arm: mvebu: move cache and mvebu-mbus initialization later
[linux-2.6/btrfs-unstable.git] / mm / memcontrol.c
blob010d6c14129ae320ab9655a573d49af33e034659
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
62 #include <asm/uaccess.h>
64 #include <trace/events/vmscan.h>
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
83 #else
84 #define do_swap_account 0
85 #endif
89 * Statistics for memory cgroup.
91 enum mem_cgroup_stat_index {
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
157 struct mem_cgroup_reclaim_iter {
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
170 * per-zone information in memory controller.
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
190 struct mem_cgroup_lru_info {
191 struct mem_cgroup_per_node *nodeinfo[0];
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
199 struct mem_cgroup_tree_per_zone {
200 struct rb_root rb_root;
201 spinlock_t lock;
204 struct mem_cgroup_tree_per_node {
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
208 struct mem_cgroup_tree {
209 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
214 struct mem_cgroup_threshold {
215 struct eventfd_ctx *eventfd;
216 u64 threshold;
219 /* For threshold */
220 struct mem_cgroup_threshold_ary {
221 /* An array index points to threshold just below or equal to usage. */
222 int current_threshold;
223 /* Size of entries[] */
224 unsigned int size;
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries[0];
229 struct mem_cgroup_thresholds {
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary *primary;
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
237 struct mem_cgroup_threshold_ary *spare;
240 /* for OOM */
241 struct mem_cgroup_eventfd_list {
242 struct list_head list;
243 struct eventfd_ctx *eventfd;
246 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
260 struct mem_cgroup {
261 struct cgroup_subsys_state css;
263 * the counter to account for memory usage
265 struct res_counter res;
267 /* vmpressure notifications */
268 struct vmpressure vmpressure;
270 union {
272 * the counter to account for mem+swap usage.
274 struct res_counter memsw;
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
285 struct rcu_head rcu_freeing;
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
290 struct work_struct work_freeing;
294 * the counter to account for kernel memory usage.
296 struct res_counter kmem;
298 * Should the accounting and control be hierarchical, per subtree?
300 bool use_hierarchy;
301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
303 bool oom_lock;
304 atomic_t under_oom;
306 atomic_t refcnt;
308 int swappiness;
309 /* OOM-Killer disable */
310 int oom_kill_disable;
312 /* set when res.limit == memsw.limit */
313 bool memsw_is_minimum;
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock;
318 /* thresholds for memory usage. RCU-protected */
319 struct mem_cgroup_thresholds thresholds;
321 /* thresholds for mem+swap usage. RCU-protected */
322 struct mem_cgroup_thresholds memsw_thresholds;
324 /* For oom notifier event fd */
325 struct list_head oom_notify;
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
331 unsigned long move_charge_at_immigrate;
333 * set > 0 if pages under this cgroup are moving to other cgroup.
335 atomic_t moving_account;
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock;
339 * percpu counter.
341 struct mem_cgroup_stat_cpu __percpu *stat;
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
346 struct mem_cgroup_stat_cpu nocpu_base;
347 spinlock_t pcp_counter_lock;
349 atomic_t dead_count;
350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
351 struct tcp_memcontrol tcp_mem;
352 #endif
353 #if defined(CONFIG_MEMCG_KMEM)
354 /* analogous to slab_common's slab_caches list. per-memcg */
355 struct list_head memcg_slab_caches;
356 /* Not a spinlock, we can take a lot of time walking the list */
357 struct mutex slab_caches_mutex;
358 /* Index in the kmem_cache->memcg_params->memcg_caches array */
359 int kmemcg_id;
360 #endif
362 int last_scanned_node;
363 #if MAX_NUMNODES > 1
364 nodemask_t scan_nodes;
365 atomic_t numainfo_events;
366 atomic_t numainfo_updating;
367 #endif
370 * Per cgroup active and inactive list, similar to the
371 * per zone LRU lists.
373 * WARNING: This has to be the last element of the struct. Don't
374 * add new fields after this point.
376 struct mem_cgroup_lru_info info;
379 static size_t memcg_size(void)
381 return sizeof(struct mem_cgroup) +
382 nr_node_ids * sizeof(struct mem_cgroup_per_node);
385 /* internal only representation about the status of kmem accounting. */
386 enum {
387 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
388 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
389 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
392 /* We account when limit is on, but only after call sites are patched */
393 #define KMEM_ACCOUNTED_MASK \
394 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
396 #ifdef CONFIG_MEMCG_KMEM
397 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
399 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
402 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
404 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
407 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
409 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
412 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
414 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
417 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
419 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
420 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
425 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
426 &memcg->kmem_account_flags);
428 #endif
430 /* Stuffs for move charges at task migration. */
432 * Types of charges to be moved. "move_charge_at_immitgrate" and
433 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
435 enum move_type {
436 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
437 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
438 NR_MOVE_TYPE,
441 /* "mc" and its members are protected by cgroup_mutex */
442 static struct move_charge_struct {
443 spinlock_t lock; /* for from, to */
444 struct mem_cgroup *from;
445 struct mem_cgroup *to;
446 unsigned long immigrate_flags;
447 unsigned long precharge;
448 unsigned long moved_charge;
449 unsigned long moved_swap;
450 struct task_struct *moving_task; /* a task moving charges */
451 wait_queue_head_t waitq; /* a waitq for other context */
452 } mc = {
453 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
454 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
457 static bool move_anon(void)
459 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
462 static bool move_file(void)
464 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
468 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469 * limit reclaim to prevent infinite loops, if they ever occur.
471 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
472 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
474 enum charge_type {
475 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
476 MEM_CGROUP_CHARGE_TYPE_ANON,
477 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
478 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
479 NR_CHARGE_TYPE,
482 /* for encoding cft->private value on file */
483 enum res_type {
484 _MEM,
485 _MEMSWAP,
486 _OOM_TYPE,
487 _KMEM,
490 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
491 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
492 #define MEMFILE_ATTR(val) ((val) & 0xffff)
493 /* Used for OOM nofiier */
494 #define OOM_CONTROL (0)
497 * Reclaim flags for mem_cgroup_hierarchical_reclaim
499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
500 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
502 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
505 * The memcg_create_mutex will be held whenever a new cgroup is created.
506 * As a consequence, any change that needs to protect against new child cgroups
507 * appearing has to hold it as well.
509 static DEFINE_MUTEX(memcg_create_mutex);
511 static void mem_cgroup_get(struct mem_cgroup *memcg);
512 static void mem_cgroup_put(struct mem_cgroup *memcg);
514 static inline
515 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
517 return container_of(s, struct mem_cgroup, css);
520 /* Some nice accessors for the vmpressure. */
521 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
523 if (!memcg)
524 memcg = root_mem_cgroup;
525 return &memcg->vmpressure;
528 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
530 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
533 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
535 return &mem_cgroup_from_css(css)->vmpressure;
538 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540 return (memcg == root_mem_cgroup);
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546 void sock_update_memcg(struct sock *sk)
548 if (mem_cgroup_sockets_enabled) {
549 struct mem_cgroup *memcg;
550 struct cg_proto *cg_proto;
552 BUG_ON(!sk->sk_prot->proto_cgroup);
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
562 if (sk->sk_cgrp) {
563 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564 mem_cgroup_get(sk->sk_cgrp->memcg);
565 return;
568 rcu_read_lock();
569 memcg = mem_cgroup_from_task(current);
570 cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
572 mem_cgroup_get(memcg);
573 sk->sk_cgrp = cg_proto;
575 rcu_read_unlock();
578 EXPORT_SYMBOL(sock_update_memcg);
580 void sock_release_memcg(struct sock *sk)
582 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
583 struct mem_cgroup *memcg;
584 WARN_ON(!sk->sk_cgrp->memcg);
585 memcg = sk->sk_cgrp->memcg;
586 mem_cgroup_put(memcg);
590 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592 if (!memcg || mem_cgroup_is_root(memcg))
593 return NULL;
595 return &memcg->tcp_mem.cg_proto;
597 EXPORT_SYMBOL(tcp_proto_cgroup);
599 static void disarm_sock_keys(struct mem_cgroup *memcg)
601 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
602 return;
603 static_key_slow_dec(&memcg_socket_limit_enabled);
605 #else
606 static void disarm_sock_keys(struct mem_cgroup *memcg)
609 #endif
611 #ifdef CONFIG_MEMCG_KMEM
613 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614 * There are two main reasons for not using the css_id for this:
615 * 1) this works better in sparse environments, where we have a lot of memcgs,
616 * but only a few kmem-limited. Or also, if we have, for instance, 200
617 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
618 * 200 entry array for that.
620 * 2) In order not to violate the cgroup API, we would like to do all memory
621 * allocation in ->create(). At that point, we haven't yet allocated the
622 * css_id. Having a separate index prevents us from messing with the cgroup
623 * core for this
625 * The current size of the caches array is stored in
626 * memcg_limited_groups_array_size. It will double each time we have to
627 * increase it.
629 static DEFINE_IDA(kmem_limited_groups);
630 int memcg_limited_groups_array_size;
633 * MIN_SIZE is different than 1, because we would like to avoid going through
634 * the alloc/free process all the time. In a small machine, 4 kmem-limited
635 * cgroups is a reasonable guess. In the future, it could be a parameter or
636 * tunable, but that is strictly not necessary.
638 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639 * this constant directly from cgroup, but it is understandable that this is
640 * better kept as an internal representation in cgroup.c. In any case, the
641 * css_id space is not getting any smaller, and we don't have to necessarily
642 * increase ours as well if it increases.
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE 65535
648 * A lot of the calls to the cache allocation functions are expected to be
649 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650 * conditional to this static branch, we'll have to allow modules that does
651 * kmem_cache_alloc and the such to see this symbol as well
653 struct static_key memcg_kmem_enabled_key;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key);
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
658 if (memcg_kmem_is_active(memcg)) {
659 static_key_slow_dec(&memcg_kmem_enabled_key);
660 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
663 * This check can't live in kmem destruction function,
664 * since the charges will outlive the cgroup
666 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
668 #else
669 static void disarm_kmem_keys(struct mem_cgroup *memcg)
672 #endif /* CONFIG_MEMCG_KMEM */
674 static void disarm_static_keys(struct mem_cgroup *memcg)
676 disarm_sock_keys(memcg);
677 disarm_kmem_keys(memcg);
680 static void drain_all_stock_async(struct mem_cgroup *memcg);
682 static struct mem_cgroup_per_zone *
683 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
685 VM_BUG_ON((unsigned)nid >= nr_node_ids);
686 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
689 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
691 return &memcg->css;
694 static struct mem_cgroup_per_zone *
695 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
697 int nid = page_to_nid(page);
698 int zid = page_zonenum(page);
700 return mem_cgroup_zoneinfo(memcg, nid, zid);
703 static struct mem_cgroup_tree_per_zone *
704 soft_limit_tree_node_zone(int nid, int zid)
706 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
709 static struct mem_cgroup_tree_per_zone *
710 soft_limit_tree_from_page(struct page *page)
712 int nid = page_to_nid(page);
713 int zid = page_zonenum(page);
715 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
718 static void
719 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
720 struct mem_cgroup_per_zone *mz,
721 struct mem_cgroup_tree_per_zone *mctz,
722 unsigned long long new_usage_in_excess)
724 struct rb_node **p = &mctz->rb_root.rb_node;
725 struct rb_node *parent = NULL;
726 struct mem_cgroup_per_zone *mz_node;
728 if (mz->on_tree)
729 return;
731 mz->usage_in_excess = new_usage_in_excess;
732 if (!mz->usage_in_excess)
733 return;
734 while (*p) {
735 parent = *p;
736 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
737 tree_node);
738 if (mz->usage_in_excess < mz_node->usage_in_excess)
739 p = &(*p)->rb_left;
741 * We can't avoid mem cgroups that are over their soft
742 * limit by the same amount
744 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
745 p = &(*p)->rb_right;
747 rb_link_node(&mz->tree_node, parent, p);
748 rb_insert_color(&mz->tree_node, &mctz->rb_root);
749 mz->on_tree = true;
752 static void
753 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
754 struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
757 if (!mz->on_tree)
758 return;
759 rb_erase(&mz->tree_node, &mctz->rb_root);
760 mz->on_tree = false;
763 static void
764 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
765 struct mem_cgroup_per_zone *mz,
766 struct mem_cgroup_tree_per_zone *mctz)
768 spin_lock(&mctz->lock);
769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 spin_unlock(&mctz->lock);
774 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
776 unsigned long long excess;
777 struct mem_cgroup_per_zone *mz;
778 struct mem_cgroup_tree_per_zone *mctz;
779 int nid = page_to_nid(page);
780 int zid = page_zonenum(page);
781 mctz = soft_limit_tree_from_page(page);
784 * Necessary to update all ancestors when hierarchy is used.
785 * because their event counter is not touched.
787 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
788 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
789 excess = res_counter_soft_limit_excess(&memcg->res);
791 * We have to update the tree if mz is on RB-tree or
792 * mem is over its softlimit.
794 if (excess || mz->on_tree) {
795 spin_lock(&mctz->lock);
796 /* if on-tree, remove it */
797 if (mz->on_tree)
798 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
800 * Insert again. mz->usage_in_excess will be updated.
801 * If excess is 0, no tree ops.
803 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
804 spin_unlock(&mctz->lock);
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
811 int node, zone;
812 struct mem_cgroup_per_zone *mz;
813 struct mem_cgroup_tree_per_zone *mctz;
815 for_each_node(node) {
816 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
817 mz = mem_cgroup_zoneinfo(memcg, node, zone);
818 mctz = soft_limit_tree_node_zone(node, zone);
819 mem_cgroup_remove_exceeded(memcg, mz, mctz);
824 static struct mem_cgroup_per_zone *
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
827 struct rb_node *rightmost = NULL;
828 struct mem_cgroup_per_zone *mz;
830 retry:
831 mz = NULL;
832 rightmost = rb_last(&mctz->rb_root);
833 if (!rightmost)
834 goto done; /* Nothing to reclaim from */
836 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
838 * Remove the node now but someone else can add it back,
839 * we will to add it back at the end of reclaim to its correct
840 * position in the tree.
842 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
843 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
844 !css_tryget(&mz->memcg->css))
845 goto retry;
846 done:
847 return mz;
850 static struct mem_cgroup_per_zone *
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
853 struct mem_cgroup_per_zone *mz;
855 spin_lock(&mctz->lock);
856 mz = __mem_cgroup_largest_soft_limit_node(mctz);
857 spin_unlock(&mctz->lock);
858 return mz;
862 * Implementation Note: reading percpu statistics for memcg.
864 * Both of vmstat[] and percpu_counter has threshold and do periodic
865 * synchronization to implement "quick" read. There are trade-off between
866 * reading cost and precision of value. Then, we may have a chance to implement
867 * a periodic synchronizion of counter in memcg's counter.
869 * But this _read() function is used for user interface now. The user accounts
870 * memory usage by memory cgroup and he _always_ requires exact value because
871 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872 * have to visit all online cpus and make sum. So, for now, unnecessary
873 * synchronization is not implemented. (just implemented for cpu hotplug)
875 * If there are kernel internal actions which can make use of some not-exact
876 * value, and reading all cpu value can be performance bottleneck in some
877 * common workload, threashold and synchonization as vmstat[] should be
878 * implemented.
880 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881 enum mem_cgroup_stat_index idx)
883 long val = 0;
884 int cpu;
886 get_online_cpus();
887 for_each_online_cpu(cpu)
888 val += per_cpu(memcg->stat->count[idx], cpu);
889 #ifdef CONFIG_HOTPLUG_CPU
890 spin_lock(&memcg->pcp_counter_lock);
891 val += memcg->nocpu_base.count[idx];
892 spin_unlock(&memcg->pcp_counter_lock);
893 #endif
894 put_online_cpus();
895 return val;
898 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 bool charge)
901 int val = (charge) ? 1 : -1;
902 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 enum mem_cgroup_events_index idx)
908 unsigned long val = 0;
909 int cpu;
911 for_each_online_cpu(cpu)
912 val += per_cpu(memcg->stat->events[idx], cpu);
913 #ifdef CONFIG_HOTPLUG_CPU
914 spin_lock(&memcg->pcp_counter_lock);
915 val += memcg->nocpu_base.events[idx];
916 spin_unlock(&memcg->pcp_counter_lock);
917 #endif
918 return val;
921 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
922 struct page *page,
923 bool anon, int nr_pages)
925 preempt_disable();
928 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 * counted as CACHE even if it's on ANON LRU.
931 if (anon)
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
933 nr_pages);
934 else
935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
936 nr_pages);
938 if (PageTransHuge(page))
939 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
940 nr_pages);
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
944 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
945 else {
946 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
947 nr_pages = -nr_pages; /* for event */
950 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
952 preempt_enable();
955 unsigned long
956 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
958 struct mem_cgroup_per_zone *mz;
960 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
961 return mz->lru_size[lru];
964 static unsigned long
965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
966 unsigned int lru_mask)
968 struct mem_cgroup_per_zone *mz;
969 enum lru_list lru;
970 unsigned long ret = 0;
972 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
974 for_each_lru(lru) {
975 if (BIT(lru) & lru_mask)
976 ret += mz->lru_size[lru];
978 return ret;
981 static unsigned long
982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
983 int nid, unsigned int lru_mask)
985 u64 total = 0;
986 int zid;
988 for (zid = 0; zid < MAX_NR_ZONES; zid++)
989 total += mem_cgroup_zone_nr_lru_pages(memcg,
990 nid, zid, lru_mask);
992 return total;
995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
996 unsigned int lru_mask)
998 int nid;
999 u64 total = 0;
1001 for_each_node_state(nid, N_MEMORY)
1002 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1003 return total;
1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1007 enum mem_cgroup_events_target target)
1009 unsigned long val, next;
1011 val = __this_cpu_read(memcg->stat->nr_page_events);
1012 next = __this_cpu_read(memcg->stat->targets[target]);
1013 /* from time_after() in jiffies.h */
1014 if ((long)next - (long)val < 0) {
1015 switch (target) {
1016 case MEM_CGROUP_TARGET_THRESH:
1017 next = val + THRESHOLDS_EVENTS_TARGET;
1018 break;
1019 case MEM_CGROUP_TARGET_SOFTLIMIT:
1020 next = val + SOFTLIMIT_EVENTS_TARGET;
1021 break;
1022 case MEM_CGROUP_TARGET_NUMAINFO:
1023 next = val + NUMAINFO_EVENTS_TARGET;
1024 break;
1025 default:
1026 break;
1028 __this_cpu_write(memcg->stat->targets[target], next);
1029 return true;
1031 return false;
1035 * Check events in order.
1038 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1040 preempt_disable();
1041 /* threshold event is triggered in finer grain than soft limit */
1042 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_THRESH))) {
1044 bool do_softlimit;
1045 bool do_numainfo __maybe_unused;
1047 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1048 MEM_CGROUP_TARGET_SOFTLIMIT);
1049 #if MAX_NUMNODES > 1
1050 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1051 MEM_CGROUP_TARGET_NUMAINFO);
1052 #endif
1053 preempt_enable();
1055 mem_cgroup_threshold(memcg);
1056 if (unlikely(do_softlimit))
1057 mem_cgroup_update_tree(memcg, page);
1058 #if MAX_NUMNODES > 1
1059 if (unlikely(do_numainfo))
1060 atomic_inc(&memcg->numainfo_events);
1061 #endif
1062 } else
1063 preempt_enable();
1066 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1068 return mem_cgroup_from_css(
1069 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1072 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1075 * mm_update_next_owner() may clear mm->owner to NULL
1076 * if it races with swapoff, page migration, etc.
1077 * So this can be called with p == NULL.
1079 if (unlikely(!p))
1080 return NULL;
1082 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1085 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1087 struct mem_cgroup *memcg = NULL;
1089 if (!mm)
1090 return NULL;
1092 * Because we have no locks, mm->owner's may be being moved to other
1093 * cgroup. We use css_tryget() here even if this looks
1094 * pessimistic (rather than adding locks here).
1096 rcu_read_lock();
1097 do {
1098 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1099 if (unlikely(!memcg))
1100 break;
1101 } while (!css_tryget(&memcg->css));
1102 rcu_read_unlock();
1103 return memcg;
1107 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108 * ref. count) or NULL if the whole root's subtree has been visited.
1110 * helper function to be used by mem_cgroup_iter
1112 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1113 struct mem_cgroup *last_visited)
1115 struct cgroup *prev_cgroup, *next_cgroup;
1118 * Root is not visited by cgroup iterators so it needs an
1119 * explicit visit.
1121 if (!last_visited)
1122 return root;
1124 prev_cgroup = (last_visited == root) ? NULL
1125 : last_visited->css.cgroup;
1126 skip_node:
1127 next_cgroup = cgroup_next_descendant_pre(
1128 prev_cgroup, root->css.cgroup);
1131 * Even if we found a group we have to make sure it is
1132 * alive. css && !memcg means that the groups should be
1133 * skipped and we should continue the tree walk.
1134 * last_visited css is safe to use because it is
1135 * protected by css_get and the tree walk is rcu safe.
1137 if (next_cgroup) {
1138 struct mem_cgroup *mem = mem_cgroup_from_cont(
1139 next_cgroup);
1140 if (css_tryget(&mem->css))
1141 return mem;
1142 else {
1143 prev_cgroup = next_cgroup;
1144 goto skip_node;
1148 return NULL;
1152 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1153 * @root: hierarchy root
1154 * @prev: previously returned memcg, NULL on first invocation
1155 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1157 * Returns references to children of the hierarchy below @root, or
1158 * @root itself, or %NULL after a full round-trip.
1160 * Caller must pass the return value in @prev on subsequent
1161 * invocations for reference counting, or use mem_cgroup_iter_break()
1162 * to cancel a hierarchy walk before the round-trip is complete.
1164 * Reclaimers can specify a zone and a priority level in @reclaim to
1165 * divide up the memcgs in the hierarchy among all concurrent
1166 * reclaimers operating on the same zone and priority.
