libceph: report socket read/write error message
[linux-2.6/btrfs-unstable.git] / net / ceph / messenger.c
blob6e2f67816f61d4ccfa3aa580737b69ccc649e1a2
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
33 * We track the state of the socket on a given connection using
34 * values defined below. The transition to a new socket state is
35 * handled by a function which verifies we aren't coming from an
36 * unexpected state.
38 * --------
39 * | NEW* | transient initial state
40 * --------
41 * | con_sock_state_init()
42 * v
43 * ----------
44 * | CLOSED | initialized, but no socket (and no
45 * ---------- TCP connection)
46 * ^ \
47 * | \ con_sock_state_connecting()
48 * | ----------------------
49 * | \
50 * + con_sock_state_closed() \
51 * |+--------------------------- \
52 * | \ \ \
53 * | ----------- \ \
54 * | | CLOSING | socket event; \ \
55 * | ----------- await close \ \
56 * | ^ \ |
57 * | | \ |
58 * | + con_sock_state_closing() \ |
59 * | / \ | |
60 * | / --------------- | |
61 * | / \ v v
62 * | / --------------
63 * | / -----------------| CONNECTING | socket created, TCP
64 * | | / -------------- connect initiated
65 * | | | con_sock_state_connected()
66 * | | v
67 * -------------
68 * | CONNECTED | TCP connection established
69 * -------------
71 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
80 /* static tag bytes (protocol control messages) */
81 static char tag_msg = CEPH_MSGR_TAG_MSG;
82 static char tag_ack = CEPH_MSGR_TAG_ACK;
83 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
85 #ifdef CONFIG_LOCKDEP
86 static struct lock_class_key socket_class;
87 #endif
90 * When skipping (ignoring) a block of input we read it into a "skip
91 * buffer," which is this many bytes in size.
93 #define SKIP_BUF_SIZE 1024
95 static void queue_con(struct ceph_connection *con);
96 static void con_work(struct work_struct *);
97 static void ceph_fault(struct ceph_connection *con);
100 * Nicely render a sockaddr as a string. An array of formatted
101 * strings is used, to approximate reentrancy.
103 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
104 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
105 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
106 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
108 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
109 static atomic_t addr_str_seq = ATOMIC_INIT(0);
111 static struct page *zero_page; /* used in certain error cases */
113 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
115 int i;
116 char *s;
117 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
118 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
120 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
121 s = addr_str[i];
123 switch (ss->ss_family) {
124 case AF_INET:
125 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
126 ntohs(in4->sin_port));
127 break;
129 case AF_INET6:
130 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
131 ntohs(in6->sin6_port));
132 break;
134 default:
135 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
136 ss->ss_family);
139 return s;
141 EXPORT_SYMBOL(ceph_pr_addr);
143 static void encode_my_addr(struct ceph_messenger *msgr)
145 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
146 ceph_encode_addr(&msgr->my_enc_addr);
150 * work queue for all reading and writing to/from the socket.
152 static struct workqueue_struct *ceph_msgr_wq;
154 void _ceph_msgr_exit(void)
156 if (ceph_msgr_wq) {
157 destroy_workqueue(ceph_msgr_wq);
158 ceph_msgr_wq = NULL;
161 BUG_ON(zero_page == NULL);
162 kunmap(zero_page);
163 page_cache_release(zero_page);
164 zero_page = NULL;
167 int ceph_msgr_init(void)
169 BUG_ON(zero_page != NULL);
170 zero_page = ZERO_PAGE(0);
171 page_cache_get(zero_page);
173 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
174 if (ceph_msgr_wq)
175 return 0;
177 pr_err("msgr_init failed to create workqueue\n");
178 _ceph_msgr_exit();
180 return -ENOMEM;
182 EXPORT_SYMBOL(ceph_msgr_init);
184 void ceph_msgr_exit(void)
186 BUG_ON(ceph_msgr_wq == NULL);
188 _ceph_msgr_exit();
190 EXPORT_SYMBOL(ceph_msgr_exit);
192 void ceph_msgr_flush(void)
194 flush_workqueue(ceph_msgr_wq);
196 EXPORT_SYMBOL(ceph_msgr_flush);
198 /* Connection socket state transition functions */
200 static void con_sock_state_init(struct ceph_connection *con)
202 int old_state;
204 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
205 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
206 printk("%s: unexpected old state %d\n", __func__, old_state);
209 static void con_sock_state_connecting(struct ceph_connection *con)
211 int old_state;
213 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
214 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
215 printk("%s: unexpected old state %d\n", __func__, old_state);
218 static void con_sock_state_connected(struct ceph_connection *con)
220 int old_state;
222 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
223 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
224 printk("%s: unexpected old state %d\n", __func__, old_state);
227 static void con_sock_state_closing(struct ceph_connection *con)
229 int old_state;
231 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
232 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
233 old_state != CON_SOCK_STATE_CONNECTED &&
234 old_state != CON_SOCK_STATE_CLOSING))
235 printk("%s: unexpected old state %d\n", __func__, old_state);
238 static void con_sock_state_closed(struct ceph_connection *con)
240 int old_state;
242 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
243 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
244 old_state != CON_SOCK_STATE_CLOSING &&
245 old_state != CON_SOCK_STATE_CONNECTING))
246 printk("%s: unexpected old state %d\n", __func__, old_state);
250 * socket callback functions
253 /* data available on socket, or listen socket received a connect */
254 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
256 struct ceph_connection *con = sk->sk_user_data;
257 if (atomic_read(&con->msgr->stopping)) {
258 return;
261 if (sk->sk_state != TCP_CLOSE_WAIT) {
262 dout("%s on %p state = %lu, queueing work\n", __func__,
263 con, con->state);
264 queue_con(con);
268 /* socket has buffer space for writing */
269 static void ceph_sock_write_space(struct sock *sk)
271 struct ceph_connection *con = sk->sk_user_data;
273 /* only queue to workqueue if there is data we want to write,
274 * and there is sufficient space in the socket buffer to accept
275 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
276 * doesn't get called again until try_write() fills the socket
277 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
278 * and net/core/stream.c:sk_stream_write_space().
280 if (test_bit(WRITE_PENDING, &con->flags)) {
281 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
282 dout("%s %p queueing write work\n", __func__, con);
283 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
284 queue_con(con);
286 } else {
287 dout("%s %p nothing to write\n", __func__, con);
291 /* socket's state has changed */
292 static void ceph_sock_state_change(struct sock *sk)
294 struct ceph_connection *con = sk->sk_user_data;
296 dout("%s %p state = %lu sk_state = %u\n", __func__,
297 con, con->state, sk->sk_state);
299 if (test_bit(CLOSED, &con->state))
300 return;
302 switch (sk->sk_state) {
303 case TCP_CLOSE:
304 dout("%s TCP_CLOSE\n", __func__);
305 case TCP_CLOSE_WAIT:
306 dout("%s TCP_CLOSE_WAIT\n", __func__);
307 con_sock_state_closing(con);
308 set_bit(SOCK_CLOSED, &con->flags);
309 queue_con(con);
310 break;
311 case TCP_ESTABLISHED:
312 dout("%s TCP_ESTABLISHED\n", __func__);
313 con_sock_state_connected(con);
314 queue_con(con);
315 break;
316 default: /* Everything else is uninteresting */
317 break;
322 * set up socket callbacks
324 static void set_sock_callbacks(struct socket *sock,
325 struct ceph_connection *con)
327 struct sock *sk = sock->sk;
328 sk->sk_user_data = con;
329 sk->sk_data_ready = ceph_sock_data_ready;
330 sk->sk_write_space = ceph_sock_write_space;
331 sk->sk_state_change = ceph_sock_state_change;
336 * socket helpers
340 * initiate connection to a remote socket.
342 static int ceph_tcp_connect(struct ceph_connection *con)
344 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
345 struct socket *sock;
346 int ret;
348 BUG_ON(con->sock);
349 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
350 IPPROTO_TCP, &sock);
351 if (ret)
352 return ret;
353 sock->sk->sk_allocation = GFP_NOFS;
355 #ifdef CONFIG_LOCKDEP
356 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
357 #endif
359 set_sock_callbacks(sock, con);
361 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
363 con_sock_state_connecting(con);
364 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
365 O_NONBLOCK);
366 if (ret == -EINPROGRESS) {
367 dout("connect %s EINPROGRESS sk_state = %u\n",
368 ceph_pr_addr(&con->peer_addr.in_addr),
369 sock->sk->sk_state);
370 } else if (ret < 0) {
371 pr_err("connect %s error %d\n",
372 ceph_pr_addr(&con->peer_addr.in_addr), ret);
373 sock_release(sock);
374 con->error_msg = "connect error";
376 return ret;
378 con->sock = sock;
379 return 0;
382 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
384 struct kvec iov = {buf, len};
385 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
386 int r;
388 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
389 if (r == -EAGAIN)
390 r = 0;
391 return r;
395 * write something. @more is true if caller will be sending more data
396 * shortly.
398 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
399 size_t kvlen, size_t len, int more)
401 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
402 int r;
404 if (more)
405 msg.msg_flags |= MSG_MORE;
406 else
407 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
409 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
410 if (r == -EAGAIN)
411 r = 0;
412 return r;
415 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
416 int offset, size_t size, int more)
418 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
419 int ret;
421 ret = kernel_sendpage(sock, page, offset, size, flags);
422 if (ret == -EAGAIN)
423 ret = 0;
425 return ret;
430 * Shutdown/close the socket for the given connection.
