->base.needs_inv = true;
890 break;
894 memcpy(ctx->ipad, &istate.state, SHA1_DIGEST_SIZE);
895 memcpy(ctx->opad, &ostate.state, SHA1_DIGEST_SIZE);
897 return 0;
900 struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
901 .type = SAFEXCEL_ALG_TYPE_AHASH,
902 .alg.ahash = {
903 .init = safexcel_hmac_sha1_init,
904 .update = safexcel_ahash_update,
905 .final = safexcel_ahash_final,
906 .finup = safexcel_ahash_finup,
907 .digest = safexcel_hmac_sha1_digest,
908 .setkey = safexcel_hmac_sha1_setkey,
909 .export = safexcel_ahash_export,
910 .import = safexcel_ahash_import,
911 .halg = {
912 .digestsize = SHA1_DIGEST_SIZE,
913 .statesize = sizeof(struct safexcel_ahash_export_state),
914 .base = {
915 .cra_name = "hmac(sha1)",
916 .cra_driver_name = "safexcel-hmac-sha1",
917 .cra_priority = 300,
918 .cra_flags = CRYPTO_ALG_ASYNC |
919 CRYPTO_ALG_KERN_DRIVER_ONLY,
920 .cra_blocksize = SHA1_BLOCK_SIZE,
921 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
922 .cra_init = safexcel_ahash_cra_init,
923 .cra_exit = safexcel_ahash_cra_exit,
924 .cra_module = THIS_MODULE,
930 static int safexcel_sha256_init(struct ahash_request *areq)
932 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
933 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
935 memset(req, 0, sizeof(*req));
937 req->state[0] = SHA256_H0;
938 req->state[1] = SHA256_H1;
939 req->state[2] = SHA256_H2;
940 req->state[3] = SHA256_H3;
941 req->state[4] = SHA256_H4;
942 req->state[5] = SHA256_H5;
943 req->state[6] = SHA256_H6;
944 req->state[7] = SHA256_H7;
946 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
947 ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
948 req->state_sz = SHA256_DIGEST_SIZE;
950 return 0;
953 static int safexcel_sha256_digest(struct ahash_request *areq)
955 int ret = safexcel_sha256_init(areq);
957 if (ret)
958 return ret;
960 return safexcel_ahash_finup(areq);
963 struct safexcel_alg_template safexcel_alg_sha256 = {
964 .type = SAFEXCEL_ALG_TYPE_AHASH,
965 .alg.ahash = {
966 .init = safexcel_sha256_init,
967 .update = safexcel_ahash_update,
968 .final = safexcel_ahash_final,
969 .finup = safexcel_ahash_finup,
970 .digest = safexcel_sha256_digest,
971 .export = safexcel_ahash_export,
972 .import = safexcel_ahash_import,
973 .halg = {
974 .digestsize = SHA256_DIGEST_SIZE,
975 .statesize = sizeof(struct safexcel_ahash_export_state),
976 .base = {
977 .cra_name = "sha256",
978 .cra_driver_name = "safexcel-sha256",
979 .cra_priority = 300,
980 .cra_flags = CRYPTO_ALG_ASYNC |
981 CRYPTO_ALG_KERN_DRIVER_ONLY,
982 .cra_blocksize = SHA256_BLOCK_SIZE,
983 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
984 .cra_init = safexcel_ahash_cra_init,
985 .cra_exit = safexcel_ahash_cra_exit,
986 .cra_module = THIS_MODULE,
992 static int safexcel_sha224_init(struct ahash_request *areq)
994 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
995 struct safexcel_ahash_req *req = ahash_request_ctx(areq);
997 memset(req, 0, sizeof(*req));
999 req->state[0] = SHA224_H0;
1000 req->state[1] = SHA224_H1;
1001 req->state[2] = SHA224_H2;
1002 req->state[3] = SHA224_H3;
1003 req->state[4] = SHA224_H4;
1004 req->state[5] = SHA224_H5;
1005 req->state[6] = SHA224_H6;
1006 req->state[7] = SHA224_H7;
1008 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1009 ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1010 req->state_sz = SHA256_DIGEST_SIZE;
1012 return 0;
1015 static int safexcel_sha224_digest(struct ahash_request *areq)
1017 int ret = safexcel_sha224_init(areq);
1019 if (ret)
1020 return ret;
1022 return safexcel_ahash_finup(areq);
1025 struct safexcel_alg_template safexcel_alg_sha224 = {
1026 .type = SAFEXCEL_ALG_TYPE_AHASH,
1027 .alg.ahash = {
1028 .init = safexcel_sha224_init,
1029 .update = safexcel_ahash_update,
1030 .final = safexcel_ahash_final,
1031 .finup = safexcel_ahash_finup,
1032 .digest = safexcel_sha224_digest,
1033 .export = safexcel_ahash_export,
1034 .import = safexcel_ahash_import,
1035 .halg = {
1036 .digestsize = SHA224_DIGEST_SIZE,
1037 .statesize = sizeof(struct safexcel_ahash_export_state),
1038 .base = {
1039 .cra_name = "sha224",
1040 .cra_driver_name = "safexcel-sha224",
1041 .cra_priority = 300,
1042 .cra_flags = CRYPTO_ALG_ASYNC |
1043 CRYPTO_ALG_KERN_DRIVER_ONLY,
1044 .cra_blocksize = SHA224_BLOCK_SIZE,
1045 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1046 .cra_init = safexcel_ahash_cra_init,
1047 .cra_exit = safexcel_ahash_cra_exit,
1048 .cra_module = THIS_MODULE,