2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-direct.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33 #include <linux/mem_encrypt.h>
34 #include <linux/set_memory.h>
39 #include <linux/init.h>
40 #include <linux/bootmem.h>
41 #include <linux/iommu-helper.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/swiotlb.h>
46 #define OFFSET(val,align) ((unsigned long) \
47 ( (val) & ( (align) - 1)))
49 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
52 * Minimum IO TLB size to bother booting with. Systems with mainly
53 * 64bit capable cards will only lightly use the swiotlb. If we can't
54 * allocate a contiguous 1MB, we're probably in trouble anyway.
56 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
58 enum swiotlb_force swiotlb_force
;
61 * Used to do a quick range check in swiotlb_tbl_unmap_single and
62 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
65 static phys_addr_t io_tlb_start
, io_tlb_end
;
68 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
69 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
71 static unsigned long io_tlb_nslabs
;
74 * When the IOMMU overflows we return a fallback buffer. This sets the size.
76 static unsigned long io_tlb_overflow
= 32*1024;
78 static phys_addr_t io_tlb_overflow_buffer
;
81 * This is a free list describing the number of free entries available from
84 static unsigned int *io_tlb_list
;
85 static unsigned int io_tlb_index
;
88 * Max segment that we can provide which (if pages are contingous) will
89 * not be bounced (unless SWIOTLB_FORCE is set).
91 unsigned int max_segment
;
94 * We need to save away the original address corresponding to a mapped entry
95 * for the sync operations.
97 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
98 static phys_addr_t
*io_tlb_orig_addr
;
101 * Protect the above data structures in the map and unmap calls
103 static DEFINE_SPINLOCK(io_tlb_lock
);
105 static int late_alloc
;
108 setup_io_tlb_npages(char *str
)
111 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
112 /* avoid tail segment of size < IO_TLB_SEGSIZE */
113 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
117 if (!strcmp(str
, "force")) {
118 swiotlb_force
= SWIOTLB_FORCE
;
119 } else if (!strcmp(str
, "noforce")) {
120 swiotlb_force
= SWIOTLB_NO_FORCE
;
126 early_param("swiotlb", setup_io_tlb_npages
);
127 /* make io_tlb_overflow tunable too? */
129 unsigned long swiotlb_nr_tbl(void)
131 return io_tlb_nslabs
;
133 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
135 unsigned int swiotlb_max_segment(void)
139 EXPORT_SYMBOL_GPL(swiotlb_max_segment
);
141 void swiotlb_set_max_segment(unsigned int val
)
143 if (swiotlb_force
== SWIOTLB_FORCE
)
146 max_segment
= rounddown(val
, PAGE_SIZE
);
149 /* default to 64MB */
150 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
151 unsigned long swiotlb_size_or_default(void)
155 size
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
157 return size
? size
: (IO_TLB_DEFAULT_SIZE
);
160 static bool no_iotlb_memory
;
162 void swiotlb_print_info(void)
164 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
165 unsigned char *vstart
, *vend
;
167 if (no_iotlb_memory
) {
168 pr_warn("software IO TLB: No low mem\n");
172 vstart
= phys_to_virt(io_tlb_start
);
173 vend
= phys_to_virt(io_tlb_end
);
175 printk(KERN_INFO
"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
176 (unsigned long long)io_tlb_start
,
177 (unsigned long long)io_tlb_end
,
178 bytes
>> 20, vstart
, vend
- 1);
182 * Early SWIOTLB allocation may be too early to allow an architecture to
183 * perform the desired operations. This function allows the architecture to
184 * call SWIOTLB when the operations are possible. It needs to be called
185 * before the SWIOTLB memory is used.