432 static int con_close_socket(struct ceph_connection *con)
434 int rc;
436 dout("con_close_socket on %p sock %p\n", con, con->sock);
437 if (!con->sock)
438 return 0;
439 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
440 sock_release(con->sock);
441 con->sock = NULL;
444 * Forcibly clear the SOCK_CLOSE flag. It gets set
445 * independent of the connection mutex, and we could have
446 * received a socket close event before we had the chance to
447 * shut the socket down.
449 clear_bit(SOCK_CLOSED, &con->flags);
450 con_sock_state_closed(con);
451 return rc;
455 * Reset a connection. Discard all incoming and outgoing messages
456 * and clear *_seq state.
458 static void ceph_msg_remove(struct ceph_msg *msg)
460 list_del_init(&msg->list_head);
461 BUG_ON(msg->con == NULL);
462 msg->con->ops->put(msg->con);
463 msg->con = NULL;
465 ceph_msg_put(msg);
467 static void ceph_msg_remove_list(struct list_head *head)
469 while (!list_empty(head)) {
470 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
471 list_head);
472 ceph_msg_remove(msg);
476 static void reset_connection(struct ceph_connection *con)
478 /* reset connection, out_queue, msg_ and connect_seq */
479 /* discard existing out_queue and msg_seq */
480 ceph_msg_remove_list(&con->out_queue);
481 ceph_msg_remove_list(&con->out_sent);
483 if (con->in_msg) {
484 BUG_ON(con->in_msg->con != con);
485 con->in_msg->con = NULL;
486 ceph_msg_put(con->in_msg);
487 con->in_msg = NULL;
488 con->ops->put(con);
491 con->connect_seq = 0;
492 con->out_seq = 0;
493 if (con->out_msg) {
494 ceph_msg_put(con->out_msg);
495 con->out_msg = NULL;
497 con->in_seq = 0;
498 con->in_seq_acked = 0;
502 * mark a peer down. drop any open connections.
504 void ceph_con_close(struct ceph_connection *con)
506 dout("con_close %p peer %s\n", con,
507 ceph_pr_addr(&con->peer_addr.in_addr));
508 clear_bit(NEGOTIATING, &con->state);
509 clear_bit(CONNECTING, &con->state);
510 clear_bit(CONNECTED, &con->state);
511 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
512 set_bit(CLOSED, &con->state);
514 clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
515 clear_bit(KEEPALIVE_PENDING, &con->flags);
516 clear_bit(WRITE_PENDING, &con->flags);
518 mutex_lock(&con->mutex);
519 reset_connection(con);
520 con->peer_global_seq = 0;
521 cancel_delayed_work(&con->work);
522 mutex_unlock(&con->mutex);
523 queue_con(con);
525 EXPORT_SYMBOL(ceph_con_close);
528 * Reopen a closed connection, with a new peer address.
530 void ceph_con_open(struct ceph_connection *con,
531 __u8 entity_type, __u64 entity_num,
532 struct ceph_entity_addr *addr)
534 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
535 set_bit(OPENING, &con->state);
536 WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
538 con->peer_name.type = (__u8) entity_type;
539 con->peer_name.num = cpu_to_le64(entity_num);
541 memcpy(&con->peer_addr, addr, sizeof(*addr));
542 con->delay = 0; /* reset backoff memory */
543 queue_con(con);
545 EXPORT_SYMBOL(ceph_con_open);
548 * return true if this connection ever successfully opened
550 bool ceph_con_opened(struct ceph_connection *con)
552 return con->connect_seq > 0;
556 * initialize a new connection.
558 void ceph_con_init(struct ceph_connection *con, void *private,
559 const struct ceph_connection_operations *ops,
560 struct ceph_messenger *msgr)
562 dout("con_init %p\n", con);
563 memset(con, 0, sizeof(*con));
564 con->private = private;
565 con->ops = ops;
566 con->msgr = msgr;
568 con_sock_state_init(con);
570 mutex_init(&con->mutex);
571 INIT_LIST_HEAD(&con->out_queue);
572 INIT_LIST_HEAD(&con->out_sent);
573 INIT_DELAYED_WORK(&con->work, con_work);
575 set_bit(CLOSED, &con->state);
577 EXPORT_SYMBOL(ceph_con_init);
581 * We maintain a global counter to order connection attempts. Get
582 * a unique seq greater than @gt.
584 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
586 u32 ret;
588 spin_lock(&msgr->global_seq_lock);
589 if (msgr->global_seq < gt)
590 msgr->global_seq = gt;
591 ret = ++msgr->global_seq;
592 spin_unlock(&msgr->global_seq_lock);
593 return ret;
596 static void con_out_kvec_reset(struct ceph_connection *con)
598 con->out_kvec_left = 0;
599 con->out_kvec_bytes = 0;
600 con->out_kvec_cur = &con->out_kvec[0];
603 static void con_out_kvec_add(struct ceph_connection *con,
604 size_t size, void *data)
606 int index;
608 index = con->out_kvec_left;
609 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
611 con->out_kvec[index].iov_len = size;
612 con->out_kvec[index].iov_base = data;
613 con->out_kvec_left++;
614 con->out_kvec_bytes += size;
617 #ifdef CONFIG_BLOCK
618 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
620 if (!bio) {
621 *iter = NULL;
622 *seg = 0;
623 return;
625 *iter = bio;
626 *seg = bio->bi_idx;
629 static void iter_bio_next(struct bio **bio_iter, int *seg)
631 if (*bio_iter == NULL)
632 return;
634 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
636 (*seg)++;
637 if (*seg == (*bio_iter)->bi_vcnt)
638 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
640 #endif
642 static void prepare_write_message_data(struct ceph_connection *con)
644 struct ceph_msg *msg = con->out_msg;
646 BUG_ON(!msg);
647 BUG_ON(!msg->hdr.data_len);
649 /* initialize page iterator */
650 con->out_msg_pos.page = 0;
651 if (msg->pages)
652 con->out_msg_pos.page_pos = msg->page_alignment;
653 else
654 con->out_msg_pos.page_pos = 0;
655 #ifdef CONFIG_BLOCK
656 if (msg->bio)
657 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
658 #endif
659 con->out_msg_pos.data_pos = 0;
660 con->out_msg_pos.did_page_crc = false;
661 con->out_more = 1; /* data + footer will follow */
665 * Prepare footer for currently outgoing message, and finish things
666 * off. Assumes out_kvec* are already valid.. we just add on to the end.
668 static void prepare_write_message_footer(struct ceph_connection *con)
670 struct ceph_msg *m = con->out_msg;
671 int v = con->out_kvec_left;
673 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
675 dout("prepare_write_message_footer %p\n", con);
676 con->out_kvec_is_msg = true;
677 con->out_kvec[v].iov_base = &m->footer;
678 con->out_kvec[v].iov_len = sizeof(m->footer);
679 con->out_kvec_bytes += sizeof(m->footer);
680 con->out_kvec_left++;
681 con->out_more = m->more_to_follow;
682 con->out_msg_done = true;
686 * Prepare headers for the next outgoing message.
688 static void prepare_write_message(struct ceph_connection *con)
690 struct ceph_msg *m;
691 u32 crc;
693 con_out_kvec_reset(con);
694 con->out_kvec_is_msg = true;
695 con->out_msg_done = false;
697 /* Sneak an ack in there first? If we can get it into the same
698 * TCP packet that's a good thing. */
699 if (con->in_seq > con->in_seq_acked) {
700 con->in_seq_acked = con->in_seq;
701 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
702 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
703 con_out_kvec_add(con, sizeof (con->out_temp_ack),
704 &con->out_temp_ack);
707 BUG_ON(list_empty(&con->out_queue));
708 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
709 con->out_msg = m;
710 BUG_ON(m->con != con);
712 /* put message on sent list */
713 ceph_msg_get(m);
714 list_move_tail(&m->list_head, &con->out_sent);
717 * only assign outgoing seq # if we haven't sent this message
718 * yet. if it is requeued, resend with it's original seq.
720 if (m->needs_out_seq) {
721 m->hdr.seq = cpu_to_le64(++con->out_seq);
722 m->needs_out_seq = false;
725 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
726 m, con->out_seq, le16_to_cpu(m->hdr.type),
727 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
728 le32_to_cpu(m->hdr.data_len),
729 m->nr_pages);
730 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
732 /* tag + hdr + front + middle */
733 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
734 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
735 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
737 if (m->middle)
738 con_out_kvec_add(con, m->middle->vec.iov_len,
739 m->middle->vec.iov_base);
741 /* fill in crc (except data pages), footer */
742 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
743 con->out_msg->hdr.crc = cpu_to_le32(crc);
744 con->out_msg->footer.flags = 0;
746 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
747 con->out_msg->footer.front_crc = cpu_to_le32(crc);
748 if (m->middle) {
749 crc = crc32c(0, m->middle->vec.iov_base,
750 m->middle->vec.iov_len);
751 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
752 } else
753 con->out_msg->footer.middle_crc = 0;
754 dout("%s front_crc %u middle_crc %u\n", __func__,
755 le32_to_cpu(con->out_msg->footer.front_crc),
756 le32_to_cpu(con->out_msg->footer.middle_crc));
758 /* is there a data payload? */
759 con->out_msg->footer.data_crc = 0;
760 if (m->hdr.data_len)
761 prepare_write_message_data(con);
762 else
763 /* no, queue up footer too and be done */
764 prepare_write_message_footer(con);
766 set_bit(WRITE_PENDING, &con->flags);
770 * Prepare an ack.