1168 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1169 struct mem_cgroup *prev,
1170 struct mem_cgroup_reclaim_cookie *reclaim)
1172 struct mem_cgroup *memcg = NULL;
1173 struct mem_cgroup *last_visited = NULL;
1174 unsigned long uninitialized_var(dead_count);
1176 if (mem_cgroup_disabled())
1177 return NULL;
1179 if (!root)
1180 root = root_mem_cgroup;
1182 if (prev && !reclaim)
1183 last_visited = prev;
1185 if (!root->use_hierarchy && root != root_mem_cgroup) {
1186 if (prev)
1187 goto out_css_put;
1188 return root;
1191 rcu_read_lock();
1192 while (!memcg) {
1193 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1195 if (reclaim) {
1196 int nid = zone_to_nid(reclaim->zone);
1197 int zid = zone_idx(reclaim->zone);
1198 struct mem_cgroup_per_zone *mz;
1200 mz = mem_cgroup_zoneinfo(root, nid, zid);
1201 iter = &mz->reclaim_iter[reclaim->priority];
1202 last_visited = iter->last_visited;
1203 if (prev && reclaim->generation != iter->generation) {
1204 iter->last_visited = NULL;
1205 goto out_unlock;
1209 * If the dead_count mismatches, a destruction
1210 * has happened or is happening concurrently.
1211 * If the dead_count matches, a destruction
1212 * might still happen concurrently, but since
1213 * we checked under RCU, that destruction
1214 * won't free the object until we release the
1215 * RCU reader lock. Thus, the dead_count
1216 * check verifies the pointer is still valid,
1217 * css_tryget() verifies the cgroup pointed to
1218 * is alive.
1220 dead_count = atomic_read(&root->dead_count);
1221 smp_rmb();
1222 last_visited = iter->last_visited;
1223 if (last_visited) {
1224 if ((dead_count != iter->last_dead_count) ||
1225 !css_tryget(&last_visited->css)) {
1226 last_visited = NULL;
1231 memcg = __mem_cgroup_iter_next(root, last_visited);
1233 if (reclaim) {
1234 if (last_visited)
1235 css_put(&last_visited->css);
1237 iter->last_visited = memcg;
1238 smp_wmb();
1239 iter->last_dead_count = dead_count;
1241 if (!memcg)
1242 iter->generation++;
1243 else if (!prev && memcg)
1244 reclaim->generation = iter->generation;
1247 if (prev && !memcg)
1248 goto out_unlock;
1250 out_unlock:
1251 rcu_read_unlock();
1252 out_css_put:
1253 if (prev && prev != root)
1254 css_put(&prev->css);
1256 return memcg;
1260 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1261 * @root: hierarchy root
1262 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1264 void mem_cgroup_iter_break(struct mem_cgroup *root,
1265 struct mem_cgroup *prev)
1267 if (!root)
1268 root = root_mem_cgroup;
1269 if (prev && prev != root)
1270 css_put(&prev->css);
1274 * Iteration constructs for visiting all cgroups (under a tree). If
1275 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1276 * be used for reference counting.
1278 #define for_each_mem_cgroup_tree(iter, root) \
1279 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1280 iter != NULL; \
1281 iter = mem_cgroup_iter(root, iter, NULL))
1283 #define for_each_mem_cgroup(iter) \
1284 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1285 iter != NULL; \
1286 iter = mem_cgroup_iter(NULL, iter, NULL))
1288 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1290 struct mem_cgroup *memcg;
1292 rcu_read_lock();
1293 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1294 if (unlikely(!memcg))
1295 goto out;
1297 switch (idx) {
1298 case PGFAULT:
1299 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1300 break;
1301 case PGMAJFAULT:
1302 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1303 break;
1304 default:
1305 BUG();
1307 out:
1308 rcu_read_unlock();
1310 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1313 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1314 * @zone: zone of the wanted lruvec
1315 * @memcg: memcg of the wanted lruvec
1317 * Returns the lru list vector holding pages for the given @zone and
1318 * @mem. This can be the global zone lruvec, if the memory controller
1319 * is disabled.
1321 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1322 struct mem_cgroup *memcg)
1324 struct mem_cgroup_per_zone *mz;
1325 struct lruvec *lruvec;
1327 if (mem_cgroup_disabled()) {
1328 lruvec = &zone->lruvec;
1329 goto out;
1332 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1333 lruvec = &mz->lruvec;
1334 out:
1336 * Since a node can be onlined after the mem_cgroup was created,
1337 * we have to be prepared to initialize lruvec->zone here;
1338 * and if offlined then reonlined, we need to reinitialize it.
1340 if (unlikely(lruvec->zone != zone))
1341 lruvec->zone = zone;
1342 return lruvec;
1346 * Following LRU functions are allowed to be used without PCG_LOCK.
1347 * Operations are called by routine of global LRU independently from memcg.
1348 * What we have to take care of here is validness of pc->mem_cgroup.
1350 * Changes to pc->mem_cgroup happens when
1351 * 1. charge
1352 * 2. moving account
1353 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1354 * It is added to LRU before charge.
1355 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1356 * When moving account, the page is not on LRU. It's isolated.
1360 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1361 * @page: the page
1362 * @zone: zone of the page
1364 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1366 struct mem_cgroup_per_zone *mz;
1367 struct mem_cgroup *memcg;
1368 struct page_cgroup *pc;
1369 struct lruvec *lruvec;
1371 if (mem_cgroup_disabled()) {
1372 lruvec = &zone->lruvec;
1373 goto out;
1376 pc = lookup_page_cgroup(page);
1377 memcg = pc->mem_cgroup;
1380 * Surreptitiously switch any uncharged offlist page to root:
1381 * an uncharged page off lru does nothing to secure
1382 * its former mem_cgroup from sudden removal.
1384 * Our caller holds lru_lock, and PageCgroupUsed is updated
1385 * under page_cgroup lock: between them, they make all uses
1386 * of pc->mem_cgroup safe.
1388 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1389 pc->mem_cgroup = memcg = root_mem_cgroup;
1391 mz = page_cgroup_zoneinfo(memcg, page);
1392 lruvec = &mz->lruvec;
1393 out:
1395 * Since a node can be onlined after the mem_cgroup was created,
1396 * we have to be prepared to initialize lruvec->zone here;
1397 * and if offlined then reonlined, we need to reinitialize it.
1399 if (unlikely(lruvec->zone != zone))
1400 lruvec->zone = zone;
1401 return lruvec;
1405 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1406 * @lruvec: mem_cgroup per zone lru vector
1407 * @lru: index of lru list the page is sitting on
1408 * @nr_pages: positive when adding or negative when removing
1410 * This function must be called when a page is added to or removed from an
1411 * lru list.
1413 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1414 int nr_pages)
1416 struct mem_cgroup_per_zone *mz;
1417 unsigned long *lru_size;
1419 if (mem_cgroup_disabled())
1420 return;
1422 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1423 lru_size = mz->lru_size + lru;
1424 *lru_size += nr_pages;
1425 VM_BUG_ON((long)(*lru_size) < 0);
1429 * Checks whether given mem is same or in the root_mem_cgroup's
1430 * hierarchy subtree
1432 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1433 struct mem_cgroup *memcg)
1435 if (root_memcg == memcg)
1436 return true;
1437 if (!root_memcg->use_hierarchy || !memcg)
1438 return false;
1439 return css_is_ancestor(&memcg->css, &root_memcg->css);
1442 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1443 struct mem_cgroup *memcg)
1445 bool ret;
1447 rcu_read_lock();
1448 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1449 rcu_read_unlock();
1450 return ret;
1453 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1455 int ret;
1456 struct mem_cgroup *curr = NULL;
1457 struct task_struct *p;
1459 p = find_lock_task_mm(task);
1460 if (p) {
1461 curr = try_get_mem_cgroup_from_mm(p->mm);
1462 task_unlock(p);
1463 } else {
1465 * All threads may have already detached their mm's, but the oom
1466 * killer still needs to detect if they have already been oom
1467 * killed to prevent needlessly killing additional tasks.
1469 task_lock(task);
1470 curr = mem_cgroup_from_task(task);
1471 if (curr)
1472 css_get(&curr->css);
1473 task_unlock(task);
1475 if (!curr)
1476 return 0;
1478 * We should check use_hierarchy of "memcg" not "curr". Because checking
1479 * use_hierarchy of "curr" here make this function true if hierarchy is
1480 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1481 * hierarchy(even if use_hierarchy is disabled in "memcg").
1483 ret = mem_cgroup_same_or_subtree(memcg, curr);
1484 css_put(&curr->css);
1485 return ret;
1488 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1490 unsigned long inactive_ratio;
1491 unsigned long inactive;
1492 unsigned long active;
1493 unsigned long gb;
1495 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1496 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1498 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1499 if (gb)
1500 inactive_ratio = int_sqrt(10 * gb);
1501 else
1502 inactive_ratio = 1;
1504 return inactive * inactive_ratio < active;
1507 #define mem_cgroup_from_res_counter(counter, member) \
1508 container_of(counter, struct mem_cgroup, member)
1511 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1512 * @memcg: the memory cgroup
1514 * Returns the maximum amount of memory @mem can be charged with, in
1515 * pages.
1517 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1519 unsigned long long margin;
1521 margin = res_counter_margin(&memcg->res);
1522 if (do_swap_account)
1523 margin = min(margin, res_counter_margin(&memcg->memsw));
1524 return margin >> PAGE_SHIFT;
1527 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1529 struct cgroup *cgrp = memcg->css.cgroup;
1531 /* root ? */
1532 if (cgrp->parent == NULL)
1533 return vm_swappiness;
1535 return memcg->swappiness;
1539 * memcg->moving_account is used for checking possibility that some thread is
1540 * calling move_account(). When a thread on CPU-A starts moving pages under
1541 * a memcg, other threads should check memcg->moving_account under
1542 * rcu_read_lock(), like this:
1544 * CPU-A CPU-B
1545 * rcu_read_lock()
1546 * memcg->moving_account+1 if (memcg->mocing_account)
1547 * take heavy locks.
1548 * synchronize_rcu() update something.
1549 * rcu_read_unlock()
1550 * start move here.
1553 /* for quick checking without looking up memcg */
1554 atomic_t memcg_moving __read_mostly;
1556 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1558 atomic_inc(&memcg_moving);
1559 atomic_inc(&memcg->moving_account);
1560 synchronize_rcu();
1563 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1566 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1567 * We check NULL in callee rather than caller.
1569 if (memcg) {
1570 atomic_dec(&memcg_moving);
1571 atomic_dec(&memcg->moving_account);
1576 * 2 routines for checking "mem" is under move_account() or not.
1578 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1579 * is used for avoiding races in accounting. If true,
1580 * pc->mem_cgroup may be overwritten.
1582 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1583 * under hierarchy of moving cgroups. This is for
1584 * waiting at hith-memory prressure caused by "move".
1587 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1589 VM_BUG_ON(!rcu_read_lock_held());
1590 return atomic_read(&memcg->moving_account) > 0;
1593 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1595 struct mem_cgroup *from;
1596 struct mem_cgroup *to;
1597 bool ret = false;
1599 * Unlike task_move routines, we access mc.to, mc.from not under
1600 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1602 spin_lock(&mc.lock);
1603 from = mc.from;
1604 to = mc.to;
1605 if (!from)
1606 goto unlock;
1608 ret = mem_cgroup_same_or_subtree(memcg, from)
1609 || mem_cgroup_same_or_subtree(memcg, to);
1610 unlock:
1611 spin_unlock(&mc.lock);
1612 return ret;
1615 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1617 if (mc.moving_task && current != mc.moving_task) {
1618 if (mem_cgroup_under_move(memcg)) {
1619 DEFINE_WAIT(wait);
1620 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1621 /* moving charge context might have finished. */
1622 if (mc.moving_task)
1623 schedule();
1624 finish_wait(&mc.waitq, &wait);
1625 return true;
1628 return false;
1632 * Take this lock when
1633 * - a code tries to modify page's memcg while it's USED.
1634 * - a code tries to modify page state accounting in a memcg.
1635 * see mem_cgroup_stolen(), too.
1637 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1638 unsigned long *flags)
1640 spin_lock_irqsave(&memcg->move_lock, *flags);
1643 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1644 unsigned long *flags)
1646 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1649 #define K(x) ((x) << (PAGE_SHIFT-10))
1651 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1652 * @memcg: The memory cgroup that went over limit
1653 * @p: Task that is going to be killed
1655 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1656 * enabled
1658 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1660 struct cgroup *task_cgrp;
1661 struct cgroup *mem_cgrp;
1663 * Need a buffer in BSS, can't rely on allocations. The code relies
1664 * on the assumption that OOM is serialized for memory controller.
1665 * If this assumption is broken, revisit this code.
1667 static char memcg_name[PATH_MAX];
1668 int ret;
1669 struct mem_cgroup *iter;
1670 unsigned int i;
1672 if (!p)
1673 return;
1675 rcu_read_lock();
1677 mem_cgrp = memcg->css.cgroup;
1678 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1680 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1681 if (ret < 0) {
1683 * Unfortunately, we are unable to convert to a useful name
1684 * But we'll still print out the usage information
1686 rcu_read_unlock();
1687 goto done;
1689 rcu_read_unlock();
1691 pr_info("Task in %s killed", memcg_name);
1693 rcu_read_lock();
1694 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1695 if (ret < 0) {
1696 rcu_read_unlock();
1697 goto done;
1699 rcu_read_unlock();
1702 * Continues from above, so we don't need an KERN_ level
1704 pr_cont(" as a result of limit of %s\n", memcg_name);
1705 done:
1707 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1708 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1709 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1710 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1711 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1712 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1713 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1714 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1715 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1716 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1717 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1718 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1720 for_each_mem_cgroup_tree(iter, memcg) {
1721 pr_info("Memory cgroup stats");
1723 rcu_read_lock();
1724 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1725 if (!ret)
1726 pr_cont(" for %s", memcg_name);
1727 rcu_read_unlock();
1728 pr_cont(":");
1730 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1731 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1732 continue;
1733 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1734 K(mem_cgroup_read_stat(iter, i)));
1737 for (i = 0; i < NR_LRU_LISTS; i++)
1738 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1739 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1741 pr_cont("\n");
1746 * This function returns the number of memcg under hierarchy tree. Returns
1747 * 1(self count) if no children.
1749 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1751 int num = 0;
1752 struct mem_cgroup *iter;
1754 for_each_mem_cgroup_tree(iter, memcg)
1755 num++;
1756 return num;
1760 * Return the memory (and swap, if configured) limit for a memcg.
1762 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1764 u64 limit;
1766 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1769 * Do not consider swap space if we cannot swap due to swappiness
1771 if (mem_cgroup_swappiness(memcg)) {
1772 u64 memsw;
1774 limit += total_swap_pages << PAGE_SHIFT;
1775 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1778 * If memsw is finite and limits the amount of swap space
1779 * available to this memcg, return that limit.
1781 limit = min(limit, memsw);
1784 return limit;
1787 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1788 int order)
1790 struct mem_cgroup *iter;
1791 unsigned long chosen_points = 0;
1792 unsigned long totalpages;
1793 unsigned int points = 0;
1794 struct task_struct *chosen = NULL;
1797 * If current has a pending SIGKILL or is exiting, then automatically
1798 * select it. The goal is to allow it to allocate so that it may
1799 * quickly exit and free its memory.
1801 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1802 set_thread_flag(TIF_MEMDIE);
1803 return;
1806 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1807 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1808 for_each_mem_cgroup_tree(iter, memcg) {
1809 struct cgroup *cgroup = iter->css.cgroup;
1810 struct cgroup_iter it;
1811 struct task_struct *task;
1813 cgroup_iter_start(cgroup, &it);
1814 while ((task = cgroup_iter_next(cgroup, &it))) {
1815 switch (oom_scan_process_thread(task, totalpages, NULL,
1816 false)) {
1817 case OOM_SCAN_SELECT:
1818 if (chosen)
1819 put_task_struct(chosen);
1820 chosen = task;
1821 chosen_points = ULONG_MAX;
1822 get_task_struct(chosen);
1823 /* fall through */
1824 case OOM_SCAN_CONTINUE:
1825 continue;
1826 case OOM_SCAN_ABORT:
1827 cgroup_iter_end(cgroup, &it);
1828 mem_cgroup_iter_break(memcg, iter);
1829 if (chosen)
1830 put_task_struct(chosen);
1831 return;
1832 case OOM_SCAN_OK:
1833 break;
1835 points = oom_badness(task, memcg, NULL, totalpages);
1836 if (points > chosen_points) {
1837 if (chosen)
1838 put_task_struct(chosen);
1839 chosen = task;
1840 chosen_points = points;
1841 get_task_struct(chosen);
1844 cgroup_iter_end(cgroup, &it);
1847 if (!chosen)
1848 return;
1849 points = chosen_points * 1000 / totalpages;
1850 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1851 NULL, "Memory cgroup out of memory");
1854 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1855 gfp_t gfp_mask,
1856 unsigned long flags)
1858 unsigned long total = 0;
1859 bool noswap = false;
1860 int loop;
1862 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1863 noswap = true;
1864 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1865 noswap = true;
1867 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1868 if (loop)
1869 drain_all_stock_async(memcg);
1870 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1872 * Allow limit shrinkers, which are triggered directly
1873 * by userspace, to catch signals and stop reclaim
1874 * after minimal progress, regardless of the margin.
1876 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1877 break;
1878 if (mem_cgroup_margin(memcg))
1879 break;
1881 * If nothing was reclaimed after two attempts, there
1882 * may be no reclaimable pages in this hierarchy.
1884 if (loop && !total)
1885 break;
1887 return total;
1891 * test_mem_cgroup_node_reclaimable
1892 * @memcg: the target memcg
1893 * @nid: the node ID to be checked.
1894 * @noswap : specify true here if the user wants flle only information.
1896 * This function returns whether the specified memcg contains any
1897 * reclaimable pages on a node. Returns true if there are any reclaimable
1898 * pages in the node.
1900 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1901 int nid, bool noswap)
1903 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1904 return true;
1905 if (noswap || !total_swap_pages)
1906 return false;
1907 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1908 return true;
1909 return false;
1912 #if MAX_NUMNODES > 1
1915 * Always updating the nodemask is not very good - even if we have an empty
1916 * list or the wrong list here, we can start from some node and traverse all
1917 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1920 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1922 int nid;
1924 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1925 * pagein/pageout changes since the last update.
1927 if (!atomic_read(&memcg->numainfo_events))
1928 return;
1929 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1930 return;
1932 /* make a nodemask where this memcg uses memory from */
1933 memcg->scan_nodes = node_states[N_MEMORY];
1935 for_each_node_mask(nid, node_states[N_MEMORY]) {
1937 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1938 node_clear(nid, memcg->scan_nodes);
1941 atomic_set(&memcg->numainfo_events, 0);
1942 atomic_set(&memcg->numainfo_updating, 0);
1946 * Selecting a node where we start reclaim from. Because what we need is just
1947 * reducing usage counter, start from anywhere is O,K. Considering
1948 * memory reclaim from current node, there are pros. and cons.
1950 * Freeing memory from current node means freeing memory from a node which
1951 * we'll use or we've used. So, it may make LRU bad. And if several threads
1952 * hit limits, it will see a contention on a node. But freeing from remote
1953 * node means more costs for memory reclaim because of memory latency.
1955 * Now, we use round-robin. Better algorithm is welcomed.
1957 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1959 int node;
1961 mem_cgroup_may_update_nodemask(memcg);
1962 node = memcg->last_scanned_node;
1964 node = next_node(node, memcg->scan_nodes);
1965 if (node == MAX_NUMNODES)
1966 node = first_node(memcg->scan_nodes);
1968 * We call this when we hit limit, not when pages are added to LRU.
1969 * No LRU may hold pages because all pages are UNEVICTABLE or
1970 * memcg is too small and all pages are not on LRU. In that case,
1971 * we use curret node.
1973 if (unlikely(node == MAX_NUMNODES))
1974 node = numa_node_id();
1976 memcg->last_scanned_node = node;
1977 return node;
1981 * Check all nodes whether it contains reclaimable pages or not.
1982 * For quick scan, we make use of scan_nodes. This will allow us to skip
1983 * unused nodes. But scan_nodes is lazily updated and may not cotain
1984 * enough new information. We need to do double check.
1986 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1988 int nid;
1991 * quick check...making use of scan_node.
1992 * We can skip unused nodes.
1994 if (!nodes_empty(memcg->scan_nodes)) {
1995 for (nid = first_node(memcg->scan_nodes);
1996 nid < MAX_NUMNODES;
1997 nid = next_node(nid, memcg->scan_nodes)) {
1999 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2000 return true;
2004 * Check rest of nodes.
2006 for_each_node_state(nid, N_MEMORY) {
2007 if (node_isset(nid, memcg->scan_nodes))
2008 continue;
2009 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2010 return true;
2012 return false;
2015 #else
2016 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2018 return 0;
2021 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2023 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2025 #endif
2027 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2028 struct zone *zone,
2029 gfp_t gfp_mask,
2030 unsigned long *total_scanned)
2032 struct mem_cgroup *victim = NULL;
2033 int total = 0;
2034 int loop = 0;
2035 unsigned long excess;
2036 unsigned long nr_scanned;
2037 struct mem_cgroup_reclaim_cookie reclaim = {
2038 .zone = zone,
2039 .priority = 0,
2042 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2044 while (1) {
2045 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2046 if (!victim) {
2047 loop++;
2048 if (loop >= 2) {
2050 * If we have not been able to reclaim
2051 * anything, it might because there are
2052 * no reclaimable pages under this hierarchy
2054 if (!total)
2055 break;
2057 * We want to do more targeted reclaim.
2058 * excess >> 2 is not to excessive so as to
2059 * reclaim too much, nor too less that we keep
2060 * coming back to reclaim from this cgroup
2062 if (total >= (excess >> 2) ||
2063 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2064 break;
2066 continue;
2068 if (!mem_cgroup_reclaimable(victim, false))
2069 continue;
2070 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2071 zone, &nr_scanned);
2072 *total_scanned += nr_scanned;
2073 if (!res_counter_soft_limit_excess(&root_memcg->res))
2074 break;
2076 mem_cgroup_iter_break(root_memcg, victim);
2077 return total;
2081 * Check OOM-Killer is already running under our hierarchy.
