sched: Push down pre_schedule() and idle_balance()
[linux-2.6/btrfs-unstable.git] / kernel / sched / fair.c
blob43b49fe077abd450023473b423e487a888fa2e1e
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
35 #include "sched.h"
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 lw->weight += inc;
119 lw->inv_weight = 0;
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 lw->weight -= dec;
125 lw->inv_weight = 0;
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 lw->weight = w;
131 lw->inv_weight = 0;
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
161 return factor;
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
176 void sched_init_granularity(void)
178 update_sysctl();
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
184 static void __update_inv_weight(struct load_weight *lw)
186 unsigned long w;
188 if (likely(lw->inv_weight))
189 return;
191 w = scale_load_down(lw->weight);
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
218 __update_inv_weight(lw);
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
235 return mul_u64_u32_shr(delta_exec, fact, shift);
239 const struct sched_class fair_sched_class;
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
245 #ifdef CONFIG_FAIR_GROUP_SCHED
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 return cfs_rq->rq;
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
256 static inline struct task_struct *task_of(struct sched_entity *se)
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 return p->se.cfs_rq;
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 return se->cfs_rq;
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 return grp->my_q;
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 if (!cfs_rq->on_list) {
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq;
331 return NULL;
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 return se->parent;
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 int se_depth, pse_depth;
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
373 static inline struct task_struct *task_of(struct sched_entity *se)
375 return container_of(se, struct task_struct, se);
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 return container_of(cfs_rq, struct rq, cfs);
383 #define entity_is_task(se) 1
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 return &task_rq(p)->cfs;
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
398 return &rq->cfs;
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 return NULL;
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 static inline struct cfs_rq *
419 is_same_group(struct sched_entity *se, struct sched_entity *pse)
421 return cfs_rq_of(se); /* always the same rq */
424 static inline struct sched_entity *parent_entity(struct sched_entity *se)
426 return NULL;
429 static inline void
430 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
434 #endif /* CONFIG_FAIR_GROUP_SCHED */
436 static __always_inline
437 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
439 /**************************************************************
440 * Scheduling class tree data structure manipulation methods:
443 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
445 s64 delta = (s64)(vruntime - max_vruntime);
446 if (delta > 0)
447 max_vruntime = vruntime;
449 return max_vruntime;
452 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
454 s64 delta = (s64)(vruntime - min_vruntime);
455 if (delta < 0)
456 min_vruntime = vruntime;
458 return min_vruntime;
461 static inline int entity_before(struct sched_entity *a,
462 struct sched_entity *b)
464 return (s64)(a->vruntime - b->vruntime) < 0;
467 static void update_min_vruntime(struct cfs_rq *cfs_rq)
469 u64 vruntime = cfs_rq->min_vruntime;
471 if (cfs_rq->curr)
472 vruntime = cfs_rq->curr->vruntime;
474 if (cfs_rq->rb_leftmost) {
475 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
476 struct sched_entity,
477 run_node);
479 if (!cfs_rq->curr)
480 vruntime = se->vruntime;
481 else
482 vruntime = min_vruntime(vruntime, se->vruntime);
485 /* ensure we never gain time by being placed backwards. */
486 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
487 #ifndef CONFIG_64BIT
488 smp_wmb();
489 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
490 #endif
494 * Enqueue an entity into the rb-tree:
496 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
498 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
499 struct rb_node *parent = NULL;
500 struct sched_entity *entry;
501 int leftmost = 1;
504 * Find the right place in the rbtree:
506 while (*link) {
507 parent = *link;
508 entry = rb_entry(parent, struct sched_entity, run_node);
510 * We dont care about collisions. Nodes with
511 * the same key stay together.