772 static void prepare_write_ack(struct ceph_connection *con)
774 dout("prepare_write_ack %p %llu -> %llu\n", con,
775 con->in_seq_acked, con->in_seq);
776 con->in_seq_acked = con->in_seq;
778 con_out_kvec_reset(con);
780 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
782 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
783 con_out_kvec_add(con, sizeof (con->out_temp_ack),
784 &con->out_temp_ack);
786 con->out_more = 1; /* more will follow.. eventually.. */
787 set_bit(WRITE_PENDING, &con->flags);
791 * Prepare to write keepalive byte.
793 static void prepare_write_keepalive(struct ceph_connection *con)
795 dout("prepare_write_keepalive %p\n", con);
796 con_out_kvec_reset(con);
797 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
798 set_bit(WRITE_PENDING, &con->flags);
802 * Connection negotiation.
805 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
806 int *auth_proto)
808 struct ceph_auth_handshake *auth;
810 if (!con->ops->get_authorizer) {
811 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
812 con->out_connect.authorizer_len = 0;
814 return NULL;
817 /* Can't hold the mutex while getting authorizer */
819 mutex_unlock(&con->mutex);
821 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
823 mutex_lock(&con->mutex);
825 if (IS_ERR(auth))
826 return auth;
827 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
828 return ERR_PTR(-EAGAIN);
830 con->auth_reply_buf = auth->authorizer_reply_buf;
831 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
834 return auth;
838 * We connected to a peer and are saying hello.
840 static void prepare_write_banner(struct ceph_connection *con)
842 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
843 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
844 &con->msgr->my_enc_addr);
846 con->out_more = 0;
847 set_bit(WRITE_PENDING, &con->flags);
850 static int prepare_write_connect(struct ceph_connection *con)
852 unsigned int global_seq = get_global_seq(con->msgr, 0);
853 int proto;
854 int auth_proto;
855 struct ceph_auth_handshake *auth;
857 switch (con->peer_name.type) {
858 case CEPH_ENTITY_TYPE_MON:
859 proto = CEPH_MONC_PROTOCOL;
860 break;
861 case CEPH_ENTITY_TYPE_OSD:
862 proto = CEPH_OSDC_PROTOCOL;
863 break;
864 case CEPH_ENTITY_TYPE_MDS:
865 proto = CEPH_MDSC_PROTOCOL;
866 break;
867 default:
868 BUG();
871 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
872 con->connect_seq, global_seq, proto);
874 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
875 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
876 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
877 con->out_connect.global_seq = cpu_to_le32(global_seq);
878 con->out_connect.protocol_version = cpu_to_le32(proto);
879 con->out_connect.flags = 0;
881 auth_proto = CEPH_AUTH_UNKNOWN;
882 auth = get_connect_authorizer(con, &auth_proto);
883 if (IS_ERR(auth))
884 return PTR_ERR(auth);
886 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
887 con->out_connect.authorizer_len = auth ?
888 cpu_to_le32(auth->authorizer_buf_len) : 0;
890 con_out_kvec_reset(con);
891 con_out_kvec_add(con, sizeof (con->out_connect),
892 &con->out_connect);
893 if (auth && auth->authorizer_buf_len)
894 con_out_kvec_add(con, auth->authorizer_buf_len,
895 auth->authorizer_buf);
897 con->out_more = 0;
898 set_bit(WRITE_PENDING, &con->flags);
900 return 0;
904 * write as much of pending kvecs to the socket as we can.
905 * 1 -> done
906 * 0 -> socket full, but more to do
907 * <0 -> error
909 static int write_partial_kvec(struct ceph_connection *con)
911 int ret;
913 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
914 while (con->out_kvec_bytes > 0) {
915 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
916 con->out_kvec_left, con->out_kvec_bytes,
917 con->out_more);
918 if (ret <= 0)
919 goto out;
920 con->out_kvec_bytes -= ret;
921 if (con->out_kvec_bytes == 0)
922 break; /* done */
924 /* account for full iov entries consumed */
925 while (ret >= con->out_kvec_cur->iov_len) {
926 BUG_ON(!con->out_kvec_left);
927 ret -= con->out_kvec_cur->iov_len;
928 con->out_kvec_cur++;
929 con->out_kvec_left--;
931 /* and for a partially-consumed entry */
932 if (ret) {
933 con->out_kvec_cur->iov_len -= ret;
934 con->out_kvec_cur->iov_base += ret;
937 con->out_kvec_left = 0;
938 con->out_kvec_is_msg = false;
939 ret = 1;
940 out:
941 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
942 con->out_kvec_bytes, con->out_kvec_left, ret);
943 return ret; /* done! */
946 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
947 size_t len, size_t sent, bool in_trail)
949 struct ceph_msg *msg = con->out_msg;
951 BUG_ON(!msg);
952 BUG_ON(!sent);
954 con->out_msg_pos.data_pos += sent;
955 con->out_msg_pos.page_pos += sent;
956 if (sent < len)
957 return;
959 BUG_ON(sent != len);
960 con->out_msg_pos.page_pos = 0;
961 con->out_msg_pos.page++;
962 con->out_msg_pos.did_page_crc = false;
963 if (in_trail)
964 list_move_tail(&page->lru,
965 &msg->trail->head);
966 else if (msg->pagelist)
967 list_move_tail(&page->lru,
968 &msg->pagelist->head);
969 #ifdef CONFIG_BLOCK
970 else if (msg->bio)
971 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
972 #endif
976 * Write as much message data payload as we can. If we finish, queue
977 * up the footer.
978 * 1 -> done, footer is now queued in out_kvec[].
979 * 0 -> socket full, but more to do
980 * <0 -> error
982 static int write_partial_msg_pages(struct ceph_connection *con)
984 struct ceph_msg *msg = con->out_msg;
985 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
986 size_t len;
987 bool do_datacrc = !con->msgr->nocrc;
988 int ret;
989 int total_max_write;
990 bool in_trail = false;
991 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
992 const size_t trail_off = data_len - trail_len;
994 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
995 con, msg, con->out_msg_pos.page, msg->nr_pages,
996 con->out_msg_pos.page_pos);
999 * Iterate through each page that contains data to be
1000 * written, and send as much as possible for each.
1002 * If we are calculating the data crc (the default), we will
1003 * need to map the page. If we have no pages, they have
1004 * been revoked, so use the zero page.
1006 while (data_len > con->out_msg_pos.data_pos) {
1007 struct page *page = NULL;
1008 int max_write = PAGE_SIZE;
1009 int bio_offset = 0;
1011 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1012 if (!in_trail)
1013 total_max_write = trail_off - con->out_msg_pos.data_pos;
1015 if (in_trail) {
1016 total_max_write = data_len - con->out_msg_pos.data_pos;
1018 page = list_first_entry(&msg->trail->head,
1019 struct page, lru);
1020 } else if (msg->pages) {
1021 page = msg->pages[con->out_msg_pos.page];
1022 } else if (msg->pagelist) {
1023 page = list_first_entry(&msg->pagelist->head,
1024 struct page, lru);
1025 #ifdef CONFIG_BLOCK
1026 } else if (msg->bio) {
1027 struct bio_vec *bv;
1029 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1030 page = bv->bv_page;
1031 bio_offset = bv->bv_offset;
1032 max_write = bv->bv_len;
1033 #endif
1034 } else {
1035 page = zero_page;
1037 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1038 total_max_write);
1040 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1041 void *base;
1042 u32 crc = le32_to_cpu(msg->footer.data_crc);
1043 char *kaddr;
1045 kaddr = kmap(page);
1046 BUG_ON(kaddr == NULL);
1047 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1048 crc = crc32c(crc, base, len);
1049 msg->footer.data_crc = cpu_to_le32(crc);
1050 con->out_msg_pos.did_page_crc = true;
1052 ret = ceph_tcp_sendpage(con->sock, page,
1053 con->out_msg_pos.page_pos + bio_offset,
1054 len, 1);
1056 if (do_datacrc)
1057 kunmap(page);
1059 if (ret <= 0)
1060 goto out;
1062 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1065 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1067 /* prepare and queue up footer, too */
1068 if (!do_datacrc)
1069 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1070 con_out_kvec_reset(con);
1071 prepare_write_message_footer(con);
1072 ret = 1;
1073 out:
1074 return ret;
1078 * write some zeros
1080 static int write_partial_skip(struct ceph_connection *con)
1082 int ret;
1084 while (con->out_skip > 0) {
1085 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1087 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1088 if (ret <= 0)
1089 goto out;
1090 con->out_skip -= ret;
1092 ret = 1;
1093 out:
1094 return ret;
1098 * Prepare to read connection handshake, or an ack.
1100 static void prepare_read_banner(struct ceph_connection *con)
1102 dout("prepare_read_banner %p\n", con);
1103 con->in_base_pos = 0;
1106 static void prepare_read_connect(struct ceph_connection *con)
1108 dout("prepare_read_connect %p\n", con);
1109 con->in_base_pos = 0;
1112 static void prepare_read_ack(struct ceph_connection *con)
1114 dout("prepare_read_ack %p\n", con);
1115 con->in_base_pos = 0;
1118 static void prepare_read_tag(struct ceph_connection *con)
1120 dout("prepare_read_tag %p\n", con);
1121 con->in_base_pos = 0;
1122 con->in_tag = CEPH_MSGR_TAG_READY;
1126 * Prepare to read a message.