2082 * If someone is running, return false.
2083 * Has to be called with memcg_oom_lock
2085 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2087 struct mem_cgroup *iter, *failed = NULL;
2089 for_each_mem_cgroup_tree(iter, memcg) {
2090 if (iter->oom_lock) {
2092 * this subtree of our hierarchy is already locked
2093 * so we cannot give a lock.
2095 failed = iter;
2096 mem_cgroup_iter_break(memcg, iter);
2097 break;
2098 } else
2099 iter->oom_lock = true;
2102 if (!failed)
2103 return true;
2106 * OK, we failed to lock the whole subtree so we have to clean up
2107 * what we set up to the failing subtree
2109 for_each_mem_cgroup_tree(iter, memcg) {
2110 if (iter == failed) {
2111 mem_cgroup_iter_break(memcg, iter);
2112 break;
2114 iter->oom_lock = false;
2116 return false;
2120 * Has to be called with memcg_oom_lock
2122 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2124 struct mem_cgroup *iter;
2126 for_each_mem_cgroup_tree(iter, memcg)
2127 iter->oom_lock = false;
2128 return 0;
2131 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2133 struct mem_cgroup *iter;
2135 for_each_mem_cgroup_tree(iter, memcg)
2136 atomic_inc(&iter->under_oom);
2139 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2141 struct mem_cgroup *iter;
2144 * When a new child is created while the hierarchy is under oom,
2145 * mem_cgroup_oom_lock() may not be called. We have to use
2146 * atomic_add_unless() here.
2148 for_each_mem_cgroup_tree(iter, memcg)
2149 atomic_add_unless(&iter->under_oom, -1, 0);
2152 static DEFINE_SPINLOCK(memcg_oom_lock);
2153 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2155 struct oom_wait_info {
2156 struct mem_cgroup *memcg;
2157 wait_queue_t wait;
2160 static int memcg_oom_wake_function(wait_queue_t *wait,
2161 unsigned mode, int sync, void *arg)
2163 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2164 struct mem_cgroup *oom_wait_memcg;
2165 struct oom_wait_info *oom_wait_info;
2167 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2168 oom_wait_memcg = oom_wait_info->memcg;
2171 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2172 * Then we can use css_is_ancestor without taking care of RCU.
2174 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2175 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2176 return 0;
2177 return autoremove_wake_function(wait, mode, sync, arg);
2180 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2182 /* for filtering, pass "memcg" as argument. */
2183 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2186 static void memcg_oom_recover(struct mem_cgroup *memcg)
2188 if (memcg && atomic_read(&memcg->under_oom))
2189 memcg_wakeup_oom(memcg);
2193 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2195 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2196 int order)
2198 struct oom_wait_info owait;
2199 bool locked, need_to_kill;
2201 owait.memcg = memcg;
2202 owait.wait.flags = 0;
2203 owait.wait.func = memcg_oom_wake_function;
2204 owait.wait.private = current;
2205 INIT_LIST_HEAD(&owait.wait.task_list);
2206 need_to_kill = true;
2207 mem_cgroup_mark_under_oom(memcg);
2209 /* At first, try to OOM lock hierarchy under memcg.*/
2210 spin_lock(&memcg_oom_lock);
2211 locked = mem_cgroup_oom_lock(memcg);
2213 * Even if signal_pending(), we can't quit charge() loop without
2214 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2215 * under OOM is always welcomed, use TASK_KILLABLE here.
2217 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2218 if (!locked || memcg->oom_kill_disable)
2219 need_to_kill = false;
2220 if (locked)
2221 mem_cgroup_oom_notify(memcg);
2222 spin_unlock(&memcg_oom_lock);
2224 if (need_to_kill) {
2225 finish_wait(&memcg_oom_waitq, &owait.wait);
2226 mem_cgroup_out_of_memory(memcg, mask, order);
2227 } else {
2228 schedule();
2229 finish_wait(&memcg_oom_waitq, &owait.wait);
2231 spin_lock(&memcg_oom_lock);
2232 if (locked)
2233 mem_cgroup_oom_unlock(memcg);
2234 memcg_wakeup_oom(memcg);
2235 spin_unlock(&memcg_oom_lock);
2237 mem_cgroup_unmark_under_oom(memcg);
2239 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2240 return false;
2241 /* Give chance to dying process */
2242 schedule_timeout_uninterruptible(1);
2243 return true;
2247 * Currently used to update mapped file statistics, but the routine can be
2248 * generalized to update other statistics as well.
2250 * Notes: Race condition
2252 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2253 * it tends to be costly. But considering some conditions, we doesn't need
2254 * to do so _always_.
2256 * Considering "charge", lock_page_cgroup() is not required because all
2257 * file-stat operations happen after a page is attached to radix-tree. There
2258 * are no race with "charge".
2260 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2261 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2262 * if there are race with "uncharge". Statistics itself is properly handled
2263 * by flags.
2265 * Considering "move", this is an only case we see a race. To make the race
2266 * small, we check mm->moving_account and detect there are possibility of race
2267 * If there is, we take a lock.
2270 void __mem_cgroup_begin_update_page_stat(struct page *page,
2271 bool *locked, unsigned long *flags)
2273 struct mem_cgroup *memcg;
2274 struct page_cgroup *pc;
2276 pc = lookup_page_cgroup(page);
2277 again:
2278 memcg = pc->mem_cgroup;
2279 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2280 return;
2282 * If this memory cgroup is not under account moving, we don't
2283 * need to take move_lock_mem_cgroup(). Because we already hold
2284 * rcu_read_lock(), any calls to move_account will be delayed until
2285 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2287 if (!mem_cgroup_stolen(memcg))
2288 return;
2290 move_lock_mem_cgroup(memcg, flags);
2291 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2292 move_unlock_mem_cgroup(memcg, flags);
2293 goto again;
2295 *locked = true;
2298 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2300 struct page_cgroup *pc = lookup_page_cgroup(page);
2303 * It's guaranteed that pc->mem_cgroup never changes while
2304 * lock is held because a routine modifies pc->mem_cgroup
2305 * should take move_lock_mem_cgroup().
2307 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2310 void mem_cgroup_update_page_stat(struct page *page,
2311 enum mem_cgroup_page_stat_item idx, int val)
2313 struct mem_cgroup *memcg;
2314 struct page_cgroup *pc = lookup_page_cgroup(page);
2315 unsigned long uninitialized_var(flags);
2317 if (mem_cgroup_disabled())
2318 return;
2320 memcg = pc->mem_cgroup;
2321 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2322 return;
2324 switch (idx) {
2325 case MEMCG_NR_FILE_MAPPED:
2326 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2327 break;
2328 default:
2329 BUG();
2332 this_cpu_add(memcg->stat->count[idx], val);
2336 * size of first charge trial. "32" comes from vmscan.c's magic value.
2337 * TODO: maybe necessary to use big numbers in big irons.
2339 #define CHARGE_BATCH 32U
2340 struct memcg_stock_pcp {
2341 struct mem_cgroup *cached; /* this never be root cgroup */
2342 unsigned int nr_pages;
2343 struct work_struct work;
2344 unsigned long flags;
2345 #define FLUSHING_CACHED_CHARGE 0
2347 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2348 static DEFINE_MUTEX(percpu_charge_mutex);
2351 * consume_stock: Try to consume stocked charge on this cpu.
2352 * @memcg: memcg to consume from.
2353 * @nr_pages: how many pages to charge.
2355 * The charges will only happen if @memcg matches the current cpu's memcg
2356 * stock, and at least @nr_pages are available in that stock. Failure to
2357 * service an allocation will refill the stock.
2359 * returns true if successful, false otherwise.
2361 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2363 struct memcg_stock_pcp *stock;
2364 bool ret = true;
2366 if (nr_pages > CHARGE_BATCH)
2367 return false;
2369 stock = &get_cpu_var(memcg_stock);
2370 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2371 stock->nr_pages -= nr_pages;
2372 else /* need to call res_counter_charge */
2373 ret = false;
2374 put_cpu_var(memcg_stock);
2375 return ret;
2379 * Returns stocks cached in percpu to res_counter and reset cached information.
2381 static void drain_stock(struct memcg_stock_pcp *stock)
2383 struct mem_cgroup *old = stock->cached;
2385 if (stock->nr_pages) {
2386 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2388 res_counter_uncharge(&old->res, bytes);
2389 if (do_swap_account)
2390 res_counter_uncharge(&old->memsw, bytes);
2391 stock->nr_pages = 0;
2393 stock->cached = NULL;
2397 * This must be called under preempt disabled or must be called by
2398 * a thread which is pinned to local cpu.
2400 static void drain_local_stock(struct work_struct *dummy)
2402 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2403 drain_stock(stock);
2404 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2407 static void __init memcg_stock_init(void)
2409 int cpu;
2411 for_each_possible_cpu(cpu) {
2412 struct memcg_stock_pcp *stock =
2413 &per_cpu(memcg_stock, cpu);
2414 INIT_WORK(&stock->work, drain_local_stock);
2419 * Cache charges(val) which is from res_counter, to local per_cpu area.
2420 * This will be consumed by consume_stock() function, later.
2422 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2424 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2426 if (stock->cached != memcg) { /* reset if necessary */
2427 drain_stock(stock);
2428 stock->cached = memcg;
2430 stock->nr_pages += nr_pages;
2431 put_cpu_var(memcg_stock);
2435 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2436 * of the hierarchy under it. sync flag says whether we should block
2437 * until the work is done.
2439 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2441 int cpu, curcpu;
2443 /* Notify other cpus that system-wide "drain" is running */
2444 get_online_cpus();
2445 curcpu = get_cpu();
2446 for_each_online_cpu(cpu) {
2447 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2448 struct mem_cgroup *memcg;
2450 memcg = stock->cached;
2451 if (!memcg || !stock->nr_pages)
2452 continue;
2453 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2454 continue;
2455 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2456 if (cpu == curcpu)
2457 drain_local_stock(&stock->work);
2458 else
2459 schedule_work_on(cpu, &stock->work);
2462 put_cpu();
2464 if (!sync)
2465 goto out;
2467 for_each_online_cpu(cpu) {
2468 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2469 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2470 flush_work(&stock->work);
2472 out:
2473 put_online_cpus();
2477 * Tries to drain stocked charges in other cpus. This function is asynchronous
2478 * and just put a work per cpu for draining localy on each cpu. Caller can
2479 * expects some charges will be back to res_counter later but cannot wait for
2480 * it.
2482 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2485 * If someone calls draining, avoid adding more kworker runs.
2487 if (!mutex_trylock(&percpu_charge_mutex))
2488 return;
2489 drain_all_stock(root_memcg, false);
2490 mutex_unlock(&percpu_charge_mutex);
2493 /* This is a synchronous drain interface. */
2494 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2496 /* called when force_empty is called */
2497 mutex_lock(&percpu_charge_mutex);
2498 drain_all_stock(root_memcg, true);
2499 mutex_unlock(&percpu_charge_mutex);
2503 * This function drains percpu counter value from DEAD cpu and
2504 * move it to local cpu. Note that this function can be preempted.
2506 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2508 int i;
2510 spin_lock(&memcg->pcp_counter_lock);
2511 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2512 long x = per_cpu(memcg->stat->count[i], cpu);
2514 per_cpu(memcg->stat->count[i], cpu) = 0;
2515 memcg->nocpu_base.count[i] += x;
2517 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2518 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2520 per_cpu(memcg->stat->events[i], cpu) = 0;
2521 memcg->nocpu_base.events[i] += x;
2523 spin_unlock(&memcg->pcp_counter_lock);
2526 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2527 unsigned long action,
2528 void *hcpu)
2530 int cpu = (unsigned long)hcpu;
2531 struct memcg_stock_pcp *stock;
2532 struct mem_cgroup *iter;
2534 if (action == CPU_ONLINE)
2535 return NOTIFY_OK;
2537 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2538 return NOTIFY_OK;
2540 for_each_mem_cgroup(iter)
2541 mem_cgroup_drain_pcp_counter(iter, cpu);
2543 stock = &per_cpu(memcg_stock, cpu);
2544 drain_stock(stock);
2545 return NOTIFY_OK;
2549 /* See __mem_cgroup_try_charge() for details */
2550 enum {
2551 CHARGE_OK, /* success */
2552 CHARGE_RETRY, /* need to retry but retry is not bad */
2553 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2554 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2555 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2558 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2559 unsigned int nr_pages, unsigned int min_pages,
2560 bool oom_check)
2562 unsigned long csize = nr_pages * PAGE_SIZE;
2563 struct mem_cgroup *mem_over_limit;
2564 struct res_counter *fail_res;
2565 unsigned long flags = 0;
2566 int ret;
2568 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2570 if (likely(!ret)) {
2571 if (!do_swap_account)
2572 return CHARGE_OK;
2573 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2574 if (likely(!ret))
2575 return CHARGE_OK;
2577 res_counter_uncharge(&memcg->res, csize);
2578 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2579 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2580 } else
2581 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2583 * Never reclaim on behalf of optional batching, retry with a
2584 * single page instead.
2586 if (nr_pages > min_pages)
2587 return CHARGE_RETRY;
2589 if (!(gfp_mask & __GFP_WAIT))
2590 return CHARGE_WOULDBLOCK;
2592 if (gfp_mask & __GFP_NORETRY)
2593 return CHARGE_NOMEM;
2595 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2596 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2597 return CHARGE_RETRY;
2599 * Even though the limit is exceeded at this point, reclaim
2600 * may have been able to free some pages. Retry the charge
2601 * before killing the task.
2603 * Only for regular pages, though: huge pages are rather
2604 * unlikely to succeed so close to the limit, and we fall back
2605 * to regular pages anyway in case of failure.
2607 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2608 return CHARGE_RETRY;
2611 * At task move, charge accounts can be doubly counted. So, it's
2612 * better to wait until the end of task_move if something is going on.
2614 if (mem_cgroup_wait_acct_move(mem_over_limit))
2615 return CHARGE_RETRY;
2617 /* If we don't need to call oom-killer at el, return immediately */
2618 if (!oom_check)
2619 return CHARGE_NOMEM;
2620 /* check OOM */
2621 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2622 return CHARGE_OOM_DIE;
2624 return CHARGE_RETRY;
2628 * __mem_cgroup_try_charge() does
2629 * 1. detect memcg to be charged against from passed *mm and *ptr,
2630 * 2. update res_counter
2631 * 3. call memory reclaim if necessary.
2633 * In some special case, if the task is fatal, fatal_signal_pending() or
2634 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2635 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2636 * as possible without any hazards. 2: all pages should have a valid
2637 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2638 * pointer, that is treated as a charge to root_mem_cgroup.
2640 * So __mem_cgroup_try_charge() will return
2641 * 0 ... on success, filling *ptr with a valid memcg pointer.
2642 * -ENOMEM ... charge failure because of resource limits.
2643 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2645 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2646 * the oom-killer can be invoked.
2648 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2649 gfp_t gfp_mask,
2650 unsigned int nr_pages,
2651 struct mem_cgroup **ptr,
2652 bool oom)
2654 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2655 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2656 struct mem_cgroup *memcg = NULL;
2657 int ret;
2660 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2661 * in system level. So, allow to go ahead dying process in addition to
2662 * MEMDIE process.
2664 if (unlikely(test_thread_flag(TIF_MEMDIE)
2665 || fatal_signal_pending(current)))
2666 goto bypass;
2669 * We always charge the cgroup the mm_struct belongs to.
2670 * The mm_struct's mem_cgroup changes on task migration if the
2671 * thread group leader migrates. It's possible that mm is not
2672 * set, if so charge the root memcg (happens for pagecache usage).
2674 if (!*ptr && !mm)
2675 *ptr = root_mem_cgroup;
2676 again:
2677 if (*ptr) { /* css should be a valid one */
2678 memcg = *ptr;
2679 if (mem_cgroup_is_root(memcg))
2680 goto done;
2681 if (consume_stock(memcg, nr_pages))
2682 goto done;
2683 css_get(&memcg->css);
2684 } else {
2685 struct task_struct *p;
2687 rcu_read_lock();
2688 p = rcu_dereference(mm->owner);
2690 * Because we don't have task_lock(), "p" can exit.
2691 * In that case, "memcg" can point to root or p can be NULL with
2692 * race with swapoff. Then, we have small risk of mis-accouning.
2693 * But such kind of mis-account by race always happens because
2694 * we don't have cgroup_mutex(). It's overkill and we allo that
2695 * small race, here.
2696 * (*) swapoff at el will charge against mm-struct not against
2697 * task-struct. So, mm->owner can be NULL.
2699 memcg = mem_cgroup_from_task(p);
2700 if (!memcg)
2701 memcg = root_mem_cgroup;
2702 if (mem_cgroup_is_root(memcg)) {
2703 rcu_read_unlock();
2704 goto done;
2706 if (consume_stock(memcg, nr_pages)) {
2708 * It seems dagerous to access memcg without css_get().
2709 * But considering how consume_stok works, it's not
2710 * necessary. If consume_stock success, some charges
2711 * from this memcg are cached on this cpu. So, we
2712 * don't need to call css_get()/css_tryget() before
2713 * calling consume_stock().
2715 rcu_read_unlock();
2716 goto done;
2718 /* after here, we may be blocked. we need to get refcnt */
2719 if (!css_tryget(&memcg->css)) {
2720 rcu_read_unlock();
2721 goto again;
2723 rcu_read_unlock();
2726 do {
2727 bool oom_check;
2729 /* If killed, bypass charge */
2730 if (fatal_signal_pending(current)) {
2731 css_put(&memcg->css);
2732 goto bypass;
2735 oom_check = false;
2736 if (oom && !nr_oom_retries) {
2737 oom_check = true;
2738 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2741 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2742 oom_check);
2743 switch (ret) {
2744 case CHARGE_OK:
2745 break;
2746 case CHARGE_RETRY: /* not in OOM situation but retry */
2747 batch = nr_pages;
2748 css_put(&memcg->css);
2749 memcg = NULL;
2750 goto again;
2751 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2752 css_put(&memcg->css);
2753 goto nomem;
2754 case CHARGE_NOMEM: /* OOM routine works */
2755 if (!oom) {
2756 css_put(&memcg->css);
2757 goto nomem;
2759 /* If oom, we never return -ENOMEM */
2760 nr_oom_retries--;
2761 break;
2762 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2763 css_put(&memcg->css);
2764 goto bypass;
2766 } while (ret != CHARGE_OK);
2768 if (batch > nr_pages)
2769 refill_stock(memcg, batch - nr_pages);
2770 css_put(&memcg->css);
2771 done:
2772 *ptr = memcg;
2773 return 0;
2774 nomem:
2775 *ptr = NULL;
2776 return -ENOMEM;
2777 bypass:
2778 *ptr = root_mem_cgroup;
2779 return -EINTR;
2783 * Somemtimes we have to undo a charge we got by try_charge().
2784 * This function is for that and do uncharge, put css's refcnt.
2785 * gotten by try_charge().
2787 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2788 unsigned int nr_pages)
2790 if (!mem_cgroup_is_root(memcg)) {
2791 unsigned long bytes = nr_pages * PAGE_SIZE;
2793 res_counter_uncharge(&memcg->res, bytes);
2794 if (do_swap_account)
2795 res_counter_uncharge(&memcg->memsw, bytes);
2800 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2801 * This is useful when moving usage to parent cgroup.
2803 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2804 unsigned int nr_pages)
2806 unsigned long bytes = nr_pages * PAGE_SIZE;
2808 if (mem_cgroup_is_root(memcg))
2809 return;
2811 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2812 if (do_swap_account)
2813 res_counter_uncharge_until(&memcg->memsw,
2814 memcg->memsw.parent, bytes);
2818 * A helper function to get mem_cgroup from ID. must be called under
2819 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2820 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2821 * called against removed memcg.)
2823 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2825 struct cgroup_subsys_state *css;
2827 /* ID 0 is unused ID */
2828 if (!id)
2829 return NULL;
2830 css = css_lookup(&mem_cgroup_subsys, id);
2831 if (!css)
2832 return NULL;
2833 return mem_cgroup_from_css(css);
2836 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2838 struct mem_cgroup *memcg = NULL;
2839 struct page_cgroup *pc;
2840 unsigned short id;
2841 swp_entry_t ent;
2843 VM_BUG_ON(!PageLocked(page));
2845 pc = lookup_page_cgroup(page);
2846 lock_page_cgroup(pc);
2847 if (PageCgroupUsed(pc)) {
2848 memcg = pc->mem_cgroup;
2849 if (memcg && !css_tryget(&memcg->css))
2850 memcg = NULL;
2851 } else if (PageSwapCache(page)) {
2852 ent.val = page_private(page);
2853 id = lookup_swap_cgroup_id(ent);
2854 rcu_read_lock();
2855 memcg = mem_cgroup_lookup(id);
2856 if (memcg && !css_tryget(&memcg->css))
2857 memcg = NULL;
2858 rcu_read_unlock();
2860 unlock_page_cgroup(pc);
2861 return memcg;
2864 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2865 struct page *page,
2866 unsigned int nr_pages,
2867 enum charge_type ctype,
2868 bool lrucare)
2870 struct page_cgroup *pc = lookup_page_cgroup(page);
2871 struct zone *uninitialized_var(zone);
2872 struct lruvec *lruvec;
2873 bool was_on_lru = false;
2874 bool anon;
2876 lock_page_cgroup(pc);
2877 VM_BUG_ON(PageCgroupUsed(pc));
2879 * we don't need page_cgroup_lock about tail pages, becase they are not
2880 * accessed by any other context at this point.
2884 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2885 * may already be on some other mem_cgroup's LRU. Take care of it.
2887 if (lrucare) {
2888 zone = page_zone(page);
2889 spin_lock_irq(&zone->lru_lock);
2890 if (PageLRU(page)) {
2891 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2892 ClearPageLRU(page);
2893 del_page_from_lru_list(page, lruvec, page_lru(page));
2894 was_on_lru = true;
2898 pc->mem_cgroup = memcg;
2900 * We access a page_cgroup asynchronously without lock_page_cgroup().
2901 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2902 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2903 * before USED bit, we need memory barrier here.
2904 * See mem_cgroup_add_lru_list(), etc.