187 void __init
swiotlb_update_mem_attributes(void)
192 if (no_iotlb_memory
|| late_alloc
)
195 vaddr
= phys_to_virt(io_tlb_start
);
196 bytes
= PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
);
197 set_memory_decrypted((unsigned long)vaddr
, bytes
>> PAGE_SHIFT
);
198 memset(vaddr
, 0, bytes
);
200 vaddr
= phys_to_virt(io_tlb_overflow_buffer
);
201 bytes
= PAGE_ALIGN(io_tlb_overflow
);
202 set_memory_decrypted((unsigned long)vaddr
, bytes
>> PAGE_SHIFT
);
203 memset(vaddr
, 0, bytes
);
206 int __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
208 void *v_overflow_buffer
;
209 unsigned long i
, bytes
;
211 bytes
= nslabs
<< IO_TLB_SHIFT
;
213 io_tlb_nslabs
= nslabs
;
214 io_tlb_start
= __pa(tlb
);
215 io_tlb_end
= io_tlb_start
+ bytes
;
218 * Get the overflow emergency buffer
220 v_overflow_buffer
= memblock_virt_alloc_low_nopanic(
221 PAGE_ALIGN(io_tlb_overflow
),
223 if (!v_overflow_buffer
)
226 io_tlb_overflow_buffer
= __pa(v_overflow_buffer
);
229 * Allocate and initialize the free list array. This array is used
230 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
231 * between io_tlb_start and io_tlb_end.
233 io_tlb_list
= memblock_virt_alloc(
234 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)),
236 io_tlb_orig_addr
= memblock_virt_alloc(
237 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)),
239 for (i
= 0; i
< io_tlb_nslabs
; i
++) {
240 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
241 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
246 swiotlb_print_info();
248 swiotlb_set_max_segment(io_tlb_nslabs
<< IO_TLB_SHIFT
);
253 * Statically reserve bounce buffer space and initialize bounce buffer data
254 * structures for the software IO TLB used to implement the DMA API.
257 swiotlb_init(int verbose
)
259 size_t default_size
= IO_TLB_DEFAULT_SIZE
;
260 unsigned char *vstart
;
263 if (!io_tlb_nslabs
) {
264 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
265 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
268 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
270 /* Get IO TLB memory from the low pages */
271 vstart
= memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes
), PAGE_SIZE
);
272 if (vstart
&& !swiotlb_init_with_tbl(vstart
, io_tlb_nslabs
, verbose
))
276 memblock_free_early(io_tlb_start
,
277 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
278 pr_warn("Cannot allocate SWIOTLB buffer");
279 no_iotlb_memory
= true;
283 * Systems with larger DMA zones (those that don't support ISA) can
284 * initialize the swiotlb later using the slab allocator if needed.
285 * This should be just like above, but with some error catching.
288 swiotlb_late_init_with_default_size(size_t default_size
)
290 unsigned long bytes
, req_nslabs
= io_tlb_nslabs
;
291 unsigned char *vstart
= NULL
;
295 if (!io_tlb_nslabs
) {
296 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
297 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
301 * Get IO TLB memory from the low pages
303 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
304 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
305 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
307 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
308 vstart
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
316 io_tlb_nslabs
= req_nslabs
;
319 if (order
!= get_order(bytes
)) {
320 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
321 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
322 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
324 rc
= swiotlb_late_init_with_tbl(vstart
, io_tlb_nslabs
);
326 free_pages((unsigned long)vstart
, order
);
332 swiotlb_late_init_with_tbl(char *tlb
, unsigned long nslabs
)
334 unsigned long i
, bytes
;
335 unsigned char *v_overflow_buffer
;
337 bytes
= nslabs
<< IO_TLB_SHIFT
;
339 io_tlb_nslabs
= nslabs
;
340 io_tlb_start
= virt_to_phys(tlb
);
341 io_tlb_end
= io_tlb_start
+ bytes
;
343 set_memory_decrypted((unsigned long)tlb
, bytes
>> PAGE_SHIFT
);
344 memset(tlb
, 0, bytes
);
347 * Get the overflow emergency buffer
349 v_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
350 get_order(io_tlb_overflow
));
351 if (!v_overflow_buffer
)
354 set_memory_decrypted((unsigned long)v_overflow_buffer
,
355 io_tlb_overflow
>> PAGE_SHIFT
);
356 memset(v_overflow_buffer
, 0, io_tlb_overflow
);
357 io_tlb_overflow_buffer
= virt_to_phys(v_overflow_buffer
);
360 * Allocate and initialize the free list array. This array is used
361 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
362 * between io_tlb_start and io_tlb_end.