1128 static int prepare_read_message(struct ceph_connection *con)
1130 dout("prepare_read_message %p\n", con);
1131 BUG_ON(con->in_msg != NULL);
1132 con->in_base_pos = 0;
1133 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1134 return 0;
1138 static int read_partial(struct ceph_connection *con,
1139 int end, int size, void *object)
1141 while (con->in_base_pos < end) {
1142 int left = end - con->in_base_pos;
1143 int have = size - left;
1144 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1145 if (ret <= 0)
1146 return ret;
1147 con->in_base_pos += ret;
1149 return 1;
1154 * Read all or part of the connect-side handshake on a new connection
1156 static int read_partial_banner(struct ceph_connection *con)
1158 int size;
1159 int end;
1160 int ret;
1162 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1164 /* peer's banner */
1165 size = strlen(CEPH_BANNER);
1166 end = size;
1167 ret = read_partial(con, end, size, con->in_banner);
1168 if (ret <= 0)
1169 goto out;
1171 size = sizeof (con->actual_peer_addr);
1172 end += size;
1173 ret = read_partial(con, end, size, &con->actual_peer_addr);
1174 if (ret <= 0)
1175 goto out;
1177 size = sizeof (con->peer_addr_for_me);
1178 end += size;
1179 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1180 if (ret <= 0)
1181 goto out;
1183 out:
1184 return ret;
1187 static int read_partial_connect(struct ceph_connection *con)
1189 int size;
1190 int end;
1191 int ret;
1193 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1195 size = sizeof (con->in_reply);
1196 end = size;
1197 ret = read_partial(con, end, size, &con->in_reply);
1198 if (ret <= 0)
1199 goto out;
1201 size = le32_to_cpu(con->in_reply.authorizer_len);
1202 end += size;
1203 ret = read_partial(con, end, size, con->auth_reply_buf);
1204 if (ret <= 0)
1205 goto out;
1207 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1208 con, (int)con->in_reply.tag,
1209 le32_to_cpu(con->in_reply.connect_seq),
1210 le32_to_cpu(con->in_reply.global_seq));
1211 out:
1212 return ret;
1217 * Verify the hello banner looks okay.
1219 static int verify_hello(struct ceph_connection *con)
1221 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1222 pr_err("connect to %s got bad banner\n",
1223 ceph_pr_addr(&con->peer_addr.in_addr));
1224 con->error_msg = "protocol error, bad banner";
1225 return -1;
1227 return 0;
1230 static bool addr_is_blank(struct sockaddr_storage *ss)
1232 switch (ss->ss_family) {
1233 case AF_INET:
1234 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1235 case AF_INET6:
1236 return
1237 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1238 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1239 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1240 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1242 return false;
1245 static int addr_port(struct sockaddr_storage *ss)
1247 switch (ss->ss_family) {
1248 case AF_INET:
1249 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1250 case AF_INET6:
1251 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1253 return 0;
1256 static void addr_set_port(struct sockaddr_storage *ss, int p)
1258 switch (ss->ss_family) {
1259 case AF_INET:
1260 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1261 break;
1262 case AF_INET6:
1263 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1264 break;
1269 * Unlike other *_pton function semantics, zero indicates success.
1271 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1272 char delim, const char **ipend)
1274 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1275 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1277 memset(ss, 0, sizeof(*ss));
1279 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1280 ss->ss_family = AF_INET;
1281 return 0;
1284 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1285 ss->ss_family = AF_INET6;
1286 return 0;
1289 return -EINVAL;
1293 * Extract hostname string and resolve using kernel DNS facility.
1295 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1296 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1297 struct sockaddr_storage *ss, char delim, const char **ipend)
1299 const char *end, *delim_p;
1300 char *colon_p, *ip_addr = NULL;
1301 int ip_len, ret;
1304 * The end of the hostname occurs immediately preceding the delimiter or
1305 * the port marker (':') where the delimiter takes precedence.
1307 delim_p = memchr(name, delim, namelen);
1308 colon_p = memchr(name, ':', namelen);
1310 if (delim_p && colon_p)
1311 end = delim_p < colon_p ? delim_p : colon_p;
1312 else if (!delim_p && colon_p)
1313 end = colon_p;
1314 else {
1315 end = delim_p;
1316 if (!end) /* case: hostname:/ */
1317 end = name + namelen;
1320 if (end <= name)
1321 return -EINVAL;
1323 /* do dns_resolve upcall */
1324 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1325 if (ip_len > 0)
1326 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1327 else
1328 ret = -ESRCH;
1330 kfree(ip_addr);
1332 *ipend = end;
1334 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1335 ret, ret ? "failed" : ceph_pr_addr(ss));
1337 return ret;
1339 #else
1340 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1341 struct sockaddr_storage *ss, char delim, const char **ipend)
1343 return -EINVAL;
1345 #endif
1348 * Parse a server name (IP or hostname). If a valid IP address is not found
1349 * then try to extract a hostname to resolve using userspace DNS upcall.
1351 static int ceph_parse_server_name(const char *name, size_t namelen,
1352 struct sockaddr_storage *ss, char delim, const char **ipend)
1354 int ret;
1356 ret = ceph_pton(name, namelen, ss, delim, ipend);
1357 if (ret)
1358 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1360 return ret;
1364 * Parse an ip[:port] list into an addr array. Use the default
1365 * monitor port if a port isn't specified.
1367 int ceph_parse_ips(const char *c, const char *end,
1368 struct ceph_entity_addr *addr,
1369 int max_count, int *count)
1371 int i, ret = -EINVAL;
1372 const char *p = c;
1374 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1375 for (i = 0; i < max_count; i++) {
1376 const char *ipend;
1377 struct sockaddr_storage *ss = &addr[i].in_addr;
1378 int port;
1379 char delim = ',';
1381 if (*p == '[') {
1382 delim = ']';
1383 p++;
1386 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1387 if (ret)
1388 goto bad;
1389 ret = -EINVAL;
1391 p = ipend;
1393 if (delim == ']') {
1394 if (*p != ']') {
1395 dout("missing matching ']'\n");
1396 goto bad;
1398 p++;
1401 /* port? */
1402 if (p < end && *p == ':') {
1403 port = 0;
1404 p++;
1405 while (p < end && *p >= '0' && *p <= '9') {
1406 port = (port * 10) + (*p - '0');
1407 p++;
1409 if (port > 65535 || port == 0)
1410 goto bad;
1411 } else {
1412 port = CEPH_MON_PORT;
1415 addr_set_port(ss, port);
1417 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1419 if (p == end)
1420 break;
1421 if (*p != ',')
1422 goto bad;
1423 p++;
1426 if (p != end)
1427 goto bad;
1429 if (count)
1430 *count = i + 1;
1431 return 0;
1433 bad:
1434 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1435 return ret;
1437 EXPORT_SYMBOL(ceph_parse_ips);
1439 static int process_banner(struct ceph_connection *con)
1441 dout("process_banner on %p\n", con);
1443 if (verify_hello(con) < 0)
1444 return -1;
1446 ceph_decode_addr(&con->actual_peer_addr);
1447 ceph_decode_addr(&con->peer_addr_for_me);
1450 * Make sure the other end is who we wanted. note that the other
1451 * end may not yet know their ip address, so if it's 0.0.0.0, give
1452 * them the benefit of the doubt.
1454 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1455 sizeof(con->peer_addr)) != 0 &&
1456 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1457 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1458 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1459 ceph_pr_addr(&con->peer_addr.in_addr),
1460 (int)le32_to_cpu(con->peer_addr.nonce),
1461 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1462 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1463 con->error_msg = "wrong peer at address";
1464 return -1;
1468 * did we learn our address?
1470 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1471 int port = addr_port(&con->msgr->inst.addr.in_addr);
1473 memcpy(&con->msgr->inst.addr.in_addr,
1474 &con->peer_addr_for_me.in_addr,
1475 sizeof(con->peer_addr_for_me.in_addr));
1476 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1477 encode_my_addr(con->msgr);
1478 dout("process_banner learned my addr is %s\n",
1479 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1482 return 0;
1485 static void fail_protocol(struct ceph_connection *con)
1487 reset_connection(con);
1488 set_bit(CLOSED, &con->state); /* in case there's queued work */
1491 static int process_connect(struct ceph_connection *con)
1493 u64 sup_feat = con->msgr->supported_features;
1494 u64 req_feat = con->msgr->required_features;
1495 u64 server_feat = le64_to_cpu(con->in_reply.features);
1496 int ret;
1498 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1500 switch (con->in_reply.tag) {
1501 case CEPH_MSGR_TAG_FEATURES:
1502 pr_err("%s%lld %s feature set mismatch,"
1503 " my %llx < server's %llx, missing %llx\n",
1504 ENTITY_NAME(con->peer_name),
1505 ceph_pr_addr(&con->peer_addr.in_addr),
1506 sup_feat, server_feat, server_feat & ~sup_feat);
1507 con->error_msg = "missing required protocol features";
1508 fail_protocol(con);
1509 return -1;
1511 case CEPH_MSGR_TAG_BADPROTOVER:
1512 pr_err("%s%lld %s protocol version mismatch,"
1513 " my %d != server's %d\n",
1514 ENTITY_NAME(con->peer_name),
1515 ceph_pr_addr(&con->peer_addr.in_addr),
1516 le32_to_cpu(con->out_connect.protocol_version),
1517 le32_to_cpu(con->in_reply.protocol_version));
1518 con->error_msg = "protocol version mismatch";
1519 fail_protocol(con);
1520 return -1;
1522 case CEPH_MSGR_TAG_BADAUTHORIZER:
1523 con->auth_retry++;
1524 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1525 con->auth_retry);
1526 if (con->auth_retry == 2) {
1527 con->error_msg = "connect authorization failure";
1528 return -1;
1530 con->auth_retry = 1;
1531 ret = prepare_write_connect(con);
1532 if (ret < 0)
1533 return ret;
1534 prepare_read_connect(con);
1535 break;
1537 case CEPH_MSGR_TAG_RESETSESSION:
1539 * If we connected with a large connect_seq but the peer
1540 * has no record of a session with us (no connection, or
1541 * connect_seq == 0), they will send RESETSESION to indicate
1542 * that they must have reset their session, and may have
1543 * dropped messages.
