clocksource/drivers/fttmr010: Implement delay timer
[linux-2.6/btrfs-unstable.git] / drivers / clocksource / timer-fttmr010.c
blob009370460f234c3507952cee19ccc4499366cfc1
1 /*
2 * Faraday Technology FTTMR010 timer driver
3 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
6 * Copyright (C) 2001-2006 Storlink, Corp.
7 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
8 */
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/clockchips.h>
15 #include <linux/clocksource.h>
16 #include <linux/sched_clock.h>
17 #include <linux/clk.h>
18 #include <linux/slab.h>
19 #include <linux/bitops.h>
20 #include <linux/delay.h>
23 * Register definitions for the timers
25 #define TIMER1_COUNT (0x00)
26 #define TIMER1_LOAD (0x04)
27 #define TIMER1_MATCH1 (0x08)
28 #define TIMER1_MATCH2 (0x0c)
29 #define TIMER2_COUNT (0x10)
30 #define TIMER2_LOAD (0x14)
31 #define TIMER2_MATCH1 (0x18)
32 #define TIMER2_MATCH2 (0x1c)
33 #define TIMER3_COUNT (0x20)
34 #define TIMER3_LOAD (0x24)
35 #define TIMER3_MATCH1 (0x28)
36 #define TIMER3_MATCH2 (0x2c)
37 #define TIMER_CR (0x30)
38 #define TIMER_INTR_STATE (0x34)
39 #define TIMER_INTR_MASK (0x38)
41 #define TIMER_1_CR_ENABLE BIT(0)
42 #define TIMER_1_CR_CLOCK BIT(1)
43 #define TIMER_1_CR_INT BIT(2)
44 #define TIMER_2_CR_ENABLE BIT(3)
45 #define TIMER_2_CR_CLOCK BIT(4)
46 #define TIMER_2_CR_INT BIT(5)
47 #define TIMER_3_CR_ENABLE BIT(6)
48 #define TIMER_3_CR_CLOCK BIT(7)
49 #define TIMER_3_CR_INT BIT(8)
50 #define TIMER_1_CR_UPDOWN BIT(9)
51 #define TIMER_2_CR_UPDOWN BIT(10)
52 #define TIMER_3_CR_UPDOWN BIT(11)
55 * The Aspeed AST2400 moves bits around in the control register
56 * and lacks bits for setting the timer to count upwards.
58 #define TIMER_1_CR_ASPEED_ENABLE BIT(0)
59 #define TIMER_1_CR_ASPEED_CLOCK BIT(1)
60 #define TIMER_1_CR_ASPEED_INT BIT(2)
61 #define TIMER_2_CR_ASPEED_ENABLE BIT(4)
62 #define TIMER_2_CR_ASPEED_CLOCK BIT(5)
63 #define TIMER_2_CR_ASPEED_INT BIT(6)
64 #define TIMER_3_CR_ASPEED_ENABLE BIT(8)
65 #define TIMER_3_CR_ASPEED_CLOCK BIT(9)
66 #define TIMER_3_CR_ASPEED_INT BIT(10)
68 #define TIMER_1_INT_MATCH1 BIT(0)
69 #define TIMER_1_INT_MATCH2 BIT(1)
70 #define TIMER_1_INT_OVERFLOW BIT(2)
71 #define TIMER_2_INT_MATCH1 BIT(3)
72 #define TIMER_2_INT_MATCH2 BIT(4)
73 #define TIMER_2_INT_OVERFLOW BIT(5)
74 #define TIMER_3_INT_MATCH1 BIT(6)
75 #define TIMER_3_INT_MATCH2 BIT(7)
76 #define TIMER_3_INT_OVERFLOW BIT(8)
77 #define TIMER_INT_ALL_MASK 0x1ff
79 struct fttmr010 {
80 void __iomem *base;
81 unsigned int tick_rate;
82 bool count_down;
83 u32 t1_enable_val;
84 struct clock_event_device clkevt;
85 #ifdef CONFIG_ARM
86 struct delay_timer delay_timer;
87 #endif
91 * A local singleton used by sched_clock and delay timer reads, which are
92 * fast and stateless
94 static struct fttmr010 *local_fttmr;
96 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
98 return container_of(evt, struct fttmr010, clkevt);
101 static u64 notrace fttmr010_read_sched_clock_up(void)
103 return readl(local_fttmr->base + TIMER2_COUNT);
106 static u64 notrace fttmr010_read_sched_clock_down(void)
108 return ~readl(local_fttmr->base + TIMER2_COUNT);
111 #ifdef CONFIG_ARM
113 static unsigned long fttmr010_read_current_timer_up(void)
115 return readl(local_fttmr->base + TIMER2_COUNT);
