2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/dax.h>
12 #include <linux/gfp.h>
13 #include <linux/export.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22 #include <linux/blk-cgroup.h>
27 * Initialise a struct file's readahead state. Assumes that the caller has
31 file_ra_state_init(struct file_ra_state
*ra
, struct address_space
*mapping
)
33 ra
->ra_pages
= inode_to_bdi(mapping
->host
)->ra_pages
;
36 EXPORT_SYMBOL_GPL(file_ra_state_init
);
39 * see if a page needs releasing upon read_cache_pages() failure
40 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
41 * before calling, such as the NFS fs marking pages that are cached locally
42 * on disk, thus we need to give the fs a chance to clean up in the event of
45 static void read_cache_pages_invalidate_page(struct address_space
*mapping
,
48 if (page_has_private(page
)) {
49 if (!trylock_page(page
))
51 page
->mapping
= mapping
;
52 do_invalidatepage(page
, 0, PAGE_SIZE
);
60 * release a list of pages, invalidating them first if need be
62 static void read_cache_pages_invalidate_pages(struct address_space
*mapping
,
63 struct list_head
*pages
)
67 while (!list_empty(pages
)) {
68 victim
= lru_to_page(pages
);
69 list_del(&victim
->lru
);
70 read_cache_pages_invalidate_page(mapping
, victim
);
75 * read_cache_pages - populate an address space with some pages & start reads against them
76 * @mapping: the address_space
77 * @pages: The address of a list_head which contains the target pages. These
78 * pages have their ->index populated and are otherwise uninitialised.
79 * @filler: callback routine for filling a single page.
80 * @data: private data for the callback routine.
82 * Hides the details of the LRU cache etc from the filesystems.
84 int read_cache_pages(struct address_space
*mapping
, struct list_head
*pages
,
85 int (*filler
)(void *, struct page
*), void *data
)
90 while (!list_empty(pages
)) {
91 page
= lru_to_page(pages
);
93 if (add_to_page_cache_lru(page
, mapping
, page
->index
,
94 readahead_gfp_mask(mapping
))) {
95 read_cache_pages_invalidate_page(mapping
, page
);
100 ret
= filler(data
, page
);
102 read_cache_pages_invalidate_pages(mapping
, pages
);
105 task_io_account_read(PAGE_SIZE
);
110 EXPORT_SYMBOL(read_cache_pages
);
112 static int read_pages(struct address_space
*mapping
, struct file
*filp
,
113 struct list_head
*pages
, unsigned int nr_pages
, gfp_t gfp
)
115 struct blk_plug plug
;
119 blk_start_plug(&plug
);
121 if (mapping
->a_ops
->readpages
) {
122 ret
= mapping
->a_ops
->readpages(filp
, mapping
, pages
, nr_pages
);
123 /* Clean up the remaining pages */
124 put_pages_list(pages
);
128 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
129 struct page
*page
= lru_to_page(pages
);
130 list_del(&page
->lru
);
131 if (!add_to_page_cache_lru(page
, mapping
, page
->index
, gfp
))
132 mapping
->a_ops
->readpage(filp
, page
);
138 blk_finish_plug(&plug
);
144 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates
145 * the pages first, then submits them for I/O. This avoids the very bad
146 * behaviour which would occur if page allocations are causing VM writeback.
147 * We really don't want to intermingle reads and writes like that.
149 * Returns the number of pages requested, or the maximum amount of I/O allowed.
151 unsigned int __do_page_cache_readahead(struct address_space
*mapping
,
152 struct file
*filp
, pgoff_t offset
, unsigned long nr_to_read
,
153 unsigned long lookahead_size
)
155 struct inode
*inode
= mapping
->host
;
157 unsigned long end_index
; /* The last page we want to read */
158 LIST_HEAD(page_pool
);
160 unsigned int nr_pages
= 0;
161 loff_t isize
= i_size_read(inode
);
162 gfp_t gfp_mask
= readahead_gfp_mask(mapping
);
167 end_index
= ((isize
- 1) >> PAGE_SHIFT
);
170 * Preallocate as many pages as we will need.
