target: Add emulation for MODE SELECT
[linux-2.6/btrfs-unstable.git] / kernel / sched / fair.c
blob6b800a14b9903c81d7bc9b2176b03e750c951108
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
30 #include <trace/events/sched.h>
32 #include "sched.h"
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
71 static unsigned int sched_nr_latency = 8;
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
99 #ifdef CONFIG_CFS_BANDWIDTH
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
108 * default: 5 msec, units: microseconds
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
120 * This idea comes from the SD scheduler of Con Kolivas:
122 static int get_update_sysctl_factor(void)
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
140 return factor;
143 static void update_sysctl(void)
145 unsigned int factor = get_update_sysctl_factor();
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
155 void sched_init_granularity(void)
157 update_sysctl();
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
162 #else
163 # define WMULT_CONST (1UL << 32)
164 #endif
166 #define WMULT_SHIFT 32
169 * Shift right and round:
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
174 * delta *= weight / lw
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
180 u64 tmp;
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
204 * Check whether we'd overflow the 64-bit multiplication:
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 const struct sched_class fair_sched_class;
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
222 #ifdef CONFIG_FAIR_GROUP_SCHED
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
227 return cfs_rq->rq;
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
233 static inline struct task_struct *task_of(struct sched_entity *se)
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 return container_of(se, struct task_struct, se);
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
247 return p->se.cfs_rq;
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
253 return se->cfs_rq;
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
259 return grp->my_q;
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
264 if (!cfs_rq->on_list) {
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
280 cfs_rq->on_list = 1;
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
303 return 0;
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
308 return se->parent;
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
314 int depth = 0;
316 for_each_sched_entity(se)
317 depth++;
319 return depth;
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
325 int se_depth, pse_depth;
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
354 #else /* !CONFIG_FAIR_GROUP_SCHED */
356 static inline struct task_struct *task_of(struct sched_entity *se)
358 return container_of(se, struct task_struct, se);
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
363 return container_of(cfs_rq, struct rq, cfs);
366 #define entity_is_task(se) 1
368 #define for_each_sched_entity(se) \
369 for (; se; se = NULL)
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
373 return &task_rq(p)->cfs;
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
381 return &rq->cfs;
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
387 return NULL;
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
404 return 1;
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
409 return NULL;
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
417 #endif /* CONFIG_FAIR_GROUP_SCHED */
419 static __always_inline
420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
422 /**************************************************************
423 * Scheduling class tree data structure manipulation methods:
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
430 min_vruntime = vruntime;
432 return min_vruntime;
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
441 return min_vruntime;
444 static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
447 return (s64)(a->vruntime - b->vruntime) < 0;
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
452 u64 vruntime = cfs_rq->min_vruntime;
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
462 if (!cfs_rq->curr)
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
476 * Enqueue an entity into the rb-tree:
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
483 int leftmost = 1;
486 * Find the right place in the rbtree:
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
495 if (entity_before(se, entry)) {
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
507 if (leftmost)
508 cfs_rq->rb_leftmost = &se->run_node;
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
528 struct rb_node *left = cfs_rq->rb_leftmost;
530 if (!left)
531 return NULL;
533 return rb_entry(left, struct sched_entity, run_node);
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
538 struct rb_node *next = rb_next(&se->run_node);
540 if (!next)
541 return NULL;
543 return rb_entry(next, struct sched_entity, run_node);
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
551 if (!last)
552 return NULL;
554 return rb_entry(last, struct sched_entity, run_node);
557 /**************************************************************
558 * Scheduling class statistics methods:
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 void __user *buffer, size_t *lenp,
563 loff_t *ppos)
565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 int factor = get_update_sysctl_factor();
568 if (ret || !write)
569 return ret;
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
574 #define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
581 return 0;
583 #endif
586 * delta /= w
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
594 return delta;
598 * The idea is to set a period in which each task runs once.
600 * When there are too many tasks (sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
603 * p = (nr <= nl) ? l : l*nr/nl
605 static u64 __sched_period(unsigned long nr_running)
607 u64 period = sysctl_sched_latency;
608 unsigned long nr_latency = sched_nr_latency;
610 if (unlikely(nr_running > nr_latency)) {
611 period = sysctl_sched_min_granularity;
612 period *= nr_running;
615 return period;
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
622 * s = p*P[w/rw]
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
628 for_each_sched_entity(se) {
629 struct load_weight *load;
630 struct load_weight lw;
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
635 if (unlikely(!se->on_rq)) {
636 lw = cfs_rq->load;
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
641 slice = calc_delta_mine(slice, se->load.weight, load);
643 return slice;
647 * We calculate the vruntime slice of a to be inserted task
649 * vs = s/w
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
667 unsigned long delta_exec_weighted;
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
672 curr->sum_exec_runtime += delta_exec;
673 schedstat_add(cfs_rq, exec_clock, delta_exec);
674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
676 curr->vruntime += delta_exec_weighted;
677 update_min_vruntime(cfs_rq);
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
684 static void update_curr(struct cfs_rq *cfs_rq)
686 struct sched_entity *curr = cfs_rq->curr;
687 u64 now = rq_of(cfs_rq)->clock_task;
688 unsigned long delta_exec;
690 if (unlikely(!curr))
691 return;
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
698 delta_exec = (unsigned long)(now - curr->exec_start);
699 if (!delta_exec)
700 return;
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 cpuacct_charge(curtask, delta_exec);
710 account_group_exec_runtime(curtask, delta_exec);
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
723 * Task is being enqueued - update stats:
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
731 if (se != cfs_rq->curr)
732 update_stats_wait_start(cfs_rq, se);
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
748 #endif
749 schedstat_set(se->statistics.wait_start, 0);
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
759 if (se != cfs_rq->curr)
760 update_stats_wait_end(cfs_rq, se);
764 * We are picking a new current task - update its stats:
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 * We are starting a new run period:
772 se->exec_start = rq_of(cfs_rq)->clock_task;
775 /**************************************************
776 * Scheduling class queueing methods:
779 static void
780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 update_load_add(&cfs_rq->load, se->load.weight);
783 if (!parent_entity(se))
784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
785 #ifdef CONFIG_SMP
786 if (entity_is_task(se))
787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788 #endif
789 cfs_rq->nr_running++;
792 static void
793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 update_load_sub(&cfs_rq->load, se->load.weight);
796 if (!parent_entity(se))
797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798 if (entity_is_task(se))
799 list_del_init(&se->group_node);
800 cfs_rq->nr_running--;
803 #ifdef CONFIG_FAIR_GROUP_SCHED
804 /* we need this in update_cfs_load and load-balance functions below */
805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
806 # ifdef CONFIG_SMP
807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 int global_update)
810 struct task_group *tg = cfs_rq->tg;
811 long load_avg;
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
824 u64 period = sysctl_sched_shares_window;
825 u64 now, delta;
826 unsigned long load = cfs_rq->load.weight;
828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
829 return;
831 now = rq_of(cfs_rq)->clock_task;
832 delta = now - cfs_rq->load_stamp;
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
839 delta = period - 1;
842 cfs_rq->load_stamp = now;
843 cfs_rq->load_unacc_exec_time = 0;
844 cfs_rq->load_period += delta;
845 if (load) {
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
855 while (cfs_rq->load_period > period) {
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
872 long tg_weight;
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
883 return tg_weight;
886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
888 long tg_weight, load, shares;
890 tg_weight = calc_tg_weight(tg, cfs_rq);
891 load = cfs_rq->load.weight;
893 shares = (tg->shares * load);
894 if (tg_weight)
895 shares /= tg_weight;
897 if (shares < MIN_SHARES)
898 shares = MIN_SHARES;
899 if (shares > tg->shares)
900 shares = tg->shares;
902 return shares;
905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
909 update_cfs_shares(cfs_rq);
912 # else /* CONFIG_SMP */
913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
919 return tg->shares;
922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
925 # endif /* CONFIG_SMP */
926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
929 if (se->on_rq) {
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
932 update_curr(cfs_rq);
933 account_entity_dequeue(cfs_rq, se);
936 update_load_set(&se->load, weight);
938 if (se->on_rq)
939 account_entity_enqueue(cfs_rq, se);
942 static void update_cfs_shares(struct cfs_rq *cfs_rq)
944 struct task_group *tg;
945 struct sched_entity *se;
946 long shares;
948 tg = cfs_rq->tg;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
950 if (!se || throttled_hierarchy(cfs_rq))
951 return;
952 #ifndef CONFIG_SMP
953 if (likely(se->load.weight == tg->shares))
954 return;
955 #endif
956 shares = calc_cfs_shares(cfs_rq, tg);
958 reweight_entity(cfs_rq_of(se), se, shares);
960 #else /* CONFIG_FAIR_GROUP_SCHED */
961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
972 #endif /* CONFIG_FAIR_GROUP_SCHED */
974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
976 #ifdef CONFIG_SCHEDSTATS
977 struct task_struct *tsk = NULL;
979 if (entity_is_task(se))
980 tsk = task_of(se);
982 if (se->statistics.sleep_start) {
983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
985 if ((s64)delta < 0)
986 delta = 0;
988 if (unlikely(delta > se->statistics.sleep_max))
989 se->statistics.sleep_max = delta;
991 se->statistics.sleep_start = 0;
992 se->statistics.sum_sleep_runtime += delta;
994 if (tsk) {
995 account_scheduler_latency(tsk, delta >> 10, 1);
996 trace_sched_stat_sleep(tsk, delta);
999 if (se->statistics.block_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1002 if ((s64)delta < 0)
1003 delta = 0;
1005 if (unlikely(delta > se->statistics.block_max))
1006 se->statistics.block_max = delta;
1008 se->statistics.block_start = 0;
1009 se->statistics.sum_sleep_runtime += delta;
1011 if (tsk) {
1012 if (tsk->in_iowait) {
1013 se->statistics.iowait_sum += delta;
1014 se->statistics.iowait_count++;
1015 trace_sched_stat_iowait(tsk, delta);
1018 trace_sched_stat_blocked(tsk, delta);
1021 * Blocking time is in units of nanosecs, so shift by
1022 * 20 to get a milliseconds-range estimation of the
1023 * amount of time that the task spent sleeping:
1025 if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 profile_hits(SLEEP_PROFILING,
1027 (void *)get_wchan(tsk),
1028 delta >> 20);
1030 account_scheduler_latency(tsk, delta >> 10, 0);
1033 #endif
1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038 #ifdef CONFIG_SCHED_DEBUG
1039 s64 d = se->vruntime - cfs_rq->min_vruntime;
1041 if (d < 0)
1042 d = -d;
1044 if (d > 3*sysctl_sched_latency)
1045 schedstat_inc(cfs_rq, nr_spread_over);
1046 #endif
1049 static void
1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1052 u64 vruntime = cfs_rq->min_vruntime;
1055 * The 'current' period is already promised to the current tasks,
1056 * however the extra weight of the new task will slow them down a
1057 * little, place the new task so that it fits in the slot that
1058 * stays open at the end.
1060 if (initial && sched_feat(START_DEBIT))
1061 vruntime += sched_vslice(cfs_rq, se);
1063 /* sleeps up to a single latency don't count. */
1064 if (!initial) {
1065 unsigned long thresh = sysctl_sched_latency;
1068 * Halve their sleep time's effect, to allow
1069 * for a gentler effect of sleepers:
1071 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 thresh >>= 1;
1074 vruntime -= thresh;
1077 /* ensure we never gain time by being placed backwards. */
1078 vruntime = max_vruntime(se->vruntime, vruntime);
1080 se->vruntime = vruntime;
1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1085 static void
1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1089 * Update the normalized vruntime before updating min_vruntime
1090 * through callig update_curr().
1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093 se->vruntime += cfs_rq->min_vruntime;
1096 * Update run-time statistics of the 'current'.
1098 update_curr(cfs_rq);
1099 update_cfs_load(cfs_rq, 0);
1100 account_entity_enqueue(cfs_rq, se);
1101 update_cfs_shares(cfs_rq);
1103 if (flags & ENQUEUE_WAKEUP) {
1104 place_entity(cfs_rq, se, 0);
1105 enqueue_sleeper(cfs_rq, se);
1108 update_stats_enqueue(cfs_rq, se);
1109 check_spread(cfs_rq, se);
1110 if (se != cfs_rq->curr)
1111 __enqueue_entity(cfs_rq, se);
1112 se->on_rq = 1;
1114 if (cfs_rq->nr_running == 1) {
1115 list_add_leaf_cfs_rq(cfs_rq);
1116 check_enqueue_throttle(cfs_rq);
1120 static void __clear_buddies_last(struct sched_entity *se)
1122 for_each_sched_entity(se) {
1123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 if (cfs_rq->last == se)
1125 cfs_rq->last = NULL;
1126 else
1127 break;
1131 static void __clear_buddies_next(struct sched_entity *se)
1133 for_each_sched_entity(se) {
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 if (cfs_rq->next == se)
1136 cfs_rq->next = NULL;
1137 else
1138 break;
1142 static void __clear_buddies_skip(struct sched_entity *se)
1144 for_each_sched_entity(se) {
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 if (cfs_rq->skip == se)
1147 cfs_rq->skip = NULL;
1148 else
1149 break;
1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1155 if (cfs_rq->last == se)
1156 __clear_buddies_last(se);
1158 if (cfs_rq->next == se)
1159 __clear_buddies_next(se);
1161 if (cfs_rq->skip == se)
1162 __clear_buddies_skip(se);
1165 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1167 static void
1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1171 * Update run-time statistics of the 'current'.
1173 update_curr(cfs_rq);
1175 update_stats_dequeue(cfs_rq, se);
1176 if (flags & DEQUEUE_SLEEP) {
1177 #ifdef CONFIG_SCHEDSTATS
1178 if (entity_is_task(se)) {
1179 struct task_struct *tsk = task_of(se);
1181 if (tsk->state & TASK_INTERRUPTIBLE)
1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183 if (tsk->state & TASK_UNINTERRUPTIBLE)
1184 se->statistics.block_start = rq_of(cfs_rq)->clock;
1186 #endif
1189 clear_buddies(cfs_rq, se);
1191 if (se != cfs_rq->curr)
1192 __dequeue_entity(cfs_rq, se);
1193 se->on_rq = 0;
1194 update_cfs_load(cfs_rq, 0);
1195 account_entity_dequeue(cfs_rq, se);
1198 * Normalize the entity after updating the min_vruntime because the
1199 * update can refer to the ->curr item and we need to reflect this
1200 * movement in our normalized position.
1202 if (!(flags & DEQUEUE_SLEEP))
1203 se->vruntime -= cfs_rq->min_vruntime;
1205 /* return excess runtime on last dequeue */
1206 return_cfs_rq_runtime(cfs_rq);
1208 update_min_vruntime(cfs_rq);
1209 update_cfs_shares(cfs_rq);
1213 * Preempt the current task with a newly woken task if needed:
1215 static void
1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1218 unsigned long ideal_runtime, delta_exec;
1219 struct sched_entity *se;
1220 s64 delta;
1222 ideal_runtime = sched_slice(cfs_rq, curr);
1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224 if (delta_exec > ideal_runtime) {
1225 resched_task(rq_of(cfs_rq)->curr);
1227 * The current task ran long enough, ensure it doesn't get
1228 * re-elected due to buddy favours.