364 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
365 get_order(io_tlb_nslabs
* sizeof(int)));
369 io_tlb_orig_addr
= (phys_addr_t
*)
370 __get_free_pages(GFP_KERNEL
,
371 get_order(io_tlb_nslabs
*
372 sizeof(phys_addr_t
)));
373 if (!io_tlb_orig_addr
)
376 for (i
= 0; i
< io_tlb_nslabs
; i
++) {
377 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
378 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
382 swiotlb_print_info();
386 swiotlb_set_max_segment(io_tlb_nslabs
<< IO_TLB_SHIFT
);
391 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
395 free_pages((unsigned long)v_overflow_buffer
,
396 get_order(io_tlb_overflow
));
397 io_tlb_overflow_buffer
= 0;
406 void __init
swiotlb_exit(void)
408 if (!io_tlb_orig_addr
)
412 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer
),
413 get_order(io_tlb_overflow
));
414 free_pages((unsigned long)io_tlb_orig_addr
,
415 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
416 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
418 free_pages((unsigned long)phys_to_virt(io_tlb_start
),
419 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
421 memblock_free_late(io_tlb_overflow_buffer
,
422 PAGE_ALIGN(io_tlb_overflow
));
423 memblock_free_late(__pa(io_tlb_orig_addr
),
424 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
425 memblock_free_late(__pa(io_tlb_list
),
426 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
427 memblock_free_late(io_tlb_start
,
428 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
434 int is_swiotlb_buffer(phys_addr_t paddr
)
436 return paddr
>= io_tlb_start
&& paddr
< io_tlb_end
;
440 * Bounce: copy the swiotlb buffer back to the original dma location
442 static void swiotlb_bounce(phys_addr_t orig_addr
, phys_addr_t tlb_addr
,
443 size_t size
, enum dma_data_direction dir
)
445 unsigned long pfn
= PFN_DOWN(orig_addr
);
446 unsigned char *vaddr
= phys_to_virt(tlb_addr
);
448 if (PageHighMem(pfn_to_page(pfn
))) {
449 /* The buffer does not have a mapping. Map it in and copy */
450 unsigned int offset
= orig_addr
& ~PAGE_MASK
;
456 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
458 local_irq_save(flags
);
459 buffer
= kmap_atomic(pfn_to_page(pfn
));
460 if (dir
== DMA_TO_DEVICE
)
461 memcpy(vaddr
, buffer
+ offset
, sz
);
463 memcpy(buffer
+ offset
, vaddr
, sz
);
464 kunmap_atomic(buffer
);
465 local_irq_restore(flags
);
472 } else if (dir
== DMA_TO_DEVICE
) {
473 memcpy(vaddr
, phys_to_virt(orig_addr
), size
);
475 memcpy(phys_to_virt(orig_addr
), vaddr
, size
);
479 phys_addr_t
swiotlb_tbl_map_single(struct device
*hwdev
,
480 dma_addr_t tbl_dma_addr
,
481 phys_addr_t orig_addr
, size_t size
,
482 enum dma_data_direction dir
,
486 phys_addr_t tlb_addr
;
487 unsigned int nslots
, stride
, index
, wrap
;
490 unsigned long offset_slots
;
491 unsigned long max_slots
;
494 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
496 if (mem_encrypt_active())
497 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
498 sme_active() ? "SME" : "SEV");
500 mask
= dma_get_seg_boundary(hwdev
);
502 tbl_dma_addr
&= mask
;
504 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
507 * Carefully handle integer overflow which can occur when mask == ~0UL.
