i2c: nomadik: support elder Nomadiks
[linux-2.6/btrfs-unstable.git] / fs / xfs / xfs_buf.c
blob1b2472a46e46b96e31e0615f670120218ed7cf24
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_sb.h"
38 #include "xfs_log.h"
39 #include "xfs_ag.h"
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
43 static kmem_zone_t *xfs_buf_zone;
45 static struct workqueue_struct *xfslogd_workqueue;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp->b_addr && bp->b_page_count > 1;
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 * xfs_buf_lru_add - add a buffer to the LRU.
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
88 STATIC void
89 xfs_buf_lru_add(
90 struct xfs_buf *bp)
92 struct xfs_buftarg *btp = bp->b_target;
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
101 spin_unlock(&btp->bt_lru_lock);
105 * xfs_buf_lru_del - remove a buffer from the LRU
107 * The unlocked check is safe here because it only occurs when there are not
108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109 * to optimise the shrinker removing the buffer from the LRU and calling
110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
111 * bt_lru_lock.
113 STATIC void
114 xfs_buf_lru_del(
115 struct xfs_buf *bp)
117 struct xfs_buftarg *btp = bp->b_target;
119 if (list_empty(&bp->b_lru))
120 return;
122 spin_lock(&btp->bt_lru_lock);
123 if (!list_empty(&bp->b_lru)) {
124 list_del_init(&bp->b_lru);
125 btp->bt_lru_nr--;
127 spin_unlock(&btp->bt_lru_lock);
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
136 * This prevents build-up of stale buffers on the LRU.
138 void
139 xfs_buf_stale(
140 struct xfs_buf *bp)
142 ASSERT(xfs_buf_islocked(bp));
144 bp->b_flags |= XBF_STALE;
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
151 bp->b_flags &= ~_XBF_DELWRI_Q;
153 atomic_set(&(bp)->b_lru_ref, 0);
154 if (!list_empty(&bp->b_lru)) {
155 struct xfs_buftarg *btp = bp->b_target;
157 spin_lock(&btp->bt_lru_lock);
158 if (!list_empty(&bp->b_lru) &&
159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
164 spin_unlock(&btp->bt_lru_lock);
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
169 static int
170 xfs_buf_get_maps(
171 struct xfs_buf *bp,
172 int map_count)
174 ASSERT(bp->b_maps == NULL);
175 bp->b_map_count = map_count;
177 if (map_count == 1) {
178 bp->b_maps = &bp->__b_map;
179 return 0;
182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 KM_NOFS);
184 if (!bp->b_maps)
185 return ENOMEM;
186 return 0;
190 * Frees b_pages if it was allocated.
192 static void
193 xfs_buf_free_maps(
194 struct xfs_buf *bp)
196 if (bp->b_maps != &bp->__b_map) {
197 kmem_free(bp->b_maps);
198 bp->b_maps = NULL;
202 struct xfs_buf *
203 _xfs_buf_alloc(
204 struct xfs_buftarg *target,
205 struct xfs_buf_map *map,
206 int nmaps,
207 xfs_buf_flags_t flags)
209 struct xfs_buf *bp;
210 int error;
211 int i;
213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
214 if (unlikely(!bp))
215 return NULL;
218 * We don't want certain flags to appear in b_flags unless they are
219 * specifically set by later operations on the buffer.
221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
223 atomic_set(&bp->b_hold, 1);
224 atomic_set(&bp->b_lru_ref, 1);
225 init_completion(&bp->b_iowait);
226 INIT_LIST_HEAD(&bp->b_lru);
227 INIT_LIST_HEAD(&bp->b_list);
228 RB_CLEAR_NODE(&bp->b_rbnode);
229 sema_init(&bp->b_sema, 0); /* held, no waiters */
230 XB_SET_OWNER(bp);
231 bp->b_target = target;
232 bp->b_flags = flags;
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
237 * most cases but may be reset (e.g. XFS recovery).
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
252 bp->b_io_length = bp->b_length;
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
257 XFS_STATS_INC(xb_create);
258 trace_xfs_buf_init(bp, _RET_IP_);
260 return bp;
264 * Allocate a page array capable of holding a specified number
265 * of pages, and point the page buf at it.
267 STATIC int
268 _xfs_buf_get_pages(
269 xfs_buf_t *bp,
270 int page_count,
271 xfs_buf_flags_t flags)
273 /* Make sure that we have a page list */
274 if (bp->b_pages == NULL) {
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
278 } else {
279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
280 page_count, KM_NOFS);
281 if (bp->b_pages == NULL)
282 return -ENOMEM;
284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
286 return 0;
290 * Frees b_pages if it was allocated.
292 STATIC void
293 _xfs_buf_free_pages(
294 xfs_buf_t *bp)
296 if (bp->b_pages != bp->b_page_array) {
297 kmem_free(bp->b_pages);
298 bp->b_pages = NULL;
303 * Releases the specified buffer.
305 * The modification state of any associated pages is left unchanged.
306 * The buffer most not be on any hash - use xfs_buf_rele instead for
307 * hashed and refcounted buffers
309 void
310 xfs_buf_free(
311 xfs_buf_t *bp)
313 trace_xfs_buf_free(bp, _RET_IP_);
315 ASSERT(list_empty(&bp->b_lru));
317 if (bp->b_flags & _XBF_PAGES) {
318 uint i;
320 if (xfs_buf_is_vmapped(bp))
321 vm_unmap_ram(bp->b_addr - bp->b_offset,
322 bp->b_page_count);
324 for (i = 0; i < bp->b_page_count; i++) {
325 struct page *page = bp->b_pages[i];
327 __free_page(page);
329 } else if (bp->b_flags & _XBF_KMEM)
330 kmem_free(bp->b_addr);
331 _xfs_buf_free_pages(bp);
332 xfs_buf_free_maps(bp);
333 kmem_zone_free(xfs_buf_zone, bp);
337 * Allocates all the pages for buffer in question and builds it's page list.