1230 clear_buddies(cfs_rq, curr);
1231 return;
1235 * Ensure that a task that missed wakeup preemption by a
1236 * narrow margin doesn't have to wait for a full slice.
1237 * This also mitigates buddy induced latencies under load.
1239 if (delta_exec < sysctl_sched_min_granularity)
1240 return;
1242 se = __pick_first_entity(cfs_rq);
1243 delta = curr->vruntime - se->vruntime;
1245 if (delta < 0)
1246 return;
1248 if (delta > ideal_runtime)
1249 resched_task(rq_of(cfs_rq)->curr);
1252 static void
1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1255 /* 'current' is not kept within the tree. */
1256 if (se->on_rq) {
1258 * Any task has to be enqueued before it get to execute on
1259 * a CPU. So account for the time it spent waiting on the
1260 * runqueue.
1262 update_stats_wait_end(cfs_rq, se);
1263 __dequeue_entity(cfs_rq, se);
1266 update_stats_curr_start(cfs_rq, se);
1267 cfs_rq->curr = se;
1268 #ifdef CONFIG_SCHEDSTATS
1270 * Track our maximum slice length, if the CPU's load is at
1271 * least twice that of our own weight (i.e. dont track it
1272 * when there are only lesser-weight tasks around):
1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275 se->statistics.slice_max = max(se->statistics.slice_max,
1276 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1278 #endif
1279 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1282 static int
1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1294 struct sched_entity *se = __pick_first_entity(cfs_rq);
1295 struct sched_entity *left = se;
1298 * Avoid running the skip buddy, if running something else can
1299 * be done without getting too unfair.
1301 if (cfs_rq->skip == se) {
1302 struct sched_entity *second = __pick_next_entity(se);
1303 if (second && wakeup_preempt_entity(second, left) < 1)
1304 se = second;
1308 * Prefer last buddy, try to return the CPU to a preempted task.
1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 se = cfs_rq->last;
1314 * Someone really wants this to run. If it's not unfair, run it.
1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 se = cfs_rq->next;
1319 clear_buddies(cfs_rq, se);
1321 return se;
1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1329 * If still on the runqueue then deactivate_task()
1330 * was not called and update_curr() has to be done:
1332 if (prev->on_rq)
1333 update_curr(cfs_rq);
1335 /* throttle cfs_rqs exceeding runtime */
1336 check_cfs_rq_runtime(cfs_rq);
1338 check_spread(cfs_rq, prev);
1339 if (prev->on_rq) {
1340 update_stats_wait_start(cfs_rq, prev);
1341 /* Put 'current' back into the tree. */
1342 __enqueue_entity(cfs_rq, prev);
1344 cfs_rq->curr = NULL;
1347 static void
1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1351 * Update run-time statistics of the 'current'.
1353 update_curr(cfs_rq);
1356 * Update share accounting for long-running entities.
1358 update_entity_shares_tick(cfs_rq);
1360 #ifdef CONFIG_SCHED_HRTICK
1362 * queued ticks are scheduled to match the slice, so don't bother
1363 * validating it and just reschedule.
1365 if (queued) {
1366 resched_task(rq_of(cfs_rq)->curr);
1367 return;
1370 * don't let the period tick interfere with the hrtick preemption
1372 if (!sched_feat(DOUBLE_TICK) &&
1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 return;
1375 #endif
1377 if (cfs_rq->nr_running > 1)
1378 check_preempt_tick(cfs_rq, curr);
1382 /**************************************************
1383 * CFS bandwidth control machinery
1386 #ifdef CONFIG_CFS_BANDWIDTH
1388 #ifdef HAVE_JUMP_LABEL
1389 static struct static_key __cfs_bandwidth_used;
1391 static inline bool cfs_bandwidth_used(void)
1393 return static_key_false(&__cfs_bandwidth_used);
1396 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1398 /* only need to count groups transitioning between enabled/!enabled */
1399 if (enabled && !was_enabled)
1400 static_key_slow_inc(&__cfs_bandwidth_used);
1401 else if (!enabled && was_enabled)
1402 static_key_slow_dec(&__cfs_bandwidth_used);
1404 #else /* HAVE_JUMP_LABEL */
1405 static bool cfs_bandwidth_used(void)
1407 return true;
1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411 #endif /* HAVE_JUMP_LABEL */
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1417 static inline u64 default_cfs_period(void)
1419 return 100000000ULL;
1422 static inline u64 sched_cfs_bandwidth_slice(void)
1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1432 * requires cfs_b->lock
1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1436 u64 now;
1438 if (cfs_b->quota == RUNTIME_INF)
1439 return;
1441 now = sched_clock_cpu(smp_processor_id());
1442 cfs_b->runtime = cfs_b->quota;
1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1448 return &tg->cfs_bandwidth;
1451 /* returns 0 on failure to allocate runtime */
1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1454 struct task_group *tg = cfs_rq->tg;
1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456 u64 amount = 0, min_amount, expires;
1458 /* note: this is a positive sum as runtime_remaining <= 0 */
1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1461 raw_spin_lock(&cfs_b->lock);
1462 if (cfs_b->quota == RUNTIME_INF)
1463 amount = min_amount;
1464 else {
1466 * If the bandwidth pool has become inactive, then at least one
1467 * period must have elapsed since the last consumption.
1468 * Refresh the global state and ensure bandwidth timer becomes
1469 * active.
1471 if (!cfs_b->timer_active) {
1472 __refill_cfs_bandwidth_runtime(cfs_b);
1473 __start_cfs_bandwidth(cfs_b);
1476 if (cfs_b->runtime > 0) {
1477 amount = min(cfs_b->runtime, min_amount);
1478 cfs_b->runtime -= amount;
1479 cfs_b->idle = 0;
1482 expires = cfs_b->runtime_expires;
1483 raw_spin_unlock(&cfs_b->lock);
1485 cfs_rq->runtime_remaining += amount;
1487 * we may have advanced our local expiration to account for allowed
1488 * spread between our sched_clock and the one on which runtime was
1489 * issued.
1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 cfs_rq->runtime_expires = expires;
1494 return cfs_rq->runtime_remaining > 0;
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 struct rq *rq = rq_of(cfs_rq);
1506 /* if the deadline is ahead of our clock, nothing to do */
1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1508 return;
1510 if (cfs_rq->runtime_remaining < 0)
1511 return;
1514 * If the local deadline has passed we have to consider the
1515 * possibility that our sched_clock is 'fast' and the global deadline
1516 * has not truly expired.
1518 * Fortunately we can check determine whether this the case by checking
1519 * whether the global deadline has advanced.
1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 /* extend local deadline, drift is bounded above by 2 ticks */
1524 cfs_rq->runtime_expires += TICK_NSEC;
1525 } else {
1526 /* global deadline is ahead, expiration has passed */
1527 cfs_rq->runtime_remaining = 0;
1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 unsigned long delta_exec)
1534 /* dock delta_exec before expiring quota (as it could span periods) */
1535 cfs_rq->runtime_remaining -= delta_exec;
1536 expire_cfs_rq_runtime(cfs_rq);
1538 if (likely(cfs_rq->runtime_remaining > 0))
1539 return;
1542 * if we're unable to extend our runtime we resched so that the active
1543 * hierarchy can be throttled
1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 resched_task(rq_of(cfs_rq)->curr);
1549 static __always_inline
1550 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1553 return;
1555 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1560 return cfs_bandwidth_used() && cfs_rq->throttled;
1563 /* check whether cfs_rq, or any parent, is throttled */
1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1566 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1574 static inline int throttled_lb_pair(struct task_group *tg,
1575 int src_cpu, int dest_cpu)
1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1579 src_cfs_rq = tg->cfs_rq[src_cpu];
1580 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1582 return throttled_hierarchy(src_cfs_rq) ||
1583 throttled_hierarchy(dest_cfs_rq);
1586 /* updated child weight may affect parent so we have to do this bottom up */
1587 static int tg_unthrottle_up(struct task_group *tg, void *data)
1589 struct rq *rq = data;
1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1592 cfs_rq->throttle_count--;
1593 #ifdef CONFIG_SMP
1594 if (!cfs_rq->throttle_count) {
1595 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1597 /* leaving throttled state, advance shares averaging windows */
1598 cfs_rq->load_stamp += delta;
1599 cfs_rq->load_last += delta;
1601 /* update entity weight now that we are on_rq again */
1602 update_cfs_shares(cfs_rq);
1604 #endif
1606 return 0;
1609 static int tg_throttle_down(struct task_group *tg, void *data)
1611 struct rq *rq = data;
1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1614 /* group is entering throttled state, record last load */
1615 if (!cfs_rq->throttle_count)
1616 update_cfs_load(cfs_rq, 0);
1617 cfs_rq->throttle_count++;
1619 return 0;
1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1624 struct rq *rq = rq_of(cfs_rq);
1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 struct sched_entity *se;
1627 long task_delta, dequeue = 1;
1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1631 /* account load preceding throttle */
1632 rcu_read_lock();
1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 rcu_read_unlock();
1636 task_delta = cfs_rq->h_nr_running;
1637 for_each_sched_entity(se) {
1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 /* throttled entity or throttle-on-deactivate */
1640 if (!se->on_rq)
1641 break;
1643 if (dequeue)
1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 qcfs_rq->h_nr_running -= task_delta;
1647 if (qcfs_rq->load.weight)
1648 dequeue = 0;
1651 if (!se)
1652 rq->nr_running -= task_delta;
1654 cfs_rq->throttled = 1;
1655 cfs_rq->throttled_timestamp = rq->clock;
1656 raw_spin_lock(&cfs_b->lock);
1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 raw_spin_unlock(&cfs_b->lock);
1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1663 struct rq *rq = rq_of(cfs_rq);
1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 struct sched_entity *se;
1666 int enqueue = 1;
1667 long task_delta;
1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1671 cfs_rq->throttled = 0;
1672 raw_spin_lock(&cfs_b->lock);
1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674 list_del_rcu(&cfs_rq->throttled_list);
1675 raw_spin_unlock(&cfs_b->lock);
1676 cfs_rq->throttled_timestamp = 0;
1678 update_rq_clock(rq);
1679 /* update hierarchical throttle state */
1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1682 if (!cfs_rq->load.weight)
1683 return;
1685 task_delta = cfs_rq->h_nr_running;
1686 for_each_sched_entity(se) {
1687 if (se->on_rq)
1688 enqueue = 0;
1690 cfs_rq = cfs_rq_of(se);
1691 if (enqueue)
1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 cfs_rq->h_nr_running += task_delta;
1695 if (cfs_rq_throttled(cfs_rq))
1696 break;
1699 if (!se)
1700 rq->nr_running += task_delta;
1702 /* determine whether we need to wake up potentially idle cpu */
1703 if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 resched_task(rq->curr);
1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 u64 remaining, u64 expires)
1710 struct cfs_rq *cfs_rq;
1711 u64 runtime = remaining;
1713 rcu_read_lock();
1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 throttled_list) {
1716 struct rq *rq = rq_of(cfs_rq);
1718 raw_spin_lock(&rq->lock);
1719 if (!cfs_rq_throttled(cfs_rq))
1720 goto next;
1722 runtime = -cfs_rq->runtime_remaining + 1;
1723 if (runtime > remaining)
1724 runtime = remaining;
1725 remaining -= runtime;
1727 cfs_rq->runtime_remaining += runtime;
1728 cfs_rq->runtime_expires = expires;
1730 /* we check whether we're throttled above */
1731 if (cfs_rq->runtime_remaining > 0)
1732 unthrottle_cfs_rq(cfs_rq);
1734 next:
1735 raw_spin_unlock(&rq->lock);
1737 if (!remaining)
1738 break;
1740 rcu_read_unlock();
1742 return remaining;
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1753 u64 runtime, runtime_expires;
1754 int idle = 1, throttled;
1756 raw_spin_lock(&cfs_b->lock);
1757 /* no need to continue the timer with no bandwidth constraint */
1758 if (cfs_b->quota == RUNTIME_INF)
1759 goto out_unlock;
1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 /* idle depends on !throttled (for the case of a large deficit) */
1763 idle = cfs_b->idle && !throttled;
1764 cfs_b->nr_periods += overrun;
1766 /* if we're going inactive then everything else can be deferred */
1767 if (idle)
1768 goto out_unlock;
1770 __refill_cfs_bandwidth_runtime(cfs_b);
1772 if (!throttled) {
1773 /* mark as potentially idle for the upcoming period */
1774 cfs_b->idle = 1;
1775 goto out_unlock;
1778 /* account preceding periods in which throttling occurred */
1779 cfs_b->nr_throttled += overrun;
1782 * There are throttled entities so we must first use the new bandwidth
1783 * to unthrottle them before making it generally available. This
1784 * ensures that all existing debts will be paid before a new cfs_rq is
1785 * allowed to run.
1787 runtime = cfs_b->runtime;
1788 runtime_expires = cfs_b->runtime_expires;
1789 cfs_b->runtime = 0;
1792 * This check is repeated as we are holding onto the new bandwidth
1793 * while we unthrottle. This can potentially race with an unthrottled
1794 * group trying to acquire new bandwidth from the global pool.
1796 while (throttled && runtime > 0) {
1797 raw_spin_unlock(&cfs_b->lock);
1798 /* we can't nest cfs_b->lock while distributing bandwidth */
1799 runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 runtime_expires);
1801 raw_spin_lock(&cfs_b->lock);
1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1806 /* return (any) remaining runtime */
1807 cfs_b->runtime = runtime;
1809 * While we are ensured activity in the period following an
1810 * unthrottle, this also covers the case in which the new bandwidth is
1811 * insufficient to cover the existing bandwidth deficit. (Forcing the
1812 * timer to remain active while there are any throttled entities.)