510 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
511 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
514 * For mappings greater than or equal to a page, we limit the stride
515 * (and hence alignment) to a page size.
517 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
518 if (size
>= PAGE_SIZE
)
519 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
526 * Find suitable number of IO TLB entries size that will fit this
527 * request and allocate a buffer from that IO TLB pool.
529 spin_lock_irqsave(&io_tlb_lock
, flags
);
530 index
= ALIGN(io_tlb_index
, stride
);
531 if (index
>= io_tlb_nslabs
)
536 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
539 if (index
>= io_tlb_nslabs
)
546 * If we find a slot that indicates we have 'nslots' number of
547 * contiguous buffers, we allocate the buffers from that slot
548 * and mark the entries as '0' indicating unavailable.
550 if (io_tlb_list
[index
] >= nslots
) {
553 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
555 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
556 io_tlb_list
[i
] = ++count
;
557 tlb_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
560 * Update the indices to avoid searching in the next
563 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
564 ? (index
+ nslots
) : 0);
569 if (index
>= io_tlb_nslabs
)
571 } while (index
!= wrap
);
574 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
575 if (!(attrs
& DMA_ATTR_NO_WARN
) && printk_ratelimit())
576 dev_warn(hwdev
, "swiotlb buffer is full (sz: %zd bytes)\n", size
);
577 return SWIOTLB_MAP_ERROR
;
579 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
582 * Save away the mapping from the original address to the DMA address.
583 * This is needed when we sync the memory. Then we sync the buffer if
586 for (i
= 0; i
< nslots
; i
++)
587 io_tlb_orig_addr
[index
+i
] = orig_addr
+ (i
<< IO_TLB_SHIFT
);
588 if (!(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
589 (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
590 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_TO_DEVICE
);
596 * Allocates bounce buffer and returns its kernel virtual address.
600 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
601 enum dma_data_direction dir
, unsigned long attrs
)
603 dma_addr_t start_dma_addr
;
605 if (swiotlb_force
== SWIOTLB_NO_FORCE
) {
606 dev_warn_ratelimited(hwdev
, "Cannot do DMA to address %pa\n",
608 return SWIOTLB_MAP_ERROR
;
611 start_dma_addr
= __phys_to_dma(hwdev
, io_tlb_start
);
612 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
,
617 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
619 void swiotlb_tbl_unmap_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
620 size_t size
, enum dma_data_direction dir
,
624 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
625 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
626 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
629 * First, sync the memory before unmapping the entry
631 if (orig_addr
!= INVALID_PHYS_ADDR
&&
632 !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
633 ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
634 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_FROM_DEVICE
);
637 * Return the buffer to the free list by setting the corresponding
638 * entries to indicate the number of contiguous entries available.
639 * While returning the entries to the free list, we merge the entries
640 * with slots below and above the pool being returned.
642 spin_lock_irqsave(&io_tlb_lock
, flags
);
644 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
645 io_tlb_list
[index
+ nslots
] : 0);
647 * Step 1: return the slots to the free list, merging the
648 * slots with superceeding slots