339 STATIC int
340 xfs_buf_allocate_memory(
341 xfs_buf_t *bp,
342 uint flags)
344 size_t size;
345 size_t nbytes, offset;
346 gfp_t gfp_mask = xb_to_gfp(flags);
347 unsigned short page_count, i;
348 xfs_off_t start, end;
349 int error;
352 * for buffers that are contained within a single page, just allocate
353 * the memory from the heap - there's no need for the complexity of
354 * page arrays to keep allocation down to order 0.
356 size = BBTOB(bp->b_length);
357 if (size < PAGE_SIZE) {
358 bp->b_addr = kmem_alloc(size, KM_NOFS);
359 if (!bp->b_addr) {
360 /* low memory - use alloc_page loop instead */
361 goto use_alloc_page;
364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
365 ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 /* b_addr spans two pages - use alloc_page instead */
367 kmem_free(bp->b_addr);
368 bp->b_addr = NULL;
369 goto use_alloc_page;
371 bp->b_offset = offset_in_page(bp->b_addr);
372 bp->b_pages = bp->b_page_array;
373 bp->b_pages[0] = virt_to_page(bp->b_addr);
374 bp->b_page_count = 1;
375 bp->b_flags |= _XBF_KMEM;
376 return 0;
379 use_alloc_page:
380 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
381 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
382 >> PAGE_SHIFT;
383 page_count = end - start;
384 error = _xfs_buf_get_pages(bp, page_count, flags);
385 if (unlikely(error))
386 return error;
388 offset = bp->b_offset;
389 bp->b_flags |= _XBF_PAGES;
391 for (i = 0; i < bp->b_page_count; i++) {
392 struct page *page;
393 uint retries = 0;
394 retry:
395 page = alloc_page(gfp_mask);
396 if (unlikely(page == NULL)) {
397 if (flags & XBF_READ_AHEAD) {
398 bp->b_page_count = i;
399 error = ENOMEM;
400 goto out_free_pages;
404 * This could deadlock.
406 * But until all the XFS lowlevel code is revamped to
407 * handle buffer allocation failures we can't do much.
409 if (!(++retries % 100))
410 xfs_err(NULL,
411 "possible memory allocation deadlock in %s (mode:0x%x)",
412 __func__, gfp_mask);
414 XFS_STATS_INC(xb_page_retries);
415 congestion_wait(BLK_RW_ASYNC, HZ/50);
416 goto retry;
419 XFS_STATS_INC(xb_page_found);
421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
422 size -= nbytes;
423 bp->b_pages[i] = page;
424 offset = 0;
426 return 0;
428 out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
431 return error;
435 * Map buffer into kernel address-space if necessary.
437 STATIC int
438 _xfs_buf_map_pages(
439 xfs_buf_t *bp,
440 uint flags)
442 ASSERT(bp->b_flags & _XBF_PAGES);
443 if (bp->b_page_count == 1) {
444 /* A single page buffer is always mappable */
445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
449 int retried = 0;
451 do {
452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 -1, PAGE_KERNEL);
454 if (bp->b_addr)
455 break;
456 vm_unmap_aliases();
457 } while (retried++ <= 1);
459 if (!bp->b_addr)
460 return -ENOMEM;
461 bp->b_addr += bp->b_offset;
464 return 0;
468 * Finding and Reading Buffers
472 * Look up, and creates if absent, a lockable buffer for
473 * a given range of an inode. The buffer is returned
474 * locked. No I/O is implied by this call.
476 xfs_buf_t *
477 _xfs_buf_find(
478 struct xfs_buftarg *btp,
479 struct xfs_buf_map *map,
480 int nmaps,
481 xfs_buf_flags_t flags,
482 xfs_buf_t *new_bp)
484 size_t numbytes;
485 struct xfs_perag *pag;
486 struct rb_node **rbp;
487 struct rb_node *parent;
488 xfs_buf_t *bp;
489 xfs_daddr_t blkno = map[0].bm_bn;
490 xfs_daddr_t eofs;
491 int numblks = 0;
492 int i;
494 for (i = 0; i < nmaps; i++)
495 numblks += map[i].bm_len;
496 numbytes = BBTOB(numblks);
498 /* Check for IOs smaller than the sector size / not sector aligned */
499 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
500 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
503 * Corrupted block numbers can get through to here, unfortunately, so we
504 * have to check that the buffer falls within the filesystem bounds.
506 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
507 if (blkno >= eofs) {
509 * XXX (dgc): we should really be returning EFSCORRUPTED here,
510 * but none of the higher level infrastructure supports
511 * returning a specific error on buffer lookup failures.
513 xfs_alert(btp->bt_mount,
514 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
515 __func__, blkno, eofs);
516 WARN_ON(1);
517 return NULL;
520 /* get tree root */
521 pag = xfs_perag_get(btp->bt_mount,
522 xfs_daddr_to_agno(btp->bt_mount, blkno));
524 /* walk tree */
525 spin_lock(&pag->pag_buf_lock);
526 rbp = &pag->pag_buf_tree.rb_node;
527 parent = NULL;
528 bp = NULL;
529 while (*rbp) {
530 parent = *rbp;
531 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
533 if (blkno < bp->b_bn)
534 rbp = &(*rbp)->rb_left;
535 else if (blkno > bp->b_bn)
536 rbp = &(*rbp)->rb_right;
537 else {
539 * found a block number match. If the range doesn't
540 * match, the only way this is allowed is if the buffer
541 * in the cache is stale and the transaction that made
542 * it stale has not yet committed. i.e. we are
543 * reallocating a busy extent. Skip this buffer and
544 * continue searching to the right for an exact match.