2906 smp_wmb();
2907 SetPageCgroupUsed(pc);
2909 if (lrucare) {
2910 if (was_on_lru) {
2911 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2912 VM_BUG_ON(PageLRU(page));
2913 SetPageLRU(page);
2914 add_page_to_lru_list(page, lruvec, page_lru(page));
2916 spin_unlock_irq(&zone->lru_lock);
2919 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2920 anon = true;
2921 else
2922 anon = false;
2924 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2925 unlock_page_cgroup(pc);
2928 * "charge_statistics" updated event counter. Then, check it.
2929 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2930 * if they exceeds softlimit.
2932 memcg_check_events(memcg, page);
2935 static DEFINE_MUTEX(set_limit_mutex);
2937 #ifdef CONFIG_MEMCG_KMEM
2938 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2940 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2941 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2945 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2946 * in the memcg_cache_params struct.
2948 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2950 struct kmem_cache *cachep;
2952 VM_BUG_ON(p->is_root_cache);
2953 cachep = p->root_cache;
2954 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2957 #ifdef CONFIG_SLABINFO
2958 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2959 struct seq_file *m)
2961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2962 struct memcg_cache_params *params;
2964 if (!memcg_can_account_kmem(memcg))
2965 return -EIO;
2967 print_slabinfo_header(m);
2969 mutex_lock(&memcg->slab_caches_mutex);
2970 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2971 cache_show(memcg_params_to_cache(params), m);
2972 mutex_unlock(&memcg->slab_caches_mutex);
2974 return 0;
2976 #endif
2978 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2980 struct res_counter *fail_res;
2981 struct mem_cgroup *_memcg;
2982 int ret = 0;
2983 bool may_oom;
2985 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2986 if (ret)
2987 return ret;
2990 * Conditions under which we can wait for the oom_killer. Those are
2991 * the same conditions tested by the core page allocator
2993 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2995 _memcg = memcg;
2996 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2997 &_memcg, may_oom);
2999 if (ret == -EINTR) {
3001 * __mem_cgroup_try_charge() chosed to bypass to root due to
3002 * OOM kill or fatal signal. Since our only options are to
3003 * either fail the allocation or charge it to this cgroup, do
3004 * it as a temporary condition. But we can't fail. From a
3005 * kmem/slab perspective, the cache has already been selected,
3006 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3007 * our minds.
3009 * This condition will only trigger if the task entered
3010 * memcg_charge_kmem in a sane state, but was OOM-killed during
3011 * __mem_cgroup_try_charge() above. Tasks that were already
3012 * dying when the allocation triggers should have been already
3013 * directed to the root cgroup in memcontrol.h
3015 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3016 if (do_swap_account)
3017 res_counter_charge_nofail(&memcg->memsw, size,
3018 &fail_res);
3019 ret = 0;
3020 } else if (ret)
3021 res_counter_uncharge(&memcg->kmem, size);
3023 return ret;
3026 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3028 res_counter_uncharge(&memcg->res, size);
3029 if (do_swap_account)
3030 res_counter_uncharge(&memcg->memsw, size);
3032 /* Not down to 0 */
3033 if (res_counter_uncharge(&memcg->kmem, size))
3034 return;
3036 if (memcg_kmem_test_and_clear_dead(memcg))
3037 mem_cgroup_put(memcg);
3040 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3042 if (!memcg)
3043 return;
3045 mutex_lock(&memcg->slab_caches_mutex);
3046 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3047 mutex_unlock(&memcg->slab_caches_mutex);
3051 * helper for acessing a memcg's index. It will be used as an index in the
3052 * child cache array in kmem_cache, and also to derive its name. This function
3053 * will return -1 when this is not a kmem-limited memcg.
3055 int memcg_cache_id(struct mem_cgroup *memcg)
3057 return memcg ? memcg->kmemcg_id : -1;
3061 * This ends up being protected by the set_limit mutex, during normal
3062 * operation, because that is its main call site.
3064 * But when we create a new cache, we can call this as well if its parent
3065 * is kmem-limited. That will have to hold set_limit_mutex as well.
3067 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3069 int num, ret;
3071 num = ida_simple_get(&kmem_limited_groups,
3072 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3073 if (num < 0)
3074 return num;
3076 * After this point, kmem_accounted (that we test atomically in
3077 * the beginning of this conditional), is no longer 0. This
3078 * guarantees only one process will set the following boolean
3079 * to true. We don't need test_and_set because we're protected
3080 * by the set_limit_mutex anyway.
3082 memcg_kmem_set_activated(memcg);
3084 ret = memcg_update_all_caches(num+1);
3085 if (ret) {
3086 ida_simple_remove(&kmem_limited_groups, num);
3087 memcg_kmem_clear_activated(memcg);
3088 return ret;
3091 memcg->kmemcg_id = num;
3092 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3093 mutex_init(&memcg->slab_caches_mutex);
3094 return 0;
3097 static size_t memcg_caches_array_size(int num_groups)
3099 ssize_t size;
3100 if (num_groups <= 0)
3101 return 0;
3103 size = 2 * num_groups;
3104 if (size < MEMCG_CACHES_MIN_SIZE)
3105 size = MEMCG_CACHES_MIN_SIZE;
3106 else if (size > MEMCG_CACHES_MAX_SIZE)
3107 size = MEMCG_CACHES_MAX_SIZE;
3109 return size;
3113 * We should update the current array size iff all caches updates succeed. This
3114 * can only be done from the slab side. The slab mutex needs to be held when
3115 * calling this.
3117 void memcg_update_array_size(int num)
3119 if (num > memcg_limited_groups_array_size)
3120 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3123 static void kmem_cache_destroy_work_func(struct work_struct *w);
3125 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3127 struct memcg_cache_params *cur_params = s->memcg_params;
3129 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3131 if (num_groups > memcg_limited_groups_array_size) {
3132 int i;
3133 ssize_t size = memcg_caches_array_size(num_groups);
3135 size *= sizeof(void *);
3136 size += sizeof(struct memcg_cache_params);
3138 s->memcg_params = kzalloc(size, GFP_KERNEL);
3139 if (!s->memcg_params) {
3140 s->memcg_params = cur_params;
3141 return -ENOMEM;
3144 INIT_WORK(&s->memcg_params->destroy,
3145 kmem_cache_destroy_work_func);
3146 s->memcg_params->is_root_cache = true;
3149 * There is the chance it will be bigger than
3150 * memcg_limited_groups_array_size, if we failed an allocation
3151 * in a cache, in which case all caches updated before it, will
3152 * have a bigger array.
3154 * But if that is the case, the data after
3155 * memcg_limited_groups_array_size is certainly unused
3157 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3158 if (!cur_params->memcg_caches[i])
3159 continue;
3160 s->memcg_params->memcg_caches[i] =
3161 cur_params->memcg_caches[i];
3165 * Ideally, we would wait until all caches succeed, and only
3166 * then free the old one. But this is not worth the extra
3167 * pointer per-cache we'd have to have for this.
3169 * It is not a big deal if some caches are left with a size
3170 * bigger than the others. And all updates will reset this
3171 * anyway.
3173 kfree(cur_params);
3175 return 0;
3178 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3179 struct kmem_cache *root_cache)
3181 size_t size = sizeof(struct memcg_cache_params);
3183 if (!memcg_kmem_enabled())
3184 return 0;
3186 if (!memcg)
3187 size += memcg_limited_groups_array_size * sizeof(void *);
3189 s->memcg_params = kzalloc(size, GFP_KERNEL);
3190 if (!s->memcg_params)
3191 return -ENOMEM;
3193 INIT_WORK(&s->memcg_params->destroy,
3194 kmem_cache_destroy_work_func);
3195 if (memcg) {
3196 s->memcg_params->memcg = memcg;
3197 s->memcg_params->root_cache = root_cache;
3198 } else
3199 s->memcg_params->is_root_cache = true;
3201 return 0;
3204 void memcg_release_cache(struct kmem_cache *s)
3206 struct kmem_cache *root;
3207 struct mem_cgroup *memcg;
3208 int id;
3211 * This happens, for instance, when a root cache goes away before we
3212 * add any memcg.
3214 if (!s->memcg_params)
3215 return;
3217 if (s->memcg_params->is_root_cache)
3218 goto out;
3220 memcg = s->memcg_params->memcg;
3221 id = memcg_cache_id(memcg);
3223 root = s->memcg_params->root_cache;
3224 root->memcg_params->memcg_caches[id] = NULL;
3226 mutex_lock(&memcg->slab_caches_mutex);
3227 list_del(&s->memcg_params->list);
3228 mutex_unlock(&memcg->slab_caches_mutex);
3230 mem_cgroup_put(memcg);
3231 out:
3232 kfree(s->memcg_params);
3236 * During the creation a new cache, we need to disable our accounting mechanism
3237 * altogether. This is true even if we are not creating, but rather just
3238 * enqueing new caches to be created.
3240 * This is because that process will trigger allocations; some visible, like
3241 * explicit kmallocs to auxiliary data structures, name strings and internal
3242 * cache structures; some well concealed, like INIT_WORK() that can allocate
3243 * objects during debug.
3245 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3246 * to it. This may not be a bounded recursion: since the first cache creation
3247 * failed to complete (waiting on the allocation), we'll just try to create the
3248 * cache again, failing at the same point.
3250 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3251 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3252 * inside the following two functions.
3254 static inline void memcg_stop_kmem_account(void)
3256 VM_BUG_ON(!current->mm);
3257 current->memcg_kmem_skip_account++;
3260 static inline void memcg_resume_kmem_account(void)
3262 VM_BUG_ON(!current->mm);
3263 current->memcg_kmem_skip_account--;
3266 static void kmem_cache_destroy_work_func(struct work_struct *w)
3268 struct kmem_cache *cachep;
3269 struct memcg_cache_params *p;
3271 p = container_of(w, struct memcg_cache_params, destroy);
3273 cachep = memcg_params_to_cache(p);
3276 * If we get down to 0 after shrink, we could delete right away.
3277 * However, memcg_release_pages() already puts us back in the workqueue
3278 * in that case. If we proceed deleting, we'll get a dangling
3279 * reference, and removing the object from the workqueue in that case
3280 * is unnecessary complication. We are not a fast path.
3282 * Note that this case is fundamentally different from racing with
3283 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3284 * kmem_cache_shrink, not only we would be reinserting a dead cache
3285 * into the queue, but doing so from inside the worker racing to
3286 * destroy it.
3288 * So if we aren't down to zero, we'll just schedule a worker and try
3289 * again
3291 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3292 kmem_cache_shrink(cachep);
3293 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3294 return;
3295 } else
3296 kmem_cache_destroy(cachep);
3299 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3301 if (!cachep->memcg_params->dead)
3302 return;
3305 * There are many ways in which we can get here.
3307 * We can get to a memory-pressure situation while the delayed work is
3308 * still pending to run. The vmscan shrinkers can then release all
3309 * cache memory and get us to destruction. If this is the case, we'll
3310 * be executed twice, which is a bug (the second time will execute over
3311 * bogus data). In this case, cancelling the work should be fine.
3313 * But we can also get here from the worker itself, if
3314 * kmem_cache_shrink is enough to shake all the remaining objects and
3315 * get the page count to 0. In this case, we'll deadlock if we try to
3316 * cancel the work (the worker runs with an internal lock held, which
3317 * is the same lock we would hold for cancel_work_sync().)
3319 * Since we can't possibly know who got us here, just refrain from
3320 * running if there is already work pending
3322 if (work_pending(&cachep->memcg_params->destroy))
3323 return;
3325 * We have to defer the actual destroying to a workqueue, because
3326 * we might currently be in a context that cannot sleep.
3328 schedule_work(&cachep->memcg_params->destroy);
3332 * This lock protects updaters, not readers. We want readers to be as fast as
3333 * they can, and they will either see NULL or a valid cache value. Our model
3334 * allow them to see NULL, in which case the root memcg will be selected.
3336 * We need this lock because multiple allocations to the same cache from a non
3337 * will span more than one worker. Only one of them can create the cache.
3339 static DEFINE_MUTEX(memcg_cache_mutex);
3342 * Called with memcg_cache_mutex held
3344 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3345 struct kmem_cache *s)
3347 struct kmem_cache *new;
3348 static char *tmp_name = NULL;
3350 lockdep_assert_held(&memcg_cache_mutex);
3353 * kmem_cache_create_memcg duplicates the given name and
3354 * cgroup_name for this name requires RCU context.
3355 * This static temporary buffer is used to prevent from
3356 * pointless shortliving allocation.
3358 if (!tmp_name) {
3359 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3360 if (!tmp_name)
3361 return NULL;
3364 rcu_read_lock();
3365 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3366 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3367 rcu_read_unlock();
3369 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3370 (s->flags & ~SLAB_PANIC), s->ctor, s);
3372 if (new)
3373 new->allocflags |= __GFP_KMEMCG;
3375 return new;
3378 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3379 struct kmem_cache *cachep)
3381 struct kmem_cache *new_cachep;
3382 int idx;
3384 BUG_ON(!memcg_can_account_kmem(memcg));
3386 idx = memcg_cache_id(memcg);
3388 mutex_lock(&memcg_cache_mutex);
3389 new_cachep = cachep->memcg_params->memcg_caches[idx];
3390 if (new_cachep)
3391 goto out;
3393 new_cachep = kmem_cache_dup(memcg, cachep);
3394 if (new_cachep == NULL) {
3395 new_cachep = cachep;
3396 goto out;
3399 mem_cgroup_get(memcg);
3400 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3402 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3404 * the readers won't lock, make sure everybody sees the updated value,
3405 * so they won't put stuff in the queue again for no reason
3407 wmb();
3408 out:
3409 mutex_unlock(&memcg_cache_mutex);
3410 return new_cachep;
3413 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3415 struct kmem_cache *c;
3416 int i;
3418 if (!s->memcg_params)
3419 return;
3420 if (!s->memcg_params->is_root_cache)
3421 return;
3424 * If the cache is being destroyed, we trust that there is no one else
3425 * requesting objects from it. Even if there are, the sanity checks in
3426 * kmem_cache_destroy should caught this ill-case.
3428 * Still, we don't want anyone else freeing memcg_caches under our
3429 * noses, which can happen if a new memcg comes to life. As usual,
3430 * we'll take the set_limit_mutex to protect ourselves against this.
3432 mutex_lock(&set_limit_mutex);
3433 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3434 c = s->memcg_params->memcg_caches[i];
3435 if (!c)
3436 continue;
3439 * We will now manually delete the caches, so to avoid races
3440 * we need to cancel all pending destruction workers and
3441 * proceed with destruction ourselves.
3443 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3444 * and that could spawn the workers again: it is likely that
3445 * the cache still have active pages until this very moment.
3446 * This would lead us back to mem_cgroup_destroy_cache.
3448 * But that will not execute at all if the "dead" flag is not
3449 * set, so flip it down to guarantee we are in control.
3451 c->memcg_params->dead = false;
3452 cancel_work_sync(&c->memcg_params->destroy);
3453 kmem_cache_destroy(c);
3455 mutex_unlock(&set_limit_mutex);
3458 struct create_work {
3459 struct mem_cgroup *memcg;
3460 struct kmem_cache *cachep;
3461 struct work_struct work;
3464 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3466 struct kmem_cache *cachep;
3467 struct memcg_cache_params *params;
3469 if (!memcg_kmem_is_active(memcg))
3470 return;
3472 mutex_lock(&memcg->slab_caches_mutex);
3473 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3474 cachep = memcg_params_to_cache(params);
3475 cachep->memcg_params->dead = true;
3476 schedule_work(&cachep->memcg_params->destroy);
3478 mutex_unlock(&memcg->slab_caches_mutex);
3481 static void memcg_create_cache_work_func(struct work_struct *w)
3483 struct create_work *cw;
3485 cw = container_of(w, struct create_work, work);
3486 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3487 /* Drop the reference gotten when we enqueued. */
3488 css_put(&cw->memcg->css);
3489 kfree(cw);
3493 * Enqueue the creation of a per-memcg kmem_cache.
3495 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3496 struct kmem_cache *cachep)
3498 struct create_work *cw;
3500 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3501 if (cw == NULL) {
3502 css_put(&memcg->css);
3503 return;
3506 cw->memcg = memcg;
3507 cw->cachep = cachep;
3509 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3510 schedule_work(&cw->work);
3513 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3514 struct kmem_cache *cachep)
3517 * We need to stop accounting when we kmalloc, because if the
3518 * corresponding kmalloc cache is not yet created, the first allocation
3519 * in __memcg_create_cache_enqueue will recurse.
3521 * However, it is better to enclose the whole function. Depending on
3522 * the debugging options enabled, INIT_WORK(), for instance, can
3523 * trigger an allocation. This too, will make us recurse. Because at
3524 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3525 * the safest choice is to do it like this, wrapping the whole function.
3527 memcg_stop_kmem_account();
3528 __memcg_create_cache_enqueue(memcg, cachep);
3529 memcg_resume_kmem_account();
3532 * Return the kmem_cache we're supposed to use for a slab allocation.
3533 * We try to use the current memcg's version of the cache.
3535 * If the cache does not exist yet, if we are the first user of it,
3536 * we either create it immediately, if possible, or create it asynchronously
3537 * in a workqueue.
3538 * In the latter case, we will let the current allocation go through with
3539 * the original cache.
3541 * Can't be called in interrupt context or from kernel threads.
3542 * This function needs to be called with rcu_read_lock() held.
3544 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3545 gfp_t gfp)
3547 struct mem_cgroup *memcg;
3548 int idx;
3550 VM_BUG_ON(!cachep->memcg_params);
3551 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3553 if (!current->mm || current->memcg_kmem_skip_account)
3554 return cachep;
3556 rcu_read_lock();
3557 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3559 if (!memcg_can_account_kmem(memcg))
3560 goto out;
3562 idx = memcg_cache_id(memcg);
3565 * barrier to mare sure we're always seeing the up to date value. The
3566 * code updating memcg_caches will issue a write barrier to match this.
3568 read_barrier_depends();
3569 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3570 cachep = cachep->memcg_params->memcg_caches[idx];
3571 goto out;
3574 /* The corresponding put will be done in the workqueue. */
3575 if (!css_tryget(&memcg->css))
3576 goto out;
3577 rcu_read_unlock();
3580 * If we are in a safe context (can wait, and not in interrupt
3581 * context), we could be be predictable and return right away.
3582 * This would guarantee that the allocation being performed
3583 * already belongs in the new cache.
3585 * However, there are some clashes that can arrive from locking.
3586 * For instance, because we acquire the slab_mutex while doing
3587 * kmem_cache_dup, this means no further allocation could happen
3588 * with the slab_mutex held.
3590 * Also, because cache creation issue get_online_cpus(), this
3591 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3592 * that ends up reversed during cpu hotplug. (cpuset allocates
3593 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3594 * better to defer everything.
3596 memcg_create_cache_enqueue(memcg, cachep);
3597 return cachep;
3598 out:
3599 rcu_read_unlock();
3600 return cachep;
3602 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3605 * We need to verify if the allocation against current->mm->owner's memcg is
3606 * possible for the given order. But the page is not allocated yet, so we'll
3607 * need a further commit step to do the final arrangements.
3609 * It is possible for the task to switch cgroups in this mean time, so at
3610 * commit time, we can't rely on task conversion any longer. We'll then use
3611 * the handle argument to return to the caller which cgroup we should commit
3612 * against. We could also return the memcg directly and avoid the pointer
3613 * passing, but a boolean return value gives better semantics considering
3614 * the compiled-out case as well.
3616 * Returning true means the allocation is possible.
3618 bool
3619 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3621 struct mem_cgroup *memcg;
3622 int ret;
3624 *_memcg = NULL;
3625 memcg = try_get_mem_cgroup_from_mm(current->mm);
3628 * very rare case described in mem_cgroup_from_task. Unfortunately there
3629 * isn't much we can do without complicating this too much, and it would
3630 * be gfp-dependent anyway. Just let it go
3632 if (unlikely(!memcg))
3633 return true;
3635 if (!memcg_can_account_kmem(memcg)) {
3636 css_put(&memcg->css);
3637 return true;
3640 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3641 if (!ret)
3642 *_memcg = memcg;
3644 css_put(&memcg->css);
3645 return (ret == 0);
3648 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3649 int order)
3651 struct page_cgroup *pc;
3653 VM_BUG_ON(mem_cgroup_is_root(memcg));
3655 /* The page allocation failed. Revert */
3656 if (!page) {
3657 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3658 return;
3661 pc = lookup_page_cgroup(page);
3662 lock_page_cgroup(pc);
3663 pc->mem_cgroup = memcg;
3664 SetPageCgroupUsed(pc);
3665 unlock_page_cgroup(pc);
3668 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3670 struct mem_cgroup *memcg = NULL;
3671 struct page_cgroup *pc;
3674 pc = lookup_page_cgroup(page);
3676 * Fast unlocked return. Theoretically might have changed, have to
3677 * check again after locking.
3679 if (!PageCgroupUsed(pc))
3680 return;
3682 lock_page_cgroup(pc);
3683 if (PageCgroupUsed(pc)) {
3684 memcg = pc->mem_cgroup;
3685 ClearPageCgroupUsed(pc);
3687 unlock_page_cgroup(pc);
3690 * We trust that only if there is a memcg associated with the page, it
3691 * is a valid allocation
3693 if (!memcg)
3694 return;
3696 VM_BUG_ON(mem_cgroup_is_root(memcg));
3697 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3699 #else
3700 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3703 #endif /* CONFIG_MEMCG_KMEM */
3705 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3707 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3709 * Because tail pages are not marked as "used", set it. We're under
3710 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3711 * charge/uncharge will be never happen and move_account() is done under
3712 * compound_lock(), so we don't have to take care of races.
3714 void mem_cgroup_split_huge_fixup(struct page *head)
3716 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3717 struct page_cgroup *pc;
3718 struct mem_cgroup *memcg;
3719 int i;
3721 if (mem_cgroup_disabled())
3722 return;
3724 memcg = head_pc->mem_cgroup;
3725 for (i = 1; i < HPAGE_PMD_NR; i++) {
3726 pc = head_pc + i;
3727 pc->mem_cgroup = memcg;
3728 smp_wmb();/* see __commit_charge() */
3729 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3731 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3732 HPAGE_PMD_NR);
3734 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3737 * mem_cgroup_move_account - move account of the page
3738 * @page: the page
3739 * @nr_pages: number of regular pages (>1 for huge pages)
3740 * @pc: page_cgroup of the page.