172 for (page_idx
= 0; page_idx
< nr_to_read
; page_idx
++) {
173 pgoff_t page_offset
= offset
+ page_idx
;
175 if (page_offset
> end_index
)
179 page
= radix_tree_lookup(&mapping
->i_pages
, page_offset
);
181 if (page
&& !radix_tree_exceptional_entry(page
)) {
183 * Page already present? Kick off the current batch of
184 * contiguous pages before continuing with the next
188 read_pages(mapping
, filp
, &page_pool
, nr_pages
,
194 page
= __page_cache_alloc(gfp_mask
);
197 page
->index
= page_offset
;
198 list_add(&page
->lru
, &page_pool
);
199 if (page_idx
== nr_to_read
- lookahead_size
)
200 SetPageReadahead(page
);
205 * Now start the IO. We ignore I/O errors - if the page is not
206 * uptodate then the caller will launch readpage again, and
207 * will then handle the error.
210 read_pages(mapping
, filp
, &page_pool
, nr_pages
, gfp_mask
);
211 BUG_ON(!list_empty(&page_pool
));
217 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
220 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
221 pgoff_t offset
, unsigned long nr_to_read
)
223 struct backing_dev_info
*bdi
= inode_to_bdi(mapping
->host
);
224 struct file_ra_state
*ra
= &filp
->f_ra
;
225 unsigned long max_pages
;
227 if (unlikely(!mapping
->a_ops
->readpage
&& !mapping
->a_ops
->readpages
))
231 * If the request exceeds the readahead window, allow the read to
232 * be up to the optimal hardware IO size
234 max_pages
= max_t(unsigned long, bdi
->io_pages
, ra
->ra_pages
);
235 nr_to_read
= min(nr_to_read
, max_pages
);
237 unsigned long this_chunk
= (2 * 1024 * 1024) / PAGE_SIZE
;
239 if (this_chunk
> nr_to_read
)
240 this_chunk
= nr_to_read
;
241 __do_page_cache_readahead(mapping
, filp
, offset
, this_chunk
, 0);
243 offset
+= this_chunk
;
244 nr_to_read
-= this_chunk
;
250 * Set the initial window size, round to next power of 2 and square
251 * for small size, x 4 for medium, and x 2 for large
252 * for 128k (32 page) max ra
253 * 1-8 page = 32k initial, > 8 page = 128k initial
255 static unsigned long get_init_ra_size(unsigned long size
, unsigned long max
)
257 unsigned long newsize
= roundup_pow_of_two(size
);
259 if (newsize
<= max
/ 32)
260 newsize
= newsize
* 4;
261 else if (newsize
<= max
/ 4)
262 newsize
= newsize
* 2;
270 * Get the previous window size, ramp it up, and
271 * return it as the new window size.
273 static unsigned long get_next_ra_size(struct file_ra_state
*ra
,
276 unsigned long cur
= ra
->size
;
277 unsigned long newsize
;
284 return min(newsize
, max
);
288 * On-demand readahead design.
290 * The fields in struct file_ra_state represent the most-recently-executed
293 * |<----- async_size ---------|
294 * |------------------- size -------------------->|
295 * |==================#===========================|
296 * ^start ^page marked with PG_readahead
298 * To overlap application thinking time and disk I/O time, we do
299 * `readahead pipelining': Do not wait until the application consumed all
300 * readahead pages and stalled on the missing page at readahead_index;
301 * Instead, submit an asynchronous readahead I/O as soon as there are
302 * only async_size pages left in the readahead window. Normally async_size
303 * will be equal to size, for maximum pipelining.
305 * In interleaved sequential reads, concurrent streams on the same fd can
306 * be invalidating each other's readahead state. So we flag the new readahead
307 * page at (start+size-async_size) with PG_readahead, and use it as readahead
308 * indicator. The flag won't be set on already cached pages, to avoid the
309 * readahead-for-nothing fuss, saving pointless page cache lookups.
311 * prev_pos tracks the last visited byte in the _previous_ read request.