546 if (bp->b_length != numblks) {
547 ASSERT(bp->b_flags & XBF_STALE);
548 rbp = &(*rbp)->rb_right;
549 continue;
551 atomic_inc(&bp->b_hold);
552 goto found;
556 /* No match found */
557 if (new_bp) {
558 rb_link_node(&new_bp->b_rbnode, parent, rbp);
559 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
560 /* the buffer keeps the perag reference until it is freed */
561 new_bp->b_pag = pag;
562 spin_unlock(&pag->pag_buf_lock);
563 } else {
564 XFS_STATS_INC(xb_miss_locked);
565 spin_unlock(&pag->pag_buf_lock);
566 xfs_perag_put(pag);
568 return new_bp;
570 found:
571 spin_unlock(&pag->pag_buf_lock);
572 xfs_perag_put(pag);
574 if (!xfs_buf_trylock(bp)) {
575 if (flags & XBF_TRYLOCK) {
576 xfs_buf_rele(bp);
577 XFS_STATS_INC(xb_busy_locked);
578 return NULL;
580 xfs_buf_lock(bp);
581 XFS_STATS_INC(xb_get_locked_waited);
585 * if the buffer is stale, clear all the external state associated with
586 * it. We need to keep flags such as how we allocated the buffer memory
587 * intact here.
589 if (bp->b_flags & XBF_STALE) {
590 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
591 ASSERT(bp->b_iodone == NULL);
592 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
593 bp->b_ops = NULL;
596 trace_xfs_buf_find(bp, flags, _RET_IP_);
597 XFS_STATS_INC(xb_get_locked);
598 return bp;
602 * Assembles a buffer covering the specified range. The code is optimised for
603 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
604 * more hits than misses.
606 struct xfs_buf *
607 xfs_buf_get_map(
608 struct xfs_buftarg *target,
609 struct xfs_buf_map *map,
610 int nmaps,
611 xfs_buf_flags_t flags)
613 struct xfs_buf *bp;
614 struct xfs_buf *new_bp;
615 int error = 0;
617 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
618 if (likely(bp))
619 goto found;
621 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
622 if (unlikely(!new_bp))
623 return NULL;
625 error = xfs_buf_allocate_memory(new_bp, flags);
626 if (error) {
627 xfs_buf_free(new_bp);
628 return NULL;
631 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
632 if (!bp) {
633 xfs_buf_free(new_bp);
634 return NULL;
637 if (bp != new_bp)
638 xfs_buf_free(new_bp);
640 found:
641 if (!bp->b_addr) {
642 error = _xfs_buf_map_pages(bp, flags);
643 if (unlikely(error)) {
644 xfs_warn(target->bt_mount,
645 "%s: failed to map pages\n", __func__);
646 xfs_buf_relse(bp);
647 return NULL;
651 XFS_STATS_INC(xb_get);
652 trace_xfs_buf_get(bp, flags, _RET_IP_);
653 return bp;
656 STATIC int
657 _xfs_buf_read(
658 xfs_buf_t *bp,
659 xfs_buf_flags_t flags)
661 ASSERT(!(flags & XBF_WRITE));
662 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
664 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
665 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
667 xfs_buf_iorequest(bp);
668 if (flags & XBF_ASYNC)
669 return 0;
670 return xfs_buf_iowait(bp);
673 xfs_buf_t *
674 xfs_buf_read_map(
675 struct xfs_buftarg *target,
676 struct xfs_buf_map *map,
677 int nmaps,
678 xfs_buf_flags_t flags,
679 const struct xfs_buf_ops *ops)
681 struct xfs_buf *bp;
683 flags |= XBF_READ;
685 bp = xfs_buf_get_map(target, map, nmaps, flags);
686 if (bp) {
687 trace_xfs_buf_read(bp, flags, _RET_IP_);
689 if (!XFS_BUF_ISDONE(bp)) {
690 XFS_STATS_INC(xb_get_read);
691 bp->b_ops = ops;
692 _xfs_buf_read(bp, flags);
693 } else if (flags & XBF_ASYNC) {
695 * Read ahead call which is already satisfied,
696 * drop the buffer
698 xfs_buf_relse(bp);
699 return NULL;
700 } else {
701 /* We do not want read in the flags */
702 bp->b_flags &= ~XBF_READ;
706 return bp;
710 * If we are not low on memory then do the readahead in a deadlock
711 * safe manner.
713 void
714 xfs_buf_readahead_map(
715 struct xfs_buftarg *target,
716 struct xfs_buf_map *map,
717 int nmaps,
718 const struct xfs_buf_ops *ops)
720 if (bdi_read_congested(target->bt_bdi))
721 return;
723 xfs_buf_read_map(target, map, nmaps,
724 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
728 * Read an uncached buffer from disk. Allocates and returns a locked
729 * buffer containing the disk contents or nothing.
731 struct xfs_buf *
732 xfs_buf_read_uncached(
733 struct xfs_buftarg *target,
734 xfs_daddr_t daddr,
735 size_t numblks,
736 int flags,
737 const struct xfs_buf_ops *ops)
739 struct xfs_buf *bp;
741 bp = xfs_buf_get_uncached(target, numblks, flags);
742 if (!bp)
743 return NULL;
745 /* set up the buffer for a read IO */
746 ASSERT(bp->b_map_count == 1);
747 bp->b_bn = daddr;
748 bp->b_maps[0].bm_bn = daddr;
749 bp->b_flags |= XBF_READ;
750 bp->b_ops = ops;
752 xfsbdstrat(target->bt_mount, bp);
753 xfs_buf_iowait(bp);
754 return bp;
758 * Return a buffer allocated as an empty buffer and associated to external
759 * memory via xfs_buf_associate_memory() back to it's empty state.