650 for (i
= index
+ nslots
- 1; i
>= index
; i
--) {
651 io_tlb_list
[i
] = ++count
;
652 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
655 * Step 2: merge the returned slots with the preceding slots,
656 * if available (non zero)
658 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
659 io_tlb_list
[i
] = ++count
;
661 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
664 void swiotlb_tbl_sync_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
665 size_t size
, enum dma_data_direction dir
,
666 enum dma_sync_target target
)
668 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
669 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
671 if (orig_addr
== INVALID_PHYS_ADDR
)
673 orig_addr
+= (unsigned long)tlb_addr
& ((1 << IO_TLB_SHIFT
) - 1);
677 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
678 swiotlb_bounce(orig_addr
, tlb_addr
,
679 size
, DMA_FROM_DEVICE
);
681 BUG_ON(dir
!= DMA_TO_DEVICE
);
683 case SYNC_FOR_DEVICE
:
684 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
685 swiotlb_bounce(orig_addr
, tlb_addr
,
686 size
, DMA_TO_DEVICE
);
688 BUG_ON(dir
!= DMA_FROM_DEVICE
);
695 #ifdef CONFIG_DMA_DIRECT_OPS
696 static inline bool dma_coherent_ok(struct device
*dev
, dma_addr_t addr
,
699 u64 mask
= DMA_BIT_MASK(32);
701 if (dev
&& dev
->coherent_dma_mask
)
702 mask
= dev
->coherent_dma_mask
;
703 return addr
+ size
- 1 <= mask
;
707 swiotlb_alloc_buffer(struct device
*dev
, size_t size
, dma_addr_t
*dma_handle
,
710 phys_addr_t phys_addr
;
712 if (swiotlb_force
== SWIOTLB_NO_FORCE
)
715 phys_addr
= swiotlb_tbl_map_single(dev
,
716 __phys_to_dma(dev
, io_tlb_start
),
717 0, size
, DMA_FROM_DEVICE
, attrs
);
718 if (phys_addr
== SWIOTLB_MAP_ERROR
)
721 *dma_handle
= __phys_to_dma(dev
, phys_addr
);
722 if (!dma_coherent_ok(dev
, *dma_handle
, size
))
725 memset(phys_to_virt(phys_addr
), 0, size
);
726 return phys_to_virt(phys_addr
);
729 dev_warn(dev
, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
730 (unsigned long long)(dev
? dev
->coherent_dma_mask
: 0),
731 (unsigned long long)*dma_handle
);
734 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
735 * DMA_ATTR_SKIP_CPU_SYNC is optional.
737 swiotlb_tbl_unmap_single(dev
, phys_addr
, size
, DMA_TO_DEVICE
,
738 DMA_ATTR_SKIP_CPU_SYNC
);
740 if (!(attrs
& DMA_ATTR_NO_WARN
) && printk_ratelimit()) {
742 "swiotlb: coherent allocation failed, size=%zu\n",
749 static bool swiotlb_free_buffer(struct device
*dev
, size_t size
,
752 phys_addr_t phys_addr
= dma_to_phys(dev
, dma_addr
);
754 WARN_ON_ONCE(irqs_disabled());
756 if (!is_swiotlb_buffer(phys_addr
))
760 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
761 * DMA_ATTR_SKIP_CPU_SYNC is optional.
763 swiotlb_tbl_unmap_single(dev
, phys_addr
, size
, DMA_TO_DEVICE
,
764 DMA_ATTR_SKIP_CPU_SYNC
);
770 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
773 if (swiotlb_force
== SWIOTLB_NO_FORCE
)
777 * Ran out of IOMMU space for this operation. This is very bad.
778 * Unfortunately the drivers cannot handle this operation properly.
779 * unless they check for dma_mapping_error (most don't)
780 * When the mapping is small enough return a static buffer to limit
781 * the damage, or panic when the transfer is too big.
783 dev_err_ratelimited(dev
, "DMA: Out of SW-IOMMU space for %zu bytes\n",
786 if (size
<= io_tlb_overflow
|| !do_panic
)
789 if (dir
== DMA_BIDIRECTIONAL
)
790 panic("DMA: Random memory could be DMA accessed\n");
791 if (dir
== DMA_FROM_DEVICE
)
792 panic("DMA: Random memory could be DMA written\n");
793 if (dir
== DMA_TO_DEVICE
)
794 panic("DMA: Random memory could be DMA read\n");
798 * Map a single buffer of the indicated size for DMA in streaming mode. The
799 * physical address to use is returned.