1545 dout("process_connect got RESET peer seq %u\n",
1546 le32_to_cpu(con->in_reply.connect_seq));
1547 pr_err("%s%lld %s connection reset\n",
1548 ENTITY_NAME(con->peer_name),
1549 ceph_pr_addr(&con->peer_addr.in_addr));
1550 reset_connection(con);
1551 ret = prepare_write_connect(con);
1552 if (ret < 0)
1553 return ret;
1554 prepare_read_connect(con);
1556 /* Tell ceph about it. */
1557 mutex_unlock(&con->mutex);
1558 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1559 if (con->ops->peer_reset)
1560 con->ops->peer_reset(con);
1561 mutex_lock(&con->mutex);
1562 if (test_bit(CLOSED, &con->state) ||
1563 test_bit(OPENING, &con->state))
1564 return -EAGAIN;
1565 break;
1567 case CEPH_MSGR_TAG_RETRY_SESSION:
1569 * If we sent a smaller connect_seq than the peer has, try
1570 * again with a larger value.
1572 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1573 le32_to_cpu(con->out_connect.connect_seq),
1574 le32_to_cpu(con->in_reply.connect_seq));
1575 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1576 ret = prepare_write_connect(con);
1577 if (ret < 0)
1578 return ret;
1579 prepare_read_connect(con);
1580 break;
1582 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1584 * If we sent a smaller global_seq than the peer has, try
1585 * again with a larger value.
1587 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1588 con->peer_global_seq,
1589 le32_to_cpu(con->in_reply.global_seq));
1590 get_global_seq(con->msgr,
1591 le32_to_cpu(con->in_reply.global_seq));
1592 ret = prepare_write_connect(con);
1593 if (ret < 0)
1594 return ret;
1595 prepare_read_connect(con);
1596 break;
1598 case CEPH_MSGR_TAG_READY:
1599 if (req_feat & ~server_feat) {
1600 pr_err("%s%lld %s protocol feature mismatch,"
1601 " my required %llx > server's %llx, need %llx\n",
1602 ENTITY_NAME(con->peer_name),
1603 ceph_pr_addr(&con->peer_addr.in_addr),
1604 req_feat, server_feat, req_feat & ~server_feat);
1605 con->error_msg = "missing required protocol features";
1606 fail_protocol(con);
1607 return -1;
1609 clear_bit(NEGOTIATING, &con->state);
1610 set_bit(CONNECTED, &con->state);
1611 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1612 con->connect_seq++;
1613 con->peer_features = server_feat;
1614 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1615 con->peer_global_seq,
1616 le32_to_cpu(con->in_reply.connect_seq),
1617 con->connect_seq);
1618 WARN_ON(con->connect_seq !=
1619 le32_to_cpu(con->in_reply.connect_seq));
1621 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1622 set_bit(LOSSYTX, &con->flags);
1624 prepare_read_tag(con);
1625 break;
1627 case CEPH_MSGR_TAG_WAIT:
1629 * If there is a connection race (we are opening
1630 * connections to each other), one of us may just have
1631 * to WAIT. This shouldn't happen if we are the
1632 * client.
1634 pr_err("process_connect got WAIT as client\n");
1635 con->error_msg = "protocol error, got WAIT as client";
1636 return -1;
1638 default:
1639 pr_err("connect protocol error, will retry\n");
1640 con->error_msg = "protocol error, garbage tag during connect";
1641 return -1;
1643 return 0;
1648 * read (part of) an ack
1650 static int read_partial_ack(struct ceph_connection *con)
1652 int size = sizeof (con->in_temp_ack);
1653 int end = size;
1655 return read_partial(con, end, size, &con->in_temp_ack);
1660 * We can finally discard anything that's been acked.
1662 static void process_ack(struct ceph_connection *con)
1664 struct ceph_msg *m;
1665 u64 ack = le64_to_cpu(con->in_temp_ack);
1666 u64 seq;
1668 while (!list_empty(&con->out_sent)) {
1669 m = list_first_entry(&con->out_sent, struct ceph_msg,
1670 list_head);
1671 seq = le64_to_cpu(m->hdr.seq);
1672 if (seq > ack)
1673 break;
1674 dout("got ack for seq %llu type %d at %p\n", seq,
1675 le16_to_cpu(m->hdr.type), m);
1676 m->ack_stamp = jiffies;
1677 ceph_msg_remove(m);
1679 prepare_read_tag(con);
1685 static int read_partial_message_section(struct ceph_connection *con,
1686 struct kvec *section,
1687 unsigned int sec_len, u32 *crc)
1689 int ret, left;
1691 BUG_ON(!section);
1693 while (section->iov_len < sec_len) {
1694 BUG_ON(section->iov_base == NULL);
1695 left = sec_len - section->iov_len;
1696 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1697 section->iov_len, left);
1698 if (ret <= 0)
1699 return ret;
1700 section->iov_len += ret;
1702 if (section->iov_len == sec_len)
1703 *crc = crc32c(0, section->iov_base, section->iov_len);
1705 return 1;
1708 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1709 struct ceph_msg_header *hdr);
1712 static int read_partial_message_pages(struct ceph_connection *con,
1713 struct page **pages,
1714 unsigned int data_len, bool do_datacrc)
1716 void *p;
1717 int ret;
1718 int left;
1720 left = min((int)(data_len - con->in_msg_pos.data_pos),
1721 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1722 /* (page) data */
1723 BUG_ON(pages == NULL);
1724 p = kmap(pages[con->in_msg_pos.page]);
1725 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1726 left);
1727 if (ret > 0 && do_datacrc)
1728 con->in_data_crc =
1729 crc32c(con->in_data_crc,
1730 p + con->in_msg_pos.page_pos, ret);
1731 kunmap(pages[con->in_msg_pos.page]);
1732 if (ret <= 0)
1733 return ret;
1734 con->in_msg_pos.data_pos += ret;
1735 con->in_msg_pos.page_pos += ret;
1736 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1737 con->in_msg_pos.page_pos = 0;
1738 con->in_msg_pos.page++;
1741 return ret;
1744 #ifdef CONFIG_BLOCK
1745 static int read_partial_message_bio(struct ceph_connection *con,
1746 struct bio **bio_iter, int *bio_seg,
1747 unsigned int data_len, bool do_datacrc)
1749 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1750 void *p;
1751 int ret, left;
1753 left = min((int)(data_len - con->in_msg_pos.data_pos),
1754 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1756 p = kmap(bv->bv_page) + bv->bv_offset;
1758 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1759 left);
1760 if (ret > 0 && do_datacrc)
1761 con->in_data_crc =
1762 crc32c(con->in_data_crc,
1763 p + con->in_msg_pos.page_pos, ret);
1764 kunmap(bv->bv_page);
1765 if (ret <= 0)
1766 return ret;
1767 con->in_msg_pos.data_pos += ret;
1768 con->in_msg_pos.page_pos += ret;
1769 if (con->in_msg_pos.page_pos == bv->bv_len) {
1770 con->in_msg_pos.page_pos = 0;
1771 iter_bio_next(bio_iter, bio_seg);
1774 return ret;
1776 #endif
1779 * read (part of) a message.