118 static unsigned long fttmr010_read_current_timer_down(void)
120 return ~readl(local_fttmr->base + TIMER2_COUNT);
123 #endif
125 static int fttmr010_timer_set_next_event(unsigned long cycles,
126 struct clock_event_device *evt)
128 struct fttmr010 *fttmr010 = to_fttmr010(evt);
129 u32 cr;
131 /* Stop */
132 cr = readl(fttmr010->base + TIMER_CR);
133 cr &= ~fttmr010->t1_enable_val;
134 writel(cr, fttmr010->base + TIMER_CR);
136 /* Setup the match register forward/backward in time */
137 cr = readl(fttmr010->base + TIMER1_COUNT);
138 if (fttmr010->count_down)
139 cr -= cycles;
140 else
141 cr += cycles;
142 writel(cr, fttmr010->base + TIMER1_MATCH1);
144 /* Start */
145 cr = readl(fttmr010->base + TIMER_CR);
146 cr |= fttmr010->t1_enable_val;
147 writel(cr, fttmr010->base + TIMER_CR);
149 return 0;
152 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
154 struct fttmr010 *fttmr010 = to_fttmr010(evt);
155 u32 cr;
157 /* Stop */
158 cr = readl(fttmr010->base + TIMER_CR);
159 cr &= ~fttmr010->t1_enable_val;
160 writel(cr, fttmr010->base + TIMER_CR);
162 return 0;
165 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
167 struct fttmr010 *fttmr010 = to_fttmr010(evt);
168 u32 cr;
170 /* Stop */
171 cr = readl(fttmr010->base + TIMER_CR);
172 cr &= ~fttmr010->t1_enable_val;
173 writel(cr, fttmr010->base + TIMER_CR);
175 /* Setup counter start from 0 or ~0 */
176 writel(0, fttmr010->base + TIMER1_COUNT);
177 if (fttmr010->count_down)
178 writel(~0, fttmr010->base + TIMER1_LOAD);
179 else
180 writel(0, fttmr010->base + TIMER1_LOAD);
182 /* Enable interrupt */
183 cr = readl(fttmr010->base + TIMER_INTR_MASK);
184 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
185 cr |= TIMER_1_INT_MATCH1;
186 writel(cr, fttmr010->base + TIMER_INTR_MASK);
188 return 0;
191 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
193 struct fttmr010 *fttmr010 = to_fttmr010(evt);
194 u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
195 u32 cr;
197 /* Stop */
198 cr = readl(fttmr010->base + TIMER_CR);
199 cr &= ~fttmr010->t1_enable_val;
200 writel(cr, fttmr010->base + TIMER_CR);
202 /* Setup timer to fire at 1/HZ intervals. */
203 if (fttmr010->count_down) {
204 writel(period, fttmr010->base + TIMER1_LOAD);
205 writel(0, fttmr010->base + TIMER1_MATCH1);
206 } else {
207 cr = 0xffffffff - (period - 1);
208 writel(cr, fttmr010->base + TIMER1_COUNT);
209 writel(cr, fttmr010->base + TIMER1_LOAD);
211 /* Enable interrupt on overflow */
212 cr = readl(fttmr010->base + TIMER_INTR_MASK);
213 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
214 cr |= TIMER_1_INT_OVERFLOW;
215 writel(cr, fttmr010->base + TIMER_INTR_MASK);
218 /* Start the timer */
219 cr = readl(fttmr010->base + TIMER_CR);
220 cr |= fttmr010->t1_enable_val;
221 writel(cr, fttmr010->base + TIMER_CR);
223 return 0;
227 * IRQ handler for the timer
229 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
231 struct clock_event_device *evt = dev_id;
233 evt->event_handler(evt);
234 return IRQ_HANDLED;
237 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
239 struct fttmr010 *fttmr010;
240 int irq;
241 struct clk *clk;
242 int ret;
243 u32 val;
246 * These implementations require a clock reference.
247 * FIXME: we currently only support clocking using PCLK
248 * and using EXTCLK is not supported in the driver.