1814 cfs_b->idle = 0;
1815 out_unlock:
1816 if (idle)
1817 cfs_b->timer_active = 0;
1818 raw_spin_unlock(&cfs_b->lock);
1820 return idle;
1823 /* a cfs_rq won't donate quota below this amount */
1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825 /* minimum remaining period time to redistribute slack quota */
1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827 /* how long we wait to gather additional slack before distributing */
1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1830 /* are we near the end of the current quota period? */
1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1833 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 u64 remaining;
1836 /* if the call-back is running a quota refresh is already occurring */
1837 if (hrtimer_callback_running(refresh_timer))
1838 return 1;
1840 /* is a quota refresh about to occur? */
1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 if (remaining < min_expire)
1843 return 1;
1845 return 0;
1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1852 /* if there's a quota refresh soon don't bother with slack */
1853 if (runtime_refresh_within(cfs_b, min_left))
1854 return;
1856 start_bandwidth_timer(&cfs_b->slack_timer,
1857 ns_to_ktime(cfs_bandwidth_slack_period));
1860 /* we know any runtime found here is valid as update_curr() precedes return */
1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1866 if (slack_runtime <= 0)
1867 return;
1869 raw_spin_lock(&cfs_b->lock);
1870 if (cfs_b->quota != RUNTIME_INF &&
1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 cfs_b->runtime += slack_runtime;
1874 /* we are under rq->lock, defer unthrottling using a timer */
1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 !list_empty(&cfs_b->throttled_cfs_rq))
1877 start_cfs_slack_bandwidth(cfs_b);
1879 raw_spin_unlock(&cfs_b->lock);
1881 /* even if it's not valid for return we don't want to try again */
1882 cfs_rq->runtime_remaining -= slack_runtime;
1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1887 if (!cfs_bandwidth_used())
1888 return;
1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1891 return;
1893 __return_cfs_rq_runtime(cfs_rq);
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 u64 expires;
1905 /* confirm we're still not at a refresh boundary */
1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 return;
1909 raw_spin_lock(&cfs_b->lock);
1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 runtime = cfs_b->runtime;
1912 cfs_b->runtime = 0;
1914 expires = cfs_b->runtime_expires;
1915 raw_spin_unlock(&cfs_b->lock);
1917 if (!runtime)
1918 return;
1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1922 raw_spin_lock(&cfs_b->lock);
1923 if (expires == cfs_b->runtime_expires)
1924 cfs_b->runtime = runtime;
1925 raw_spin_unlock(&cfs_b->lock);
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1935 if (!cfs_bandwidth_used())
1936 return;
1938 /* an active group must be handled by the update_curr()->put() path */
1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 return;
1942 /* ensure the group is not already throttled */
1943 if (cfs_rq_throttled(cfs_rq))
1944 return;
1946 /* update runtime allocation */
1947 account_cfs_rq_runtime(cfs_rq, 0);
1948 if (cfs_rq->runtime_remaining <= 0)
1949 throttle_cfs_rq(cfs_rq);
1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1955 if (!cfs_bandwidth_used())
1956 return;
1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 return;
1962 * it's possible for a throttled entity to be forced into a running
1963 * state (e.g. set_curr_task), in this case we're finished.
1965 if (cfs_rq_throttled(cfs_rq))
1966 return;
1968 throttle_cfs_rq(cfs_rq);
1971 static inline u64 default_cfs_period(void);
1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1977 struct cfs_bandwidth *cfs_b =
1978 container_of(timer, struct cfs_bandwidth, slack_timer);
1979 do_sched_cfs_slack_timer(cfs_b);
1981 return HRTIMER_NORESTART;
1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1986 struct cfs_bandwidth *cfs_b =
1987 container_of(timer, struct cfs_bandwidth, period_timer);
1988 ktime_t now;
1989 int overrun;
1990 int idle = 0;
1992 for (;;) {
1993 now = hrtimer_cb_get_time(timer);
1994 overrun = hrtimer_forward(timer, now, cfs_b->period);
1996 if (!overrun)
1997 break;
1999 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2007 raw_spin_lock_init(&cfs_b->lock);
2008 cfs_b->runtime = 0;
2009 cfs_b->quota = RUNTIME_INF;
2010 cfs_b->period = ns_to_ktime(default_cfs_period());
2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 cfs_b->period_timer.function = sched_cfs_period_timer;
2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2021 cfs_rq->runtime_enabled = 0;
2022 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2025 /* requires cfs_b->lock, may release to reprogram timer */
2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2029 * The timer may be active because we're trying to set a new bandwidth
2030 * period or because we're racing with the tear-down path
2031 * (timer_active==0 becomes visible before the hrtimer call-back
2032 * terminates). In either case we ensure that it's re-programmed
2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 raw_spin_unlock(&cfs_b->lock);
2036 /* ensure cfs_b->lock is available while we wait */
2037 hrtimer_cancel(&cfs_b->period_timer);
2039 raw_spin_lock(&cfs_b->lock);
2040 /* if someone else restarted the timer then we're done */
2041 if (cfs_b->timer_active)
2042 return;
2045 cfs_b->timer_active = 1;
2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2051 hrtimer_cancel(&cfs_b->period_timer);
2052 hrtimer_cancel(&cfs_b->slack_timer);
2055 static void unthrottle_offline_cfs_rqs(struct rq *rq)
2057 struct cfs_rq *cfs_rq;
2059 for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2062 if (!cfs_rq->runtime_enabled)
2063 continue;
2066 * clock_task is not advancing so we just need to make sure
2067 * there's some valid quota amount
2069 cfs_rq->runtime_remaining = cfs_b->quota;
2070 if (cfs_rq_throttled(cfs_rq))
2071 unthrottle_cfs_rq(cfs_rq);
2075 #else /* CONFIG_CFS_BANDWIDTH */
2076 static __always_inline
2077 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2084 return 0;
2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2089 return 0;
2092 static inline int throttled_lb_pair(struct task_group *tg,
2093 int src_cpu, int dest_cpu)
2095 return 0;
2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2100 #ifdef CONFIG_FAIR_GROUP_SCHED
2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2102 #endif
2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2106 return NULL;
2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2111 #endif /* CONFIG_CFS_BANDWIDTH */
2113 /**************************************************
2114 * CFS operations on tasks:
2117 #ifdef CONFIG_SCHED_HRTICK
2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2120 struct sched_entity *se = &p->se;
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2123 WARN_ON(task_rq(p) != rq);
2125 if (cfs_rq->nr_running > 1) {
2126 u64 slice = sched_slice(cfs_rq, se);
2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 s64 delta = slice - ran;
2130 if (delta < 0) {
2131 if (rq->curr == p)
2132 resched_task(p);
2133 return;
2137 * Don't schedule slices shorter than 10000ns, that just
2138 * doesn't make sense. Rely on vruntime for fairness.
2140 if (rq->curr != p)
2141 delta = max_t(s64, 10000LL, delta);
2143 hrtick_start(rq, delta);
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2150 * to matter.
2152 static void hrtick_update(struct rq *rq)
2154 struct task_struct *curr = rq->curr;
2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2157 return;
2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 hrtick_start_fair(rq, curr);
2162 #else /* !CONFIG_SCHED_HRTICK */
2163 static inline void
2164 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2168 static inline void hrtick_update(struct rq *rq)
2171 #endif
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2178 static void
2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2181 struct cfs_rq *cfs_rq;
2182 struct sched_entity *se = &p->se;
2184 for_each_sched_entity(se) {
2185 if (se->on_rq)
2186 break;
2187 cfs_rq = cfs_rq_of(se);
2188 enqueue_entity(cfs_rq, se, flags);
2191 * end evaluation on encountering a throttled cfs_rq
2193 * note: in the case of encountering a throttled cfs_rq we will
2194 * post the final h_nr_running increment below.
2196 if (cfs_rq_throttled(cfs_rq))
2197 break;
2198 cfs_rq->h_nr_running++;
2200 flags = ENQUEUE_WAKEUP;
2203 for_each_sched_entity(se) {
2204 cfs_rq = cfs_rq_of(se);
2205 cfs_rq->h_nr_running++;
2207 if (cfs_rq_throttled(cfs_rq))
2208 break;
2210 update_cfs_load(cfs_rq, 0);
2211 update_cfs_shares(cfs_rq);
2214 if (!se)
2215 inc_nr_running(rq);
2216 hrtick_update(rq);
2219 static void set_next_buddy(struct sched_entity *se);
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2228 struct cfs_rq *cfs_rq;
2229 struct sched_entity *se = &p->se;
2230 int task_sleep = flags & DEQUEUE_SLEEP;
2232 for_each_sched_entity(se) {
2233 cfs_rq = cfs_rq_of(se);
2234 dequeue_entity(cfs_rq, se, flags);
2237 * end evaluation on encountering a throttled cfs_rq
2239 * note: in the case of encountering a throttled cfs_rq we will
2240 * post the final h_nr_running decrement below.
2242 if (cfs_rq_throttled(cfs_rq))
2243 break;
2244 cfs_rq->h_nr_running--;
2246 /* Don't dequeue parent if it has other entities besides us */
2247 if (cfs_rq->load.weight) {
2249 * Bias pick_next to pick a task from this cfs_rq, as
2250 * p is sleeping when it is within its sched_slice.
2252 if (task_sleep && parent_entity(se))
2253 set_next_buddy(parent_entity(se));
2255 /* avoid re-evaluating load for this entity */
2256 se = parent_entity(se);
2257 break;
2259 flags |= DEQUEUE_SLEEP;
2262 for_each_sched_entity(se) {
2263 cfs_rq = cfs_rq_of(se);
2264 cfs_rq->h_nr_running--;
2266 if (cfs_rq_throttled(cfs_rq))
2267 break;
2269 update_cfs_load(cfs_rq, 0);
2270 update_cfs_shares(cfs_rq);
2273 if (!se)
2274 dec_nr_running(rq);
2275 hrtick_update(rq);
2278 #ifdef CONFIG_SMP
2279 /* Used instead of source_load when we know the type == 0 */
2280 static unsigned long weighted_cpuload(const int cpu)
2282 return cpu_rq(cpu)->load.weight;
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2292 static unsigned long source_load(int cpu, int type)
2294 struct rq *rq = cpu_rq(cpu);
2295 unsigned long total = weighted_cpuload(cpu);
2297 if (type == 0 || !sched_feat(LB_BIAS))
2298 return total;
2300 return min(rq->cpu_load[type-1], total);
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2307 static unsigned long target_load(int cpu, int type)
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2315 return max(rq->cpu_load[type-1], total);
2318 static unsigned long power_of(int cpu)
2320 return cpu_rq(cpu)->cpu_power;
2323 static unsigned long cpu_avg_load_per_task(int cpu)
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2328 if (nr_running)
2329 return rq->load.weight / nr_running;
2331 return 0;
2335 static void task_waking_fair(struct task_struct *p)
2337 struct sched_entity *se = &p->se;
2338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2339 u64 min_vruntime;
2341 #ifndef CONFIG_64BIT
2342 u64 min_vruntime_copy;
2344 do {
2345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 smp_rmb();
2347 min_vruntime = cfs_rq->min_vruntime;
2348 } while (min_vruntime != min_vruntime_copy);
2349 #else
2350 min_vruntime = cfs_rq->min_vruntime;
2351 #endif
2353 se->vruntime -= min_vruntime;
2356 #ifdef CONFIG_FAIR_GROUP_SCHED
2358 * effective_load() calculates the load change as seen from the root_task_group
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2371 * s_i = rw_i / \Sum rw_j (1)
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2377 * rw_i = { 2, 4, 1, 0 }
2378 * s_i = { 2/7, 4/7, 1/7, 0 }
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2394 * rw'_i = { 3, 4, 1, 0 }
2395 * s'_i = { 3/8, 4/8, 1/8, 0 }
2397 * We can then compute the difference in effective weight by using:
2399 * dw_i = S * (s'_i - s_i) (3)
2401 * Where 'S' is the group weight as seen by its parent.
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2409 struct sched_entity *se = tg->se[cpu];
2411 if (!tg->parent) /* the trivial, non-cgroup case */
2412 return wl;
2414 for_each_sched_entity(se) {
2415 long w, W;
2417 tg = se->my_q->tg;
2420 * W = @wg + \Sum rw_j
2422 W = wg + calc_tg_weight(tg, se->my_q);
2425 * w = rw_i + @wl
2427 w = se->my_q->load.weight + wl;
2430 * wl = S * s'_i; see (2)
2432 if (W > 0 && w < W)
2433 wl = (w * tg->shares) / W;
2434 else
2435 wl = tg->shares;
2438 * Per the above, wl is the new se->load.weight value; since
2439 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 * calc_cfs_shares().
2442 if (wl < MIN_SHARES)
2443 wl = MIN_SHARES;
2446 * wl = dw_i = S * (s'_i - s_i); see (3)
2448 wl -= se->load.weight;
2451 * Recursively apply this logic to all parent groups to compute
2452 * the final effective load change on the root group. Since
2453 * only the @tg group gets extra weight, all parent groups can
2454 * only redistribute existing shares. @wl is the shift in shares
2455 * resulting from this level per the above.
2457 wg = 0;
2460 return wl;
2462 #else
2464 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 unsigned long wl, unsigned long wg)
2467 return wl;
2470 #endif
2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2474 s64 this_load, load;
2475 int idx, this_cpu, prev_cpu;
2476 unsigned long tl_per_task;
2477 struct task_group *tg;
2478 unsigned long weight;
2479 int balanced;
2481 idx = sd->wake_idx;
2482 this_cpu = smp_processor_id();
2483 prev_cpu = task_cpu(p);
2484 load = source_load(prev_cpu, idx);
2485 this_load = target_load(this_cpu, idx);
2488 * If sync wakeup then subtract the (maximum possible)
2489 * effect of the currently running task from the load
2490 * of the current CPU:
2492 if (sync) {
2493 tg = task_group(current);
2494 weight = current->se.load.weight;
2496 this_load += effective_load(tg, this_cpu, -weight, -weight);
2497 load += effective_load(tg, prev_cpu, 0, -weight);
2500 tg = task_group(p);
2501 weight = p->se.load.weight;
2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505 * due to the sync cause above having dropped this_load to 0, we'll
2506 * always have an imbalance, but there's really nothing you can do
2507 * about that, so that's good too.
2509 * Otherwise check if either cpus are near enough in load to allow this
2510 * task to be woken on this_cpu.
2512 if (this_load > 0) {
2513 s64 this_eff_load, prev_eff_load;
2515 this_eff_load = 100;
2516 this_eff_load *= power_of(prev_cpu);
2517 this_eff_load *= this_load +
2518 effective_load(tg, this_cpu, weight, weight);
2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 prev_eff_load *= power_of(this_cpu);
2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2524 balanced = this_eff_load <= prev_eff_load;
2525 } else
2526 balanced = true;
2529 * If the currently running task will sleep within
2530 * a reasonable amount of time then attract this newly
2531 * woken task:
2533 if (sync && balanced)
2534 return 1;
2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537 tl_per_task = cpu_avg_load_per_task(this_cpu);
2539 if (balanced ||
2540 (this_load <= load &&
2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2543 * This domain has SD_WAKE_AFFINE and
2544 * p is cache cold in this domain, and
2545 * there is no bad imbalance.
2547 schedstat_inc(sd, ttwu_move_affine);
2548 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2550 return 1;
2552 return 0;
2556 * find_idlest_group finds and returns the least busy CPU group within the
2557 * domain.