761 void
762 xfs_buf_set_empty(
763 struct xfs_buf *bp,
764 size_t numblks)
766 if (bp->b_pages)
767 _xfs_buf_free_pages(bp);
769 bp->b_pages = NULL;
770 bp->b_page_count = 0;
771 bp->b_addr = NULL;
772 bp->b_length = numblks;
773 bp->b_io_length = numblks;
775 ASSERT(bp->b_map_count == 1);
776 bp->b_bn = XFS_BUF_DADDR_NULL;
777 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
778 bp->b_maps[0].bm_len = bp->b_length;
781 static inline struct page *
782 mem_to_page(
783 void *addr)
785 if ((!is_vmalloc_addr(addr))) {
786 return virt_to_page(addr);
787 } else {
788 return vmalloc_to_page(addr);
793 xfs_buf_associate_memory(
794 xfs_buf_t *bp,
795 void *mem,
796 size_t len)
798 int rval;
799 int i = 0;
800 unsigned long pageaddr;
801 unsigned long offset;
802 size_t buflen;
803 int page_count;
805 pageaddr = (unsigned long)mem & PAGE_MASK;
806 offset = (unsigned long)mem - pageaddr;
807 buflen = PAGE_ALIGN(len + offset);
808 page_count = buflen >> PAGE_SHIFT;
810 /* Free any previous set of page pointers */
811 if (bp->b_pages)
812 _xfs_buf_free_pages(bp);
814 bp->b_pages = NULL;
815 bp->b_addr = mem;
817 rval = _xfs_buf_get_pages(bp, page_count, 0);
818 if (rval)
819 return rval;
821 bp->b_offset = offset;
823 for (i = 0; i < bp->b_page_count; i++) {
824 bp->b_pages[i] = mem_to_page((void *)pageaddr);
825 pageaddr += PAGE_SIZE;
828 bp->b_io_length = BTOBB(len);
829 bp->b_length = BTOBB(buflen);
831 return 0;
834 xfs_buf_t *
835 xfs_buf_get_uncached(
836 struct xfs_buftarg *target,
837 size_t numblks,
838 int flags)
840 unsigned long page_count;
841 int error, i;
842 struct xfs_buf *bp;
843 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
845 bp = _xfs_buf_alloc(target, &map, 1, 0);
846 if (unlikely(bp == NULL))
847 goto fail;
849 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
850 error = _xfs_buf_get_pages(bp, page_count, 0);
851 if (error)
852 goto fail_free_buf;
854 for (i = 0; i < page_count; i++) {
855 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
856 if (!bp->b_pages[i])
857 goto fail_free_mem;
859 bp->b_flags |= _XBF_PAGES;
861 error = _xfs_buf_map_pages(bp, 0);
862 if (unlikely(error)) {
863 xfs_warn(target->bt_mount,
864 "%s: failed to map pages\n", __func__);
865 goto fail_free_mem;
868 trace_xfs_buf_get_uncached(bp, _RET_IP_);
869 return bp;
871 fail_free_mem:
872 while (--i >= 0)
873 __free_page(bp->b_pages[i]);
874 _xfs_buf_free_pages(bp);
875 fail_free_buf:
876 xfs_buf_free_maps(bp);
877 kmem_zone_free(xfs_buf_zone, bp);
878 fail:
879 return NULL;
883 * Increment reference count on buffer, to hold the buffer concurrently
884 * with another thread which may release (free) the buffer asynchronously.
885 * Must hold the buffer already to call this function.
887 void
888 xfs_buf_hold(
889 xfs_buf_t *bp)
891 trace_xfs_buf_hold(bp, _RET_IP_);
892 atomic_inc(&bp->b_hold);
896 * Releases a hold on the specified buffer. If the
897 * the hold count is 1, calls xfs_buf_free.
899 void
900 xfs_buf_rele(
901 xfs_buf_t *bp)
903 struct xfs_perag *pag = bp->b_pag;
905 trace_xfs_buf_rele(bp, _RET_IP_);
907 if (!pag) {
908 ASSERT(list_empty(&bp->b_lru));
909 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
910 if (atomic_dec_and_test(&bp->b_hold))
911 xfs_buf_free(bp);
912 return;
915 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
917 ASSERT(atomic_read(&bp->b_hold) > 0);
918 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
919 if (!(bp->b_flags & XBF_STALE) &&
920 atomic_read(&bp->b_lru_ref)) {
921 xfs_buf_lru_add(bp);
922 spin_unlock(&pag->pag_buf_lock);
923 } else {
924 xfs_buf_lru_del(bp);
925 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
926 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
927 spin_unlock(&pag->pag_buf_lock);
928 xfs_perag_put(pag);
929 xfs_buf_free(bp);
936 * Lock a buffer object, if it is not already locked.
938 * If we come across a stale, pinned, locked buffer, we know that we are
939 * being asked to lock a buffer that has been reallocated. Because it is
940 * pinned, we know that the log has not been pushed to disk and hence it
941 * will still be locked. Rather than continuing to have trylock attempts
942 * fail until someone else pushes the log, push it ourselves before
943 * returning. This means that the xfsaild will not get stuck trying
944 * to push on stale inode buffers.
947 xfs_buf_trylock(
948 struct xfs_buf *bp)
950 int locked;
952 locked = down_trylock(&bp->b_sema) == 0;
953 if (locked)
954 XB_SET_OWNER(bp);
956 trace_xfs_buf_trylock(bp, _RET_IP_);
957 return locked;
961 * Lock a buffer object.
963 * If we come across a stale, pinned, locked buffer, we know that we
964 * are being asked to lock a buffer that has been reallocated. Because
965 * it is pinned, we know that the log has not been pushed to disk and
966 * hence it will still be locked. Rather than sleeping until someone
967 * else pushes the log, push it ourselves before trying to get the lock.