250 clk = of_clk_get_by_name(np, "PCLK");
251 if (IS_ERR(clk)) {
252 pr_err("could not get PCLK\n");
253 return PTR_ERR(clk);
255 ret = clk_prepare_enable(clk);
256 if (ret) {
257 pr_err("failed to enable PCLK\n");
258 return ret;
261 fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
262 if (!fttmr010) {
263 ret = -ENOMEM;
264 goto out_disable_clock;
266 fttmr010->tick_rate = clk_get_rate(clk);
268 fttmr010->base = of_iomap(np, 0);
269 if (!fttmr010->base) {
270 pr_err("Can't remap registers");
271 ret = -ENXIO;
272 goto out_free;
274 /* IRQ for timer 1 */
275 irq = irq_of_parse_and_map(np, 0);
276 if (irq <= 0) {
277 pr_err("Can't parse IRQ");
278 ret = -EINVAL;
279 goto out_unmap;
283 * The Aspeed AST2400 moves bits around in the control register,
284 * otherwise it works the same.
286 if (is_aspeed) {
287 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
288 TIMER_1_CR_ASPEED_INT;
289 /* Downward not available */
290 fttmr010->count_down = true;
291 } else {
292 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
296 * Reset the interrupt mask and status
298 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
299 writel(0, fttmr010->base + TIMER_INTR_STATE);
302 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
303 * where everything just counts down.
305 if (is_aspeed)
306 val = TIMER_2_CR_ASPEED_ENABLE;
307 else {
308 val = TIMER_2_CR_ENABLE;
309 if (!fttmr010->count_down)
310 val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
312 writel(val, fttmr010->base + TIMER_CR);
315 * Setup free-running clocksource timer (interrupts
316 * disabled.)
318 local_fttmr = fttmr010;
319 writel(0, fttmr010->base + TIMER2_COUNT);
320 writel(0, fttmr010->base + TIMER2_MATCH1);
321 writel(0, fttmr010->base + TIMER2_MATCH2);
323 if (fttmr010->count_down) {
324 writel(~0, fttmr010->base + TIMER2_LOAD);
325 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
326 "FTTMR010-TIMER2",
327 fttmr010->tick_rate,
328 300, 32, clocksource_mmio_readl_down);
329 sched_clock_register(fttmr010_read_sched_clock_down, 32,
330 fttmr010->tick_rate);
331 } else {
332 writel(0, fttmr010->base + TIMER2_LOAD);
333 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
334 "FTTMR010-TIMER2",
335 fttmr010->tick_rate,
336 300, 32, clocksource_mmio_readl_up);
337 sched_clock_register(fttmr010_read_sched_clock_up, 32,
338 fttmr010->tick_rate);
342 * Setup clockevent timer (interrupt-driven) on timer 1.
344 writel(0, fttmr010->base + TIMER1_COUNT);
345 writel(0, fttmr010->base + TIMER1_LOAD);
346 writel(0, fttmr010->base + TIMER1_MATCH1);
347 writel(0, fttmr010->base + TIMER1_MATCH2);
348 ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
349 "FTTMR010-TIMER1", &fttmr010->clkevt);
350 if (ret) {
351 pr_err("FTTMR010-TIMER1 no IRQ\n");
352 goto out_unmap;
355 fttmr010->clkevt.name = "FTTMR010-TIMER1";
356 /* Reasonably fast and accurate clock event */
357 fttmr010->clkevt.rating = 300;
358 fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
359 CLOCK_EVT_FEAT_ONESHOT;
360 fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
361 fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
362 fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
363 fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
364 fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
365 fttmr010->clkevt.cpumask = cpumask_of(0);
366 fttmr010->clkevt.irq = irq;
367 clockevents_config_and_register(&fttmr010->clkevt,
368 fttmr010->tick_rate,
369 1, 0xffffffff);
371 #ifdef CONFIG_ARM
372 /* Also use this timer for delays */
373 if (fttmr010->count_down)
374 fttmr010->delay_timer.read_current_timer =
375 fttmr010_read_current_timer_down;
376 else
377 fttmr010->delay_timer.read_current_timer =
378 fttmr010_read_current_timer_up;
379 fttmr010->delay_timer.freq = fttmr010->tick_rate;
380 register_current_timer_delay(&fttmr010->delay_timer);
381 #endif
383 return 0;
385 out_unmap:
386 iounmap(fttmr010->base);
387 out_free:
388 kfree(fttmr010);
389 out_disable_clock:
390 clk_disable_unprepare(clk);
392 return ret;
395 static __init int aspeed_timer_init(struct device_node *np)
397 return fttmr010_common_init(np, true);
400 static __init int fttmr010_timer_init(struct device_node *np)
402 return fttmr010_common_init(np, false);
405 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
406 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
407 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
408 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
409 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);