2559 static struct sched_group *
2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561 int this_cpu, int load_idx)
2563 struct sched_group *idlest = NULL, *group = sd->groups;
2564 unsigned long min_load = ULONG_MAX, this_load = 0;
2565 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2567 do {
2568 unsigned long load, avg_load;
2569 int local_group;
2570 int i;
2572 /* Skip over this group if it has no CPUs allowed */
2573 if (!cpumask_intersects(sched_group_cpus(group),
2574 tsk_cpus_allowed(p)))
2575 continue;
2577 local_group = cpumask_test_cpu(this_cpu,
2578 sched_group_cpus(group));
2580 /* Tally up the load of all CPUs in the group */
2581 avg_load = 0;
2583 for_each_cpu(i, sched_group_cpus(group)) {
2584 /* Bias balancing toward cpus of our domain */
2585 if (local_group)
2586 load = source_load(i, load_idx);
2587 else
2588 load = target_load(i, load_idx);
2590 avg_load += load;
2593 /* Adjust by relative CPU power of the group */
2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2596 if (local_group) {
2597 this_load = avg_load;
2598 } else if (avg_load < min_load) {
2599 min_load = avg_load;
2600 idlest = group;
2602 } while (group = group->next, group != sd->groups);
2604 if (!idlest || 100*this_load < imbalance*min_load)
2605 return NULL;
2606 return idlest;
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2612 static int
2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2615 unsigned long load, min_load = ULONG_MAX;
2616 int idlest = -1;
2617 int i;
2619 /* Traverse only the allowed CPUs */
2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621 load = weighted_cpuload(i);
2623 if (load < min_load || (load == min_load && i == this_cpu)) {
2624 min_load = load;
2625 idlest = i;
2629 return idlest;
2633 * Try and locate an idle CPU in the sched_domain.
2635 static int select_idle_sibling(struct task_struct *p, int target)
2637 int cpu = smp_processor_id();
2638 int prev_cpu = task_cpu(p);
2639 struct sched_domain *sd;
2640 struct sched_group *sg;
2641 int i;
2644 * If the task is going to be woken-up on this cpu and if it is
2645 * already idle, then it is the right target.
2647 if (target == cpu && idle_cpu(cpu))
2648 return cpu;
2651 * If the task is going to be woken-up on the cpu where it previously
2652 * ran and if it is currently idle, then it the right target.
2654 if (target == prev_cpu && idle_cpu(prev_cpu))
2655 return prev_cpu;
2658 * Otherwise, iterate the domains and find an elegible idle cpu.
2660 sd = rcu_dereference(per_cpu(sd_llc, target));
2661 for_each_lower_domain(sd) {
2662 sg = sd->groups;
2663 do {
2664 if (!cpumask_intersects(sched_group_cpus(sg),
2665 tsk_cpus_allowed(p)))
2666 goto next;
2668 for_each_cpu(i, sched_group_cpus(sg)) {
2669 if (!idle_cpu(i))
2670 goto next;
2673 target = cpumask_first_and(sched_group_cpus(sg),
2674 tsk_cpus_allowed(p));
2675 goto done;
2676 next:
2677 sg = sg->next;
2678 } while (sg != sd->groups);
2680 done:
2681 return target;
2685 * sched_balance_self: balance the current task (running on cpu) in domains
2686 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2687 * SD_BALANCE_EXEC.
2689 * Balance, ie. select the least loaded group.
2691 * Returns the target CPU number, or the same CPU if no balancing is needed.
2693 * preempt must be disabled.
2695 static int
2696 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2698 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2699 int cpu = smp_processor_id();
2700 int prev_cpu = task_cpu(p);
2701 int new_cpu = cpu;
2702 int want_affine = 0;
2703 int sync = wake_flags & WF_SYNC;
2705 if (p->nr_cpus_allowed == 1)
2706 return prev_cpu;
2708 if (sd_flag & SD_BALANCE_WAKE) {
2709 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2710 want_affine = 1;
2711 new_cpu = prev_cpu;
2714 rcu_read_lock();
2715 for_each_domain(cpu, tmp) {
2716 if (!(tmp->flags & SD_LOAD_BALANCE))
2717 continue;
2720 * If both cpu and prev_cpu are part of this domain,
2721 * cpu is a valid SD_WAKE_AFFINE target.
2723 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2724 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2725 affine_sd = tmp;
2726 break;
2729 if (tmp->flags & sd_flag)
2730 sd = tmp;
2733 if (affine_sd) {
2734 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
2735 prev_cpu = cpu;
2737 new_cpu = select_idle_sibling(p, prev_cpu);
2738 goto unlock;
2741 while (sd) {
2742 int load_idx = sd->forkexec_idx;
2743 struct sched_group *group;
2744 int weight;
2746 if (!(sd->flags & sd_flag)) {
2747 sd = sd->child;
2748 continue;
2751 if (sd_flag & SD_BALANCE_WAKE)
2752 load_idx = sd->wake_idx;
2754 group = find_idlest_group(sd, p, cpu, load_idx);
2755 if (!group) {
2756 sd = sd->child;
2757 continue;
2760 new_cpu = find_idlest_cpu(group, p, cpu);
2761 if (new_cpu == -1 || new_cpu == cpu) {
2762 /* Now try balancing at a lower domain level of cpu */
2763 sd = sd->child;
2764 continue;
2767 /* Now try balancing at a lower domain level of new_cpu */
2768 cpu = new_cpu;
2769 weight = sd->span_weight;
2770 sd = NULL;
2771 for_each_domain(cpu, tmp) {
2772 if (weight <= tmp->span_weight)
2773 break;
2774 if (tmp->flags & sd_flag)
2775 sd = tmp;
2777 /* while loop will break here if sd == NULL */
2779 unlock:
2780 rcu_read_unlock();
2782 return new_cpu;
2784 #endif /* CONFIG_SMP */
2786 static unsigned long
2787 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2789 unsigned long gran = sysctl_sched_wakeup_granularity;
2792 * Since its curr running now, convert the gran from real-time
2793 * to virtual-time in his units.
2795 * By using 'se' instead of 'curr' we penalize light tasks, so
2796 * they get preempted easier. That is, if 'se' < 'curr' then
2797 * the resulting gran will be larger, therefore penalizing the
2798 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2799 * be smaller, again penalizing the lighter task.
2801 * This is especially important for buddies when the leftmost
2802 * task is higher priority than the buddy.
2804 return calc_delta_fair(gran, se);
2808 * Should 'se' preempt 'curr'.
2810 * |s1
2811 * |s2
2812 * |s3
2814 * |<--->|c
2816 * w(c, s1) = -1
2817 * w(c, s2) = 0
2818 * w(c, s3) = 1
2821 static int
2822 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2824 s64 gran, vdiff = curr->vruntime - se->vruntime;
2826 if (vdiff <= 0)
2827 return -1;
2829 gran = wakeup_gran(curr, se);
2830 if (vdiff > gran)
2831 return 1;
2833 return 0;
2836 static void set_last_buddy(struct sched_entity *se)
2838 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2839 return;
2841 for_each_sched_entity(se)
2842 cfs_rq_of(se)->last = se;
2845 static void set_next_buddy(struct sched_entity *se)
2847 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2848 return;
2850 for_each_sched_entity(se)
2851 cfs_rq_of(se)->next = se;
2854 static void set_skip_buddy(struct sched_entity *se)
2856 for_each_sched_entity(se)
2857 cfs_rq_of(se)->skip = se;
2861 * Preempt the current task with a newly woken task if needed:
2863 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2865 struct task_struct *curr = rq->curr;
2866 struct sched_entity *se = &curr->se, *pse = &p->se;
2867 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2868 int scale = cfs_rq->nr_running >= sched_nr_latency;
2869 int next_buddy_marked = 0;
2871 if (unlikely(se == pse))
2872 return;
2875 * This is possible from callers such as move_task(), in which we
2876 * unconditionally check_prempt_curr() after an enqueue (which may have
2877 * lead to a throttle). This both saves work and prevents false
2878 * next-buddy nomination below.
2880 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2881 return;
2883 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2884 set_next_buddy(pse);
2885 next_buddy_marked = 1;
2889 * We can come here with TIF_NEED_RESCHED already set from new task
2890 * wake up path.
2892 * Note: this also catches the edge-case of curr being in a throttled
2893 * group (e.g. via set_curr_task), since update_curr() (in the
2894 * enqueue of curr) will have resulted in resched being set. This
2895 * prevents us from potentially nominating it as a false LAST_BUDDY
2896 * below.
2898 if (test_tsk_need_resched(curr))
2899 return;
2901 /* Idle tasks are by definition preempted by non-idle tasks. */
2902 if (unlikely(curr->policy == SCHED_IDLE) &&
2903 likely(p->policy != SCHED_IDLE))
2904 goto preempt;
2907 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2908 * is driven by the tick):
2910 if (unlikely(p->policy != SCHED_NORMAL))
2911 return;
2913 find_matching_se(&se, &pse);
2914 update_curr(cfs_rq_of(se));
2915 BUG_ON(!pse);
2916 if (wakeup_preempt_entity(se, pse) == 1) {
2918 * Bias pick_next to pick the sched entity that is
2919 * triggering this preemption.
2921 if (!next_buddy_marked)
2922 set_next_buddy(pse);
2923 goto preempt;
2926 return;
2928 preempt:
2929 resched_task(curr);
2931 * Only set the backward buddy when the current task is still
2932 * on the rq. This can happen when a wakeup gets interleaved
2933 * with schedule on the ->pre_schedule() or idle_balance()
2934 * point, either of which can * drop the rq lock.
2936 * Also, during early boot the idle thread is in the fair class,
2937 * for obvious reasons its a bad idea to schedule back to it.
2939 if (unlikely(!se->on_rq || curr == rq->idle))
2940 return;
2942 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2943 set_last_buddy(se);
2946 static struct task_struct *pick_next_task_fair(struct rq *rq)
2948 struct task_struct *p;
2949 struct cfs_rq *cfs_rq = &rq->cfs;
2950 struct sched_entity *se;
2952 if (!cfs_rq->nr_running)
2953 return NULL;
2955 do {
2956 se = pick_next_entity(cfs_rq);
2957 set_next_entity(cfs_rq, se);
2958 cfs_rq = group_cfs_rq(se);
2959 } while (cfs_rq);
2961 p = task_of(se);
2962 if (hrtick_enabled(rq))
2963 hrtick_start_fair(rq, p);
2965 return p;
2969 * Account for a descheduled task:
2971 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
2973 struct sched_entity *se = &prev->se;
2974 struct cfs_rq *cfs_rq;
2976 for_each_sched_entity(se) {
2977 cfs_rq = cfs_rq_of(se);
2978 put_prev_entity(cfs_rq, se);
2983 * sched_yield() is very simple
2985 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2987 static void yield_task_fair(struct rq *rq)
2989 struct task_struct *curr = rq->curr;
2990 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2991 struct sched_entity *se = &curr->se;
2994 * Are we the only task in the tree?
2996 if (unlikely(rq->nr_running == 1))
2997 return;
2999 clear_buddies(cfs_rq, se);
3001 if (curr->policy != SCHED_BATCH) {
3002 update_rq_clock(rq);
3004 * Update run-time statistics of the 'current'.
3006 update_curr(cfs_rq);
3008 * Tell update_rq_clock() that we've just updated,
3009 * so we don't do microscopic update in schedule()
3010 * and double the fastpath cost.
3012 rq->skip_clock_update = 1;
3015 set_skip_buddy(se);
3018 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3020 struct sched_entity *se = &p->se;
3022 /* throttled hierarchies are not runnable */
3023 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3024 return false;
3026 /* Tell the scheduler that we'd really like pse to run next. */
3027 set_next_buddy(se);
3029 yield_task_fair(rq);
3031 return true;
3034 #ifdef CONFIG_SMP
3035 /**************************************************
3036 * Fair scheduling class load-balancing methods:
3039 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3041 #define LBF_ALL_PINNED 0x01
3042 #define LBF_NEED_BREAK 0x02
3043 #define LBF_SOME_PINNED 0x04
3045 struct lb_env {
3046 struct sched_domain *sd;
3048 struct rq *src_rq;
3049 int src_cpu;
3051 int dst_cpu;
3052 struct rq *dst_rq;
3054 struct cpumask *dst_grpmask;
3055 int new_dst_cpu;
3056 enum cpu_idle_type idle;
3057 long imbalance;
3058 /* The set of CPUs under consideration for load-balancing */
3059 struct cpumask *cpus;
3061 unsigned int flags;
3063 unsigned int loop;
3064 unsigned int loop_break;
3065 unsigned int loop_max;
3069 * move_task - move a task from one runqueue to another runqueue.
3070 * Both runqueues must be locked.
3072 static void move_task(struct task_struct *p, struct lb_env *env)
3074 deactivate_task(env->src_rq, p, 0);
3075 set_task_cpu(p, env->dst_cpu);
3076 activate_task(env->dst_rq, p, 0);
3077 check_preempt_curr(env->dst_rq, p, 0);
3081 * Is this task likely cache-hot:
3083 static int
3084 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3086 s64 delta;
3088 if (p->sched_class != &fair_sched_class)
3089 return 0;
3091 if (unlikely(p->policy == SCHED_IDLE))
3092 return 0;
3095 * Buddy candidates are cache hot:
3097 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3098 (&p->se == cfs_rq_of(&p->se)->next ||
3099 &p->se == cfs_rq_of(&p->se)->last))
3100 return 1;
3102 if (sysctl_sched_migration_cost == -1)
3103 return 1;
3104 if (sysctl_sched_migration_cost == 0)
3105 return 0;
3107 delta = now - p->se.exec_start;
3109 return delta < (s64)sysctl_sched_migration_cost;
3113 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3115 static
3116 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3118 int tsk_cache_hot = 0;
3120 * We do not migrate tasks that are:
3121 * 1) running (obviously), or
3122 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3123 * 3) are cache-hot on their current CPU.
3125 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3126 int new_dst_cpu;
3128 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3131 * Remember if this task can be migrated to any other cpu in
3132 * our sched_group. We may want to revisit it if we couldn't
3133 * meet load balance goals by pulling other tasks on src_cpu.
3135 * Also avoid computing new_dst_cpu if we have already computed
3136 * one in current iteration.
3138 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3139 return 0;
3141 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3142 tsk_cpus_allowed(p));
3143 if (new_dst_cpu < nr_cpu_ids) {
3144 env->flags |= LBF_SOME_PINNED;
3145 env->new_dst_cpu = new_dst_cpu;
3147 return 0;
3150 /* Record that we found atleast one task that could run on dst_cpu */
3151 env->flags &= ~LBF_ALL_PINNED;
3153 if (task_running(env->src_rq, p)) {
3154 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3155 return 0;
3159 * Aggressive migration if:
3160 * 1) task is cache cold, or
3161 * 2) too many balance attempts have failed.
3164 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3165 if (!tsk_cache_hot ||
3166 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3167 #ifdef CONFIG_SCHEDSTATS
3168 if (tsk_cache_hot) {
3169 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3170 schedstat_inc(p, se.statistics.nr_forced_migrations);
3172 #endif
3173 return 1;
3176 if (tsk_cache_hot) {
3177 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3178 return 0;
3180 return 1;
3184 * move_one_task tries to move exactly one task from busiest to this_rq, as
3185 * part of active balancing operations within "domain".