312 * It should be maintained by the caller, and will be used for detecting
313 * small random reads. Note that the readahead algorithm checks loosely
314 * for sequential patterns. Hence interleaved reads might be served as
317 * There is a special-case: if the first page which the application tries to
318 * read happens to be the first page of the file, it is assumed that a linear
319 * read is about to happen and the window is immediately set to the initial size
320 * based on I/O request size and the max_readahead.
322 * The code ramps up the readahead size aggressively at first, but slow down as
323 * it approaches max_readhead.
327 * Count contiguously cached pages from @offset-1 to @offset-@max,
328 * this count is a conservative estimation of
329 * - length of the sequential read sequence, or
330 * - thrashing threshold in memory tight systems
332 static pgoff_t
count_history_pages(struct address_space
*mapping
,
333 pgoff_t offset
, unsigned long max
)
338 head
= page_cache_prev_hole(mapping
, offset
- 1, max
);
341 return offset
- 1 - head
;
345 * page cache context based read-ahead
347 static int try_context_readahead(struct address_space
*mapping
,
348 struct file_ra_state
*ra
,
350 unsigned long req_size
,
355 size
= count_history_pages(mapping
, offset
, max
);
358 * not enough history pages:
359 * it could be a random read
361 if (size
<= req_size
)
365 * starts from beginning of file:
366 * it is a strong indication of long-run stream (or whole-file-read)
372 ra
->size
= min(size
+ req_size
, max
);
379 * A minimal readahead algorithm for trivial sequential/random reads.
382 ondemand_readahead(struct address_space
*mapping
,
383 struct file_ra_state
*ra
, struct file
*filp
,
384 bool hit_readahead_marker
, pgoff_t offset
,
385 unsigned long req_size
)
387 struct backing_dev_info
*bdi
= inode_to_bdi(mapping
->host
);
388 unsigned long max_pages
= ra
->ra_pages
;
389 unsigned long add_pages
;
393 * If the request exceeds the readahead window, allow the read to
394 * be up to the optimal hardware IO size
396 if (req_size
> max_pages
&& bdi
->io_pages
> max_pages
)
397 max_pages
= min(req_size
, bdi
->io_pages
);
403 goto initial_readahead
;
406 * It's the expected callback offset, assume sequential access.
407 * Ramp up sizes, and push forward the readahead window.
409 if ((offset
== (ra
->start
+ ra
->size
- ra
->async_size
) ||
410 offset
== (ra
->start
+ ra
->size
))) {
411 ra
->start
+= ra
->size
;
412 ra
->size
= get_next_ra_size(ra
, max_pages
);
413 ra
->async_size
= ra
->size
;
418 * Hit a marked page without valid readahead state.
419 * E.g. interleaved reads.
420 * Query the pagecache for async_size, which normally equals to
421 * readahead size. Ramp it up and use it as the new readahead size.
423 if (hit_readahead_marker
) {
427 start
= page_cache_next_hole(mapping
, offset
+ 1, max_pages
);
430 if (!start
|| start
- offset
> max_pages
)
434 ra
->size
= start
- offset
; /* old async_size */
435 ra
->size
+= req_size
;
436 ra
->size
= get_next_ra_size(ra
, max_pages
);
437 ra
->async_size
= ra
->size
;
444 if (req_size
> max_pages
)
445 goto initial_readahead
;
448 * sequential cache miss
449 * trivial case: (offset - prev_offset) == 1
450 * unaligned reads: (offset - prev_offset) == 0
452 prev_offset
= (unsigned long long)ra
->prev_pos
>> PAGE_SHIFT
;
453 if (offset
- prev_offset
<= 1UL)
454 goto initial_readahead
;
457 * Query the page cache and look for the traces(cached history pages)
458 * that a sequential stream would leave behind.
460 if (try_context_readahead(mapping
, ra
, offset
, req_size
, max_pages
))
464 * standalone, small random read
465 * Read as is, and do not pollute the readahead state.
467 return __do_page_cache_readahead(mapping
, filp
, offset
, req_size
, 0);
471 ra
->size
= get_init_ra_size(req_size
, max_pages
);
472 ra
->async_size
= ra
->size
> req_size
? ra
->size
- req_size
: ra
->size
;
476 * Will this read hit the readahead marker made by itself?
477 * If so, trigger the readahead marker hit now, and merge
478 * the resulted next readahead window into the current one.