513 if (entity_before(se, entry)) {
514 link = &parent->rb_left;
515 } else {
516 link = &parent->rb_right;
517 leftmost = 0;
522 * Maintain a cache of leftmost tree entries (it is frequently
523 * used):
525 if (leftmost)
526 cfs_rq->rb_leftmost = &se->run_node;
528 rb_link_node(&se->run_node, parent, link);
529 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
532 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
534 if (cfs_rq->rb_leftmost == &se->run_node) {
535 struct rb_node *next_node;
537 next_node = rb_next(&se->run_node);
538 cfs_rq->rb_leftmost = next_node;
541 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
544 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
546 struct rb_node *left = cfs_rq->rb_leftmost;
548 if (!left)
549 return NULL;
551 return rb_entry(left, struct sched_entity, run_node);
554 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
556 struct rb_node *next = rb_next(&se->run_node);
558 if (!next)
559 return NULL;
561 return rb_entry(next, struct sched_entity, run_node);
564 #ifdef CONFIG_SCHED_DEBUG
565 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
567 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
569 if (!last)
570 return NULL;
572 return rb_entry(last, struct sched_entity, run_node);
575 /**************************************************************
576 * Scheduling class statistics methods:
579 int sched_proc_update_handler(struct ctl_table *table, int write,
580 void __user *buffer, size_t *lenp,
581 loff_t *ppos)
583 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
584 int factor = get_update_sysctl_factor();
586 if (ret || !write)
587 return ret;
589 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
590 sysctl_sched_min_granularity);
592 #define WRT_SYSCTL(name) \
593 (normalized_sysctl_##name = sysctl_##name / (factor))
594 WRT_SYSCTL(sched_min_granularity);
595 WRT_SYSCTL(sched_latency);
596 WRT_SYSCTL(sched_wakeup_granularity);
597 #undef WRT_SYSCTL
599 return 0;
601 #endif
604 * delta /= w
606 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
608 if (unlikely(se->load.weight != NICE_0_LOAD))
609 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
611 return delta;
615 * The idea is to set a period in which each task runs once.
617 * When there are too many tasks (sched_nr_latency) we have to stretch
618 * this period because otherwise the slices get too small.
620 * p = (nr <= nl) ? l : l*nr/nl
622 static u64 __sched_period(unsigned long nr_running)
624 u64 period = sysctl_sched_latency;
625 unsigned long nr_latency = sched_nr_latency;
627 if (unlikely(nr_running > nr_latency)) {
628 period = sysctl_sched_min_granularity;
629 period *= nr_running;
632 return period;
636 * We calculate the wall-time slice from the period by taking a part
637 * proportional to the weight.
639 * s = p*P[w/rw]
641 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
643 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
645 for_each_sched_entity(se) {
646 struct load_weight *load;
647 struct load_weight lw;
649 cfs_rq = cfs_rq_of(se);
650 load = &cfs_rq->load;
652 if (unlikely(!se->on_rq)) {
653 lw = cfs_rq->load;
655 update_load_add(&lw, se->load.weight);
656 load = &lw;
658 slice = __calc_delta(slice, se->load.weight, load);
660 return slice;
664 * We calculate the vruntime slice of a to-be-inserted task.
666 * vs = s/w
668 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
670 return calc_delta_fair(sched_slice(cfs_rq, se), se);
673 #ifdef CONFIG_SMP
674 static unsigned long task_h_load(struct task_struct *p);
676 static inline void __update_task_entity_contrib(struct sched_entity *se);
678 /* Give new task start runnable values to heavy its load in infant time */
679 void init_task_runnable_average(struct task_struct *p)
681 u32 slice;
683 p->se.avg.decay_count = 0;
684 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
685 p->se.avg.runnable_avg_sum = slice;
686 p->se.avg.runnable_avg_period = slice;
687 __update_task_entity_contrib(&p->se);
689 #else
690 void init_task_runnable_average(struct task_struct *p)
693 #endif
696 * Update the current task's runtime statistics.