3186 * Returns 1 if successful and 0 otherwise.
3188 * Called with both runqueues locked.
3190 static int move_one_task(struct lb_env *env)
3192 struct task_struct *p, *n;
3194 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3195 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3196 continue;
3198 if (!can_migrate_task(p, env))
3199 continue;
3201 move_task(p, env);
3203 * Right now, this is only the second place move_task()
3204 * is called, so we can safely collect move_task()
3205 * stats here rather than inside move_task().
3207 schedstat_inc(env->sd, lb_gained[env->idle]);
3208 return 1;
3210 return 0;
3213 static unsigned long task_h_load(struct task_struct *p);
3215 static const unsigned int sched_nr_migrate_break = 32;
3218 * move_tasks tries to move up to imbalance weighted load from busiest to
3219 * this_rq, as part of a balancing operation within domain "sd".
3220 * Returns 1 if successful and 0 otherwise.
3222 * Called with both runqueues locked.
3224 static int move_tasks(struct lb_env *env)
3226 struct list_head *tasks = &env->src_rq->cfs_tasks;
3227 struct task_struct *p;
3228 unsigned long load;
3229 int pulled = 0;
3231 if (env->imbalance <= 0)
3232 return 0;
3234 while (!list_empty(tasks)) {
3235 p = list_first_entry(tasks, struct task_struct, se.group_node);
3237 env->loop++;
3238 /* We've more or less seen every task there is, call it quits */
3239 if (env->loop > env->loop_max)
3240 break;
3242 /* take a breather every nr_migrate tasks */
3243 if (env->loop > env->loop_break) {
3244 env->loop_break += sched_nr_migrate_break;
3245 env->flags |= LBF_NEED_BREAK;
3246 break;
3249 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3250 goto next;
3252 load = task_h_load(p);
3254 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3255 goto next;
3257 if ((load / 2) > env->imbalance)
3258 goto next;
3260 if (!can_migrate_task(p, env))
3261 goto next;
3263 move_task(p, env);
3264 pulled++;
3265 env->imbalance -= load;
3267 #ifdef CONFIG_PREEMPT
3269 * NEWIDLE balancing is a source of latency, so preemptible
3270 * kernels will stop after the first task is pulled to minimize
3271 * the critical section.
3273 if (env->idle == CPU_NEWLY_IDLE)
3274 break;
3275 #endif
3278 * We only want to steal up to the prescribed amount of
3279 * weighted load.
3281 if (env->imbalance <= 0)
3282 break;
3284 continue;
3285 next:
3286 list_move_tail(&p->se.group_node, tasks);
3290 * Right now, this is one of only two places move_task() is called,
3291 * so we can safely collect move_task() stats here rather than
3292 * inside move_task().
3294 schedstat_add(env->sd, lb_gained[env->idle], pulled);
3296 return pulled;
3299 #ifdef CONFIG_FAIR_GROUP_SCHED
3301 * update tg->load_weight by folding this cpu's load_avg
3303 static int update_shares_cpu(struct task_group *tg, int cpu)
3305 struct cfs_rq *cfs_rq;
3306 unsigned long flags;
3307 struct rq *rq;
3309 if (!tg->se[cpu])
3310 return 0;
3312 rq = cpu_rq(cpu);
3313 cfs_rq = tg->cfs_rq[cpu];
3315 raw_spin_lock_irqsave(&rq->lock, flags);
3317 update_rq_clock(rq);
3318 update_cfs_load(cfs_rq, 1);
3321 * We need to update shares after updating tg->load_weight in
3322 * order to adjust the weight of groups with long running tasks.
3324 update_cfs_shares(cfs_rq);
3326 raw_spin_unlock_irqrestore(&rq->lock, flags);
3328 return 0;
3331 static void update_shares(int cpu)
3333 struct cfs_rq *cfs_rq;
3334 struct rq *rq = cpu_rq(cpu);
3336 rcu_read_lock();
3338 * Iterates the task_group tree in a bottom up fashion, see
3339 * list_add_leaf_cfs_rq() for details.
3341 for_each_leaf_cfs_rq(rq, cfs_rq) {
3342 /* throttled entities do not contribute to load */
3343 if (throttled_hierarchy(cfs_rq))
3344 continue;
3346 update_shares_cpu(cfs_rq->tg, cpu);
3348 rcu_read_unlock();
3352 * Compute the cpu's hierarchical load factor for each task group.
3353 * This needs to be done in a top-down fashion because the load of a child
3354 * group is a fraction of its parents load.
3356 static int tg_load_down(struct task_group *tg, void *data)
3358 unsigned long load;
3359 long cpu = (long)data;
3361 if (!tg->parent) {
3362 load = cpu_rq(cpu)->load.weight;
3363 } else {
3364 load = tg->parent->cfs_rq[cpu]->h_load;
3365 load *= tg->se[cpu]->load.weight;
3366 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3369 tg->cfs_rq[cpu]->h_load = load;
3371 return 0;
3374 static void update_h_load(long cpu)
3376 struct rq *rq = cpu_rq(cpu);
3377 unsigned long now = jiffies;
3379 if (rq->h_load_throttle == now)
3380 return;
3382 rq->h_load_throttle = now;
3384 rcu_read_lock();
3385 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3386 rcu_read_unlock();
3389 static unsigned long task_h_load(struct task_struct *p)
3391 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3392 unsigned long load;
3394 load = p->se.load.weight;
3395 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3397 return load;
3399 #else
3400 static inline void update_shares(int cpu)
3404 static inline void update_h_load(long cpu)
3408 static unsigned long task_h_load(struct task_struct *p)
3410 return p->se.load.weight;
3412 #endif
3414 /********** Helpers for find_busiest_group ************************/
3416 * sd_lb_stats - Structure to store the statistics of a sched_domain
3417 * during load balancing.
3419 struct sd_lb_stats {
3420 struct sched_group *busiest; /* Busiest group in this sd */
3421 struct sched_group *this; /* Local group in this sd */
3422 unsigned long total_load; /* Total load of all groups in sd */
3423 unsigned long total_pwr; /* Total power of all groups in sd */
3424 unsigned long avg_load; /* Average load across all groups in sd */
3426 /** Statistics of this group */
3427 unsigned long this_load;
3428 unsigned long this_load_per_task;
3429 unsigned long this_nr_running;
3430 unsigned long this_has_capacity;
3431 unsigned int this_idle_cpus;
3433 /* Statistics of the busiest group */
3434 unsigned int busiest_idle_cpus;
3435 unsigned long max_load;
3436 unsigned long busiest_load_per_task;
3437 unsigned long busiest_nr_running;
3438 unsigned long busiest_group_capacity;
3439 unsigned long busiest_has_capacity;
3440 unsigned int busiest_group_weight;
3442 int group_imb; /* Is there imbalance in this sd */
3446 * sg_lb_stats - stats of a sched_group required for load_balancing
3448 struct sg_lb_stats {
3449 unsigned long avg_load; /*Avg load across the CPUs of the group */
3450 unsigned long group_load; /* Total load over the CPUs of the group */
3451 unsigned long sum_nr_running; /* Nr tasks running in the group */
3452 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3453 unsigned long group_capacity;
3454 unsigned long idle_cpus;
3455 unsigned long group_weight;
3456 int group_imb; /* Is there an imbalance in the group ? */
3457 int group_has_capacity; /* Is there extra capacity in the group? */
3461 * get_sd_load_idx - Obtain the load index for a given sched domain.
3462 * @sd: The sched_domain whose load_idx is to be obtained.
3463 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3465 static inline int get_sd_load_idx(struct sched_domain *sd,
3466 enum cpu_idle_type idle)
3468 int load_idx;
3470 switch (idle) {
3471 case CPU_NOT_IDLE:
3472 load_idx = sd->busy_idx;
3473 break;
3475 case CPU_NEWLY_IDLE:
3476 load_idx = sd->newidle_idx;
3477 break;
3478 default:
3479 load_idx = sd->idle_idx;
3480 break;
3483 return load_idx;
3486 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3488 return SCHED_POWER_SCALE;
3491 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3493 return default_scale_freq_power(sd, cpu);
3496 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3498 unsigned long weight = sd->span_weight;
3499 unsigned long smt_gain = sd->smt_gain;
3501 smt_gain /= weight;
3503 return smt_gain;
3506 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3508 return default_scale_smt_power(sd, cpu);
3511 unsigned long scale_rt_power(int cpu)
3513 struct rq *rq = cpu_rq(cpu);
3514 u64 total, available, age_stamp, avg;
3517 * Since we're reading these variables without serialization make sure
3518 * we read them once before doing sanity checks on them.
3520 age_stamp = ACCESS_ONCE(rq->age_stamp);
3521 avg = ACCESS_ONCE(rq->rt_avg);
3523 total = sched_avg_period() + (rq->clock - age_stamp);
3525 if (unlikely(total < avg)) {
3526 /* Ensures that power won't end up being negative */
3527 available = 0;
3528 } else {
3529 available = total - avg;
3532 if (unlikely((s64)total < SCHED_POWER_SCALE))
3533 total = SCHED_POWER_SCALE;
3535 total >>= SCHED_POWER_SHIFT;
3537 return div_u64(available, total);
3540 static void update_cpu_power(struct sched_domain *sd, int cpu)
3542 unsigned long weight = sd->span_weight;
3543 unsigned long power = SCHED_POWER_SCALE;
3544 struct sched_group *sdg = sd->groups;
3546 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3547 if (sched_feat(ARCH_POWER))
3548 power *= arch_scale_smt_power(sd, cpu);
3549 else
3550 power *= default_scale_smt_power(sd, cpu);
3552 power >>= SCHED_POWER_SHIFT;
3555 sdg->sgp->power_orig = power;
3557 if (sched_feat(ARCH_POWER))
3558 power *= arch_scale_freq_power(sd, cpu);
3559 else
3560 power *= default_scale_freq_power(sd, cpu);
3562 power >>= SCHED_POWER_SHIFT;
3564 power *= scale_rt_power(cpu);
3565 power >>= SCHED_POWER_SHIFT;
3567 if (!power)
3568 power = 1;
3570 cpu_rq(cpu)->cpu_power = power;
3571 sdg->sgp->power = power;
3574 void update_group_power(struct sched_domain *sd, int cpu)
3576 struct sched_domain *child = sd->child;
3577 struct sched_group *group, *sdg = sd->groups;
3578 unsigned long power;
3579 unsigned long interval;
3581 interval = msecs_to_jiffies(sd->balance_interval);
3582 interval = clamp(interval, 1UL, max_load_balance_interval);
3583 sdg->sgp->next_update = jiffies + interval;
3585 if (!child) {
3586 update_cpu_power(sd, cpu);
3587 return;
3590 power = 0;
3592 if (child->flags & SD_OVERLAP) {
3594 * SD_OVERLAP domains cannot assume that child groups
3595 * span the current group.
3598 for_each_cpu(cpu, sched_group_cpus(sdg))
3599 power += power_of(cpu);
3600 } else {
3602 * !SD_OVERLAP domains can assume that child groups
3603 * span the current group.
3606 group = child->groups;
3607 do {
3608 power += group->sgp->power;
3609 group = group->next;
3610 } while (group != child->groups);
3613 sdg->sgp->power_orig = sdg->sgp->power = power;
3617 * Try and fix up capacity for tiny siblings, this is needed when
3618 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3619 * which on its own isn't powerful enough.
3621 * See update_sd_pick_busiest() and check_asym_packing().
3623 static inline int
3624 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3627 * Only siblings can have significantly less than SCHED_POWER_SCALE
3629 if (!(sd->flags & SD_SHARE_CPUPOWER))
3630 return 0;
3633 * If ~90% of the cpu_power is still there, we're good.
3635 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3636 return 1;
3638 return 0;
3642 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3643 * @env: The load balancing environment.
3644 * @group: sched_group whose statistics are to be updated.
3645 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3646 * @local_group: Does group contain this_cpu.
3647 * @balance: Should we balance.
3648 * @sgs: variable to hold the statistics for this group.
3650 static inline void update_sg_lb_stats(struct lb_env *env,
3651 struct sched_group *group, int load_idx,
3652 int local_group, int *balance, struct sg_lb_stats *sgs)
3654 unsigned long nr_running, max_nr_running, min_nr_running;
3655 unsigned long load, max_cpu_load, min_cpu_load;
3656 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3657 unsigned long avg_load_per_task = 0;
3658 int i;
3660 if (local_group)
3661 balance_cpu = group_balance_cpu(group);
3663 /* Tally up the load of all CPUs in the group */
3664 max_cpu_load = 0;
3665 min_cpu_load = ~0UL;
3666 max_nr_running = 0;
3667 min_nr_running = ~0UL;
3669 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
3670 struct rq *rq = cpu_rq(i);
3672 nr_running = rq->nr_running;
3674 /* Bias balancing toward cpus of our domain */
3675 if (local_group) {
3676 if (idle_cpu(i) && !first_idle_cpu &&
3677 cpumask_test_cpu(i, sched_group_mask(group))) {
3678 first_idle_cpu = 1;
3679 balance_cpu = i;
3682 load = target_load(i, load_idx);
3683 } else {
3684 load = source_load(i, load_idx);
3685 if (load > max_cpu_load)
3686 max_cpu_load = load;
3687 if (min_cpu_load > load)
3688 min_cpu_load = load;
3690 if (nr_running > max_nr_running)
3691 max_nr_running = nr_running;
3692 if (min_nr_running > nr_running)
3693 min_nr_running = nr_running;
3696 sgs->group_load += load;
3697 sgs->sum_nr_running += nr_running;
3698 sgs->sum_weighted_load += weighted_cpuload(i);
3699 if (idle_cpu(i))
3700 sgs->idle_cpus++;
3704 * First idle cpu or the first cpu(busiest) in this sched group
3705 * is eligible for doing load balancing at this and above
3706 * domains. In the newly idle case, we will allow all the cpu's
3707 * to do the newly idle load balance.
3709 if (local_group) {
3710 if (env->idle != CPU_NEWLY_IDLE) {
3711 if (balance_cpu != env->dst_cpu) {
3712 *balance = 0;
3713 return;
3715 update_group_power(env->sd, env->dst_cpu);
3716 } else if (time_after_eq(jiffies, group->sgp->next_update))
3717 update_group_power(env->sd, env->dst_cpu);
3720 /* Adjust by relative CPU power of the group */
3721 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3724 * Consider the group unbalanced when the imbalance is larger
3725 * than the average weight of a task.
3727 * APZ: with cgroup the avg task weight can vary wildly and
3728 * might not be a suitable number - should we keep a
3729 * normalized nr_running number somewhere that negates
3730 * the hierarchy?
3732 if (sgs->sum_nr_running)
3733 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3735 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3736 (max_nr_running - min_nr_running) > 1)
3737 sgs->group_imb = 1;
3739 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3740 SCHED_POWER_SCALE);
3741 if (!sgs->group_capacity)
3742 sgs->group_capacity = fix_small_capacity(env->sd, group);
3743 sgs->group_weight = group->group_weight;
3745 if (sgs->group_capacity > sgs->sum_nr_running)
3746 sgs->group_has_capacity = 1;
3750 * update_sd_pick_busiest - return 1 on busiest group
3751 * @env: The load balancing environment.