1781 static int read_partial_message(struct ceph_connection *con)
1783 struct ceph_msg *m = con->in_msg;
1784 int size;
1785 int end;
1786 int ret;
1787 unsigned int front_len, middle_len, data_len;
1788 bool do_datacrc = !con->msgr->nocrc;
1789 u64 seq;
1790 u32 crc;
1792 dout("read_partial_message con %p msg %p\n", con, m);
1794 /* header */
1795 size = sizeof (con->in_hdr);
1796 end = size;
1797 ret = read_partial(con, end, size, &con->in_hdr);
1798 if (ret <= 0)
1799 return ret;
1801 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1802 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1803 pr_err("read_partial_message bad hdr "
1804 " crc %u != expected %u\n",
1805 crc, con->in_hdr.crc);
1806 return -EBADMSG;
1809 front_len = le32_to_cpu(con->in_hdr.front_len);
1810 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1811 return -EIO;
1812 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1813 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1814 return -EIO;
1815 data_len = le32_to_cpu(con->in_hdr.data_len);
1816 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1817 return -EIO;
1819 /* verify seq# */
1820 seq = le64_to_cpu(con->in_hdr.seq);
1821 if ((s64)seq - (s64)con->in_seq < 1) {
1822 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1823 ENTITY_NAME(con->peer_name),
1824 ceph_pr_addr(&con->peer_addr.in_addr),
1825 seq, con->in_seq + 1);
1826 con->in_base_pos = -front_len - middle_len - data_len -
1827 sizeof(m->footer);
1828 con->in_tag = CEPH_MSGR_TAG_READY;
1829 return 0;
1830 } else if ((s64)seq - (s64)con->in_seq > 1) {
1831 pr_err("read_partial_message bad seq %lld expected %lld\n",
1832 seq, con->in_seq + 1);
1833 con->error_msg = "bad message sequence # for incoming message";
1834 return -EBADMSG;
1837 /* allocate message? */
1838 if (!con->in_msg) {
1839 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1840 con->in_hdr.front_len, con->in_hdr.data_len);
1841 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1842 /* skip this message */
1843 dout("alloc_msg said skip message\n");
1844 BUG_ON(con->in_msg);
1845 con->in_base_pos = -front_len - middle_len - data_len -
1846 sizeof(m->footer);
1847 con->in_tag = CEPH_MSGR_TAG_READY;
1848 con->in_seq++;
1849 return 0;
1851 if (!con->in_msg) {
1852 con->error_msg =
1853 "error allocating memory for incoming message";
1854 return -ENOMEM;
1857 BUG_ON(con->in_msg->con != con);
1858 m = con->in_msg;
1859 m->front.iov_len = 0; /* haven't read it yet */
1860 if (m->middle)
1861 m->middle->vec.iov_len = 0;
1863 con->in_msg_pos.page = 0;
1864 if (m->pages)
1865 con->in_msg_pos.page_pos = m->page_alignment;
1866 else
1867 con->in_msg_pos.page_pos = 0;
1868 con->in_msg_pos.data_pos = 0;
1871 /* front */
1872 ret = read_partial_message_section(con, &m->front, front_len,
1873 &con->in_front_crc);
1874 if (ret <= 0)
1875 return ret;
1877 /* middle */
1878 if (m->middle) {
1879 ret = read_partial_message_section(con, &m->middle->vec,
1880 middle_len,
1881 &con->in_middle_crc);
1882 if (ret <= 0)
1883 return ret;
1885 #ifdef CONFIG_BLOCK
1886 if (m->bio && !m->bio_iter)
1887 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1888 #endif
1890 /* (page) data */
1891 while (con->in_msg_pos.data_pos < data_len) {
1892 if (m->pages) {
1893 ret = read_partial_message_pages(con, m->pages,
1894 data_len, do_datacrc);
1895 if (ret <= 0)
1896 return ret;
1897 #ifdef CONFIG_BLOCK
1898 } else if (m->bio) {
1900 ret = read_partial_message_bio(con,
1901 &m->bio_iter, &m->bio_seg,
1902 data_len, do_datacrc);
1903 if (ret <= 0)
1904 return ret;
1905 #endif
1906 } else {
1907 BUG_ON(1);
1911 /* footer */
1912 size = sizeof (m->footer);
1913 end += size;
1914 ret = read_partial(con, end, size, &m->footer);
1915 if (ret <= 0)
1916 return ret;
1918 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1919 m, front_len, m->footer.front_crc, middle_len,
1920 m->footer.middle_crc, data_len, m->footer.data_crc);
1922 /* crc ok? */
1923 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1924 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1925 m, con->in_front_crc, m->footer.front_crc);
1926 return -EBADMSG;
1928 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1929 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1930 m, con->in_middle_crc, m->footer.middle_crc);
1931 return -EBADMSG;
1933 if (do_datacrc &&
1934 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1935 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1936 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1937 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1938 return -EBADMSG;
1941 return 1; /* done! */
1945 * Process message. This happens in the worker thread. The callback should
1946 * be careful not to do anything that waits on other incoming messages or it
1947 * may deadlock.
1949 static void process_message(struct ceph_connection *con)
1951 struct ceph_msg *msg;
1953 BUG_ON(con->in_msg->con != con);
1954 con->in_msg->con = NULL;
1955 msg = con->in_msg;
1956 con->in_msg = NULL;
1957 con->ops->put(con);
1959 /* if first message, set peer_name */
1960 if (con->peer_name.type == 0)
1961 con->peer_name = msg->hdr.src;
1963 con->in_seq++;
1964 mutex_unlock(&con->mutex);
1966 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1967 msg, le64_to_cpu(msg->hdr.seq),
1968 ENTITY_NAME(msg->hdr.src),
1969 le16_to_cpu(msg->hdr.type),
1970 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1971 le32_to_cpu(msg->hdr.front_len),
1972 le32_to_cpu(msg->hdr.data_len),
1973 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1974 con->ops->dispatch(con, msg);
1976 mutex_lock(&con->mutex);
1977 prepare_read_tag(con);
1982 * Write something to the socket. Called in a worker thread when the
1983 * socket appears to be writeable and we have something ready to send.
1985 static int try_write(struct ceph_connection *con)
1987 int ret = 1;
1989 dout("try_write start %p state %lu\n", con, con->state);
1991 more:
1992 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1994 /* open the socket first? */
1995 if (con->sock == NULL) {
1996 set_bit(CONNECTING, &con->state);
1998 con_out_kvec_reset(con);
1999 prepare_write_banner(con);
2000 prepare_read_banner(con);
2002 BUG_ON(con->in_msg);
2003 con->in_tag = CEPH_MSGR_TAG_READY;
2004 dout("try_write initiating connect on %p new state %lu\n",
2005 con, con->state);
2006 ret = ceph_tcp_connect(con);
2007 if (ret < 0) {
2008 con->error_msg = "connect error";
2009 goto out;
2013 more_kvec:
2014 /* kvec data queued? */
2015 if (con->out_skip) {
2016 ret = write_partial_skip(con);
2017 if (ret <= 0)
2018 goto out;
2020 if (con->out_kvec_left) {
2021 ret = write_partial_kvec(con);
2022 if (ret <= 0)
2023 goto out;
2026 /* msg pages? */
2027 if (con->out_msg) {
2028 if (con->out_msg_done) {
2029 ceph_msg_put(con->out_msg);
2030 con->out_msg = NULL; /* we're done with this one */
2031 goto do_next;
2034 ret = write_partial_msg_pages(con);
2035 if (ret == 1)
2036 goto more_kvec; /* we need to send the footer, too! */
2037 if (ret == 0)
2038 goto out;
2039 if (ret < 0) {
2040 dout("try_write write_partial_msg_pages err %d\n",
2041 ret);
2042 goto out;
2046 do_next:
2047 if (!test_bit(CONNECTING, &con->state) &&
2048 !test_bit(NEGOTIATING, &con->state)) {
2049 /* is anything else pending? */
2050 if (!list_empty(&con->out_queue)) {
2051 prepare_write_message(con);
2052 goto more;
2054 if (con->in_seq > con->in_seq_acked) {
2055 prepare_write_ack(con);
2056 goto more;
2058 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2059 prepare_write_keepalive(con);
2060 goto more;
2064 /* Nothing to do! */
2065 clear_bit(WRITE_PENDING, &con->flags);
2066 dout("try_write nothing else to write.\n");
2067 ret = 0;
2068 out:
2069 dout("try_write done on %p ret %d\n", con, ret);
2070 return ret;
2076 * Read what we can from the socket.
2078 static int try_read(struct ceph_connection *con)
2080 int ret = -1;
2082 if (!con->sock)
2083 return 0;
2085 if (test_bit(STANDBY, &con->state))
2086 return 0;
2088 dout("try_read start on %p\n", con);
2090 more:
2091 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2092 con->in_base_pos);
2095 * process_connect and process_message drop and re-take
2096 * con->mutex. make sure we handle a racing close or reopen.
2098 if (test_bit(CLOSED, &con->state) ||
2099 test_bit(OPENING, &con->state)) {
2100 ret = -EAGAIN;
2101 goto out;
2104 if (test_bit(CONNECTING, &con->state)) {
2105 dout("try_read connecting\n");
2106 ret = read_partial_banner(con);
2107 if (ret <= 0)
2108 goto out;
2109 ret = process_banner(con);
2110 if (ret < 0)
2111 goto out;
2113 clear_bit(CONNECTING, &con->state);
2114 set_bit(NEGOTIATING, &con->state);
2116 /* Banner is good, exchange connection info */
2117 ret = prepare_write_connect(con);
2118 if (ret < 0)
2119 goto out;
2120 prepare_read_connect(con);
2122 /* Send connection info before awaiting response */
2123 goto out;
2126 if (test_bit(NEGOTIATING, &con->state)) {
2127 dout("try_read negotiating\n");
2128 ret = read_partial_connect(con);
2129 if (ret <= 0)
2130 goto out;
2131 ret = process_connect(con);
2132 if (ret < 0)
2133 goto out;
2134 goto more;
2137 if (con->in_base_pos < 0) {
2139 * skipping + discarding content.
2141 * FIXME: there must be a better way to do this!
2143 static char buf[SKIP_BUF_SIZE];
2144 int skip = min((int) sizeof (buf), -con->in_base_pos);
2146 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2147 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2148 if (ret <= 0)
2149 goto out;
2150 con->in_base_pos += ret;
2151 if (con->in_base_pos)
2152 goto more;
2154 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2156 * what's next?