479 * Take care of maximum IO pages as above.
481 if (offset
== ra
->start
&& ra
->size
== ra
->async_size
) {
482 add_pages
= get_next_ra_size(ra
, max_pages
);
483 if (ra
->size
+ add_pages
<= max_pages
) {
484 ra
->async_size
= add_pages
;
485 ra
->size
+= add_pages
;
487 ra
->size
= max_pages
;
488 ra
->async_size
= max_pages
>> 1;
492 return ra_submit(ra
, mapping
, filp
);
496 * page_cache_sync_readahead - generic file readahead
497 * @mapping: address_space which holds the pagecache and I/O vectors
498 * @ra: file_ra_state which holds the readahead state
499 * @filp: passed on to ->readpage() and ->readpages()
500 * @offset: start offset into @mapping, in pagecache page-sized units
501 * @req_size: hint: total size of the read which the caller is performing in
504 * page_cache_sync_readahead() should be called when a cache miss happened:
505 * it will submit the read. The readahead logic may decide to piggyback more
506 * pages onto the read request if access patterns suggest it will improve
509 void page_cache_sync_readahead(struct address_space
*mapping
,
510 struct file_ra_state
*ra
, struct file
*filp
,
511 pgoff_t offset
, unsigned long req_size
)
517 if (blk_cgroup_congested())
521 if (filp
&& (filp
->f_mode
& FMODE_RANDOM
)) {
522 force_page_cache_readahead(mapping
, filp
, offset
, req_size
);
527 ondemand_readahead(mapping
, ra
, filp
, false, offset
, req_size
);
529 EXPORT_SYMBOL_GPL(page_cache_sync_readahead
);
532 * page_cache_async_readahead - file readahead for marked pages
533 * @mapping: address_space which holds the pagecache and I/O vectors
534 * @ra: file_ra_state which holds the readahead state
535 * @filp: passed on to ->readpage() and ->readpages()
536 * @page: the page at @offset which has the PG_readahead flag set
537 * @offset: start offset into @mapping, in pagecache page-sized units
538 * @req_size: hint: total size of the read which the caller is performing in
541 * page_cache_async_readahead() should be called when a page is used which
542 * has the PG_readahead flag; this is a marker to suggest that the application
543 * has used up enough of the readahead window that we should start pulling in
547 page_cache_async_readahead(struct address_space
*mapping
,
548 struct file_ra_state
*ra
, struct file
*filp
,
549 struct page
*page
, pgoff_t offset
,
550 unsigned long req_size
)
557 * Same bit is used for PG_readahead and PG_reclaim.
559 if (PageWriteback(page
))
562 ClearPageReadahead(page
);
565 * Defer asynchronous read-ahead on IO congestion.
567 if (inode_read_congested(mapping
->host
))
570 if (blk_cgroup_congested())
574 ondemand_readahead(mapping
, ra
, filp
, true, offset
, req_size
);
576 EXPORT_SYMBOL_GPL(page_cache_async_readahead
);
579 do_readahead(struct address_space
*mapping
, struct file
*filp
,
580 pgoff_t index
, unsigned long nr
)
582 if (!mapping
|| !mapping
->a_ops
)
586 * Readahead doesn't make sense for DAX inodes, but we don't want it
587 * to report a failure either. Instead, we just return success and
590 if (dax_mapping(mapping
))
593 return force_page_cache_readahead(mapping
, filp
, index
, nr
);
596 ssize_t
ksys_readahead(int fd
, loff_t offset
, size_t count
)
604 if (f
.file
->f_mode
& FMODE_READ
) {
605 struct address_space
*mapping
= f
.file
->f_mapping
;
606 pgoff_t start
= offset
>> PAGE_SHIFT
;
607 pgoff_t end
= (offset
+ count
- 1) >> PAGE_SHIFT
;
608 unsigned long len
= end
- start
+ 1;
609 ret
= do_readahead(mapping
, f
.file
, start
, len
);
616 SYSCALL_DEFINE3(readahead
, int, fd
, loff_t
, offset
, size_t, count
)
618 return ksys_readahead(fd
, offset
, count
);