969 void
970 xfs_buf_lock(
971 struct xfs_buf *bp)
973 trace_xfs_buf_lock(bp, _RET_IP_);
975 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
976 xfs_log_force(bp->b_target->bt_mount, 0);
977 down(&bp->b_sema);
978 XB_SET_OWNER(bp);
980 trace_xfs_buf_lock_done(bp, _RET_IP_);
983 void
984 xfs_buf_unlock(
985 struct xfs_buf *bp)
987 XB_CLEAR_OWNER(bp);
988 up(&bp->b_sema);
990 trace_xfs_buf_unlock(bp, _RET_IP_);
993 STATIC void
994 xfs_buf_wait_unpin(
995 xfs_buf_t *bp)
997 DECLARE_WAITQUEUE (wait, current);
999 if (atomic_read(&bp->b_pin_count) == 0)
1000 return;
1002 add_wait_queue(&bp->b_waiters, &wait);
1003 for (;;) {
1004 set_current_state(TASK_UNINTERRUPTIBLE);
1005 if (atomic_read(&bp->b_pin_count) == 0)
1006 break;
1007 io_schedule();
1009 remove_wait_queue(&bp->b_waiters, &wait);
1010 set_current_state(TASK_RUNNING);
1014 * Buffer Utility Routines
1017 STATIC void
1018 xfs_buf_iodone_work(
1019 struct work_struct *work)
1021 struct xfs_buf *bp =
1022 container_of(work, xfs_buf_t, b_iodone_work);
1023 bool read = !!(bp->b_flags & XBF_READ);
1025 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1027 /* only validate buffers that were read without errors */
1028 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1029 bp->b_ops->verify_read(bp);
1031 if (bp->b_iodone)
1032 (*(bp->b_iodone))(bp);
1033 else if (bp->b_flags & XBF_ASYNC)
1034 xfs_buf_relse(bp);
1035 else {
1036 ASSERT(read && bp->b_ops);
1037 complete(&bp->b_iowait);
1041 void
1042 xfs_buf_ioend(
1043 struct xfs_buf *bp,
1044 int schedule)
1046 bool read = !!(bp->b_flags & XBF_READ);
1048 trace_xfs_buf_iodone(bp, _RET_IP_);
1050 if (bp->b_error == 0)
1051 bp->b_flags |= XBF_DONE;
1053 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1054 if (schedule) {
1055 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1056 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1057 } else {
1058 xfs_buf_iodone_work(&bp->b_iodone_work);
1060 } else {
1061 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1062 complete(&bp->b_iowait);
1066 void
1067 xfs_buf_ioerror(
1068 xfs_buf_t *bp,
1069 int error)
1071 ASSERT(error >= 0 && error <= 0xffff);
1072 bp->b_error = (unsigned short)error;
1073 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1076 void
1077 xfs_buf_ioerror_alert(
1078 struct xfs_buf *bp,
1079 const char *func)
1081 xfs_alert(bp->b_target->bt_mount,
1082 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1083 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1087 * Called when we want to stop a buffer from getting written or read.
1088 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1089 * so that the proper iodone callbacks get called.
1091 STATIC int
1092 xfs_bioerror(
1093 xfs_buf_t *bp)
1095 #ifdef XFSERRORDEBUG
1096 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1097 #endif
1100 * No need to wait until the buffer is unpinned, we aren't flushing it.
1102 xfs_buf_ioerror(bp, EIO);
1105 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1107 XFS_BUF_UNREAD(bp);
1108 XFS_BUF_UNDONE(bp);
1109 xfs_buf_stale(bp);
1111 xfs_buf_ioend(bp, 0);
1113 return EIO;
1117 * Same as xfs_bioerror, except that we are releasing the buffer
1118 * here ourselves, and avoiding the xfs_buf_ioend call.
1119 * This is meant for userdata errors; metadata bufs come with
1120 * iodone functions attached, so that we can track down errors.
1122 STATIC int
1123 xfs_bioerror_relse(
1124 struct xfs_buf *bp)
1126 int64_t fl = bp->b_flags;
1128 * No need to wait until the buffer is unpinned.
1129 * We aren't flushing it.
1131 * chunkhold expects B_DONE to be set, whether
1132 * we actually finish the I/O or not. We don't want to
1133 * change that interface.
1135 XFS_BUF_UNREAD(bp);
1136 XFS_BUF_DONE(bp);
1137 xfs_buf_stale(bp);
1138 bp->b_iodone = NULL;
1139 if (!(fl & XBF_ASYNC)) {
1141 * Mark b_error and B_ERROR _both_.
1142 * Lot's of chunkcache code assumes that.
1143 * There's no reason to mark error for
1144 * ASYNC buffers.
1146 xfs_buf_ioerror(bp, EIO);
1147 complete(&bp->b_iowait);
1148 } else {
1149 xfs_buf_relse(bp);
1152 return EIO;
1155 STATIC int
1156 xfs_bdstrat_cb(
1157 struct xfs_buf *bp)
1159 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1160 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1162 * Metadata write that didn't get logged but
1163 * written delayed anyway. These aren't associated
1164 * with a transaction, and can be ignored.
1166 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1167 return xfs_bioerror_relse(bp);
1168 else
1169 return xfs_bioerror(bp);
1172 xfs_buf_iorequest(bp);
1173 return 0;
1177 xfs_bwrite(
1178 struct xfs_buf *bp)
1180 int error;
1182 ASSERT(xfs_buf_islocked(bp));
1184 bp->b_flags |= XBF_WRITE;
1185 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1187 xfs_bdstrat_cb(bp);
1189 error = xfs_buf_iowait(bp);
1190 if (error) {
1191 xfs_force_shutdown(bp->b_target->bt_mount,
1192 SHUTDOWN_META_IO_ERROR);
1194 return error;
1198 * Wrapper around bdstrat so that we can stop data from going to disk in case
1199 * we are shutting down the filesystem. Typically user data goes thru this
1200 * path; one of the exceptions is the superblock.
1202 void
1203 xfsbdstrat(
1204 struct xfs_mount *mp,
1205 struct xfs_buf *bp)
1207 if (XFS_FORCED_SHUTDOWN(mp)) {
1208 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1209 xfs_bioerror_relse(bp);
1210 return;
1213 xfs_buf_iorequest(bp);
1216 STATIC void
1217 _xfs_buf_ioend(
1218 xfs_buf_t *bp,
1219 int schedule)
1221 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1222 xfs_buf_ioend(bp, schedule);
1225 STATIC void
1226 xfs_buf_bio_end_io(
1227 struct bio *bio,
1228 int error)
1230 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1233 * don't overwrite existing errors - otherwise we can lose errors on
1234 * buffers that require multiple bios to complete.