3741 * @from: mem_cgroup which the page is moved from.
3742 * @to: mem_cgroup which the page is moved to. @from != @to.
3744 * The caller must confirm following.
3745 * - page is not on LRU (isolate_page() is useful.)
3746 * - compound_lock is held when nr_pages > 1
3748 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3749 * from old cgroup.
3751 static int mem_cgroup_move_account(struct page *page,
3752 unsigned int nr_pages,
3753 struct page_cgroup *pc,
3754 struct mem_cgroup *from,
3755 struct mem_cgroup *to)
3757 unsigned long flags;
3758 int ret;
3759 bool anon = PageAnon(page);
3761 VM_BUG_ON(from == to);
3762 VM_BUG_ON(PageLRU(page));
3764 * The page is isolated from LRU. So, collapse function
3765 * will not handle this page. But page splitting can happen.
3766 * Do this check under compound_page_lock(). The caller should
3767 * hold it.
3769 ret = -EBUSY;
3770 if (nr_pages > 1 && !PageTransHuge(page))
3771 goto out;
3773 lock_page_cgroup(pc);
3775 ret = -EINVAL;
3776 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3777 goto unlock;
3779 move_lock_mem_cgroup(from, &flags);
3781 if (!anon && page_mapped(page)) {
3782 /* Update mapped_file data for mem_cgroup */
3783 preempt_disable();
3784 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3785 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3786 preempt_enable();
3788 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3790 /* caller should have done css_get */
3791 pc->mem_cgroup = to;
3792 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3793 move_unlock_mem_cgroup(from, &flags);
3794 ret = 0;
3795 unlock:
3796 unlock_page_cgroup(pc);
3798 * check events
3800 memcg_check_events(to, page);
3801 memcg_check_events(from, page);
3802 out:
3803 return ret;
3807 * mem_cgroup_move_parent - moves page to the parent group
3808 * @page: the page to move
3809 * @pc: page_cgroup of the page
3810 * @child: page's cgroup
3812 * move charges to its parent or the root cgroup if the group has no
3813 * parent (aka use_hierarchy==0).
3814 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3815 * mem_cgroup_move_account fails) the failure is always temporary and
3816 * it signals a race with a page removal/uncharge or migration. In the
3817 * first case the page is on the way out and it will vanish from the LRU
3818 * on the next attempt and the call should be retried later.
3819 * Isolation from the LRU fails only if page has been isolated from
3820 * the LRU since we looked at it and that usually means either global
3821 * reclaim or migration going on. The page will either get back to the
3822 * LRU or vanish.
3823 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3824 * (!PageCgroupUsed) or moved to a different group. The page will
3825 * disappear in the next attempt.
3827 static int mem_cgroup_move_parent(struct page *page,
3828 struct page_cgroup *pc,
3829 struct mem_cgroup *child)
3831 struct mem_cgroup *parent;
3832 unsigned int nr_pages;
3833 unsigned long uninitialized_var(flags);
3834 int ret;
3836 VM_BUG_ON(mem_cgroup_is_root(child));
3838 ret = -EBUSY;
3839 if (!get_page_unless_zero(page))
3840 goto out;
3841 if (isolate_lru_page(page))
3842 goto put;
3844 nr_pages = hpage_nr_pages(page);
3846 parent = parent_mem_cgroup(child);
3848 * If no parent, move charges to root cgroup.
3850 if (!parent)
3851 parent = root_mem_cgroup;
3853 if (nr_pages > 1) {
3854 VM_BUG_ON(!PageTransHuge(page));
3855 flags = compound_lock_irqsave(page);
3858 ret = mem_cgroup_move_account(page, nr_pages,
3859 pc, child, parent);
3860 if (!ret)
3861 __mem_cgroup_cancel_local_charge(child, nr_pages);
3863 if (nr_pages > 1)
3864 compound_unlock_irqrestore(page, flags);
3865 putback_lru_page(page);
3866 put:
3867 put_page(page);
3868 out:
3869 return ret;
3873 * Charge the memory controller for page usage.
3874 * Return
3875 * 0 if the charge was successful
3876 * < 0 if the cgroup is over its limit
3878 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3879 gfp_t gfp_mask, enum charge_type ctype)
3881 struct mem_cgroup *memcg = NULL;
3882 unsigned int nr_pages = 1;
3883 bool oom = true;
3884 int ret;
3886 if (PageTransHuge(page)) {
3887 nr_pages <<= compound_order(page);
3888 VM_BUG_ON(!PageTransHuge(page));
3890 * Never OOM-kill a process for a huge page. The
3891 * fault handler will fall back to regular pages.
3893 oom = false;
3896 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3897 if (ret == -ENOMEM)
3898 return ret;
3899 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3900 return 0;
3903 int mem_cgroup_newpage_charge(struct page *page,
3904 struct mm_struct *mm, gfp_t gfp_mask)
3906 if (mem_cgroup_disabled())
3907 return 0;
3908 VM_BUG_ON(page_mapped(page));
3909 VM_BUG_ON(page->mapping && !PageAnon(page));
3910 VM_BUG_ON(!mm);
3911 return mem_cgroup_charge_common(page, mm, gfp_mask,
3912 MEM_CGROUP_CHARGE_TYPE_ANON);
3916 * While swap-in, try_charge -> commit or cancel, the page is locked.
3917 * And when try_charge() successfully returns, one refcnt to memcg without
3918 * struct page_cgroup is acquired. This refcnt will be consumed by
3919 * "commit()" or removed by "cancel()"
3921 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3922 struct page *page,
3923 gfp_t mask,
3924 struct mem_cgroup **memcgp)
3926 struct mem_cgroup *memcg;
3927 struct page_cgroup *pc;
3928 int ret;
3930 pc = lookup_page_cgroup(page);
3932 * Every swap fault against a single page tries to charge the
3933 * page, bail as early as possible. shmem_unuse() encounters
3934 * already charged pages, too. The USED bit is protected by
3935 * the page lock, which serializes swap cache removal, which
3936 * in turn serializes uncharging.
3938 if (PageCgroupUsed(pc))
3939 return 0;
3940 if (!do_swap_account)
3941 goto charge_cur_mm;
3942 memcg = try_get_mem_cgroup_from_page(page);
3943 if (!memcg)
3944 goto charge_cur_mm;
3945 *memcgp = memcg;
3946 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3947 css_put(&memcg->css);
3948 if (ret == -EINTR)
3949 ret = 0;
3950 return ret;
3951 charge_cur_mm:
3952 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3953 if (ret == -EINTR)
3954 ret = 0;
3955 return ret;
3958 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3959 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3961 *memcgp = NULL;
3962 if (mem_cgroup_disabled())
3963 return 0;
3965 * A racing thread's fault, or swapoff, may have already
3966 * updated the pte, and even removed page from swap cache: in
3967 * those cases unuse_pte()'s pte_same() test will fail; but
3968 * there's also a KSM case which does need to charge the page.
3970 if (!PageSwapCache(page)) {
3971 int ret;
3973 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3974 if (ret == -EINTR)
3975 ret = 0;
3976 return ret;
3978 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3981 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3983 if (mem_cgroup_disabled())
3984 return;
3985 if (!memcg)
3986 return;
3987 __mem_cgroup_cancel_charge(memcg, 1);
3990 static void
3991 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3992 enum charge_type ctype)
3994 if (mem_cgroup_disabled())
3995 return;
3996 if (!memcg)
3997 return;
3999 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4001 * Now swap is on-memory. This means this page may be
4002 * counted both as mem and swap....double count.
4003 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4004 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4005 * may call delete_from_swap_cache() before reach here.
4007 if (do_swap_account && PageSwapCache(page)) {
4008 swp_entry_t ent = {.val = page_private(page)};
4009 mem_cgroup_uncharge_swap(ent);
4013 void mem_cgroup_commit_charge_swapin(struct page *page,
4014 struct mem_cgroup *memcg)
4016 __mem_cgroup_commit_charge_swapin(page, memcg,
4017 MEM_CGROUP_CHARGE_TYPE_ANON);
4020 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4021 gfp_t gfp_mask)
4023 struct mem_cgroup *memcg = NULL;
4024 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4025 int ret;
4027 if (mem_cgroup_disabled())
4028 return 0;
4029 if (PageCompound(page))
4030 return 0;
4032 if (!PageSwapCache(page))
4033 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4034 else { /* page is swapcache/shmem */
4035 ret = __mem_cgroup_try_charge_swapin(mm, page,
4036 gfp_mask, &memcg);
4037 if (!ret)
4038 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4040 return ret;
4043 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4044 unsigned int nr_pages,
4045 const enum charge_type ctype)
4047 struct memcg_batch_info *batch = NULL;
4048 bool uncharge_memsw = true;
4050 /* If swapout, usage of swap doesn't decrease */
4051 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4052 uncharge_memsw = false;
4054 batch = &current->memcg_batch;
4056 * In usual, we do css_get() when we remember memcg pointer.
4057 * But in this case, we keep res->usage until end of a series of
4058 * uncharges. Then, it's ok to ignore memcg's refcnt.
4060 if (!batch->memcg)
4061 batch->memcg = memcg;
4063 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4064 * In those cases, all pages freed continuously can be expected to be in
4065 * the same cgroup and we have chance to coalesce uncharges.
4066 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4067 * because we want to do uncharge as soon as possible.
4070 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4071 goto direct_uncharge;
4073 if (nr_pages > 1)
4074 goto direct_uncharge;
4077 * In typical case, batch->memcg == mem. This means we can
4078 * merge a series of uncharges to an uncharge of res_counter.
4079 * If not, we uncharge res_counter ony by one.
4081 if (batch->memcg != memcg)
4082 goto direct_uncharge;
4083 /* remember freed charge and uncharge it later */
4084 batch->nr_pages++;
4085 if (uncharge_memsw)
4086 batch->memsw_nr_pages++;
4087 return;
4088 direct_uncharge:
4089 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4090 if (uncharge_memsw)
4091 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4092 if (unlikely(batch->memcg != memcg))
4093 memcg_oom_recover(memcg);
4097 * uncharge if !page_mapped(page)
4099 static struct mem_cgroup *
4100 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4101 bool end_migration)
4103 struct mem_cgroup *memcg = NULL;
4104 unsigned int nr_pages = 1;
4105 struct page_cgroup *pc;
4106 bool anon;
4108 if (mem_cgroup_disabled())
4109 return NULL;
4111 if (PageTransHuge(page)) {
4112 nr_pages <<= compound_order(page);
4113 VM_BUG_ON(!PageTransHuge(page));
4116 * Check if our page_cgroup is valid
4118 pc = lookup_page_cgroup(page);
4119 if (unlikely(!PageCgroupUsed(pc)))
4120 return NULL;
4122 lock_page_cgroup(pc);
4124 memcg = pc->mem_cgroup;
4126 if (!PageCgroupUsed(pc))
4127 goto unlock_out;
4129 anon = PageAnon(page);
4131 switch (ctype) {
4132 case MEM_CGROUP_CHARGE_TYPE_ANON:
4134 * Generally PageAnon tells if it's the anon statistics to be
4135 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4136 * used before page reached the stage of being marked PageAnon.
4138 anon = true;
4139 /* fallthrough */
4140 case MEM_CGROUP_CHARGE_TYPE_DROP:
4141 /* See mem_cgroup_prepare_migration() */
4142 if (page_mapped(page))
4143 goto unlock_out;
4145 * Pages under migration may not be uncharged. But
4146 * end_migration() /must/ be the one uncharging the
4147 * unused post-migration page and so it has to call
4148 * here with the migration bit still set. See the
4149 * res_counter handling below.
4151 if (!end_migration && PageCgroupMigration(pc))
4152 goto unlock_out;
4153 break;
4154 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4155 if (!PageAnon(page)) { /* Shared memory */
4156 if (page->mapping && !page_is_file_cache(page))
4157 goto unlock_out;
4158 } else if (page_mapped(page)) /* Anon */
4159 goto unlock_out;
4160 break;
4161 default:
4162 break;
4165 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4167 ClearPageCgroupUsed(pc);
4169 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4170 * freed from LRU. This is safe because uncharged page is expected not
4171 * to be reused (freed soon). Exception is SwapCache, it's handled by
4172 * special functions.
4175 unlock_page_cgroup(pc);
4177 * even after unlock, we have memcg->res.usage here and this memcg
4178 * will never be freed.
4180 memcg_check_events(memcg, page);
4181 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4182 mem_cgroup_swap_statistics(memcg, true);
4183 mem_cgroup_get(memcg);
4186 * Migration does not charge the res_counter for the
4187 * replacement page, so leave it alone when phasing out the
4188 * page that is unused after the migration.
4190 if (!end_migration && !mem_cgroup_is_root(memcg))
4191 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4193 return memcg;
4195 unlock_out:
4196 unlock_page_cgroup(pc);
4197 return NULL;
4200 void mem_cgroup_uncharge_page(struct page *page)
4202 /* early check. */
4203 if (page_mapped(page))
4204 return;
4205 VM_BUG_ON(page->mapping && !PageAnon(page));
4207 * If the page is in swap cache, uncharge should be deferred
4208 * to the swap path, which also properly accounts swap usage
4209 * and handles memcg lifetime.
4211 * Note that this check is not stable and reclaim may add the
4212 * page to swap cache at any time after this. However, if the
4213 * page is not in swap cache by the time page->mapcount hits
4214 * 0, there won't be any page table references to the swap
4215 * slot, and reclaim will free it and not actually write the
4216 * page to disk.
4218 if (PageSwapCache(page))
4219 return;
4220 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4223 void mem_cgroup_uncharge_cache_page(struct page *page)
4225 VM_BUG_ON(page_mapped(page));
4226 VM_BUG_ON(page->mapping);
4227 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4231 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4232 * In that cases, pages are freed continuously and we can expect pages
4233 * are in the same memcg. All these calls itself limits the number of
4234 * pages freed at once, then uncharge_start/end() is called properly.
4235 * This may be called prural(2) times in a context,
4238 void mem_cgroup_uncharge_start(void)
4240 current->memcg_batch.do_batch++;
4241 /* We can do nest. */
4242 if (current->memcg_batch.do_batch == 1) {
4243 current->memcg_batch.memcg = NULL;
4244 current->memcg_batch.nr_pages = 0;
4245 current->memcg_batch.memsw_nr_pages = 0;
4249 void mem_cgroup_uncharge_end(void)
4251 struct memcg_batch_info *batch = &current->memcg_batch;
4253 if (!batch->do_batch)
4254 return;
4256 batch->do_batch--;
4257 if (batch->do_batch) /* If stacked, do nothing. */
4258 return;
4260 if (!batch->memcg)
4261 return;
4263 * This "batch->memcg" is valid without any css_get/put etc...
4264 * bacause we hide charges behind us.
4266 if (batch->nr_pages)
4267 res_counter_uncharge(&batch->memcg->res,
4268 batch->nr_pages * PAGE_SIZE);
4269 if (batch->memsw_nr_pages)
4270 res_counter_uncharge(&batch->memcg->memsw,
4271 batch->memsw_nr_pages * PAGE_SIZE);
4272 memcg_oom_recover(batch->memcg);
4273 /* forget this pointer (for sanity check) */
4274 batch->memcg = NULL;
4277 #ifdef CONFIG_SWAP
4279 * called after __delete_from_swap_cache() and drop "page" account.
4280 * memcg information is recorded to swap_cgroup of "ent"
4282 void
4283 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4285 struct mem_cgroup *memcg;
4286 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4288 if (!swapout) /* this was a swap cache but the swap is unused ! */
4289 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4291 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4294 * record memcg information, if swapout && memcg != NULL,
4295 * mem_cgroup_get() was called in uncharge().
4297 if (do_swap_account && swapout && memcg)
4298 swap_cgroup_record(ent, css_id(&memcg->css));
4300 #endif
4302 #ifdef CONFIG_MEMCG_SWAP
4304 * called from swap_entry_free(). remove record in swap_cgroup and
4305 * uncharge "memsw" account.
4307 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4309 struct mem_cgroup *memcg;
4310 unsigned short id;
4312 if (!do_swap_account)
4313 return;
4315 id = swap_cgroup_record(ent, 0);
4316 rcu_read_lock();
4317 memcg = mem_cgroup_lookup(id);
4318 if (memcg) {
4320 * We uncharge this because swap is freed.
4321 * This memcg can be obsolete one. We avoid calling css_tryget
4323 if (!mem_cgroup_is_root(memcg))
4324 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4325 mem_cgroup_swap_statistics(memcg, false);
4326 mem_cgroup_put(memcg);
4328 rcu_read_unlock();
4332 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4333 * @entry: swap entry to be moved
4334 * @from: mem_cgroup which the entry is moved from
4335 * @to: mem_cgroup which the entry is moved to
4337 * It succeeds only when the swap_cgroup's record for this entry is the same
4338 * as the mem_cgroup's id of @from.
4340 * Returns 0 on success, -EINVAL on failure.
4342 * The caller must have charged to @to, IOW, called res_counter_charge() about
4343 * both res and memsw, and called css_get().
4345 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4346 struct mem_cgroup *from, struct mem_cgroup *to)
4348 unsigned short old_id, new_id;
4350 old_id = css_id(&from->css);
4351 new_id = css_id(&to->css);
4353 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4354 mem_cgroup_swap_statistics(from, false);
4355 mem_cgroup_swap_statistics(to, true);
4357 * This function is only called from task migration context now.
4358 * It postpones res_counter and refcount handling till the end
4359 * of task migration(mem_cgroup_clear_mc()) for performance
4360 * improvement. But we cannot postpone mem_cgroup_get(to)
4361 * because if the process that has been moved to @to does
4362 * swap-in, the refcount of @to might be decreased to 0.
4364 mem_cgroup_get(to);
4365 return 0;
4367 return -EINVAL;
4369 #else
4370 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4371 struct mem_cgroup *from, struct mem_cgroup *to)
4373 return -EINVAL;
4375 #endif
4378 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4379 * page belongs to.
4381 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4382 struct mem_cgroup **memcgp)
4384 struct mem_cgroup *memcg = NULL;
4385 unsigned int nr_pages = 1;
4386 struct page_cgroup *pc;
4387 enum charge_type ctype;
4389 *memcgp = NULL;
4391 if (mem_cgroup_disabled())
4392 return;
4394 if (PageTransHuge(page))
4395 nr_pages <<= compound_order(page);
4397 pc = lookup_page_cgroup(page);
4398 lock_page_cgroup(pc);
4399 if (PageCgroupUsed(pc)) {
4400 memcg = pc->mem_cgroup;
4401 css_get(&memcg->css);
4403 * At migrating an anonymous page, its mapcount goes down
4404 * to 0 and uncharge() will be called. But, even if it's fully
4405 * unmapped, migration may fail and this page has to be
4406 * charged again. We set MIGRATION flag here and delay uncharge
4407 * until end_migration() is called
4409 * Corner Case Thinking
4410 * A)
4411 * When the old page was mapped as Anon and it's unmap-and-freed
4412 * while migration was ongoing.
4413 * If unmap finds the old page, uncharge() of it will be delayed
4414 * until end_migration(). If unmap finds a new page, it's
4415 * uncharged when it make mapcount to be 1->0. If unmap code
4416 * finds swap_migration_entry, the new page will not be mapped
4417 * and end_migration() will find it(mapcount==0).
4419 * B)
4420 * When the old page was mapped but migraion fails, the kernel
4421 * remaps it. A charge for it is kept by MIGRATION flag even
4422 * if mapcount goes down to 0. We can do remap successfully
4423 * without charging it again.
4425 * C)
4426 * The "old" page is under lock_page() until the end of
4427 * migration, so, the old page itself will not be swapped-out.
4428 * If the new page is swapped out before end_migraton, our
4429 * hook to usual swap-out path will catch the event.
4431 if (PageAnon(page))
4432 SetPageCgroupMigration(pc);
4434 unlock_page_cgroup(pc);
4436 * If the page is not charged at this point,
4437 * we return here.
4439 if (!memcg)
4440 return;
4442 *memcgp = memcg;
4444 * We charge new page before it's used/mapped. So, even if unlock_page()
4445 * is called before end_migration, we can catch all events on this new
4446 * page. In the case new page is migrated but not remapped, new page's
4447 * mapcount will be finally 0 and we call uncharge in end_migration().
4449 if (PageAnon(page))
4450 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4451 else
4452 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4454 * The page is committed to the memcg, but it's not actually
4455 * charged to the res_counter since we plan on replacing the
4456 * old one and only one page is going to be left afterwards.
4458 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4461 /* remove redundant charge if migration failed*/
4462 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4463 struct page *oldpage, struct page *newpage, bool migration_ok)
4465 struct page *used, *unused;
4466 struct page_cgroup *pc;
4467 bool anon;
4469 if (!memcg)
4470 return;
4472 if (!migration_ok) {
4473 used = oldpage;
4474 unused = newpage;
4475 } else {
4476 used = newpage;
4477 unused = oldpage;
4479 anon = PageAnon(used);
4480 __mem_cgroup_uncharge_common(unused,
4481 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4482 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4483 true);
4484 css_put(&memcg->css);
4486 * We disallowed uncharge of pages under migration because mapcount
4487 * of the page goes down to zero, temporarly.
4488 * Clear the flag and check the page should be charged.
4490 pc = lookup_page_cgroup(oldpage);
4491 lock_page_cgroup(pc);
4492 ClearPageCgroupMigration(pc);
4493 unlock_page_cgroup(pc);
4496 * If a page is a file cache, radix-tree replacement is very atomic
4497 * and we can skip this check. When it was an Anon page, its mapcount
4498 * goes down to 0. But because we added MIGRATION flage, it's not
4499 * uncharged yet. There are several case but page->mapcount check
4500 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4501 * check. (see prepare_charge() also)
4503 if (anon)
4504 mem_cgroup_uncharge_page(used);
4508 * At replace page cache, newpage is not under any memcg but it's on
4509 * LRU. So, this function doesn't touch res_counter but handles LRU
4510 * in correct way. Both pages are locked so we cannot race with uncharge.