2158 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2159 if (ret <= 0)
2160 goto out;
2161 dout("try_read got tag %d\n", (int)con->in_tag);
2162 switch (con->in_tag) {
2163 case CEPH_MSGR_TAG_MSG:
2164 prepare_read_message(con);
2165 break;
2166 case CEPH_MSGR_TAG_ACK:
2167 prepare_read_ack(con);
2168 break;
2169 case CEPH_MSGR_TAG_CLOSE:
2170 clear_bit(CONNECTED, &con->state);
2171 set_bit(CLOSED, &con->state); /* fixme */
2172 goto out;
2173 default:
2174 goto bad_tag;
2177 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2178 ret = read_partial_message(con);
2179 if (ret <= 0) {
2180 switch (ret) {
2181 case -EBADMSG:
2182 con->error_msg = "bad crc";
2183 ret = -EIO;
2184 break;
2185 case -EIO:
2186 con->error_msg = "io error";
2187 break;
2189 goto out;
2191 if (con->in_tag == CEPH_MSGR_TAG_READY)
2192 goto more;
2193 process_message(con);
2194 goto more;
2196 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2197 ret = read_partial_ack(con);
2198 if (ret <= 0)
2199 goto out;
2200 process_ack(con);
2201 goto more;
2204 out:
2205 dout("try_read done on %p ret %d\n", con, ret);
2206 return ret;
2208 bad_tag:
2209 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2210 con->error_msg = "protocol error, garbage tag";
2211 ret = -1;
2212 goto out;
2217 * Atomically queue work on a connection. Bump @con reference to
2218 * avoid races with connection teardown.
2220 static void queue_con(struct ceph_connection *con)
2222 if (!con->ops->get(con)) {
2223 dout("queue_con %p ref count 0\n", con);
2224 return;
2227 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2228 dout("queue_con %p - already queued\n", con);
2229 con->ops->put(con);
2230 } else {
2231 dout("queue_con %p\n", con);
2236 * Do some work on a connection. Drop a connection ref when we're done.
2238 static void con_work(struct work_struct *work)
2240 struct ceph_connection *con = container_of(work, struct ceph_connection,
2241 work.work);
2242 int ret;
2244 mutex_lock(&con->mutex);
2245 restart:
2246 if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
2247 if (test_and_clear_bit(CONNECTED, &con->state))
2248 con->error_msg = "socket closed";
2249 else if (test_and_clear_bit(NEGOTIATING, &con->state))
2250 con->error_msg = "negotiation failed";
2251 else if (test_and_clear_bit(CONNECTING, &con->state))
2252 con->error_msg = "connection failed";
2253 else
2254 con->error_msg = "unrecognized con state";
2255 goto fault;
2258 if (test_and_clear_bit(BACKOFF, &con->flags)) {
2259 dout("con_work %p backing off\n", con);
2260 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2261 round_jiffies_relative(con->delay))) {
2262 dout("con_work %p backoff %lu\n", con, con->delay);
2263 mutex_unlock(&con->mutex);
2264 return;
2265 } else {
2266 con->ops->put(con);
2267 dout("con_work %p FAILED to back off %lu\n", con,
2268 con->delay);
2272 if (test_bit(STANDBY, &con->state)) {
2273 dout("con_work %p STANDBY\n", con);
2274 goto done;
2276 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2277 dout("con_work CLOSED\n");
2278 con_close_socket(con);
2279 goto done;
2281 if (test_and_clear_bit(OPENING, &con->state)) {
2282 /* reopen w/ new peer */
2283 dout("con_work OPENING\n");
2284 con_close_socket(con);
2287 ret = try_read(con);
2288 if (ret == -EAGAIN)
2289 goto restart;
2290 if (ret < 0) {
2291 con->error_msg = "socket error on read";
2292 goto fault;
2295 ret = try_write(con);
2296 if (ret == -EAGAIN)
2297 goto restart;
2298 if (ret < 0) {
2299 con->error_msg = "socket error on write";
2300 goto fault;
2303 done:
2304 mutex_unlock(&con->mutex);
2305 done_unlocked:
2306 con->ops->put(con);
2307 return;
2309 fault:
2310 mutex_unlock(&con->mutex);
2311 ceph_fault(con); /* error/fault path */
2312 goto done_unlocked;
2317 * Generic error/fault handler. A retry mechanism is used with
2318 * exponential backoff
2320 static void ceph_fault(struct ceph_connection *con)
2322 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2323 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2324 dout("fault %p state %lu to peer %s\n",
2325 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2327 if (test_bit(LOSSYTX, &con->flags)) {
2328 dout("fault on LOSSYTX channel\n");
2329 goto out;
2332 mutex_lock(&con->mutex);
2333 if (test_bit(CLOSED, &con->state))
2334 goto out_unlock;
2336 con_close_socket(con);
2338 if (con->in_msg) {
2339 BUG_ON(con->in_msg->con != con);
2340 con->in_msg->con = NULL;
2341 ceph_msg_put(con->in_msg);
2342 con->in_msg = NULL;
2343 con->ops->put(con);
2346 /* Requeue anything that hasn't been acked */
2347 list_splice_init(&con->out_sent, &con->out_queue);
2349 /* If there are no messages queued or keepalive pending, place
2350 * the connection in a STANDBY state */
2351 if (list_empty(&con->out_queue) &&
2352 !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2353 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2354 clear_bit(WRITE_PENDING, &con->flags);
2355 set_bit(STANDBY, &con->state);
2356 } else {
2357 /* retry after a delay. */
2358 if (con->delay == 0)
2359 con->delay = BASE_DELAY_INTERVAL;
2360 else if (con->delay < MAX_DELAY_INTERVAL)
2361 con->delay *= 2;
2362 con->ops->get(con);
2363 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2364 round_jiffies_relative(con->delay))) {
2365 dout("fault queued %p delay %lu\n", con, con->delay);
2366 } else {
2367 con->ops->put(con);
2368 dout("fault failed to queue %p delay %lu, backoff\n",
2369 con, con->delay);
2371 * In many cases we see a socket state change
2372 * while con_work is running and end up
2373 * queuing (non-delayed) work, such that we
2374 * can't backoff with a delay. Set a flag so
2375 * that when con_work restarts we schedule the
2376 * delay then.
2378 set_bit(BACKOFF, &con->flags);
2382 out_unlock:
2383 mutex_unlock(&con->mutex);
2384 out:
2386 * in case we faulted due to authentication, invalidate our
2387 * current tickets so that we can get new ones.
2389 if (con->auth_retry && con->ops->invalidate_authorizer) {
2390 dout("calling invalidate_authorizer()\n");
2391 con->ops->invalidate_authorizer(con);
2394 if (con->ops->fault)
2395 con->ops->fault(con);
2401 * initialize a new messenger instance
2403 void ceph_messenger_init(struct ceph_messenger *msgr,
2404 struct ceph_entity_addr *myaddr,
2405 u32 supported_features,
2406 u32 required_features,
2407 bool nocrc)
2409 msgr->supported_features = supported_features;
2410 msgr->required_features = required_features;
2412 spin_lock_init(&msgr->global_seq_lock);
2414 if (myaddr)
2415 msgr->inst.addr = *myaddr;
2417 /* select a random nonce */
2418 msgr->inst.addr.type = 0;
2419 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2420 encode_my_addr(msgr);
2421 msgr->nocrc = nocrc;
2423 atomic_set(&msgr->stopping, 0);
2425 dout("%s %p\n", __func__, msgr);
2427 EXPORT_SYMBOL(ceph_messenger_init);
2429 static void clear_standby(struct ceph_connection *con)
2431 /* come back from STANDBY? */
2432 if (test_and_clear_bit(STANDBY, &con->state)) {
2433 mutex_lock(&con->mutex);
2434 dout("clear_standby %p and ++connect_seq\n", con);
2435 con->connect_seq++;
2436 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2437 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2438 mutex_unlock(&con->mutex);
2443 * Queue up an outgoing message on the given connection.