1236 if (!bp->b_error)
1237 xfs_buf_ioerror(bp, -error);
1239 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1240 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1242 _xfs_buf_ioend(bp, 1);
1243 bio_put(bio);
1246 static void
1247 xfs_buf_ioapply_map(
1248 struct xfs_buf *bp,
1249 int map,
1250 int *buf_offset,
1251 int *count,
1252 int rw)
1254 int page_index;
1255 int total_nr_pages = bp->b_page_count;
1256 int nr_pages;
1257 struct bio *bio;
1258 sector_t sector = bp->b_maps[map].bm_bn;
1259 int size;
1260 int offset;
1262 total_nr_pages = bp->b_page_count;
1264 /* skip the pages in the buffer before the start offset */
1265 page_index = 0;
1266 offset = *buf_offset;
1267 while (offset >= PAGE_SIZE) {
1268 page_index++;
1269 offset -= PAGE_SIZE;
1273 * Limit the IO size to the length of the current vector, and update the
1274 * remaining IO count for the next time around.
1276 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1277 *count -= size;
1278 *buf_offset += size;
1280 next_chunk:
1281 atomic_inc(&bp->b_io_remaining);
1282 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1283 if (nr_pages > total_nr_pages)
1284 nr_pages = total_nr_pages;
1286 bio = bio_alloc(GFP_NOIO, nr_pages);
1287 bio->bi_bdev = bp->b_target->bt_bdev;
1288 bio->bi_sector = sector;
1289 bio->bi_end_io = xfs_buf_bio_end_io;
1290 bio->bi_private = bp;
1293 for (; size && nr_pages; nr_pages--, page_index++) {
1294 int rbytes, nbytes = PAGE_SIZE - offset;
1296 if (nbytes > size)
1297 nbytes = size;
1299 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 offset);
1301 if (rbytes < nbytes)
1302 break;
1304 offset = 0;
1305 sector += BTOBB(nbytes);
1306 size -= nbytes;
1307 total_nr_pages--;
1310 if (likely(bio->bi_size)) {
1311 if (xfs_buf_is_vmapped(bp)) {
1312 flush_kernel_vmap_range(bp->b_addr,
1313 xfs_buf_vmap_len(bp));
1315 submit_bio(rw, bio);
1316 if (size)
1317 goto next_chunk;
1318 } else {
1320 * This is guaranteed not to be the last io reference count
1321 * because the caller (xfs_buf_iorequest) holds a count itself.
1323 atomic_dec(&bp->b_io_remaining);
1324 xfs_buf_ioerror(bp, EIO);
1325 bio_put(bio);
1330 STATIC void
1331 _xfs_buf_ioapply(
1332 struct xfs_buf *bp)
1334 struct blk_plug plug;
1335 int rw;
1336 int offset;
1337 int size;
1338 int i;
1341 * Make sure we capture only current IO errors rather than stale errors
1342 * left over from previous use of the buffer (e.g. failed readahead).
1344 bp->b_error = 0;
1346 if (bp->b_flags & XBF_WRITE) {
1347 if (bp->b_flags & XBF_SYNCIO)
1348 rw = WRITE_SYNC;
1349 else
1350 rw = WRITE;
1351 if (bp->b_flags & XBF_FUA)
1352 rw |= REQ_FUA;
1353 if (bp->b_flags & XBF_FLUSH)
1354 rw |= REQ_FLUSH;
1357 * Run the write verifier callback function if it exists. If
1358 * this function fails it will mark the buffer with an error and
1359 * the IO should not be dispatched.
1361 if (bp->b_ops) {
1362 bp->b_ops->verify_write(bp);
1363 if (bp->b_error) {
1364 xfs_force_shutdown(bp->b_target->bt_mount,
1365 SHUTDOWN_CORRUPT_INCORE);
1366 return;
1369 } else if (bp->b_flags & XBF_READ_AHEAD) {
1370 rw = READA;
1371 } else {
1372 rw = READ;
1375 /* we only use the buffer cache for meta-data */
1376 rw |= REQ_META;
1379 * Walk all the vectors issuing IO on them. Set up the initial offset
1380 * into the buffer and the desired IO size before we start -
1381 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1382 * subsequent call.
1384 offset = bp->b_offset;
1385 size = BBTOB(bp->b_io_length);
1386 blk_start_plug(&plug);
1387 for (i = 0; i < bp->b_map_count; i++) {
1388 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1389 if (bp->b_error)
1390 break;
1391 if (size <= 0)
1392 break; /* all done */
1394 blk_finish_plug(&plug);
1397 void
1398 xfs_buf_iorequest(
1399 xfs_buf_t *bp)
1401 trace_xfs_buf_iorequest(bp, _RET_IP_);
1403 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1405 if (bp->b_flags & XBF_WRITE)
1406 xfs_buf_wait_unpin(bp);
1407 xfs_buf_hold(bp);
1409 /* Set the count to 1 initially, this will stop an I/O
1410 * completion callout which happens before we have started
1411 * all the I/O from calling xfs_buf_ioend too early.
1413 atomic_set(&bp->b_io_remaining, 1);
1414 _xfs_buf_ioapply(bp);
1415 _xfs_buf_ioend(bp, 1);
1417 xfs_buf_rele(bp);
1421 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1422 * no I/O is pending or there is already a pending error on the buffer. It
1423 * returns the I/O error code, if any, or 0 if there was no error.