4512 void mem_cgroup_replace_page_cache(struct page *oldpage,
4513 struct page *newpage)
4515 struct mem_cgroup *memcg = NULL;
4516 struct page_cgroup *pc;
4517 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4519 if (mem_cgroup_disabled())
4520 return;
4522 pc = lookup_page_cgroup(oldpage);
4523 /* fix accounting on old pages */
4524 lock_page_cgroup(pc);
4525 if (PageCgroupUsed(pc)) {
4526 memcg = pc->mem_cgroup;
4527 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4528 ClearPageCgroupUsed(pc);
4530 unlock_page_cgroup(pc);
4533 * When called from shmem_replace_page(), in some cases the
4534 * oldpage has already been charged, and in some cases not.
4536 if (!memcg)
4537 return;
4539 * Even if newpage->mapping was NULL before starting replacement,
4540 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4541 * LRU while we overwrite pc->mem_cgroup.
4543 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4546 #ifdef CONFIG_DEBUG_VM
4547 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4549 struct page_cgroup *pc;
4551 pc = lookup_page_cgroup(page);
4553 * Can be NULL while feeding pages into the page allocator for
4554 * the first time, i.e. during boot or memory hotplug;
4555 * or when mem_cgroup_disabled().
4557 if (likely(pc) && PageCgroupUsed(pc))
4558 return pc;
4559 return NULL;
4562 bool mem_cgroup_bad_page_check(struct page *page)
4564 if (mem_cgroup_disabled())
4565 return false;
4567 return lookup_page_cgroup_used(page) != NULL;
4570 void mem_cgroup_print_bad_page(struct page *page)
4572 struct page_cgroup *pc;
4574 pc = lookup_page_cgroup_used(page);
4575 if (pc) {
4576 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4577 pc, pc->flags, pc->mem_cgroup);
4580 #endif
4582 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4583 unsigned long long val)
4585 int retry_count;
4586 u64 memswlimit, memlimit;
4587 int ret = 0;
4588 int children = mem_cgroup_count_children(memcg);
4589 u64 curusage, oldusage;
4590 int enlarge;
4593 * For keeping hierarchical_reclaim simple, how long we should retry
4594 * is depends on callers. We set our retry-count to be function
4595 * of # of children which we should visit in this loop.
4597 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4599 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4601 enlarge = 0;
4602 while (retry_count) {
4603 if (signal_pending(current)) {
4604 ret = -EINTR;
4605 break;
4608 * Rather than hide all in some function, I do this in
4609 * open coded manner. You see what this really does.
4610 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4612 mutex_lock(&set_limit_mutex);
4613 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4614 if (memswlimit < val) {
4615 ret = -EINVAL;
4616 mutex_unlock(&set_limit_mutex);
4617 break;
4620 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4621 if (memlimit < val)
4622 enlarge = 1;
4624 ret = res_counter_set_limit(&memcg->res, val);
4625 if (!ret) {
4626 if (memswlimit == val)
4627 memcg->memsw_is_minimum = true;
4628 else
4629 memcg->memsw_is_minimum = false;
4631 mutex_unlock(&set_limit_mutex);
4633 if (!ret)
4634 break;
4636 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4637 MEM_CGROUP_RECLAIM_SHRINK);
4638 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4639 /* Usage is reduced ? */
4640 if (curusage >= oldusage)
4641 retry_count--;
4642 else
4643 oldusage = curusage;
4645 if (!ret && enlarge)
4646 memcg_oom_recover(memcg);
4648 return ret;
4651 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4652 unsigned long long val)
4654 int retry_count;
4655 u64 memlimit, memswlimit, oldusage, curusage;
4656 int children = mem_cgroup_count_children(memcg);
4657 int ret = -EBUSY;
4658 int enlarge = 0;
4660 /* see mem_cgroup_resize_res_limit */
4661 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4662 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4663 while (retry_count) {
4664 if (signal_pending(current)) {
4665 ret = -EINTR;
4666 break;
4669 * Rather than hide all in some function, I do this in
4670 * open coded manner. You see what this really does.
4671 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4673 mutex_lock(&set_limit_mutex);
4674 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4675 if (memlimit > val) {
4676 ret = -EINVAL;
4677 mutex_unlock(&set_limit_mutex);
4678 break;
4680 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4681 if (memswlimit < val)
4682 enlarge = 1;
4683 ret = res_counter_set_limit(&memcg->memsw, val);
4684 if (!ret) {
4685 if (memlimit == val)
4686 memcg->memsw_is_minimum = true;
4687 else
4688 memcg->memsw_is_minimum = false;
4690 mutex_unlock(&set_limit_mutex);
4692 if (!ret)
4693 break;
4695 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4696 MEM_CGROUP_RECLAIM_NOSWAP |
4697 MEM_CGROUP_RECLAIM_SHRINK);
4698 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4699 /* Usage is reduced ? */
4700 if (curusage >= oldusage)
4701 retry_count--;
4702 else
4703 oldusage = curusage;
4705 if (!ret && enlarge)
4706 memcg_oom_recover(memcg);
4707 return ret;
4710 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4711 gfp_t gfp_mask,
4712 unsigned long *total_scanned)
4714 unsigned long nr_reclaimed = 0;
4715 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4716 unsigned long reclaimed;
4717 int loop = 0;
4718 struct mem_cgroup_tree_per_zone *mctz;
4719 unsigned long long excess;
4720 unsigned long nr_scanned;
4722 if (order > 0)
4723 return 0;
4725 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4727 * This loop can run a while, specially if mem_cgroup's continuously
4728 * keep exceeding their soft limit and putting the system under
4729 * pressure
4731 do {
4732 if (next_mz)
4733 mz = next_mz;
4734 else
4735 mz = mem_cgroup_largest_soft_limit_node(mctz);
4736 if (!mz)
4737 break;
4739 nr_scanned = 0;
4740 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4741 gfp_mask, &nr_scanned);
4742 nr_reclaimed += reclaimed;
4743 *total_scanned += nr_scanned;
4744 spin_lock(&mctz->lock);
4747 * If we failed to reclaim anything from this memory cgroup
4748 * it is time to move on to the next cgroup
4750 next_mz = NULL;
4751 if (!reclaimed) {
4752 do {
4754 * Loop until we find yet another one.
4756 * By the time we get the soft_limit lock
4757 * again, someone might have aded the
4758 * group back on the RB tree. Iterate to
4759 * make sure we get a different mem.
4760 * mem_cgroup_largest_soft_limit_node returns
4761 * NULL if no other cgroup is present on
4762 * the tree
4764 next_mz =
4765 __mem_cgroup_largest_soft_limit_node(mctz);
4766 if (next_mz == mz)
4767 css_put(&next_mz->memcg->css);
4768 else /* next_mz == NULL or other memcg */
4769 break;
4770 } while (1);
4772 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4773 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4775 * One school of thought says that we should not add
4776 * back the node to the tree if reclaim returns 0.
4777 * But our reclaim could return 0, simply because due
4778 * to priority we are exposing a smaller subset of
4779 * memory to reclaim from. Consider this as a longer
4780 * term TODO.
4782 /* If excess == 0, no tree ops */
4783 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4784 spin_unlock(&mctz->lock);
4785 css_put(&mz->memcg->css);
4786 loop++;
4788 * Could not reclaim anything and there are no more
4789 * mem cgroups to try or we seem to be looping without
4790 * reclaiming anything.
4792 if (!nr_reclaimed &&
4793 (next_mz == NULL ||
4794 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4795 break;
4796 } while (!nr_reclaimed);
4797 if (next_mz)
4798 css_put(&next_mz->memcg->css);
4799 return nr_reclaimed;
4803 * mem_cgroup_force_empty_list - clears LRU of a group
4804 * @memcg: group to clear
4805 * @node: NUMA node
4806 * @zid: zone id
4807 * @lru: lru to to clear
4809 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4810 * reclaim the pages page themselves - pages are moved to the parent (or root)
4811 * group.
4813 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4814 int node, int zid, enum lru_list lru)
4816 struct lruvec *lruvec;
4817 unsigned long flags;
4818 struct list_head *list;
4819 struct page *busy;
4820 struct zone *zone;
4822 zone = &NODE_DATA(node)->node_zones[zid];
4823 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4824 list = &lruvec->lists[lru];
4826 busy = NULL;
4827 do {
4828 struct page_cgroup *pc;
4829 struct page *page;
4831 spin_lock_irqsave(&zone->lru_lock, flags);
4832 if (list_empty(list)) {
4833 spin_unlock_irqrestore(&zone->lru_lock, flags);
4834 break;
4836 page = list_entry(list->prev, struct page, lru);
4837 if (busy == page) {
4838 list_move(&page->lru, list);
4839 busy = NULL;
4840 spin_unlock_irqrestore(&zone->lru_lock, flags);
4841 continue;
4843 spin_unlock_irqrestore(&zone->lru_lock, flags);
4845 pc = lookup_page_cgroup(page);
4847 if (mem_cgroup_move_parent(page, pc, memcg)) {
4848 /* found lock contention or "pc" is obsolete. */
4849 busy = page;
4850 cond_resched();
4851 } else
4852 busy = NULL;
4853 } while (!list_empty(list));
4857 * make mem_cgroup's charge to be 0 if there is no task by moving
4858 * all the charges and pages to the parent.
4859 * This enables deleting this mem_cgroup.
4861 * Caller is responsible for holding css reference on the memcg.
4863 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4865 int node, zid;
4866 u64 usage;
4868 do {
4869 /* This is for making all *used* pages to be on LRU. */
4870 lru_add_drain_all();
4871 drain_all_stock_sync(memcg);
4872 mem_cgroup_start_move(memcg);
4873 for_each_node_state(node, N_MEMORY) {
4874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4875 enum lru_list lru;
4876 for_each_lru(lru) {
4877 mem_cgroup_force_empty_list(memcg,
4878 node, zid, lru);
4882 mem_cgroup_end_move(memcg);
4883 memcg_oom_recover(memcg);
4884 cond_resched();
4887 * Kernel memory may not necessarily be trackable to a specific
4888 * process. So they are not migrated, and therefore we can't
4889 * expect their value to drop to 0 here.
4890 * Having res filled up with kmem only is enough.
4892 * This is a safety check because mem_cgroup_force_empty_list
4893 * could have raced with mem_cgroup_replace_page_cache callers
4894 * so the lru seemed empty but the page could have been added
4895 * right after the check. RES_USAGE should be safe as we always
4896 * charge before adding to the LRU.
4898 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4899 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4900 } while (usage > 0);
4904 * This mainly exists for tests during the setting of set of use_hierarchy.
4905 * Since this is the very setting we are changing, the current hierarchy value
4906 * is meaningless
4908 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4910 struct cgroup *pos;
4912 /* bounce at first found */
4913 cgroup_for_each_child(pos, memcg->css.cgroup)
4914 return true;
4915 return false;
4919 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4920 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4921 * from mem_cgroup_count_children(), in the sense that we don't really care how
4922 * many children we have; we only need to know if we have any. It also counts
4923 * any memcg without hierarchy as infertile.
4925 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4927 return memcg->use_hierarchy && __memcg_has_children(memcg);
4931 * Reclaims as many pages from the given memcg as possible and moves
4932 * the rest to the parent.
4934 * Caller is responsible for holding css reference for memcg.
4936 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4938 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4939 struct cgroup *cgrp = memcg->css.cgroup;
4941 /* returns EBUSY if there is a task or if we come here twice. */
4942 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4943 return -EBUSY;
4945 /* we call try-to-free pages for make this cgroup empty */
4946 lru_add_drain_all();
4947 /* try to free all pages in this cgroup */
4948 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4949 int progress;
4951 if (signal_pending(current))
4952 return -EINTR;
4954 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4955 false);
4956 if (!progress) {
4957 nr_retries--;
4958 /* maybe some writeback is necessary */
4959 congestion_wait(BLK_RW_ASYNC, HZ/10);
4963 lru_add_drain();
4964 mem_cgroup_reparent_charges(memcg);
4966 return 0;
4969 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4971 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4972 int ret;
4974 if (mem_cgroup_is_root(memcg))
4975 return -EINVAL;
4976 css_get(&memcg->css);
4977 ret = mem_cgroup_force_empty(memcg);
4978 css_put(&memcg->css);
4980 return ret;
4984 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4986 return mem_cgroup_from_cont(cont)->use_hierarchy;
4989 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4990 u64 val)
4992 int retval = 0;
4993 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4994 struct cgroup *parent = cont->parent;
4995 struct mem_cgroup *parent_memcg = NULL;
4997 if (parent)
4998 parent_memcg = mem_cgroup_from_cont(parent);
5000 mutex_lock(&memcg_create_mutex);
5002 if (memcg->use_hierarchy == val)
5003 goto out;
5006 * If parent's use_hierarchy is set, we can't make any modifications
5007 * in the child subtrees. If it is unset, then the change can
5008 * occur, provided the current cgroup has no children.
5010 * For the root cgroup, parent_mem is NULL, we allow value to be
5011 * set if there are no children.
5013 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5014 (val == 1 || val == 0)) {
5015 if (!__memcg_has_children(memcg))
5016 memcg->use_hierarchy = val;
5017 else
5018 retval = -EBUSY;
5019 } else
5020 retval = -EINVAL;
5022 out:
5023 mutex_unlock(&memcg_create_mutex);
5025 return retval;
5029 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5030 enum mem_cgroup_stat_index idx)
5032 struct mem_cgroup *iter;
5033 long val = 0;
5035 /* Per-cpu values can be negative, use a signed accumulator */
5036 for_each_mem_cgroup_tree(iter, memcg)
5037 val += mem_cgroup_read_stat(iter, idx);
5039 if (val < 0) /* race ? */
5040 val = 0;
5041 return val;
5044 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5046 u64 val;
5048 if (!mem_cgroup_is_root(memcg)) {
5049 if (!swap)
5050 return res_counter_read_u64(&memcg->res, RES_USAGE);
5051 else
5052 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5056 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5057 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5059 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5060 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5062 if (swap)
5063 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5065 return val << PAGE_SHIFT;
5068 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5069 struct file *file, char __user *buf,
5070 size_t nbytes, loff_t *ppos)
5072 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5073 char str[64];
5074 u64 val;
5075 int name, len;
5076 enum res_type type;
5078 type = MEMFILE_TYPE(cft->private);
5079 name = MEMFILE_ATTR(cft->private);
5081 switch (type) {
5082 case _MEM:
5083 if (name == RES_USAGE)
5084 val = mem_cgroup_usage(memcg, false);
5085 else
5086 val = res_counter_read_u64(&memcg->res, name);
5087 break;
5088 case _MEMSWAP:
5089 if (name == RES_USAGE)
5090 val = mem_cgroup_usage(memcg, true);
5091 else
5092 val = res_counter_read_u64(&memcg->memsw, name);
5093 break;
5094 case _KMEM:
5095 val = res_counter_read_u64(&memcg->kmem, name);
5096 break;
5097 default:
5098 BUG();
5101 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5102 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5105 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5107 int ret = -EINVAL;
5108 #ifdef CONFIG_MEMCG_KMEM
5109 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5111 * For simplicity, we won't allow this to be disabled. It also can't
5112 * be changed if the cgroup has children already, or if tasks had
5113 * already joined.
5115 * If tasks join before we set the limit, a person looking at
5116 * kmem.usage_in_bytes will have no way to determine when it took
5117 * place, which makes the value quite meaningless.
5119 * After it first became limited, changes in the value of the limit are
5120 * of course permitted.
5122 mutex_lock(&memcg_create_mutex);
5123 mutex_lock(&set_limit_mutex);
5124 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5125 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5126 ret = -EBUSY;
5127 goto out;
5129 ret = res_counter_set_limit(&memcg->kmem, val);
5130 VM_BUG_ON(ret);
5132 ret = memcg_update_cache_sizes(memcg);
5133 if (ret) {
5134 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5135 goto out;
5137 static_key_slow_inc(&memcg_kmem_enabled_key);
5139 * setting the active bit after the inc will guarantee no one
5140 * starts accounting before all call sites are patched
5142 memcg_kmem_set_active(memcg);
5145 * kmem charges can outlive the cgroup. In the case of slab
5146 * pages, for instance, a page contain objects from various
5147 * processes, so it is unfeasible to migrate them away. We
5148 * need to reference count the memcg because of that.
5150 mem_cgroup_get(memcg);
5151 } else
5152 ret = res_counter_set_limit(&memcg->kmem, val);
5153 out:
5154 mutex_unlock(&set_limit_mutex);
5155 mutex_unlock(&memcg_create_mutex);
5156 #endif
5157 return ret;
5160 #ifdef CONFIG_MEMCG_KMEM
5161 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5163 int ret = 0;
5164 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5165 if (!parent)
5166 goto out;
5168 memcg->kmem_account_flags = parent->kmem_account_flags;
5170 * When that happen, we need to disable the static branch only on those
5171 * memcgs that enabled it. To achieve this, we would be forced to
5172 * complicate the code by keeping track of which memcgs were the ones
5173 * that actually enabled limits, and which ones got it from its
5174 * parents.
5176 * It is a lot simpler just to do static_key_slow_inc() on every child
5177 * that is accounted.
5179 if (!memcg_kmem_is_active(memcg))
5180 goto out;
5183 * destroy(), called if we fail, will issue static_key_slow_inc() and
5184 * mem_cgroup_put() if kmem is enabled. We have to either call them
5185 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5186 * this more consistent, since it always leads to the same destroy path
5188 mem_cgroup_get(memcg);
5189 static_key_slow_inc(&memcg_kmem_enabled_key);
5191 mutex_lock(&set_limit_mutex);
5192 ret = memcg_update_cache_sizes(memcg);
5193 mutex_unlock(&set_limit_mutex);
5194 out:
5195 return ret;
5197 #endif /* CONFIG_MEMCG_KMEM */
5200 * The user of this function is...
5201 * RES_LIMIT.
5203 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5204 const char *buffer)
5206 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5207 enum res_type type;
5208 int name;
5209 unsigned long long val;
5210 int ret;
5212 type = MEMFILE_TYPE(cft->private);
5213 name = MEMFILE_ATTR(cft->private);
5215 switch (name) {
5216 case RES_LIMIT:
5217 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5218 ret = -EINVAL;
5219 break;
5221 /* This function does all necessary parse...reuse it */
5222 ret = res_counter_memparse_write_strategy(buffer, &val);
5223 if (ret)
5224 break;
5225 if (type == _MEM)
5226 ret = mem_cgroup_resize_limit(memcg, val);
5227 else if (type == _MEMSWAP)
5228 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5229 else if (type == _KMEM)
5230 ret = memcg_update_kmem_limit(cont, val);
5231 else
5232 return -EINVAL;
5233 break;
5234 case RES_SOFT_LIMIT:
5235 ret = res_counter_memparse_write_strategy(buffer, &val);
5236 if (ret)
5237 break;
5239 * For memsw, soft limits are hard to implement in terms
5240 * of semantics, for now, we support soft limits for
5241 * control without swap
5243 if (type == _MEM)
5244 ret = res_counter_set_soft_limit(&memcg->res, val);
5245 else
5246 ret = -EINVAL;
5247 break;
5248 default:
5249 ret = -EINVAL; /* should be BUG() ? */
5250 break;
5252 return ret;
5255 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5256 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5258 struct cgroup *cgroup;
5259 unsigned long long min_limit, min_memsw_limit, tmp;
5261 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5262 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5263 cgroup = memcg->css.cgroup;
5264 if (!memcg->use_hierarchy)
5265 goto out;
5267 while (cgroup->parent) {
5268 cgroup = cgroup->parent;
5269 memcg = mem_cgroup_from_cont(cgroup);
5270 if (!memcg->use_hierarchy)
5271 break;
5272 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5273 min_limit = min(min_limit, tmp);
5274 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5275 min_memsw_limit = min(min_memsw_limit, tmp);
5277 out:
5278 *mem_limit = min_limit;
5279 *memsw_limit = min_memsw_limit;
5282 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5284 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5285 int name;
5286 enum res_type type;
5288 type = MEMFILE_TYPE(event);
5289 name = MEMFILE_ATTR(event);
5291 switch (name) {
5292 case RES_MAX_USAGE:
5293 if (type == _MEM)
5294 res_counter_reset_max(&memcg->res);
5295 else if (type == _MEMSWAP)
5296 res_counter_reset_max(&memcg->memsw);
5297 else if (type == _KMEM)
5298 res_counter_reset_max(&memcg->kmem);
5299 else
5300 return -EINVAL;
5301 break;
5302 case RES_FAILCNT:
5303 if (type == _MEM)
5304 res_counter_reset_failcnt(&memcg->res);
5305 else if (type == _MEMSWAP)
5306 res_counter_reset_failcnt(&memcg->memsw);
5307 else if (type == _KMEM)
5308 res_counter_reset_failcnt(&memcg->kmem);
5309 else
5310 return -EINVAL;
5311 break;
5314 return 0;
5317 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5318 struct cftype *cft)
5320 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5323 #ifdef CONFIG_MMU
5324 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5325 struct cftype *cft, u64 val)
5327 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5329 if (val >= (1 << NR_MOVE_TYPE))
5330 return -EINVAL;
5333 * No kind of locking is needed in here, because ->can_attach() will
5334 * check this value once in the beginning of the process, and then carry
5335 * on with stale data. This means that changes to this value will only
5336 * affect task migrations starting after the change.