2445 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2447 if (test_bit(CLOSED, &con->state)) {
2448 dout("con_send %p closed, dropping %p\n", con, msg);
2449 ceph_msg_put(msg);
2450 return;
2453 /* set src+dst */
2454 msg->hdr.src = con->msgr->inst.name;
2456 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2458 msg->needs_out_seq = true;
2460 /* queue */
2461 mutex_lock(&con->mutex);
2463 BUG_ON(msg->con != NULL);
2464 msg->con = con->ops->get(con);
2465 BUG_ON(msg->con == NULL);
2467 BUG_ON(!list_empty(&msg->list_head));
2468 list_add_tail(&msg->list_head, &con->out_queue);
2469 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2470 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2471 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2472 le32_to_cpu(msg->hdr.front_len),
2473 le32_to_cpu(msg->hdr.middle_len),
2474 le32_to_cpu(msg->hdr.data_len));
2475 mutex_unlock(&con->mutex);
2477 /* if there wasn't anything waiting to send before, queue
2478 * new work */
2479 clear_standby(con);
2480 if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2481 queue_con(con);
2483 EXPORT_SYMBOL(ceph_con_send);
2486 * Revoke a message that was previously queued for send
2488 void ceph_msg_revoke(struct ceph_msg *msg)
2490 struct ceph_connection *con = msg->con;
2492 if (!con)
2493 return; /* Message not in our possession */
2495 mutex_lock(&con->mutex);
2496 if (!list_empty(&msg->list_head)) {
2497 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2498 list_del_init(&msg->list_head);
2499 BUG_ON(msg->con == NULL);
2500 msg->con->ops->put(msg->con);
2501 msg->con = NULL;
2502 msg->hdr.seq = 0;
2504 ceph_msg_put(msg);
2506 if (con->out_msg == msg) {
2507 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2508 con->out_msg = NULL;
2509 if (con->out_kvec_is_msg) {
2510 con->out_skip = con->out_kvec_bytes;
2511 con->out_kvec_is_msg = false;
2513 msg->hdr.seq = 0;
2515 ceph_msg_put(msg);
2517 mutex_unlock(&con->mutex);
2521 * Revoke a message that we may be reading data into
2523 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2525 struct ceph_connection *con;
2527 BUG_ON(msg == NULL);
2528 if (!msg->con) {
2529 dout("%s msg %p null con\n", __func__, msg);
2531 return; /* Message not in our possession */
2534 con = msg->con;
2535 mutex_lock(&con->mutex);
2536 if (con->in_msg == msg) {
2537 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2538 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2539 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2541 /* skip rest of message */
2542 dout("%s %p msg %p revoked\n", __func__, con, msg);
2543 con->in_base_pos = con->in_base_pos -
2544 sizeof(struct ceph_msg_header) -
2545 front_len -
2546 middle_len -
2547 data_len -
2548 sizeof(struct ceph_msg_footer);
2549 ceph_msg_put(con->in_msg);
2550 con->in_msg = NULL;
2551 con->in_tag = CEPH_MSGR_TAG_READY;
2552 con->in_seq++;
2553 } else {
2554 dout("%s %p in_msg %p msg %p no-op\n",
2555 __func__, con, con->in_msg, msg);
2557 mutex_unlock(&con->mutex);
2561 * Queue a keepalive byte to ensure the tcp connection is alive.
2563 void ceph_con_keepalive(struct ceph_connection *con)
2565 dout("con_keepalive %p\n", con);
2566 clear_standby(con);
2567 if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2568 test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2569 queue_con(con);
2571 EXPORT_SYMBOL(ceph_con_keepalive);
2575 * construct a new message with given type, size
2576 * the new msg has a ref count of 1.
2578 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2579 bool can_fail)
2581 struct ceph_msg *m;
2583 m = kmalloc(sizeof(*m), flags);
2584 if (m == NULL)
2585 goto out;
2586 kref_init(&m->kref);
2588 m->con = NULL;
2589 INIT_LIST_HEAD(&m->list_head);
2591 m->hdr.tid = 0;
2592 m->hdr.type = cpu_to_le16(type);
2593 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2594 m->hdr.version = 0;
2595 m->hdr.front_len = cpu_to_le32(front_len);
2596 m->hdr.middle_len = 0;
2597 m->hdr.data_len = 0;
2598 m->hdr.data_off = 0;
2599 m->hdr.reserved = 0;
2600 m->footer.front_crc = 0;
2601 m->footer.middle_crc = 0;
2602 m->footer.data_crc = 0;
2603 m->footer.flags = 0;
2604 m->front_max = front_len;
2605 m->front_is_vmalloc = false;
2606 m->more_to_follow = false;
2607 m->ack_stamp = 0;
2608 m->pool = NULL;
2610 /* middle */
2611 m->middle = NULL;
2613 /* data */
2614 m->nr_pages = 0;
2615 m->page_alignment = 0;
2616 m->pages = NULL;
2617 m->pagelist = NULL;
2618 m->bio = NULL;
2619 m->bio_iter = NULL;
2620 m->bio_seg = 0;
2621 m->trail = NULL;
2623 /* front */
2624 if (front_len) {
2625 if (front_len > PAGE_CACHE_SIZE) {
2626 m->front.iov_base = __vmalloc(front_len, flags,
2627 PAGE_KERNEL);
2628 m->front_is_vmalloc = true;
2629 } else {
2630 m->front.iov_base = kmalloc(front_len, flags);
2632 if (m->front.iov_base == NULL) {
2633 dout("ceph_msg_new can't allocate %d bytes\n",
2634 front_len);
2635 goto out2;
2637 } else {
2638 m->front.iov_base = NULL;
2640 m->front.iov_len = front_len;
2642 dout("ceph_msg_new %p front %d\n", m, front_len);
2643 return m;
2645 out2:
2646 ceph_msg_put(m);
2647 out:
2648 if (!can_fail) {
2649 pr_err("msg_new can't create type %d front %d\n", type,
2650 front_len);
2651 WARN_ON(1);
2652 } else {
2653 dout("msg_new can't create type %d front %d\n", type,
2654 front_len);
2656 return NULL;
2658 EXPORT_SYMBOL(ceph_msg_new);
2661 * Allocate "middle" portion of a message, if it is needed and wasn't
2662 * allocated by alloc_msg. This allows us to read a small fixed-size
2663 * per-type header in the front and then gracefully fail (i.e.,
2664 * propagate the error to the caller based on info in the front) when
2665 * the middle is too large.
2667 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2669 int type = le16_to_cpu(msg->hdr.type);
2670 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2672 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2673 ceph_msg_type_name(type), middle_len);
2674 BUG_ON(!middle_len);
2675 BUG_ON(msg->middle);
2677 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2678 if (!msg->middle)
2679 return -ENOMEM;
2680 return 0;
2684 * Allocate a message for receiving an incoming message on a
2685 * connection, and save the result in con->in_msg. Uses the
2686 * connection's private alloc_msg op if available.
2688 * Returns true if the message should be skipped, false otherwise.
2689 * If true is returned (skip message), con->in_msg will be NULL.
2690 * If false is returned, con->in_msg will contain a pointer to the
2691 * newly-allocated message, or NULL in case of memory exhaustion.
2693 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2694 struct ceph_msg_header *hdr)
2696 int type = le16_to_cpu(hdr->type);
2697 int front_len = le32_to_cpu(hdr->front_len);
2698 int middle_len = le32_to_cpu(hdr->middle_len);
2699 int ret;
2701 BUG_ON(con->in_msg != NULL);
2703 if (con->ops->alloc_msg) {
2704 int skip = 0;
2706 mutex_unlock(&con->mutex);
2707 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2708 mutex_lock(&con->mutex);
2709 if (con->in_msg) {
2710 con->in_msg->con = con->ops->get(con);
2711 BUG_ON(con->in_msg->con == NULL);
2713 if (skip)
2714 con->in_msg = NULL;
2716 if (!con->in_msg)
2717 return skip != 0;
2719 if (!con->in_msg) {
2720 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2721 if (!con->in_msg) {
2722 pr_err("unable to allocate msg type %d len %d\n",
2723 type, front_len);
2724 return false;
2726 con->in_msg->con = con->ops->get(con);
2727 BUG_ON(con->in_msg->con == NULL);
2728 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2730 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2732 if (middle_len && !con->in_msg->middle) {
2733 ret = ceph_alloc_middle(con, con->in_msg);
2734 if (ret < 0) {
2735 ceph_msg_put(con->in_msg);
2736 con->in_msg = NULL;
2740 return false;
2745 * Free a generically kmalloc'd message.
2747 void ceph_msg_kfree(struct ceph_msg *m)
2749 dout("msg_kfree %p\n", m);
2750 if (m->front_is_vmalloc)
2751 vfree(m->front.iov_base);
2752 else
2753 kfree(m->front.iov_base);
2754 kfree(m);
2758 * Drop a msg ref. Destroy as needed.
2760 void ceph_msg_last_put(struct kref *kref)
2762 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2764 dout("ceph_msg_put last one on %p\n", m);
2765 WARN_ON(!list_empty(&m->list_head));
2767 /* drop middle, data, if any */
2768 if (m->middle) {
2769 ceph_buffer_put(m->middle);
2770 m->middle = NULL;
2772 m->nr_pages = 0;
2773 m->pages = NULL;
2775 if (m->pagelist) {
2776 ceph_pagelist_release(m->pagelist);
2777 kfree(m->pagelist);
2778 m->pagelist = NULL;
2781 m->trail = NULL;
2783 if (m->pool)
2784 ceph_msgpool_put(m->pool, m);
2785 else
2786 ceph_msg_kfree(m);
2788 EXPORT_SYMBOL(ceph_msg_last_put);
2790 void ceph_msg_dump(struct ceph_msg *msg)
2792 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2793 msg->front_max, msg->nr_pages);
2794 print_hex_dump(KERN_DEBUG, "header: ",
2795 DUMP_PREFIX_OFFSET, 16, 1,
2796 &msg->hdr, sizeof(msg->hdr), true);
2797 print_hex_dump(KERN_DEBUG, " front: ",
2798 DUMP_PREFIX_OFFSET, 16, 1,
2799 msg->front.iov_base, msg->front.iov_len, true);
2800 if (msg->middle)
2801 print_hex_dump(KERN_DEBUG, "middle: ",
2802 DUMP_PREFIX_OFFSET, 16, 1,
2803 msg->middle->vec.iov_base,
2804 msg->middle->vec.iov_len, true);
2805 print_hex_dump(KERN_DEBUG, "footer: ",
2806 DUMP_PREFIX_OFFSET, 16, 1,
2807 &msg->footer, sizeof(msg->footer), true);
2809 EXPORT_SYMBOL(ceph_msg_dump);