1426 xfs_buf_iowait(
1427 xfs_buf_t *bp)
1429 trace_xfs_buf_iowait(bp, _RET_IP_);
1431 if (!bp->b_error)
1432 wait_for_completion(&bp->b_iowait);
1434 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1435 return bp->b_error;
1438 xfs_caddr_t
1439 xfs_buf_offset(
1440 xfs_buf_t *bp,
1441 size_t offset)
1443 struct page *page;
1445 if (bp->b_addr)
1446 return bp->b_addr + offset;
1448 offset += bp->b_offset;
1449 page = bp->b_pages[offset >> PAGE_SHIFT];
1450 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1454 * Move data into or out of a buffer.
1456 void
1457 xfs_buf_iomove(
1458 xfs_buf_t *bp, /* buffer to process */
1459 size_t boff, /* starting buffer offset */
1460 size_t bsize, /* length to copy */
1461 void *data, /* data address */
1462 xfs_buf_rw_t mode) /* read/write/zero flag */
1464 size_t bend;
1466 bend = boff + bsize;
1467 while (boff < bend) {
1468 struct page *page;
1469 int page_index, page_offset, csize;
1471 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1472 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1473 page = bp->b_pages[page_index];
1474 csize = min_t(size_t, PAGE_SIZE - page_offset,
1475 BBTOB(bp->b_io_length) - boff);
1477 ASSERT((csize + page_offset) <= PAGE_SIZE);
1479 switch (mode) {
1480 case XBRW_ZERO:
1481 memset(page_address(page) + page_offset, 0, csize);
1482 break;
1483 case XBRW_READ:
1484 memcpy(data, page_address(page) + page_offset, csize);
1485 break;
1486 case XBRW_WRITE:
1487 memcpy(page_address(page) + page_offset, data, csize);
1490 boff += csize;
1491 data += csize;
1496 * Handling of buffer targets (buftargs).
1500 * Wait for any bufs with callbacks that have been submitted but have not yet
1501 * returned. These buffers will have an elevated hold count, so wait on those
1502 * while freeing all the buffers only held by the LRU.
1504 void
1505 xfs_wait_buftarg(
1506 struct xfs_buftarg *btp)
1508 struct xfs_buf *bp;
1510 restart:
1511 spin_lock(&btp->bt_lru_lock);
1512 while (!list_empty(&btp->bt_lru)) {
1513 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1514 if (atomic_read(&bp->b_hold) > 1) {
1515 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1516 list_move_tail(&bp->b_lru, &btp->bt_lru);
1517 spin_unlock(&btp->bt_lru_lock);
1518 delay(100);
1519 goto restart;
1522 * clear the LRU reference count so the buffer doesn't get
1523 * ignored in xfs_buf_rele().
1525 atomic_set(&bp->b_lru_ref, 0);
1526 spin_unlock(&btp->bt_lru_lock);
1527 xfs_buf_rele(bp);
1528 spin_lock(&btp->bt_lru_lock);
1530 spin_unlock(&btp->bt_lru_lock);
1534 xfs_buftarg_shrink(
1535 struct shrinker *shrink,
1536 struct shrink_control *sc)
1538 struct xfs_buftarg *btp = container_of(shrink,
1539 struct xfs_buftarg, bt_shrinker);
1540 struct xfs_buf *bp;
1541 int nr_to_scan = sc->nr_to_scan;
1542 LIST_HEAD(dispose);
1544 if (!nr_to_scan)
1545 return btp->bt_lru_nr;
1547 spin_lock(&btp->bt_lru_lock);
1548 while (!list_empty(&btp->bt_lru)) {
1549 if (nr_to_scan-- <= 0)
1550 break;
1552 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1555 * Decrement the b_lru_ref count unless the value is already
1556 * zero. If the value is already zero, we need to reclaim the
1557 * buffer, otherwise it gets another trip through the LRU.
1559 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1560 list_move_tail(&bp->b_lru, &btp->bt_lru);
1561 continue;
1565 * remove the buffer from the LRU now to avoid needing another
1566 * lock round trip inside xfs_buf_rele().
1568 list_move(&bp->b_lru, &dispose);
1569 btp->bt_lru_nr--;
1570 bp->b_lru_flags |= _XBF_LRU_DISPOSE;
1572 spin_unlock(&btp->bt_lru_lock);
1574 while (!list_empty(&dispose)) {
1575 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1576 list_del_init(&bp->b_lru);
1577 xfs_buf_rele(bp);
1580 return btp->bt_lru_nr;
1583 void
1584 xfs_free_buftarg(
1585 struct xfs_mount *mp,
1586 struct xfs_buftarg *btp)
1588 unregister_shrinker(&btp->bt_shrinker);
1590 if (mp->m_flags & XFS_MOUNT_BARRIER)
1591 xfs_blkdev_issue_flush(btp);
1593 kmem_free(btp);
1596 STATIC int
1597 xfs_setsize_buftarg_flags(
1598 xfs_buftarg_t *btp,
1599 unsigned int blocksize,
1600 unsigned int sectorsize,
1601 int verbose)
1603 btp->bt_bsize = blocksize;
1604 btp->bt_sshift = ffs(sectorsize) - 1;
1605 btp->bt_smask = sectorsize - 1;
1607 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1608 char name[BDEVNAME_SIZE];
1610 bdevname(btp->bt_bdev, name);
1612 xfs_warn(btp->bt_mount,
1613 "Cannot set_blocksize to %u on device %s\n",
1614 sectorsize, name);
1615 return EINVAL;
1618 return 0;
1622 * When allocating the initial buffer target we have not yet
1623 * read in the superblock, so don't know what sized sectors
1624 * are being used is at this early stage. Play safe.