801 * Once the device is given the dma address, the device owns this memory until
802 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
804 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
805 unsigned long offset
, size_t size
,
806 enum dma_data_direction dir
,
809 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
810 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
812 BUG_ON(dir
== DMA_NONE
);
814 * If the address happens to be in the device's DMA window,
815 * we can safely return the device addr and not worry about bounce
818 if (dma_capable(dev
, dev_addr
, size
) && swiotlb_force
!= SWIOTLB_FORCE
)
821 trace_swiotlb_bounced(dev
, dev_addr
, size
, swiotlb_force
);
823 /* Oh well, have to allocate and map a bounce buffer. */
824 map
= map_single(dev
, phys
, size
, dir
, attrs
);
825 if (map
== SWIOTLB_MAP_ERROR
) {
826 swiotlb_full(dev
, size
, dir
, 1);
827 return __phys_to_dma(dev
, io_tlb_overflow_buffer
);
830 dev_addr
= __phys_to_dma(dev
, map
);
832 /* Ensure that the address returned is DMA'ble */
833 if (dma_capable(dev
, dev_addr
, size
))
836 attrs
|= DMA_ATTR_SKIP_CPU_SYNC
;
837 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
, attrs
);
839 return __phys_to_dma(dev
, io_tlb_overflow_buffer
);
843 * Unmap a single streaming mode DMA translation. The dma_addr and size must
844 * match what was provided for in a previous swiotlb_map_page call. All
845 * other usages are undefined.
847 * After this call, reads by the cpu to the buffer are guaranteed to see
848 * whatever the device wrote there.
850 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
851 size_t size
, enum dma_data_direction dir
,
854 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
856 BUG_ON(dir
== DMA_NONE
);
858 if (is_swiotlb_buffer(paddr
)) {
859 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
, attrs
);
863 if (dir
!= DMA_FROM_DEVICE
)
867 * phys_to_virt doesn't work with hihgmem page but we could
868 * call dma_mark_clean() with hihgmem page here. However, we
869 * are fine since dma_mark_clean() is null on POWERPC. We can
870 * make dma_mark_clean() take a physical address if necessary.
872 dma_mark_clean(phys_to_virt(paddr
), size
);
875 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
876 size_t size
, enum dma_data_direction dir
,
879 unmap_single(hwdev
, dev_addr
, size
, dir
, attrs
);
883 * Make physical memory consistent for a single streaming mode DMA translation
886 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
887 * using the cpu, yet do not wish to teardown the dma mapping, you must
888 * call this function before doing so. At the next point you give the dma
889 * address back to the card, you must first perform a
890 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
893 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
894 size_t size
, enum dma_data_direction dir
,
895 enum dma_sync_target target
)
897 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
899 BUG_ON(dir
== DMA_NONE
);
901 if (is_swiotlb_buffer(paddr
)) {
902 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
906 if (dir
!= DMA_FROM_DEVICE
)
909 dma_mark_clean(phys_to_virt(paddr
), size
);
913 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
914 size_t size
, enum dma_data_direction dir
)
916 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
920 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
921 size_t size
, enum dma_data_direction dir
)
923 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
927 * Map a set of buffers described by scatterlist in streaming mode for DMA.
928 * This is the scatter-gather version of the above swiotlb_map_page
929 * interface. Here the scatter gather list elements are each tagged with the
930 * appropriate dma address and length. They are obtained via
931 * sg_dma_{address,length}(SG).
933 * NOTE: An implementation may be able to use a smaller number of
934 * DMA address/length pairs than there are SG table elements.
935 * (for example via virtual mapping capabilities)
936 * The routine returns the number of addr/length pairs actually
937 * used, at most nents.
939 * Device ownership issues as mentioned above for swiotlb_map_page are the
943 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
944 enum dma_data_direction dir
, unsigned long attrs
)
946 struct scatterlist
*sg
;
949 BUG_ON(dir
== DMA_NONE
);
951 for_each_sg(sgl
, sg
, nelems
, i
) {
952 phys_addr_t paddr
= sg_phys(sg
);
953 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
955 if (swiotlb_force
== SWIOTLB_FORCE
||
956 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
957 phys_addr_t map
= map_single(hwdev
, sg_phys(sg
),
958 sg
->length
, dir
, attrs
);
959 if (map
== SWIOTLB_MAP_ERROR
) {
960 /* Don't panic here, we expect map_sg users
961 to do proper error handling. */
962 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
963 attrs
|= DMA_ATTR_SKIP_CPU_SYNC
;
964 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
969 sg
->dma_address
= __phys_to_dma(hwdev
, map
);
971 sg
->dma_address
= dev_addr
;
972 sg_dma_len(sg
) = sg
->length
;
978 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
979 * concerning calls here are the same as for swiotlb_unmap_page() above.