3752 * @sds: sched_domain statistics
3753 * @sg: sched_group candidate to be checked for being the busiest
3754 * @sgs: sched_group statistics
3756 * Determine if @sg is a busier group than the previously selected
3757 * busiest group.
3759 static bool update_sd_pick_busiest(struct lb_env *env,
3760 struct sd_lb_stats *sds,
3761 struct sched_group *sg,
3762 struct sg_lb_stats *sgs)
3764 if (sgs->avg_load <= sds->max_load)
3765 return false;
3767 if (sgs->sum_nr_running > sgs->group_capacity)
3768 return true;
3770 if (sgs->group_imb)
3771 return true;
3774 * ASYM_PACKING needs to move all the work to the lowest
3775 * numbered CPUs in the group, therefore mark all groups
3776 * higher than ourself as busy.
3778 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3779 env->dst_cpu < group_first_cpu(sg)) {
3780 if (!sds->busiest)
3781 return true;
3783 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3784 return true;
3787 return false;
3791 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3792 * @env: The load balancing environment.
3793 * @balance: Should we balance.
3794 * @sds: variable to hold the statistics for this sched_domain.
3796 static inline void update_sd_lb_stats(struct lb_env *env,
3797 int *balance, struct sd_lb_stats *sds)
3799 struct sched_domain *child = env->sd->child;
3800 struct sched_group *sg = env->sd->groups;
3801 struct sg_lb_stats sgs;
3802 int load_idx, prefer_sibling = 0;
3804 if (child && child->flags & SD_PREFER_SIBLING)
3805 prefer_sibling = 1;
3807 load_idx = get_sd_load_idx(env->sd, env->idle);
3809 do {
3810 int local_group;
3812 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3813 memset(&sgs, 0, sizeof(sgs));
3814 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
3816 if (local_group && !(*balance))
3817 return;
3819 sds->total_load += sgs.group_load;
3820 sds->total_pwr += sg->sgp->power;
3823 * In case the child domain prefers tasks go to siblings
3824 * first, lower the sg capacity to one so that we'll try
3825 * and move all the excess tasks away. We lower the capacity
3826 * of a group only if the local group has the capacity to fit
3827 * these excess tasks, i.e. nr_running < group_capacity. The
3828 * extra check prevents the case where you always pull from the
3829 * heaviest group when it is already under-utilized (possible
3830 * with a large weight task outweighs the tasks on the system).
3832 if (prefer_sibling && !local_group && sds->this_has_capacity)
3833 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3835 if (local_group) {
3836 sds->this_load = sgs.avg_load;
3837 sds->this = sg;
3838 sds->this_nr_running = sgs.sum_nr_running;
3839 sds->this_load_per_task = sgs.sum_weighted_load;
3840 sds->this_has_capacity = sgs.group_has_capacity;
3841 sds->this_idle_cpus = sgs.idle_cpus;
3842 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
3843 sds->max_load = sgs.avg_load;
3844 sds->busiest = sg;
3845 sds->busiest_nr_running = sgs.sum_nr_running;
3846 sds->busiest_idle_cpus = sgs.idle_cpus;
3847 sds->busiest_group_capacity = sgs.group_capacity;
3848 sds->busiest_load_per_task = sgs.sum_weighted_load;
3849 sds->busiest_has_capacity = sgs.group_has_capacity;
3850 sds->busiest_group_weight = sgs.group_weight;
3851 sds->group_imb = sgs.group_imb;
3854 sg = sg->next;
3855 } while (sg != env->sd->groups);
3859 * check_asym_packing - Check to see if the group is packed into the
3860 * sched doman.
3862 * This is primarily intended to used at the sibling level. Some
3863 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3864 * case of POWER7, it can move to lower SMT modes only when higher
3865 * threads are idle. When in lower SMT modes, the threads will
3866 * perform better since they share less core resources. Hence when we
3867 * have idle threads, we want them to be the higher ones.
3869 * This packing function is run on idle threads. It checks to see if
3870 * the busiest CPU in this domain (core in the P7 case) has a higher
3871 * CPU number than the packing function is being run on. Here we are
3872 * assuming lower CPU number will be equivalent to lower a SMT thread
3873 * number.
3875 * Returns 1 when packing is required and a task should be moved to
3876 * this CPU. The amount of the imbalance is returned in *imbalance.
3878 * @env: The load balancing environment.
3879 * @sds: Statistics of the sched_domain which is to be packed
3881 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
3883 int busiest_cpu;
3885 if (!(env->sd->flags & SD_ASYM_PACKING))
3886 return 0;
3888 if (!sds->busiest)
3889 return 0;
3891 busiest_cpu = group_first_cpu(sds->busiest);
3892 if (env->dst_cpu > busiest_cpu)
3893 return 0;
3895 env->imbalance = DIV_ROUND_CLOSEST(
3896 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
3898 return 1;
3902 * fix_small_imbalance - Calculate the minor imbalance that exists
3903 * amongst the groups of a sched_domain, during
3904 * load balancing.
3905 * @env: The load balancing environment.
3906 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3908 static inline
3909 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3911 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3912 unsigned int imbn = 2;
3913 unsigned long scaled_busy_load_per_task;
3915 if (sds->this_nr_running) {
3916 sds->this_load_per_task /= sds->this_nr_running;
3917 if (sds->busiest_load_per_task >
3918 sds->this_load_per_task)
3919 imbn = 1;
3920 } else {
3921 sds->this_load_per_task =
3922 cpu_avg_load_per_task(env->dst_cpu);
3925 scaled_busy_load_per_task = sds->busiest_load_per_task
3926 * SCHED_POWER_SCALE;
3927 scaled_busy_load_per_task /= sds->busiest->sgp->power;
3929 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3930 (scaled_busy_load_per_task * imbn)) {
3931 env->imbalance = sds->busiest_load_per_task;
3932 return;
3936 * OK, we don't have enough imbalance to justify moving tasks,
3937 * however we may be able to increase total CPU power used by
3938 * moving them.
3941 pwr_now += sds->busiest->sgp->power *
3942 min(sds->busiest_load_per_task, sds->max_load);
3943 pwr_now += sds->this->sgp->power *
3944 min(sds->this_load_per_task, sds->this_load);
3945 pwr_now /= SCHED_POWER_SCALE;
3947 /* Amount of load we'd subtract */
3948 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3949 sds->busiest->sgp->power;
3950 if (sds->max_load > tmp)
3951 pwr_move += sds->busiest->sgp->power *
3952 min(sds->busiest_load_per_task, sds->max_load - tmp);
3954 /* Amount of load we'd add */
3955 if (sds->max_load * sds->busiest->sgp->power <
3956 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3957 tmp = (sds->max_load * sds->busiest->sgp->power) /
3958 sds->this->sgp->power;
3959 else
3960 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3961 sds->this->sgp->power;
3962 pwr_move += sds->this->sgp->power *
3963 min(sds->this_load_per_task, sds->this_load + tmp);
3964 pwr_move /= SCHED_POWER_SCALE;
3966 /* Move if we gain throughput */
3967 if (pwr_move > pwr_now)
3968 env->imbalance = sds->busiest_load_per_task;
3972 * calculate_imbalance - Calculate the amount of imbalance present within the
3973 * groups of a given sched_domain during load balance.
3974 * @env: load balance environment
3975 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3977 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3979 unsigned long max_pull, load_above_capacity = ~0UL;
3981 sds->busiest_load_per_task /= sds->busiest_nr_running;
3982 if (sds->group_imb) {
3983 sds->busiest_load_per_task =
3984 min(sds->busiest_load_per_task, sds->avg_load);
3988 * In the presence of smp nice balancing, certain scenarios can have
3989 * max load less than avg load(as we skip the groups at or below
3990 * its cpu_power, while calculating max_load..)
3992 if (sds->max_load < sds->avg_load) {
3993 env->imbalance = 0;
3994 return fix_small_imbalance(env, sds);
3997 if (!sds->group_imb) {
3999 * Don't want to pull so many tasks that a group would go idle.
4001 load_above_capacity = (sds->busiest_nr_running -
4002 sds->busiest_group_capacity);
4004 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4006 load_above_capacity /= sds->busiest->sgp->power;
4010 * We're trying to get all the cpus to the average_load, so we don't
4011 * want to push ourselves above the average load, nor do we wish to
4012 * reduce the max loaded cpu below the average load. At the same time,
4013 * we also don't want to reduce the group load below the group capacity
4014 * (so that we can implement power-savings policies etc). Thus we look
4015 * for the minimum possible imbalance.
4016 * Be careful of negative numbers as they'll appear as very large values
4017 * with unsigned longs.
4019 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4021 /* How much load to actually move to equalise the imbalance */
4022 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4023 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4024 / SCHED_POWER_SCALE;
4027 * if *imbalance is less than the average load per runnable task
4028 * there is no guarantee that any tasks will be moved so we'll have
4029 * a think about bumping its value to force at least one task to be
4030 * moved
4032 if (env->imbalance < sds->busiest_load_per_task)
4033 return fix_small_imbalance(env, sds);
4037 /******* find_busiest_group() helpers end here *********************/
4040 * find_busiest_group - Returns the busiest group within the sched_domain
4041 * if there is an imbalance. If there isn't an imbalance, and
4042 * the user has opted for power-savings, it returns a group whose
4043 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4044 * such a group exists.
4046 * Also calculates the amount of weighted load which should be moved
4047 * to restore balance.
4049 * @env: The load balancing environment.
4050 * @balance: Pointer to a variable indicating if this_cpu
4051 * is the appropriate cpu to perform load balancing at this_level.
4053 * Returns: - the busiest group if imbalance exists.
4054 * - If no imbalance and user has opted for power-savings balance,
4055 * return the least loaded group whose CPUs can be
4056 * put to idle by rebalancing its tasks onto our group.
4058 static struct sched_group *
4059 find_busiest_group(struct lb_env *env, int *balance)
4061 struct sd_lb_stats sds;
4063 memset(&sds, 0, sizeof(sds));
4066 * Compute the various statistics relavent for load balancing at
4067 * this level.
4069 update_sd_lb_stats(env, balance, &sds);
4072 * this_cpu is not the appropriate cpu to perform load balancing at
4073 * this level.
4075 if (!(*balance))
4076 goto ret;
4078 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4079 check_asym_packing(env, &sds))
4080 return sds.busiest;
4082 /* There is no busy sibling group to pull tasks from */
4083 if (!sds.busiest || sds.busiest_nr_running == 0)
4084 goto out_balanced;
4086 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4089 * If the busiest group is imbalanced the below checks don't
4090 * work because they assumes all things are equal, which typically
4091 * isn't true due to cpus_allowed constraints and the like.
4093 if (sds.group_imb)
4094 goto force_balance;
4096 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4097 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4098 !sds.busiest_has_capacity)
4099 goto force_balance;
4102 * If the local group is more busy than the selected busiest group
4103 * don't try and pull any tasks.
4105 if (sds.this_load >= sds.max_load)
4106 goto out_balanced;
4109 * Don't pull any tasks if this group is already above the domain
4110 * average load.
4112 if (sds.this_load >= sds.avg_load)
4113 goto out_balanced;
4115 if (env->idle == CPU_IDLE) {
4117 * This cpu is idle. If the busiest group load doesn't
4118 * have more tasks than the number of available cpu's and
4119 * there is no imbalance between this and busiest group
4120 * wrt to idle cpu's, it is balanced.
4122 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4123 sds.busiest_nr_running <= sds.busiest_group_weight)
4124 goto out_balanced;
4125 } else {
4127 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4128 * imbalance_pct to be conservative.
4130 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4131 goto out_balanced;
4134 force_balance:
4135 /* Looks like there is an imbalance. Compute it */
4136 calculate_imbalance(env, &sds);
4137 return sds.busiest;
4139 out_balanced:
4140 ret:
4141 env->imbalance = 0;
4142 return NULL;
4146 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4148 static struct rq *find_busiest_queue(struct lb_env *env,
4149 struct sched_group *group)
4151 struct rq *busiest = NULL, *rq;
4152 unsigned long max_load = 0;
4153 int i;
4155 for_each_cpu(i, sched_group_cpus(group)) {
4156 unsigned long power = power_of(i);
4157 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4158 SCHED_POWER_SCALE);
4159 unsigned long wl;
4161 if (!capacity)
4162 capacity = fix_small_capacity(env->sd, group);
4164 if (!cpumask_test_cpu(i, env->cpus))
4165 continue;
4167 rq = cpu_rq(i);
4168 wl = weighted_cpuload(i);
4171 * When comparing with imbalance, use weighted_cpuload()
4172 * which is not scaled with the cpu power.
4174 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4175 continue;
4178 * For the load comparisons with the other cpu's, consider
4179 * the weighted_cpuload() scaled with the cpu power, so that
4180 * the load can be moved away from the cpu that is potentially
4181 * running at a lower capacity.
4183 wl = (wl * SCHED_POWER_SCALE) / power;
4185 if (wl > max_load) {
4186 max_load = wl;
4187 busiest = rq;
4191 return busiest;
4195 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4196 * so long as it is large enough.
4198 #define MAX_PINNED_INTERVAL 512
4200 /* Working cpumask for load_balance and load_balance_newidle. */
4201 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4203 static int need_active_balance(struct lb_env *env)
4205 struct sched_domain *sd = env->sd;
4207 if (env->idle == CPU_NEWLY_IDLE) {
4210 * ASYM_PACKING needs to force migrate tasks from busy but
4211 * higher numbered CPUs in order to pack all tasks in the
4212 * lowest numbered CPUs.
4214 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4215 return 1;
4218 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4221 static int active_load_balance_cpu_stop(void *data);
4224 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4225 * tasks if there is an imbalance.
4227 static int load_balance(int this_cpu, struct rq *this_rq,
4228 struct sched_domain *sd, enum cpu_idle_type idle,
4229 int *balance)
4231 int ld_moved, cur_ld_moved, active_balance = 0;
4232 int lb_iterations, max_lb_iterations;
4233 struct sched_group *group;
4234 struct rq *busiest;
4235 unsigned long flags;
4236 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4238 struct lb_env env = {
4239 .sd = sd,
4240 .dst_cpu = this_cpu,
4241 .dst_rq = this_rq,
4242 .dst_grpmask = sched_group_cpus(sd->groups),
4243 .idle = idle,
4244 .loop_break = sched_nr_migrate_break,
4245 .cpus = cpus,
4248 cpumask_copy(cpus, cpu_active_mask);
4249 max_lb_iterations = cpumask_weight(env.dst_grpmask);
4251 schedstat_inc(sd, lb_count[idle]);
4253 redo:
4254 group = find_busiest_group(&env, balance);
4256 if (*balance == 0)
4257 goto out_balanced;
4259 if (!group) {
4260 schedstat_inc(sd, lb_nobusyg[idle]);
4261 goto out_balanced;
4264 busiest = find_busiest_queue(&env, group);
4265 if (!busiest) {
4266 schedstat_inc(sd, lb_nobusyq[idle]);
4267 goto out_balanced;
4270 BUG_ON(busiest == env.dst_rq);
4272 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4274 ld_moved = 0;
4275 lb_iterations = 1;
4276 if (busiest->nr_running > 1) {
4278 * Attempt to move tasks. If find_busiest_group has found
4279 * an imbalance but busiest->nr_running <= 1, the group is
4280 * still unbalanced. ld_moved simply stays zero, so it is
4281 * correctly treated as an imbalance.