5338 memcg->move_charge_at_immigrate = val;
5339 return 0;
5341 #else
5342 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5343 struct cftype *cft, u64 val)
5345 return -ENOSYS;
5347 #endif
5349 #ifdef CONFIG_NUMA
5350 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5351 struct seq_file *m)
5353 int nid;
5354 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5355 unsigned long node_nr;
5356 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5358 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5359 seq_printf(m, "total=%lu", total_nr);
5360 for_each_node_state(nid, N_MEMORY) {
5361 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5362 seq_printf(m, " N%d=%lu", nid, node_nr);
5364 seq_putc(m, '\n');
5366 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5367 seq_printf(m, "file=%lu", file_nr);
5368 for_each_node_state(nid, N_MEMORY) {
5369 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5370 LRU_ALL_FILE);
5371 seq_printf(m, " N%d=%lu", nid, node_nr);
5373 seq_putc(m, '\n');
5375 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5376 seq_printf(m, "anon=%lu", anon_nr);
5377 for_each_node_state(nid, N_MEMORY) {
5378 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5379 LRU_ALL_ANON);
5380 seq_printf(m, " N%d=%lu", nid, node_nr);
5382 seq_putc(m, '\n');
5384 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5385 seq_printf(m, "unevictable=%lu", unevictable_nr);
5386 for_each_node_state(nid, N_MEMORY) {
5387 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5388 BIT(LRU_UNEVICTABLE));
5389 seq_printf(m, " N%d=%lu", nid, node_nr);
5391 seq_putc(m, '\n');
5392 return 0;
5394 #endif /* CONFIG_NUMA */
5396 static inline void mem_cgroup_lru_names_not_uptodate(void)
5398 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5401 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5402 struct seq_file *m)
5404 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5405 struct mem_cgroup *mi;
5406 unsigned int i;
5408 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5409 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5410 continue;
5411 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5412 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5415 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5416 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5417 mem_cgroup_read_events(memcg, i));
5419 for (i = 0; i < NR_LRU_LISTS; i++)
5420 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5421 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5423 /* Hierarchical information */
5425 unsigned long long limit, memsw_limit;
5426 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5427 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5428 if (do_swap_account)
5429 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5430 memsw_limit);
5433 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5434 long long val = 0;
5436 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5437 continue;
5438 for_each_mem_cgroup_tree(mi, memcg)
5439 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5440 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5443 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5444 unsigned long long val = 0;
5446 for_each_mem_cgroup_tree(mi, memcg)
5447 val += mem_cgroup_read_events(mi, i);
5448 seq_printf(m, "total_%s %llu\n",
5449 mem_cgroup_events_names[i], val);
5452 for (i = 0; i < NR_LRU_LISTS; i++) {
5453 unsigned long long val = 0;
5455 for_each_mem_cgroup_tree(mi, memcg)
5456 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5457 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5460 #ifdef CONFIG_DEBUG_VM
5462 int nid, zid;
5463 struct mem_cgroup_per_zone *mz;
5464 struct zone_reclaim_stat *rstat;
5465 unsigned long recent_rotated[2] = {0, 0};
5466 unsigned long recent_scanned[2] = {0, 0};
5468 for_each_online_node(nid)
5469 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5470 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5471 rstat = &mz->lruvec.reclaim_stat;
5473 recent_rotated[0] += rstat->recent_rotated[0];
5474 recent_rotated[1] += rstat->recent_rotated[1];
5475 recent_scanned[0] += rstat->recent_scanned[0];
5476 recent_scanned[1] += rstat->recent_scanned[1];
5478 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5479 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5480 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5481 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5483 #endif
5485 return 0;
5488 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5490 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5492 return mem_cgroup_swappiness(memcg);
5495 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5496 u64 val)
5498 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5499 struct mem_cgroup *parent;
5501 if (val > 100)
5502 return -EINVAL;
5504 if (cgrp->parent == NULL)
5505 return -EINVAL;
5507 parent = mem_cgroup_from_cont(cgrp->parent);
5509 mutex_lock(&memcg_create_mutex);
5511 /* If under hierarchy, only empty-root can set this value */
5512 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5513 mutex_unlock(&memcg_create_mutex);
5514 return -EINVAL;
5517 memcg->swappiness = val;
5519 mutex_unlock(&memcg_create_mutex);
5521 return 0;
5524 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5526 struct mem_cgroup_threshold_ary *t;
5527 u64 usage;
5528 int i;
5530 rcu_read_lock();
5531 if (!swap)
5532 t = rcu_dereference(memcg->thresholds.primary);
5533 else
5534 t = rcu_dereference(memcg->memsw_thresholds.primary);
5536 if (!t)
5537 goto unlock;
5539 usage = mem_cgroup_usage(memcg, swap);
5542 * current_threshold points to threshold just below or equal to usage.
5543 * If it's not true, a threshold was crossed after last
5544 * call of __mem_cgroup_threshold().
5546 i = t->current_threshold;
5549 * Iterate backward over array of thresholds starting from
5550 * current_threshold and check if a threshold is crossed.
5551 * If none of thresholds below usage is crossed, we read
5552 * only one element of the array here.
5554 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5555 eventfd_signal(t->entries[i].eventfd, 1);
5557 /* i = current_threshold + 1 */
5558 i++;
5561 * Iterate forward over array of thresholds starting from
5562 * current_threshold+1 and check if a threshold is crossed.
5563 * If none of thresholds above usage is crossed, we read
5564 * only one element of the array here.
5566 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5567 eventfd_signal(t->entries[i].eventfd, 1);
5569 /* Update current_threshold */
5570 t->current_threshold = i - 1;
5571 unlock:
5572 rcu_read_unlock();
5575 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5577 while (memcg) {
5578 __mem_cgroup_threshold(memcg, false);
5579 if (do_swap_account)
5580 __mem_cgroup_threshold(memcg, true);
5582 memcg = parent_mem_cgroup(memcg);
5586 static int compare_thresholds(const void *a, const void *b)
5588 const struct mem_cgroup_threshold *_a = a;
5589 const struct mem_cgroup_threshold *_b = b;
5591 return _a->threshold - _b->threshold;
5594 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5596 struct mem_cgroup_eventfd_list *ev;
5598 list_for_each_entry(ev, &memcg->oom_notify, list)
5599 eventfd_signal(ev->eventfd, 1);
5600 return 0;
5603 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5605 struct mem_cgroup *iter;
5607 for_each_mem_cgroup_tree(iter, memcg)
5608 mem_cgroup_oom_notify_cb(iter);
5611 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5612 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5614 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5615 struct mem_cgroup_thresholds *thresholds;
5616 struct mem_cgroup_threshold_ary *new;
5617 enum res_type type = MEMFILE_TYPE(cft->private);
5618 u64 threshold, usage;
5619 int i, size, ret;
5621 ret = res_counter_memparse_write_strategy(args, &threshold);
5622 if (ret)
5623 return ret;
5625 mutex_lock(&memcg->thresholds_lock);
5627 if (type == _MEM)
5628 thresholds = &memcg->thresholds;
5629 else if (type == _MEMSWAP)
5630 thresholds = &memcg->memsw_thresholds;
5631 else
5632 BUG();
5634 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5636 /* Check if a threshold crossed before adding a new one */
5637 if (thresholds->primary)
5638 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5640 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5642 /* Allocate memory for new array of thresholds */
5643 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5644 GFP_KERNEL);
5645 if (!new) {
5646 ret = -ENOMEM;
5647 goto unlock;
5649 new->size = size;
5651 /* Copy thresholds (if any) to new array */
5652 if (thresholds->primary) {
5653 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5654 sizeof(struct mem_cgroup_threshold));
5657 /* Add new threshold */
5658 new->entries[size - 1].eventfd = eventfd;
5659 new->entries[size - 1].threshold = threshold;
5661 /* Sort thresholds. Registering of new threshold isn't time-critical */
5662 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5663 compare_thresholds, NULL);
5665 /* Find current threshold */
5666 new->current_threshold = -1;
5667 for (i = 0; i < size; i++) {
5668 if (new->entries[i].threshold <= usage) {
5670 * new->current_threshold will not be used until
5671 * rcu_assign_pointer(), so it's safe to increment
5672 * it here.
5674 ++new->current_threshold;
5675 } else
5676 break;
5679 /* Free old spare buffer and save old primary buffer as spare */
5680 kfree(thresholds->spare);
5681 thresholds->spare = thresholds->primary;
5683 rcu_assign_pointer(thresholds->primary, new);
5685 /* To be sure that nobody uses thresholds */
5686 synchronize_rcu();
5688 unlock:
5689 mutex_unlock(&memcg->thresholds_lock);
5691 return ret;
5694 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5695 struct cftype *cft, struct eventfd_ctx *eventfd)
5697 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5698 struct mem_cgroup_thresholds *thresholds;
5699 struct mem_cgroup_threshold_ary *new;
5700 enum res_type type = MEMFILE_TYPE(cft->private);
5701 u64 usage;
5702 int i, j, size;
5704 mutex_lock(&memcg->thresholds_lock);
5705 if (type == _MEM)
5706 thresholds = &memcg->thresholds;
5707 else if (type == _MEMSWAP)
5708 thresholds = &memcg->memsw_thresholds;
5709 else
5710 BUG();
5712 if (!thresholds->primary)
5713 goto unlock;
5715 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5717 /* Check if a threshold crossed before removing */
5718 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5720 /* Calculate new number of threshold */
5721 size = 0;
5722 for (i = 0; i < thresholds->primary->size; i++) {
5723 if (thresholds->primary->entries[i].eventfd != eventfd)
5724 size++;
5727 new = thresholds->spare;
5729 /* Set thresholds array to NULL if we don't have thresholds */
5730 if (!size) {
5731 kfree(new);
5732 new = NULL;
5733 goto swap_buffers;
5736 new->size = size;
5738 /* Copy thresholds and find current threshold */
5739 new->current_threshold = -1;
5740 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5741 if (thresholds->primary->entries[i].eventfd == eventfd)
5742 continue;
5744 new->entries[j] = thresholds->primary->entries[i];
5745 if (new->entries[j].threshold <= usage) {
5747 * new->current_threshold will not be used
5748 * until rcu_assign_pointer(), so it's safe to increment
5749 * it here.
5751 ++new->current_threshold;
5753 j++;
5756 swap_buffers:
5757 /* Swap primary and spare array */
5758 thresholds->spare = thresholds->primary;
5759 /* If all events are unregistered, free the spare array */
5760 if (!new) {
5761 kfree(thresholds->spare);
5762 thresholds->spare = NULL;
5765 rcu_assign_pointer(thresholds->primary, new);
5767 /* To be sure that nobody uses thresholds */
5768 synchronize_rcu();
5769 unlock:
5770 mutex_unlock(&memcg->thresholds_lock);
5773 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5774 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5776 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5777 struct mem_cgroup_eventfd_list *event;
5778 enum res_type type = MEMFILE_TYPE(cft->private);
5780 BUG_ON(type != _OOM_TYPE);
5781 event = kmalloc(sizeof(*event), GFP_KERNEL);
5782 if (!event)
5783 return -ENOMEM;
5785 spin_lock(&memcg_oom_lock);
5787 event->eventfd = eventfd;
5788 list_add(&event->list, &memcg->oom_notify);
5790 /* already in OOM ? */
5791 if (atomic_read(&memcg->under_oom))
5792 eventfd_signal(eventfd, 1);
5793 spin_unlock(&memcg_oom_lock);
5795 return 0;
5798 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5799 struct cftype *cft, struct eventfd_ctx *eventfd)
5801 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5802 struct mem_cgroup_eventfd_list *ev, *tmp;
5803 enum res_type type = MEMFILE_TYPE(cft->private);
5805 BUG_ON(type != _OOM_TYPE);
5807 spin_lock(&memcg_oom_lock);
5809 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5810 if (ev->eventfd == eventfd) {
5811 list_del(&ev->list);
5812 kfree(ev);
5816 spin_unlock(&memcg_oom_lock);
5819 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5820 struct cftype *cft, struct cgroup_map_cb *cb)
5822 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5824 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5826 if (atomic_read(&memcg->under_oom))
5827 cb->fill(cb, "under_oom", 1);
5828 else
5829 cb->fill(cb, "under_oom", 0);
5830 return 0;
5833 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5834 struct cftype *cft, u64 val)
5836 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5837 struct mem_cgroup *parent;
5839 /* cannot set to root cgroup and only 0 and 1 are allowed */
5840 if (!cgrp->parent || !((val == 0) || (val == 1)))
5841 return -EINVAL;
5843 parent = mem_cgroup_from_cont(cgrp->parent);
5845 mutex_lock(&memcg_create_mutex);
5846 /* oom-kill-disable is a flag for subhierarchy. */
5847 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5848 mutex_unlock(&memcg_create_mutex);
5849 return -EINVAL;
5851 memcg->oom_kill_disable = val;
5852 if (!val)
5853 memcg_oom_recover(memcg);
5854 mutex_unlock(&memcg_create_mutex);
5855 return 0;
5858 #ifdef CONFIG_MEMCG_KMEM
5859 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5861 int ret;
5863 memcg->kmemcg_id = -1;
5864 ret = memcg_propagate_kmem(memcg);
5865 if (ret)
5866 return ret;
5868 return mem_cgroup_sockets_init(memcg, ss);
5871 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5873 mem_cgroup_sockets_destroy(memcg);
5875 memcg_kmem_mark_dead(memcg);
5877 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5878 return;
5881 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5882 * path here, being careful not to race with memcg_uncharge_kmem: it is
5883 * possible that the charges went down to 0 between mark_dead and the
5884 * res_counter read, so in that case, we don't need the put
5886 if (memcg_kmem_test_and_clear_dead(memcg))
5887 mem_cgroup_put(memcg);
5889 #else
5890 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5892 return 0;
5895 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5898 #endif
5900 static struct cftype mem_cgroup_files[] = {
5902 .name = "usage_in_bytes",
5903 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5904 .read = mem_cgroup_read,
5905 .register_event = mem_cgroup_usage_register_event,
5906 .unregister_event = mem_cgroup_usage_unregister_event,
5909 .name = "max_usage_in_bytes",
5910 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5911 .trigger = mem_cgroup_reset,
5912 .read = mem_cgroup_read,
5915 .name = "limit_in_bytes",
5916 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5917 .write_string = mem_cgroup_write,
5918 .read = mem_cgroup_read,
5921 .name = "soft_limit_in_bytes",
5922 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5923 .write_string = mem_cgroup_write,
5924 .read = mem_cgroup_read,
5927 .name = "failcnt",
5928 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5929 .trigger = mem_cgroup_reset,
5930 .read = mem_cgroup_read,
5933 .name = "stat",
5934 .read_seq_string = memcg_stat_show,
5937 .name = "force_empty",
5938 .trigger = mem_cgroup_force_empty_write,
5941 .name = "use_hierarchy",
5942 .flags = CFTYPE_INSANE,
5943 .write_u64 = mem_cgroup_hierarchy_write,
5944 .read_u64 = mem_cgroup_hierarchy_read,
5947 .name = "swappiness",
5948 .read_u64 = mem_cgroup_swappiness_read,
5949 .write_u64 = mem_cgroup_swappiness_write,
5952 .name = "move_charge_at_immigrate",
5953 .read_u64 = mem_cgroup_move_charge_read,
5954 .write_u64 = mem_cgroup_move_charge_write,
5957 .name = "oom_control",
5958 .read_map = mem_cgroup_oom_control_read,
5959 .write_u64 = mem_cgroup_oom_control_write,
5960 .register_event = mem_cgroup_oom_register_event,
5961 .unregister_event = mem_cgroup_oom_unregister_event,
5962 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5965 .name = "pressure_level",
5966 .register_event = vmpressure_register_event,
5967 .unregister_event = vmpressure_unregister_event,
5969 #ifdef CONFIG_NUMA
5971 .name = "numa_stat",
5972 .read_seq_string = memcg_numa_stat_show,
5974 #endif
5975 #ifdef CONFIG_MEMCG_KMEM
5977 .name = "kmem.limit_in_bytes",
5978 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5979 .write_string = mem_cgroup_write,
5980 .read = mem_cgroup_read,
5983 .name = "kmem.usage_in_bytes",
5984 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5985 .read = mem_cgroup_read,
5988 .name = "kmem.failcnt",
5989 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5990 .trigger = mem_cgroup_reset,
5991 .read = mem_cgroup_read,
5994 .name = "kmem.max_usage_in_bytes",
5995 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5996 .trigger = mem_cgroup_reset,
5997 .read = mem_cgroup_read,
5999 #ifdef CONFIG_SLABINFO
6001 .name = "kmem.slabinfo",
6002 .read_seq_string = mem_cgroup_slabinfo_read,
6004 #endif
6005 #endif
6006 { }, /* terminate */
6009 #ifdef CONFIG_MEMCG_SWAP
6010 static struct cftype memsw_cgroup_files[] = {
6012 .name = "memsw.usage_in_bytes",
6013 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6014 .read = mem_cgroup_read,
6015 .register_event = mem_cgroup_usage_register_event,
6016 .unregister_event = mem_cgroup_usage_unregister_event,
6019 .name = "memsw.max_usage_in_bytes",
6020 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6021 .trigger = mem_cgroup_reset,
6022 .read = mem_cgroup_read,
6025 .name = "memsw.limit_in_bytes",
6026 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6027 .write_string = mem_cgroup_write,
6028 .read = mem_cgroup_read,
6031 .name = "memsw.failcnt",
6032 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6033 .trigger = mem_cgroup_reset,
6034 .read = mem_cgroup_read,
6036 { }, /* terminate */
6038 #endif
6039 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6041 struct mem_cgroup_per_node *pn;
6042 struct mem_cgroup_per_zone *mz;
6043 int zone, tmp = node;
6045 * This routine is called against possible nodes.
6046 * But it's BUG to call kmalloc() against offline node.
6048 * TODO: this routine can waste much memory for nodes which will
6049 * never be onlined. It's better to use memory hotplug callback
6050 * function.
6052 if (!node_state(node, N_NORMAL_MEMORY))
6053 tmp = -1;
6054 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6055 if (!pn)
6056 return 1;
6058 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6059 mz = &pn->zoneinfo[zone];
6060 lruvec_init(&mz->lruvec);
6061 mz->usage_in_excess = 0;
6062 mz->on_tree = false;
6063 mz->memcg = memcg;
6065 memcg->info.nodeinfo[node] = pn;
6066 return 0;
6069 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6071 kfree(memcg->info.nodeinfo[node]);
6074 static struct mem_cgroup *mem_cgroup_alloc(void)
6076 struct mem_cgroup *memcg;
6077 size_t size = memcg_size();
6079 /* Can be very big if nr_node_ids is very big */
6080 if (size < PAGE_SIZE)
6081 memcg = kzalloc(size, GFP_KERNEL);
6082 else
6083 memcg = vzalloc(size);
6085 if (!memcg)
6086 return NULL;
6088 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6089 if (!memcg->stat)
6090 goto out_free;
6091 spin_lock_init(&memcg->pcp_counter_lock);
6092 return memcg;
6094 out_free:
6095 if (size < PAGE_SIZE)
6096 kfree(memcg);
6097 else
6098 vfree(memcg);
6099 return NULL;
6103 * At destroying mem_cgroup, references from swap_cgroup can remain.
6104 * (scanning all at force_empty is too costly...)
6106 * Instead of clearing all references at force_empty, we remember
6107 * the number of reference from swap_cgroup and free mem_cgroup when
6108 * it goes down to 0.
6110 * Removal of cgroup itself succeeds regardless of refs from swap.
6113 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6115 int node;
6116 size_t size = memcg_size();
6118 mem_cgroup_remove_from_trees(memcg);
6119 free_css_id(&mem_cgroup_subsys, &memcg->css);
6121 for_each_node(node)
6122 free_mem_cgroup_per_zone_info(memcg, node);
6124 free_percpu(memcg->stat);
6127 * We need to make sure that (at least for now), the jump label
6128 * destruction code runs outside of the cgroup lock. This is because
6129 * get_online_cpus(), which is called from the static_branch update,
6130 * can't be called inside the cgroup_lock. cpusets are the ones
6131 * enforcing this dependency, so if they ever change, we might as well.
6133 * schedule_work() will guarantee this happens. Be careful if you need
6134 * to move this code around, and make sure it is outside
6135 * the cgroup_lock.
6137 disarm_static_keys(memcg);
6138 if (size < PAGE_SIZE)
6139 kfree(memcg);
6140 else
6141 vfree(memcg);
6146 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6147 * but in process context. The work_freeing structure is overlaid
6148 * on the rcu_freeing structure, which itself is overlaid on memsw.
6150 static void free_work(struct work_struct *work)
6152 struct mem_cgroup *memcg;
6154 memcg = container_of(work, struct mem_cgroup, work_freeing);
6155 __mem_cgroup_free(memcg);
6158 static void free_rcu(struct rcu_head *rcu_head)
6160 struct mem_cgroup *memcg;
6162 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6163 INIT_WORK(&memcg->work_freeing, free_work);
6164 schedule_work(&memcg->work_freeing);
6167 static void mem_cgroup_get(struct mem_cgroup *memcg)
6169 atomic_inc(&memcg->refcnt);
6172 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6174 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6175 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6176 call_rcu(&memcg->rcu_freeing, free_rcu);
6177 if (parent)
6178 mem_cgroup_put(parent);
6182 static void mem_cgroup_put(struct mem_cgroup *memcg)
6184 __mem_cgroup_put(memcg, 1);
6188 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6190 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6192 if (!memcg->res.parent)
6193 return NULL;
6194 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6196 EXPORT_SYMBOL(parent_mem_cgroup);
6198 static void __init mem_cgroup_soft_limit_tree_init(void)
6200 struct mem_cgroup_tree_per_node *rtpn;
6201 struct mem_cgroup_tree_per_zone *rtpz;
6202 int tmp, node, zone;
6204 for_each_node(node) {
6205 tmp = node;
6206 if (!node_state(node, N_NORMAL_MEMORY))
6207 tmp = -1;
6208 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6209 BUG_ON(!rtpn);
6211 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6213 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6214 rtpz = &rtpn->rb_tree_per_zone[zone];
6215 rtpz->rb_root = RB_ROOT;
6216 spin_lock_init(&rtpz->lock);
6221 static struct cgroup_subsys_state * __ref
6222 mem_cgroup_css_alloc(struct cgroup *cont)
6224 struct mem_cgroup *memcg;
6225 long error = -ENOMEM;
6226 int node;
6228 memcg = mem_cgroup_alloc();
6229 if (!memcg)
6230 return ERR_PTR(error);
6232 for_each_node(node)
6233 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6234 goto free_out;
6236 /* root ? */
6237 if (cont->parent == NULL) {
6238 root_mem_cgroup = memcg;
6239 res_counter_init(&memcg->res, NULL);
6240 res_counter_init(&memcg->memsw, NULL);
6241 res_counter_init(&memcg->kmem, NULL);
6244 memcg->last_scanned_node = MAX_NUMNODES;
6245 INIT_LIST_HEAD(&memcg->oom_notify);
6246 atomic_set(&memcg->refcnt, 1);
6247 memcg->move_charge_at_immigrate = 0;
6248 mutex_init(&memcg->thresholds_lock);
6249 spin_lock_init(&memcg->move_lock);
6250 vmpressure_init(&memcg->vmpressure);
6252 return &memcg->css;
6254 free_out:
6255 __mem_cgroup_free(memcg);
6256 return ERR_PTR(error);
6259 static int
6260 mem_cgroup_css_online(struct cgroup *cont)
6262 struct mem_cgroup *memcg, *parent;
6263 int error = 0;
6265 if (!cont->parent)
6266 return 0;
6268 mutex_lock(&memcg_create_mutex);
6269 memcg = mem_cgroup_from_cont(cont);
6270 parent = mem_cgroup_from_cont(cont->parent);
6272 memcg->use_hierarchy = parent->use_hierarchy;
6273 memcg->oom_kill_disable = parent->oom_kill_disable;
6274 memcg->swappiness = mem_cgroup_swappiness(parent);
6276 if (parent->use_hierarchy) {
6277 res_counter_init(&memcg->res, &parent->res);
6278 res_counter_init(&memcg->memsw, &parent->memsw);
6279 res_counter_init(&memcg->kmem, &parent->kmem);
6282 * We increment refcnt of the parent to ensure that we can
6283 * safely access it on res_counter_charge/uncharge.