1626 STATIC int
1627 xfs_setsize_buftarg_early(
1628 xfs_buftarg_t *btp,
1629 struct block_device *bdev)
1631 return xfs_setsize_buftarg_flags(btp,
1632 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1636 xfs_setsize_buftarg(
1637 xfs_buftarg_t *btp,
1638 unsigned int blocksize,
1639 unsigned int sectorsize)
1641 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1644 xfs_buftarg_t *
1645 xfs_alloc_buftarg(
1646 struct xfs_mount *mp,
1647 struct block_device *bdev,
1648 int external,
1649 const char *fsname)
1651 xfs_buftarg_t *btp;
1653 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1655 btp->bt_mount = mp;
1656 btp->bt_dev = bdev->bd_dev;
1657 btp->bt_bdev = bdev;
1658 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1659 if (!btp->bt_bdi)
1660 goto error;
1662 INIT_LIST_HEAD(&btp->bt_lru);
1663 spin_lock_init(&btp->bt_lru_lock);
1664 if (xfs_setsize_buftarg_early(btp, bdev))
1665 goto error;
1666 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1667 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1668 register_shrinker(&btp->bt_shrinker);
1669 return btp;
1671 error:
1672 kmem_free(btp);
1673 return NULL;
1677 * Add a buffer to the delayed write list.
1679 * This queues a buffer for writeout if it hasn't already been. Note that
1680 * neither this routine nor the buffer list submission functions perform
1681 * any internal synchronization. It is expected that the lists are thread-local
1682 * to the callers.
1684 * Returns true if we queued up the buffer, or false if it already had
1685 * been on the buffer list.
1687 bool
1688 xfs_buf_delwri_queue(
1689 struct xfs_buf *bp,
1690 struct list_head *list)
1692 ASSERT(xfs_buf_islocked(bp));
1693 ASSERT(!(bp->b_flags & XBF_READ));
1696 * If the buffer is already marked delwri it already is queued up
1697 * by someone else for imediate writeout. Just ignore it in that
1698 * case.
1700 if (bp->b_flags & _XBF_DELWRI_Q) {
1701 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1702 return false;
1705 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1708 * If a buffer gets written out synchronously or marked stale while it
1709 * is on a delwri list we lazily remove it. To do this, the other party
1710 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1711 * It remains referenced and on the list. In a rare corner case it
1712 * might get readded to a delwri list after the synchronous writeout, in
1713 * which case we need just need to re-add the flag here.
1715 bp->b_flags |= _XBF_DELWRI_Q;
1716 if (list_empty(&bp->b_list)) {
1717 atomic_inc(&bp->b_hold);
1718 list_add_tail(&bp->b_list, list);
1721 return true;
1725 * Compare function is more complex than it needs to be because
1726 * the return value is only 32 bits and we are doing comparisons
1727 * on 64 bit values
1729 static int
1730 xfs_buf_cmp(
1731 void *priv,
1732 struct list_head *a,
1733 struct list_head *b)
1735 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1736 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1737 xfs_daddr_t diff;
1739 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1740 if (diff < 0)
1741 return -1;
1742 if (diff > 0)
1743 return 1;
1744 return 0;
1747 static int
1748 __xfs_buf_delwri_submit(
1749 struct list_head *buffer_list,
1750 struct list_head *io_list,
1751 bool wait)
1753 struct blk_plug plug;
1754 struct xfs_buf *bp, *n;
1755 int pinned = 0;
1757 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1758 if (!wait) {
1759 if (xfs_buf_ispinned(bp)) {
1760 pinned++;
1761 continue;
1763 if (!xfs_buf_trylock(bp))
1764 continue;
1765 } else {
1766 xfs_buf_lock(bp);
1770 * Someone else might have written the buffer synchronously or
1771 * marked it stale in the meantime. In that case only the
1772 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1773 * reference and remove it from the list here.
1775 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1776 list_del_init(&bp->b_list);
1777 xfs_buf_relse(bp);
1778 continue;
1781 list_move_tail(&bp->b_list, io_list);
1782 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1785 list_sort(NULL, io_list, xfs_buf_cmp);
1787 blk_start_plug(&plug);
1788 list_for_each_entry_safe(bp, n, io_list, b_list) {
1789 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1790 bp->b_flags |= XBF_WRITE;
1792 if (!wait) {
1793 bp->b_flags |= XBF_ASYNC;
1794 list_del_init(&bp->b_list);
1796 xfs_bdstrat_cb(bp);
1798 blk_finish_plug(&plug);
1800 return pinned;
1804 * Write out a buffer list asynchronously.
1806 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1807 * out and not wait for I/O completion on any of the buffers. This interface
1808 * is only safely useable for callers that can track I/O completion by higher
1809 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1810 * function.
1813 xfs_buf_delwri_submit_nowait(
1814 struct list_head *buffer_list)
1816 LIST_HEAD (io_list);
1817 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1821 * Write out a buffer list synchronously.
1823 * This will take the @buffer_list, write all buffers out and wait for I/O
1824 * completion on all of the buffers. @buffer_list is consumed by the function,
1825 * so callers must have some other way of tracking buffers if they require such
1826 * functionality.
1829 xfs_buf_delwri_submit(
1830 struct list_head *buffer_list)
1832 LIST_HEAD (io_list);
1833 int error = 0, error2;
1834 struct xfs_buf *bp;
1836 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1838 /* Wait for IO to complete. */
1839 while (!list_empty(&io_list)) {
1840 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1842 list_del_init(&bp->b_list);
1843 error2 = xfs_buf_iowait(bp);
1844 xfs_buf_relse(bp);
1845 if (!error)
1846 error = error2;
1849 return error;
1852 int __init
1853 xfs_buf_init(void)
1855 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1856 KM_ZONE_HWALIGN, NULL);
1857 if (!xfs_buf_zone)
1858 goto out;
1860 xfslogd_workqueue = alloc_workqueue("xfslogd",
1861 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1862 if (!xfslogd_workqueue)
1863 goto out_free_buf_zone;
1865 return 0;
1867 out_free_buf_zone:
1868 kmem_zone_destroy(xfs_buf_zone);
1869 out:
1870 return -ENOMEM;
1873 void
1874 xfs_buf_terminate(void)
1876 destroy_workqueue(xfslogd_workqueue);
1877 kmem_zone_destroy(xfs_buf_zone);