4283 env.flags |= LBF_ALL_PINNED;
4284 env.src_cpu = busiest->cpu;
4285 env.src_rq = busiest;
4286 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
4288 update_h_load(env.src_cpu);
4289 more_balance:
4290 local_irq_save(flags);
4291 double_rq_lock(env.dst_rq, busiest);
4294 * cur_ld_moved - load moved in current iteration
4295 * ld_moved - cumulative load moved across iterations
4297 cur_ld_moved = move_tasks(&env);
4298 ld_moved += cur_ld_moved;
4299 double_rq_unlock(env.dst_rq, busiest);
4300 local_irq_restore(flags);
4302 if (env.flags & LBF_NEED_BREAK) {
4303 env.flags &= ~LBF_NEED_BREAK;
4304 goto more_balance;
4308 * some other cpu did the load balance for us.
4310 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4311 resched_cpu(env.dst_cpu);
4314 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4315 * us and move them to an alternate dst_cpu in our sched_group
4316 * where they can run. The upper limit on how many times we
4317 * iterate on same src_cpu is dependent on number of cpus in our
4318 * sched_group.
4320 * This changes load balance semantics a bit on who can move
4321 * load to a given_cpu. In addition to the given_cpu itself
4322 * (or a ilb_cpu acting on its behalf where given_cpu is
4323 * nohz-idle), we now have balance_cpu in a position to move
4324 * load to given_cpu. In rare situations, this may cause
4325 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4326 * _independently_ and at _same_ time to move some load to
4327 * given_cpu) causing exceess load to be moved to given_cpu.
4328 * This however should not happen so much in practice and
4329 * moreover subsequent load balance cycles should correct the
4330 * excess load moved.
4332 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4333 lb_iterations++ < max_lb_iterations) {
4335 env.dst_rq = cpu_rq(env.new_dst_cpu);
4336 env.dst_cpu = env.new_dst_cpu;
4337 env.flags &= ~LBF_SOME_PINNED;
4338 env.loop = 0;
4339 env.loop_break = sched_nr_migrate_break;
4341 * Go back to "more_balance" rather than "redo" since we
4342 * need to continue with same src_cpu.
4344 goto more_balance;
4347 /* All tasks on this runqueue were pinned by CPU affinity */
4348 if (unlikely(env.flags & LBF_ALL_PINNED)) {
4349 cpumask_clear_cpu(cpu_of(busiest), cpus);
4350 if (!cpumask_empty(cpus)) {
4351 env.loop = 0;
4352 env.loop_break = sched_nr_migrate_break;
4353 goto redo;
4355 goto out_balanced;
4359 if (!ld_moved) {
4360 schedstat_inc(sd, lb_failed[idle]);
4362 * Increment the failure counter only on periodic balance.
4363 * We do not want newidle balance, which can be very
4364 * frequent, pollute the failure counter causing
4365 * excessive cache_hot migrations and active balances.
4367 if (idle != CPU_NEWLY_IDLE)
4368 sd->nr_balance_failed++;
4370 if (need_active_balance(&env)) {
4371 raw_spin_lock_irqsave(&busiest->lock, flags);
4373 /* don't kick the active_load_balance_cpu_stop,
4374 * if the curr task on busiest cpu can't be
4375 * moved to this_cpu
4377 if (!cpumask_test_cpu(this_cpu,
4378 tsk_cpus_allowed(busiest->curr))) {
4379 raw_spin_unlock_irqrestore(&busiest->lock,
4380 flags);
4381 env.flags |= LBF_ALL_PINNED;
4382 goto out_one_pinned;
4386 * ->active_balance synchronizes accesses to
4387 * ->active_balance_work. Once set, it's cleared
4388 * only after active load balance is finished.
4390 if (!busiest->active_balance) {
4391 busiest->active_balance = 1;
4392 busiest->push_cpu = this_cpu;
4393 active_balance = 1;
4395 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4397 if (active_balance) {
4398 stop_one_cpu_nowait(cpu_of(busiest),
4399 active_load_balance_cpu_stop, busiest,
4400 &busiest->active_balance_work);
4404 * We've kicked active balancing, reset the failure
4405 * counter.
4407 sd->nr_balance_failed = sd->cache_nice_tries+1;
4409 } else
4410 sd->nr_balance_failed = 0;
4412 if (likely(!active_balance)) {
4413 /* We were unbalanced, so reset the balancing interval */
4414 sd->balance_interval = sd->min_interval;
4415 } else {
4417 * If we've begun active balancing, start to back off. This
4418 * case may not be covered by the all_pinned logic if there
4419 * is only 1 task on the busy runqueue (because we don't call
4420 * move_tasks).
4422 if (sd->balance_interval < sd->max_interval)
4423 sd->balance_interval *= 2;
4426 goto out;
4428 out_balanced:
4429 schedstat_inc(sd, lb_balanced[idle]);
4431 sd->nr_balance_failed = 0;
4433 out_one_pinned:
4434 /* tune up the balancing interval */
4435 if (((env.flags & LBF_ALL_PINNED) &&
4436 sd->balance_interval < MAX_PINNED_INTERVAL) ||
4437 (sd->balance_interval < sd->max_interval))
4438 sd->balance_interval *= 2;
4440 ld_moved = 0;
4441 out:
4442 return ld_moved;
4446 * idle_balance is called by schedule() if this_cpu is about to become
4447 * idle. Attempts to pull tasks from other CPUs.
4449 void idle_balance(int this_cpu, struct rq *this_rq)
4451 struct sched_domain *sd;
4452 int pulled_task = 0;
4453 unsigned long next_balance = jiffies + HZ;
4455 this_rq->idle_stamp = this_rq->clock;
4457 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4458 return;
4461 * Drop the rq->lock, but keep IRQ/preempt disabled.
4463 raw_spin_unlock(&this_rq->lock);
4465 update_shares(this_cpu);
4466 rcu_read_lock();
4467 for_each_domain(this_cpu, sd) {
4468 unsigned long interval;
4469 int balance = 1;
4471 if (!(sd->flags & SD_LOAD_BALANCE))
4472 continue;
4474 if (sd->flags & SD_BALANCE_NEWIDLE) {
4475 /* If we've pulled tasks over stop searching: */
4476 pulled_task = load_balance(this_cpu, this_rq,
4477 sd, CPU_NEWLY_IDLE, &balance);
4480 interval = msecs_to_jiffies(sd->balance_interval);
4481 if (time_after(next_balance, sd->last_balance + interval))
4482 next_balance = sd->last_balance + interval;
4483 if (pulled_task) {
4484 this_rq->idle_stamp = 0;
4485 break;
4488 rcu_read_unlock();
4490 raw_spin_lock(&this_rq->lock);
4492 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4494 * We are going idle. next_balance may be set based on
4495 * a busy processor. So reset next_balance.
4497 this_rq->next_balance = next_balance;
4502 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4503 * running tasks off the busiest CPU onto idle CPUs. It requires at
4504 * least 1 task to be running on each physical CPU where possible, and
4505 * avoids physical / logical imbalances.
4507 static int active_load_balance_cpu_stop(void *data)
4509 struct rq *busiest_rq = data;
4510 int busiest_cpu = cpu_of(busiest_rq);
4511 int target_cpu = busiest_rq->push_cpu;
4512 struct rq *target_rq = cpu_rq(target_cpu);
4513 struct sched_domain *sd;
4515 raw_spin_lock_irq(&busiest_rq->lock);
4517 /* make sure the requested cpu hasn't gone down in the meantime */
4518 if (unlikely(busiest_cpu != smp_processor_id() ||
4519 !busiest_rq->active_balance))
4520 goto out_unlock;
4522 /* Is there any task to move? */
4523 if (busiest_rq->nr_running <= 1)
4524 goto out_unlock;
4527 * This condition is "impossible", if it occurs
4528 * we need to fix it. Originally reported by
4529 * Bjorn Helgaas on a 128-cpu setup.
4531 BUG_ON(busiest_rq == target_rq);
4533 /* move a task from busiest_rq to target_rq */
4534 double_lock_balance(busiest_rq, target_rq);
4536 /* Search for an sd spanning us and the target CPU. */
4537 rcu_read_lock();
4538 for_each_domain(target_cpu, sd) {
4539 if ((sd->flags & SD_LOAD_BALANCE) &&
4540 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4541 break;
4544 if (likely(sd)) {
4545 struct lb_env env = {
4546 .sd = sd,
4547 .dst_cpu = target_cpu,
4548 .dst_rq = target_rq,
4549 .src_cpu = busiest_rq->cpu,
4550 .src_rq = busiest_rq,
4551 .idle = CPU_IDLE,
4554 schedstat_inc(sd, alb_count);
4556 if (move_one_task(&env))
4557 schedstat_inc(sd, alb_pushed);
4558 else
4559 schedstat_inc(sd, alb_failed);
4561 rcu_read_unlock();
4562 double_unlock_balance(busiest_rq, target_rq);
4563 out_unlock:
4564 busiest_rq->active_balance = 0;
4565 raw_spin_unlock_irq(&busiest_rq->lock);
4566 return 0;
4569 #ifdef CONFIG_NO_HZ
4571 * idle load balancing details
4572 * - When one of the busy CPUs notice that there may be an idle rebalancing
4573 * needed, they will kick the idle load balancer, which then does idle
4574 * load balancing for all the idle CPUs.
4576 static struct {
4577 cpumask_var_t idle_cpus_mask;
4578 atomic_t nr_cpus;
4579 unsigned long next_balance; /* in jiffy units */
4580 } nohz ____cacheline_aligned;
4582 static inline int find_new_ilb(int call_cpu)
4584 int ilb = cpumask_first(nohz.idle_cpus_mask);
4586 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4587 return ilb;
4589 return nr_cpu_ids;
4593 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4594 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4595 * CPU (if there is one).
4597 static void nohz_balancer_kick(int cpu)
4599 int ilb_cpu;
4601 nohz.next_balance++;
4603 ilb_cpu = find_new_ilb(cpu);
4605 if (ilb_cpu >= nr_cpu_ids)
4606 return;
4608 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4609 return;
4611 * Use smp_send_reschedule() instead of resched_cpu().
4612 * This way we generate a sched IPI on the target cpu which
4613 * is idle. And the softirq performing nohz idle load balance
4614 * will be run before returning from the IPI.
4616 smp_send_reschedule(ilb_cpu);
4617 return;
4620 static inline void nohz_balance_exit_idle(int cpu)
4622 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4623 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4624 atomic_dec(&nohz.nr_cpus);
4625 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4629 static inline void set_cpu_sd_state_busy(void)
4631 struct sched_domain *sd;
4632 int cpu = smp_processor_id();
4634 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4635 return;
4636 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4638 rcu_read_lock();
4639 for_each_domain(cpu, sd)
4640 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4641 rcu_read_unlock();
4644 void set_cpu_sd_state_idle(void)
4646 struct sched_domain *sd;
4647 int cpu = smp_processor_id();
4649 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4650 return;
4651 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4653 rcu_read_lock();
4654 for_each_domain(cpu, sd)
4655 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4656 rcu_read_unlock();
4660 * This routine will record that the cpu is going idle with tick stopped.
4661 * This info will be used in performing idle load balancing in the future.
4663 void nohz_balance_enter_idle(int cpu)
4666 * If this cpu is going down, then nothing needs to be done.
4668 if (!cpu_active(cpu))
4669 return;
4671 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4672 return;
4674 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4675 atomic_inc(&nohz.nr_cpus);
4676 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4679 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4680 unsigned long action, void *hcpu)
4682 switch (action & ~CPU_TASKS_FROZEN) {
4683 case CPU_DYING:
4684 nohz_balance_exit_idle(smp_processor_id());
4685 return NOTIFY_OK;
4686 default:
4687 return NOTIFY_DONE;
4690 #endif
4692 static DEFINE_SPINLOCK(balancing);
4695 * Scale the max load_balance interval with the number of CPUs in the system.
4696 * This trades load-balance latency on larger machines for less cross talk.
4698 void update_max_interval(void)
4700 max_load_balance_interval = HZ*num_online_cpus()/10;
4704 * It checks each scheduling domain to see if it is due to be balanced,
4705 * and initiates a balancing operation if so.
4707 * Balancing parameters are set up in arch_init_sched_domains.
4709 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4711 int balance = 1;
4712 struct rq *rq = cpu_rq(cpu);
4713 unsigned long interval;
4714 struct sched_domain *sd;
4715 /* Earliest time when we have to do rebalance again */
4716 unsigned long next_balance = jiffies + 60*HZ;
4717 int update_next_balance = 0;
4718 int need_serialize;
4720 update_shares(cpu);
4722 rcu_read_lock();
4723 for_each_domain(cpu, sd) {
4724 if (!(sd->flags & SD_LOAD_BALANCE))
4725 continue;
4727 interval = sd->balance_interval;
4728 if (idle != CPU_IDLE)
4729 interval *= sd->busy_factor;
4731 /* scale ms to jiffies */
4732 interval = msecs_to_jiffies(interval);
4733 interval = clamp(interval, 1UL, max_load_balance_interval);
4735 need_serialize = sd->flags & SD_SERIALIZE;
4737 if (need_serialize) {
4738 if (!spin_trylock(&balancing))
4739 goto out;
4742 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4743 if (load_balance(cpu, rq, sd, idle, &balance)) {
4745 * We've pulled tasks over so either we're no
4746 * longer idle.
4748 idle = CPU_NOT_IDLE;
4750 sd->last_balance = jiffies;
4752 if (need_serialize)
4753 spin_unlock(&balancing);
4754 out:
4755 if (time_after(next_balance, sd->last_balance + interval)) {
4756 next_balance = sd->last_balance + interval;
4757 update_next_balance = 1;
4761 * Stop the load balance at this level. There is another
4762 * CPU in our sched group which is doing load balancing more
4763 * actively.
4765 if (!balance)
4766 break;
4768 rcu_read_unlock();
4771 * next_balance will be updated only when there is a need.
4772 * When the cpu is attached to null domain for ex, it will not be
4773 * updated.