6284 * This refcnt will be decremented when freeing this
6285 * mem_cgroup(see mem_cgroup_put).
6287 mem_cgroup_get(parent);
6288 } else {
6289 res_counter_init(&memcg->res, NULL);
6290 res_counter_init(&memcg->memsw, NULL);
6291 res_counter_init(&memcg->kmem, NULL);
6293 * Deeper hierachy with use_hierarchy == false doesn't make
6294 * much sense so let cgroup subsystem know about this
6295 * unfortunate state in our controller.
6297 if (parent != root_mem_cgroup)
6298 mem_cgroup_subsys.broken_hierarchy = true;
6301 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6302 mutex_unlock(&memcg_create_mutex);
6303 if (error) {
6305 * We call put now because our (and parent's) refcnts
6306 * are already in place. mem_cgroup_put() will internally
6307 * call __mem_cgroup_free, so return directly
6309 mem_cgroup_put(memcg);
6310 if (parent->use_hierarchy)
6311 mem_cgroup_put(parent);
6313 return error;
6317 * Announce all parents that a group from their hierarchy is gone.
6319 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6321 struct mem_cgroup *parent = memcg;
6323 while ((parent = parent_mem_cgroup(parent)))
6324 atomic_inc(&parent->dead_count);
6327 * if the root memcg is not hierarchical we have to check it
6328 * explicitely.
6330 if (!root_mem_cgroup->use_hierarchy)
6331 atomic_inc(&root_mem_cgroup->dead_count);
6334 static void mem_cgroup_css_offline(struct cgroup *cont)
6336 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6338 mem_cgroup_invalidate_reclaim_iterators(memcg);
6339 mem_cgroup_reparent_charges(memcg);
6340 mem_cgroup_destroy_all_caches(memcg);
6343 static void mem_cgroup_css_free(struct cgroup *cont)
6345 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6347 kmem_cgroup_destroy(memcg);
6349 mem_cgroup_put(memcg);
6352 #ifdef CONFIG_MMU
6353 /* Handlers for move charge at task migration. */
6354 #define PRECHARGE_COUNT_AT_ONCE 256
6355 static int mem_cgroup_do_precharge(unsigned long count)
6357 int ret = 0;
6358 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6359 struct mem_cgroup *memcg = mc.to;
6361 if (mem_cgroup_is_root(memcg)) {
6362 mc.precharge += count;
6363 /* we don't need css_get for root */
6364 return ret;
6366 /* try to charge at once */
6367 if (count > 1) {
6368 struct res_counter *dummy;
6370 * "memcg" cannot be under rmdir() because we've already checked
6371 * by cgroup_lock_live_cgroup() that it is not removed and we
6372 * are still under the same cgroup_mutex. So we can postpone
6373 * css_get().
6375 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6376 goto one_by_one;
6377 if (do_swap_account && res_counter_charge(&memcg->memsw,
6378 PAGE_SIZE * count, &dummy)) {
6379 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6380 goto one_by_one;
6382 mc.precharge += count;
6383 return ret;
6385 one_by_one:
6386 /* fall back to one by one charge */
6387 while (count--) {
6388 if (signal_pending(current)) {
6389 ret = -EINTR;
6390 break;
6392 if (!batch_count--) {
6393 batch_count = PRECHARGE_COUNT_AT_ONCE;
6394 cond_resched();
6396 ret = __mem_cgroup_try_charge(NULL,
6397 GFP_KERNEL, 1, &memcg, false);
6398 if (ret)
6399 /* mem_cgroup_clear_mc() will do uncharge later */
6400 return ret;
6401 mc.precharge++;
6403 return ret;
6407 * get_mctgt_type - get target type of moving charge
6408 * @vma: the vma the pte to be checked belongs
6409 * @addr: the address corresponding to the pte to be checked
6410 * @ptent: the pte to be checked
6411 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6413 * Returns
6414 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6415 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6416 * move charge. if @target is not NULL, the page is stored in target->page
6417 * with extra refcnt got(Callers should handle it).
6418 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6419 * target for charge migration. if @target is not NULL, the entry is stored
6420 * in target->ent.
6422 * Called with pte lock held.
6424 union mc_target {
6425 struct page *page;
6426 swp_entry_t ent;
6429 enum mc_target_type {
6430 MC_TARGET_NONE = 0,
6431 MC_TARGET_PAGE,
6432 MC_TARGET_SWAP,
6435 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6436 unsigned long addr, pte_t ptent)
6438 struct page *page = vm_normal_page(vma, addr, ptent);
6440 if (!page || !page_mapped(page))
6441 return NULL;
6442 if (PageAnon(page)) {
6443 /* we don't move shared anon */
6444 if (!move_anon())
6445 return NULL;
6446 } else if (!move_file())
6447 /* we ignore mapcount for file pages */
6448 return NULL;
6449 if (!get_page_unless_zero(page))
6450 return NULL;
6452 return page;
6455 #ifdef CONFIG_SWAP
6456 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6457 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6459 struct page *page = NULL;
6460 swp_entry_t ent = pte_to_swp_entry(ptent);
6462 if (!move_anon() || non_swap_entry(ent))
6463 return NULL;
6465 * Because lookup_swap_cache() updates some statistics counter,
6466 * we call find_get_page() with swapper_space directly.
6468 page = find_get_page(swap_address_space(ent), ent.val);
6469 if (do_swap_account)
6470 entry->val = ent.val;
6472 return page;
6474 #else
6475 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6476 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6478 return NULL;
6480 #endif
6482 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6483 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6485 struct page *page = NULL;
6486 struct address_space *mapping;
6487 pgoff_t pgoff;
6489 if (!vma->vm_file) /* anonymous vma */
6490 return NULL;
6491 if (!move_file())
6492 return NULL;
6494 mapping = vma->vm_file->f_mapping;
6495 if (pte_none(ptent))
6496 pgoff = linear_page_index(vma, addr);
6497 else /* pte_file(ptent) is true */
6498 pgoff = pte_to_pgoff(ptent);
6500 /* page is moved even if it's not RSS of this task(page-faulted). */
6501 page = find_get_page(mapping, pgoff);
6503 #ifdef CONFIG_SWAP
6504 /* shmem/tmpfs may report page out on swap: account for that too. */
6505 if (radix_tree_exceptional_entry(page)) {
6506 swp_entry_t swap = radix_to_swp_entry(page);
6507 if (do_swap_account)
6508 *entry = swap;
6509 page = find_get_page(swap_address_space(swap), swap.val);
6511 #endif
6512 return page;
6515 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6516 unsigned long addr, pte_t ptent, union mc_target *target)
6518 struct page *page = NULL;
6519 struct page_cgroup *pc;
6520 enum mc_target_type ret = MC_TARGET_NONE;
6521 swp_entry_t ent = { .val = 0 };
6523 if (pte_present(ptent))
6524 page = mc_handle_present_pte(vma, addr, ptent);
6525 else if (is_swap_pte(ptent))
6526 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6527 else if (pte_none(ptent) || pte_file(ptent))
6528 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6530 if (!page && !ent.val)
6531 return ret;
6532 if (page) {
6533 pc = lookup_page_cgroup(page);
6535 * Do only loose check w/o page_cgroup lock.
6536 * mem_cgroup_move_account() checks the pc is valid or not under
6537 * the lock.
6539 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6540 ret = MC_TARGET_PAGE;
6541 if (target)
6542 target->page = page;
6544 if (!ret || !target)
6545 put_page(page);
6547 /* There is a swap entry and a page doesn't exist or isn't charged */
6548 if (ent.val && !ret &&
6549 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6550 ret = MC_TARGET_SWAP;
6551 if (target)
6552 target->ent = ent;
6554 return ret;
6557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6559 * We don't consider swapping or file mapped pages because THP does not
6560 * support them for now.
6561 * Caller should make sure that pmd_trans_huge(pmd) is true.
6563 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6564 unsigned long addr, pmd_t pmd, union mc_target *target)
6566 struct page *page = NULL;
6567 struct page_cgroup *pc;
6568 enum mc_target_type ret = MC_TARGET_NONE;
6570 page = pmd_page(pmd);
6571 VM_BUG_ON(!page || !PageHead(page));
6572 if (!move_anon())
6573 return ret;
6574 pc = lookup_page_cgroup(page);
6575 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6576 ret = MC_TARGET_PAGE;
6577 if (target) {
6578 get_page(page);
6579 target->page = page;
6582 return ret;
6584 #else
6585 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6586 unsigned long addr, pmd_t pmd, union mc_target *target)
6588 return MC_TARGET_NONE;
6590 #endif
6592 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6593 unsigned long addr, unsigned long end,
6594 struct mm_walk *walk)
6596 struct vm_area_struct *vma = walk->private;
6597 pte_t *pte;
6598 spinlock_t *ptl;
6600 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6601 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6602 mc.precharge += HPAGE_PMD_NR;
6603 spin_unlock(&vma->vm_mm->page_table_lock);
6604 return 0;
6607 if (pmd_trans_unstable(pmd))
6608 return 0;
6609 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6610 for (; addr != end; pte++, addr += PAGE_SIZE)
6611 if (get_mctgt_type(vma, addr, *pte, NULL))
6612 mc.precharge++; /* increment precharge temporarily */
6613 pte_unmap_unlock(pte - 1, ptl);
6614 cond_resched();
6616 return 0;
6619 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6621 unsigned long precharge;
6622 struct vm_area_struct *vma;
6624 down_read(&mm->mmap_sem);
6625 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6626 struct mm_walk mem_cgroup_count_precharge_walk = {
6627 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6628 .mm = mm,
6629 .private = vma,
6631 if (is_vm_hugetlb_page(vma))
6632 continue;
6633 walk_page_range(vma->vm_start, vma->vm_end,
6634 &mem_cgroup_count_precharge_walk);
6636 up_read(&mm->mmap_sem);
6638 precharge = mc.precharge;
6639 mc.precharge = 0;
6641 return precharge;
6644 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6646 unsigned long precharge = mem_cgroup_count_precharge(mm);
6648 VM_BUG_ON(mc.moving_task);
6649 mc.moving_task = current;
6650 return mem_cgroup_do_precharge(precharge);
6653 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6654 static void __mem_cgroup_clear_mc(void)
6656 struct mem_cgroup *from = mc.from;
6657 struct mem_cgroup *to = mc.to;
6659 /* we must uncharge all the leftover precharges from mc.to */
6660 if (mc.precharge) {
6661 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6662 mc.precharge = 0;
6665 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6666 * we must uncharge here.
6668 if (mc.moved_charge) {
6669 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6670 mc.moved_charge = 0;
6672 /* we must fixup refcnts and charges */
6673 if (mc.moved_swap) {
6674 /* uncharge swap account from the old cgroup */
6675 if (!mem_cgroup_is_root(mc.from))
6676 res_counter_uncharge(&mc.from->memsw,
6677 PAGE_SIZE * mc.moved_swap);
6678 __mem_cgroup_put(mc.from, mc.moved_swap);
6680 if (!mem_cgroup_is_root(mc.to)) {
6682 * we charged both to->res and to->memsw, so we should
6683 * uncharge to->res.
6685 res_counter_uncharge(&mc.to->res,
6686 PAGE_SIZE * mc.moved_swap);
6688 /* we've already done mem_cgroup_get(mc.to) */
6689 mc.moved_swap = 0;
6691 memcg_oom_recover(from);
6692 memcg_oom_recover(to);
6693 wake_up_all(&mc.waitq);
6696 static void mem_cgroup_clear_mc(void)
6698 struct mem_cgroup *from = mc.from;
6701 * we must clear moving_task before waking up waiters at the end of
6702 * task migration.
6704 mc.moving_task = NULL;
6705 __mem_cgroup_clear_mc();
6706 spin_lock(&mc.lock);
6707 mc.from = NULL;
6708 mc.to = NULL;
6709 spin_unlock(&mc.lock);
6710 mem_cgroup_end_move(from);
6713 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6714 struct cgroup_taskset *tset)
6716 struct task_struct *p = cgroup_taskset_first(tset);
6717 int ret = 0;
6718 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6719 unsigned long move_charge_at_immigrate;
6722 * We are now commited to this value whatever it is. Changes in this
6723 * tunable will only affect upcoming migrations, not the current one.
6724 * So we need to save it, and keep it going.
6726 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6727 if (move_charge_at_immigrate) {
6728 struct mm_struct *mm;
6729 struct mem_cgroup *from = mem_cgroup_from_task(p);
6731 VM_BUG_ON(from == memcg);
6733 mm = get_task_mm(p);
6734 if (!mm)
6735 return 0;
6736 /* We move charges only when we move a owner of the mm */
6737 if (mm->owner == p) {
6738 VM_BUG_ON(mc.from);
6739 VM_BUG_ON(mc.to);
6740 VM_BUG_ON(mc.precharge);
6741 VM_BUG_ON(mc.moved_charge);
6742 VM_BUG_ON(mc.moved_swap);
6743 mem_cgroup_start_move(from);
6744 spin_lock(&mc.lock);
6745 mc.from = from;
6746 mc.to = memcg;
6747 mc.immigrate_flags = move_charge_at_immigrate;
6748 spin_unlock(&mc.lock);
6749 /* We set mc.moving_task later */
6751 ret = mem_cgroup_precharge_mc(mm);
6752 if (ret)
6753 mem_cgroup_clear_mc();
6755 mmput(mm);
6757 return ret;
6760 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6761 struct cgroup_taskset *tset)
6763 mem_cgroup_clear_mc();
6766 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6767 unsigned long addr, unsigned long end,
6768 struct mm_walk *walk)
6770 int ret = 0;
6771 struct vm_area_struct *vma = walk->private;
6772 pte_t *pte;
6773 spinlock_t *ptl;
6774 enum mc_target_type target_type;
6775 union mc_target target;
6776 struct page *page;
6777 struct page_cgroup *pc;
6780 * We don't take compound_lock() here but no race with splitting thp
6781 * happens because:
6782 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6783 * under splitting, which means there's no concurrent thp split,
6784 * - if another thread runs into split_huge_page() just after we
6785 * entered this if-block, the thread must wait for page table lock
6786 * to be unlocked in __split_huge_page_splitting(), where the main
6787 * part of thp split is not executed yet.
6789 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6790 if (mc.precharge < HPAGE_PMD_NR) {
6791 spin_unlock(&vma->vm_mm->page_table_lock);
6792 return 0;
6794 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6795 if (target_type == MC_TARGET_PAGE) {
6796 page = target.page;
6797 if (!isolate_lru_page(page)) {
6798 pc = lookup_page_cgroup(page);
6799 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6800 pc, mc.from, mc.to)) {
6801 mc.precharge -= HPAGE_PMD_NR;
6802 mc.moved_charge += HPAGE_PMD_NR;
6804 putback_lru_page(page);
6806 put_page(page);
6808 spin_unlock(&vma->vm_mm->page_table_lock);
6809 return 0;
6812 if (pmd_trans_unstable(pmd))
6813 return 0;
6814 retry:
6815 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6816 for (; addr != end; addr += PAGE_SIZE) {
6817 pte_t ptent = *(pte++);
6818 swp_entry_t ent;
6820 if (!mc.precharge)
6821 break;
6823 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6824 case MC_TARGET_PAGE:
6825 page = target.page;
6826 if (isolate_lru_page(page))
6827 goto put;
6828 pc = lookup_page_cgroup(page);
6829 if (!mem_cgroup_move_account(page, 1, pc,
6830 mc.from, mc.to)) {
6831 mc.precharge--;
6832 /* we uncharge from mc.from later. */
6833 mc.moved_charge++;
6835 putback_lru_page(page);
6836 put: /* get_mctgt_type() gets the page */
6837 put_page(page);
6838 break;
6839 case MC_TARGET_SWAP:
6840 ent = target.ent;
6841 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6842 mc.precharge--;
6843 /* we fixup refcnts and charges later. */
6844 mc.moved_swap++;
6846 break;
6847 default:
6848 break;
6851 pte_unmap_unlock(pte - 1, ptl);
6852 cond_resched();
6854 if (addr != end) {
6856 * We have consumed all precharges we got in can_attach().
6857 * We try charge one by one, but don't do any additional
6858 * charges to mc.to if we have failed in charge once in attach()
6859 * phase.
6861 ret = mem_cgroup_do_precharge(1);
6862 if (!ret)
6863 goto retry;
6866 return ret;
6869 static void mem_cgroup_move_charge(struct mm_struct *mm)
6871 struct vm_area_struct *vma;
6873 lru_add_drain_all();
6874 retry:
6875 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6877 * Someone who are holding the mmap_sem might be waiting in
6878 * waitq. So we cancel all extra charges, wake up all waiters,
6879 * and retry. Because we cancel precharges, we might not be able
6880 * to move enough charges, but moving charge is a best-effort
6881 * feature anyway, so it wouldn't be a big problem.
6883 __mem_cgroup_clear_mc();
6884 cond_resched();
6885 goto retry;
6887 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6888 int ret;
6889 struct mm_walk mem_cgroup_move_charge_walk = {
6890 .pmd_entry = mem_cgroup_move_charge_pte_range,
6891 .mm = mm,
6892 .private = vma,
6894 if (is_vm_hugetlb_page(vma))
6895 continue;
6896 ret = walk_page_range(vma->vm_start, vma->vm_end,
6897 &mem_cgroup_move_charge_walk);
6898 if (ret)
6900 * means we have consumed all precharges and failed in
6901 * doing additional charge. Just abandon here.
6903 break;
6905 up_read(&mm->mmap_sem);
6908 static void mem_cgroup_move_task(struct cgroup *cont,
6909 struct cgroup_taskset *tset)
6911 struct task_struct *p = cgroup_taskset_first(tset);
6912 struct mm_struct *mm = get_task_mm(p);
6914 if (mm) {
6915 if (mc.to)
6916 mem_cgroup_move_charge(mm);
6917 mmput(mm);
6919 if (mc.to)
6920 mem_cgroup_clear_mc();
6922 #else /* !CONFIG_MMU */
6923 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6924 struct cgroup_taskset *tset)
6926 return 0;
6928 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6929 struct cgroup_taskset *tset)
6932 static void mem_cgroup_move_task(struct cgroup *cont,
6933 struct cgroup_taskset *tset)
6936 #endif
6939 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6940 * to verify sane_behavior flag on each mount attempt.
6942 static void mem_cgroup_bind(struct cgroup *root)
6945 * use_hierarchy is forced with sane_behavior. cgroup core
6946 * guarantees that @root doesn't have any children, so turning it
6947 * on for the root memcg is enough.
6949 if (cgroup_sane_behavior(root))
6950 mem_cgroup_from_cont(root)->use_hierarchy = true;
6953 struct cgroup_subsys mem_cgroup_subsys = {
6954 .name = "memory",
6955 .subsys_id = mem_cgroup_subsys_id,
6956 .css_alloc = mem_cgroup_css_alloc,
6957 .css_online = mem_cgroup_css_online,
6958 .css_offline = mem_cgroup_css_offline,
6959 .css_free = mem_cgroup_css_free,
6960 .can_attach = mem_cgroup_can_attach,
6961 .cancel_attach = mem_cgroup_cancel_attach,
6962 .attach = mem_cgroup_move_task,
6963 .bind = mem_cgroup_bind,
6964 .base_cftypes = mem_cgroup_files,
6965 .early_init = 0,
6966 .use_id = 1,
6969 #ifdef CONFIG_MEMCG_SWAP
6970 static int __init enable_swap_account(char *s)
6972 /* consider enabled if no parameter or 1 is given */
6973 if (!strcmp(s, "1"))
6974 really_do_swap_account = 1;
6975 else if (!strcmp(s, "0"))
6976 really_do_swap_account = 0;
6977 return 1;
6979 __setup("swapaccount=", enable_swap_account);
6981 static void __init memsw_file_init(void)
6983 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6986 static void __init enable_swap_cgroup(void)
6988 if (!mem_cgroup_disabled() && really_do_swap_account) {
6989 do_swap_account = 1;
6990 memsw_file_init();
6994 #else
6995 static void __init enable_swap_cgroup(void)
6998 #endif
7001 * subsys_initcall() for memory controller.
7003 * Some parts like hotcpu_notifier() have to be initialized from this context
7004 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7005 * everything that doesn't depend on a specific mem_cgroup structure should
7006 * be initialized from here.
7008 static int __init mem_cgroup_init(void)
7010 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7011 enable_swap_cgroup();
7012 mem_cgroup_soft_limit_tree_init();
7013 memcg_stock_init();
7014 return 0;
7016 subsys_initcall(mem_cgroup_init);