982 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
983 int nelems
, enum dma_data_direction dir
,
986 struct scatterlist
*sg
;
989 BUG_ON(dir
== DMA_NONE
);
991 for_each_sg(sgl
, sg
, nelems
, i
)
992 unmap_single(hwdev
, sg
->dma_address
, sg_dma_len(sg
), dir
,
997 * Make physical memory consistent for a set of streaming mode DMA translations
1000 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1004 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
1005 int nelems
, enum dma_data_direction dir
,
1006 enum dma_sync_target target
)
1008 struct scatterlist
*sg
;
1011 for_each_sg(sgl
, sg
, nelems
, i
)
1012 swiotlb_sync_single(hwdev
, sg
->dma_address
,
1013 sg_dma_len(sg
), dir
, target
);
1017 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
1018 int nelems
, enum dma_data_direction dir
)
1020 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
1024 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
1025 int nelems
, enum dma_data_direction dir
)
1027 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
1031 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
1033 return (dma_addr
== __phys_to_dma(hwdev
, io_tlb_overflow_buffer
));
1037 * Return whether the given device DMA address mask can be supported
1038 * properly. For example, if your device can only drive the low 24-bits
1039 * during bus mastering, then you would pass 0x00ffffff as the mask to
1043 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
1045 return __phys_to_dma(hwdev
, io_tlb_end
- 1) <= mask
;
1048 #ifdef CONFIG_DMA_DIRECT_OPS
1049 void *swiotlb_alloc(struct device
*dev
, size_t size
, dma_addr_t
*dma_handle
,
1050 gfp_t gfp
, unsigned long attrs
)
1054 /* temporary workaround: */
1055 if (gfp
& __GFP_NOWARN
)
1056 attrs
|= DMA_ATTR_NO_WARN
;
1059 * Don't print a warning when the first allocation attempt fails.
1060 * swiotlb_alloc_coherent() will print a warning when the DMA memory
1061 * allocation ultimately failed.
1063 gfp
|= __GFP_NOWARN
;
1065 vaddr
= dma_direct_alloc(dev
, size
, dma_handle
, gfp
, attrs
);
1067 vaddr
= swiotlb_alloc_buffer(dev
, size
, dma_handle
, attrs
);
1071 void swiotlb_free(struct device
*dev
, size_t size
, void *vaddr
,
1072 dma_addr_t dma_addr
, unsigned long attrs
)
1074 if (!swiotlb_free_buffer(dev
, size
, dma_addr
))
1075 dma_direct_free(dev
, size
, vaddr
, dma_addr
, attrs
);
1078 const struct dma_map_ops swiotlb_dma_ops
= {
1079 .mapping_error
= swiotlb_dma_mapping_error
,
1080 .alloc
= swiotlb_alloc
,
1081 .free
= swiotlb_free
,
1082 .sync_single_for_cpu
= swiotlb_sync_single_for_cpu
,
1083 .sync_single_for_device
= swiotlb_sync_single_for_device
,
1084 .sync_sg_for_cpu
= swiotlb_sync_sg_for_cpu
,
1085 .sync_sg_for_device
= swiotlb_sync_sg_for_device
,
1086 .map_sg
= swiotlb_map_sg_attrs
,
1087 .unmap_sg
= swiotlb_unmap_sg_attrs
,
1088 .map_page
= swiotlb_map_page
,
1089 .unmap_page
= swiotlb_unmap_page
,
1090 .dma_supported
= dma_direct_supported
,
1092 #endif /* CONFIG_DMA_DIRECT_OPS */