4775 if (likely(update_next_balance))
4776 rq->next_balance = next_balance;
4779 #ifdef CONFIG_NO_HZ
4781 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4782 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4784 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4786 struct rq *this_rq = cpu_rq(this_cpu);
4787 struct rq *rq;
4788 int balance_cpu;
4790 if (idle != CPU_IDLE ||
4791 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4792 goto end;
4794 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4795 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4796 continue;
4799 * If this cpu gets work to do, stop the load balancing
4800 * work being done for other cpus. Next load
4801 * balancing owner will pick it up.
4803 if (need_resched())
4804 break;
4806 rq = cpu_rq(balance_cpu);
4808 raw_spin_lock_irq(&rq->lock);
4809 update_rq_clock(rq);
4810 update_idle_cpu_load(rq);
4811 raw_spin_unlock_irq(&rq->lock);
4813 rebalance_domains(balance_cpu, CPU_IDLE);
4815 if (time_after(this_rq->next_balance, rq->next_balance))
4816 this_rq->next_balance = rq->next_balance;
4818 nohz.next_balance = this_rq->next_balance;
4819 end:
4820 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
4824 * Current heuristic for kicking the idle load balancer in the presence
4825 * of an idle cpu is the system.
4826 * - This rq has more than one task.
4827 * - At any scheduler domain level, this cpu's scheduler group has multiple
4828 * busy cpu's exceeding the group's power.
4829 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
4830 * domain span are idle.
4832 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4834 unsigned long now = jiffies;
4835 struct sched_domain *sd;
4837 if (unlikely(idle_cpu(cpu)))
4838 return 0;
4841 * We may be recently in ticked or tickless idle mode. At the first
4842 * busy tick after returning from idle, we will update the busy stats.
4844 set_cpu_sd_state_busy();
4845 nohz_balance_exit_idle(cpu);
4848 * None are in tickless mode and hence no need for NOHZ idle load
4849 * balancing.
4851 if (likely(!atomic_read(&nohz.nr_cpus)))
4852 return 0;
4854 if (time_before(now, nohz.next_balance))
4855 return 0;
4857 if (rq->nr_running >= 2)
4858 goto need_kick;
4860 rcu_read_lock();
4861 for_each_domain(cpu, sd) {
4862 struct sched_group *sg = sd->groups;
4863 struct sched_group_power *sgp = sg->sgp;
4864 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
4866 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
4867 goto need_kick_unlock;
4869 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
4870 && (cpumask_first_and(nohz.idle_cpus_mask,
4871 sched_domain_span(sd)) < cpu))
4872 goto need_kick_unlock;
4874 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
4875 break;
4877 rcu_read_unlock();
4878 return 0;
4880 need_kick_unlock:
4881 rcu_read_unlock();
4882 need_kick:
4883 return 1;
4885 #else
4886 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4887 #endif
4890 * run_rebalance_domains is triggered when needed from the scheduler tick.
4891 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4893 static void run_rebalance_domains(struct softirq_action *h)
4895 int this_cpu = smp_processor_id();
4896 struct rq *this_rq = cpu_rq(this_cpu);
4897 enum cpu_idle_type idle = this_rq->idle_balance ?
4898 CPU_IDLE : CPU_NOT_IDLE;
4900 rebalance_domains(this_cpu, idle);
4903 * If this cpu has a pending nohz_balance_kick, then do the
4904 * balancing on behalf of the other idle cpus whose ticks are
4905 * stopped.
4907 nohz_idle_balance(this_cpu, idle);
4910 static inline int on_null_domain(int cpu)
4912 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4916 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4918 void trigger_load_balance(struct rq *rq, int cpu)
4920 /* Don't need to rebalance while attached to NULL domain */
4921 if (time_after_eq(jiffies, rq->next_balance) &&
4922 likely(!on_null_domain(cpu)))
4923 raise_softirq(SCHED_SOFTIRQ);
4924 #ifdef CONFIG_NO_HZ
4925 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4926 nohz_balancer_kick(cpu);
4927 #endif
4930 static void rq_online_fair(struct rq *rq)
4932 update_sysctl();
4935 static void rq_offline_fair(struct rq *rq)
4937 update_sysctl();
4939 /* Ensure any throttled groups are reachable by pick_next_task */
4940 unthrottle_offline_cfs_rqs(rq);
4943 #endif /* CONFIG_SMP */
4946 * scheduler tick hitting a task of our scheduling class:
4948 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4950 struct cfs_rq *cfs_rq;
4951 struct sched_entity *se = &curr->se;
4953 for_each_sched_entity(se) {
4954 cfs_rq = cfs_rq_of(se);
4955 entity_tick(cfs_rq, se, queued);
4960 * called on fork with the child task as argument from the parent's context
4961 * - child not yet on the tasklist
4962 * - preemption disabled
4964 static void task_fork_fair(struct task_struct *p)
4966 struct cfs_rq *cfs_rq;
4967 struct sched_entity *se = &p->se, *curr;
4968 int this_cpu = smp_processor_id();
4969 struct rq *rq = this_rq();
4970 unsigned long flags;
4972 raw_spin_lock_irqsave(&rq->lock, flags);
4974 update_rq_clock(rq);
4976 cfs_rq = task_cfs_rq(current);
4977 curr = cfs_rq->curr;
4979 if (unlikely(task_cpu(p) != this_cpu)) {
4980 rcu_read_lock();
4981 __set_task_cpu(p, this_cpu);
4982 rcu_read_unlock();
4985 update_curr(cfs_rq);
4987 if (curr)
4988 se->vruntime = curr->vruntime;
4989 place_entity(cfs_rq, se, 1);
4991 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4993 * Upon rescheduling, sched_class::put_prev_task() will place
4994 * 'current' within the tree based on its new key value.
4996 swap(curr->vruntime, se->vruntime);
4997 resched_task(rq->curr);
5000 se->vruntime -= cfs_rq->min_vruntime;
5002 raw_spin_unlock_irqrestore(&rq->lock, flags);
5006 * Priority of the task has changed. Check to see if we preempt
5007 * the current task.
5009 static void
5010 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5012 if (!p->se.on_rq)
5013 return;
5016 * Reschedule if we are currently running on this runqueue and
5017 * our priority decreased, or if we are not currently running on
5018 * this runqueue and our priority is higher than the current's
5020 if (rq->curr == p) {
5021 if (p->prio > oldprio)
5022 resched_task(rq->curr);
5023 } else
5024 check_preempt_curr(rq, p, 0);
5027 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5029 struct sched_entity *se = &p->se;
5030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5033 * Ensure the task's vruntime is normalized, so that when its
5034 * switched back to the fair class the enqueue_entity(.flags=0) will
5035 * do the right thing.
5037 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5038 * have normalized the vruntime, if it was !on_rq, then only when
5039 * the task is sleeping will it still have non-normalized vruntime.
5041 if (!se->on_rq && p->state != TASK_RUNNING) {
5043 * Fix up our vruntime so that the current sleep doesn't
5044 * cause 'unlimited' sleep bonus.
5046 place_entity(cfs_rq, se, 0);
5047 se->vruntime -= cfs_rq->min_vruntime;
5052 * We switched to the sched_fair class.
5054 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5056 if (!p->se.on_rq)
5057 return;
5060 * We were most likely switched from sched_rt, so
5061 * kick off the schedule if running, otherwise just see
5062 * if we can still preempt the current task.
5064 if (rq->curr == p)
5065 resched_task(rq->curr);
5066 else
5067 check_preempt_curr(rq, p, 0);
5070 /* Account for a task changing its policy or group.
5072 * This routine is mostly called to set cfs_rq->curr field when a task
5073 * migrates between groups/classes.
5075 static void set_curr_task_fair(struct rq *rq)
5077 struct sched_entity *se = &rq->curr->se;
5079 for_each_sched_entity(se) {
5080 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5082 set_next_entity(cfs_rq, se);
5083 /* ensure bandwidth has been allocated on our new cfs_rq */
5084 account_cfs_rq_runtime(cfs_rq, 0);
5088 void init_cfs_rq(struct cfs_rq *cfs_rq)
5090 cfs_rq->tasks_timeline = RB_ROOT;
5091 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5092 #ifndef CONFIG_64BIT
5093 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5094 #endif
5097 #ifdef CONFIG_FAIR_GROUP_SCHED
5098 static void task_move_group_fair(struct task_struct *p, int on_rq)
5101 * If the task was not on the rq at the time of this cgroup movement
5102 * it must have been asleep, sleeping tasks keep their ->vruntime
5103 * absolute on their old rq until wakeup (needed for the fair sleeper
5104 * bonus in place_entity()).
5106 * If it was on the rq, we've just 'preempted' it, which does convert
5107 * ->vruntime to a relative base.
5109 * Make sure both cases convert their relative position when migrating
5110 * to another cgroup's rq. This does somewhat interfere with the
5111 * fair sleeper stuff for the first placement, but who cares.
5114 * When !on_rq, vruntime of the task has usually NOT been normalized.
5115 * But there are some cases where it has already been normalized:
5117 * - Moving a forked child which is waiting for being woken up by
5118 * wake_up_new_task().
5119 * - Moving a task which has been woken up by try_to_wake_up() and
5120 * waiting for actually being woken up by sched_ttwu_pending().
5122 * To prevent boost or penalty in the new cfs_rq caused by delta
5123 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5125 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5126 on_rq = 1;
5128 if (!on_rq)
5129 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5130 set_task_rq(p, task_cpu(p));
5131 if (!on_rq)
5132 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5135 void free_fair_sched_group(struct task_group *tg)
5137 int i;
5139 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5141 for_each_possible_cpu(i) {
5142 if (tg->cfs_rq)
5143 kfree(tg->cfs_rq[i]);
5144 if (tg->se)
5145 kfree(tg->se[i]);
5148 kfree(tg->cfs_rq);
5149 kfree(tg->se);
5152 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5154 struct cfs_rq *cfs_rq;
5155 struct sched_entity *se;
5156 int i;
5158 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5159 if (!tg->cfs_rq)
5160 goto err;
5161 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5162 if (!tg->se)
5163 goto err;
5165 tg->shares = NICE_0_LOAD;
5167 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5169 for_each_possible_cpu(i) {
5170 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5171 GFP_KERNEL, cpu_to_node(i));
5172 if (!cfs_rq)
5173 goto err;
5175 se = kzalloc_node(sizeof(struct sched_entity),
5176 GFP_KERNEL, cpu_to_node(i));
5177 if (!se)
5178 goto err_free_rq;
5180 init_cfs_rq(cfs_rq);
5181 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5184 return 1;
5186 err_free_rq:
5187 kfree(cfs_rq);
5188 err:
5189 return 0;
5192 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5194 struct rq *rq = cpu_rq(cpu);
5195 unsigned long flags;
5198 * Only empty task groups can be destroyed; so we can speculatively
5199 * check on_list without danger of it being re-added.
5201 if (!tg->cfs_rq[cpu]->on_list)
5202 return;
5204 raw_spin_lock_irqsave(&rq->lock, flags);
5205 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5206 raw_spin_unlock_irqrestore(&rq->lock, flags);
5209 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5210 struct sched_entity *se, int cpu,
5211 struct sched_entity *parent)
5213 struct rq *rq = cpu_rq(cpu);
5215 cfs_rq->tg = tg;
5216 cfs_rq->rq = rq;
5217 #ifdef CONFIG_SMP
5218 /* allow initial update_cfs_load() to truncate */
5219 cfs_rq->load_stamp = 1;
5220 #endif
5221 init_cfs_rq_runtime(cfs_rq);
5223 tg->cfs_rq[cpu] = cfs_rq;
5224 tg->se[cpu] = se;
5226 /* se could be NULL for root_task_group */
5227 if (!se)
5228 return;
5230 if (!parent)
5231 se->cfs_rq = &rq->cfs;
5232 else
5233 se->cfs_rq = parent->my_q;
5235 se->my_q = cfs_rq;
5236 update_load_set(&se->load, 0);
5237 se->parent = parent;
5240 static DEFINE_MUTEX(shares_mutex);
5242 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5244 int i;
5245 unsigned long flags;
5248 * We can't change the weight of the root cgroup.
5250 if (!tg->se[0])
5251 return -EINVAL;
5253 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5255 mutex_lock(&shares_mutex);
5256 if (tg->shares == shares)
5257 goto done;
5259 tg->shares = shares;
5260 for_each_possible_cpu(i) {
5261 struct rq *rq = cpu_rq(i);
5262 struct sched_entity *se;
5264 se = tg->se[i];
5265 /* Propagate contribution to hierarchy */
5266 raw_spin_lock_irqsave(&rq->lock, flags);
5267 for_each_sched_entity(se)
5268 update_cfs_shares(group_cfs_rq(se));
5269 raw_spin_unlock_irqrestore(&rq->lock, flags);
5272 done:
5273 mutex_unlock(&shares_mutex);
5274 return 0;
5276 #else /* CONFIG_FAIR_GROUP_SCHED */
5278 void free_fair_sched_group(struct task_group *tg) { }
5280 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5282 return 1;
5285 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5287 #endif /* CONFIG_FAIR_GROUP_SCHED */
5290 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5292 struct sched_entity *se = &task->se;
5293 unsigned int rr_interval = 0;
5296 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5297 * idle runqueue:
5299 if (rq->cfs.load.weight)
5300 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5302 return rr_interval;
5306 * All the scheduling class methods:
5308 const struct sched_class fair_sched_class = {
5309 .next = &idle_sched_class,
5310 .enqueue_task = enqueue_task_fair,
5311 .dequeue_task = dequeue_task_fair,
5312 .yield_task = yield_task_fair,
5313 .yield_to_task = yield_to_task_fair,
5315 .check_preempt_curr = check_preempt_wakeup,
5317 .pick_next_task = pick_next_task_fair,
5318 .put_prev_task = put_prev_task_fair,
5320 #ifdef CONFIG_SMP
5321 .select_task_rq = select_task_rq_fair,
5323 .rq_online = rq_online_fair,
5324 .rq_offline = rq_offline_fair,
5326 .task_waking = task_waking_fair,
5327 #endif
5329 .set_curr_task = set_curr_task_fair,
5330 .task_tick = task_tick_fair,
5331 .task_fork = task_fork_fair,
5333 .prio_changed = prio_changed_fair,
5334 .switched_from = switched_from_fair,
5335 .switched_to = switched_to_fair,
5337 .get_rr_interval = get_rr_interval_fair,
5339 #ifdef CONFIG_FAIR_GROUP_SCHED
5340 .task_move_group = task_move_group_fair,
5341 #endif
5344 #ifdef CONFIG_SCHED_DEBUG
5345 void print_cfs_stats(struct seq_file *m, int cpu)
5347 struct cfs_rq *cfs_rq;
5349 rcu_read_lock();
5350 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5351 print_cfs_rq(m, cpu, cfs_rq);
5352 rcu_read_unlock();
5354 #endif
5356 __init void init_sched_fair_class(void)
5358 #ifdef CONFIG_SMP
5359 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5361 #ifdef CONFIG_NO_HZ
5362 nohz.next_balance = jiffies;
5363 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5364 cpu_notifier(sched_ilb_notifier, 0);
5365 #endif
5366 #endif /* SMP */