698 static void update_curr(struct cfs_rq *cfs_rq)
700 struct sched_entity *curr = cfs_rq->curr;
701 u64 now = rq_clock_task(rq_of(cfs_rq));
702 u64 delta_exec;
704 if (unlikely(!curr))
705 return;
707 delta_exec = now - curr->exec_start;
708 if (unlikely((s64)delta_exec <= 0))
709 return;
711 curr->exec_start = now;
713 schedstat_set(curr->statistics.exec_max,
714 max(delta_exec, curr->statistics.exec_max));
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
719 curr->vruntime += calc_delta_fair(delta_exec, curr);
720 update_min_vruntime(cfs_rq);
722 if (entity_is_task(curr)) {
723 struct task_struct *curtask = task_of(curr);
725 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
726 cpuacct_charge(curtask, delta_exec);
727 account_group_exec_runtime(curtask, delta_exec);
730 account_cfs_rq_runtime(cfs_rq, delta_exec);
733 static inline void
734 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
740 * Task is being enqueued - update stats:
742 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 * Are we enqueueing a waiting task? (for current tasks
746 * a dequeue/enqueue event is a NOP)
748 if (se != cfs_rq->curr)
749 update_stats_wait_start(cfs_rq, se);
752 static void
753 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 #ifdef CONFIG_SCHEDSTATS
761 if (entity_is_task(se)) {
762 trace_sched_stat_wait(task_of(se),
763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
765 #endif
766 schedstat_set(se->statistics.wait_start, 0);
769 static inline void
770 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 * Mark the end of the wait period if dequeueing a
774 * waiting task:
776 if (se != cfs_rq->curr)
777 update_stats_wait_end(cfs_rq, se);
781 * We are picking a new current task - update its stats:
783 static inline void
784 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 * We are starting a new run period:
789 se->exec_start = rq_clock_task(rq_of(cfs_rq));
792 /**************************************************
793 * Scheduling class queueing methods:
796 #ifdef CONFIG_NUMA_BALANCING
798 * Approximate time to scan a full NUMA task in ms. The task scan period is
799 * calculated based on the tasks virtual memory size and
800 * numa_balancing_scan_size.
802 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
805 /* Portion of address space to scan in MB */
806 unsigned int sysctl_numa_balancing_scan_size = 256;
808 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809 unsigned int sysctl_numa_balancing_scan_delay = 1000;
811 static unsigned int task_nr_scan_windows(struct task_struct *p)
813 unsigned long rss = 0;
814 unsigned long nr_scan_pages;
817 * Calculations based on RSS as non-present and empty pages are skipped
818 * by the PTE scanner and NUMA hinting faults should be trapped based
819 * on resident pages
821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 rss = get_mm_rss(p->mm);
823 if (!rss)
824 rss = nr_scan_pages;
826 rss = round_up(rss, nr_scan_pages);
827 return rss / nr_scan_pages;
830 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831 #define MAX_SCAN_WINDOW 2560
833 static unsigned int task_scan_min(struct task_struct *p)
835 unsigned int scan, floor;
836 unsigned int windows = 1;
838 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
839 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
840 floor = 1000 / windows;
842 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
843 return max_t(unsigned int, floor, scan);
846 static unsigned int task_scan_max(struct task_struct *p)
848 unsigned int smin = task_scan_min(p);
849 unsigned int smax;
851 /* Watch for min being lower than max due to floor calculations */
852 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
853 return max(smin, smax);
856 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
858 rq->nr_numa_running += (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
864 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
865 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868 struct numa_group {
869 atomic_t refcount;
871 spinlock_t lock; /* nr_tasks, tasks */
872 int nr_tasks;
873 pid_t gid;
874 struct list_head task_list;
876 struct rcu_head rcu;
877 nodemask_t active_nodes;
878 unsigned long total_faults;
880 * Faults_cpu is used to decide whether memory should move
881 * towards the CPU. As a consequence, these stats are weighted
882 * more by CPU use than by memory faults.
884 unsigned long *faults_cpu;
885 unsigned long faults[0];
888 /* Shared or private faults. */
889 #define NR_NUMA_HINT_FAULT_TYPES 2
891 /* Memory and CPU locality */
892 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
894 /* Averaged statistics, and temporary buffers. */
895 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
897 pid_t task_numa_group_id(struct task_struct *p)
899 return p->numa_group ? p->numa_group->gid : 0;
902 static inline int task_faults_idx(int nid, int priv)
904 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
907 static inline unsigned long task_faults(struct task_struct *p, int nid)
909 if (!p->numa_faults_memory)
910 return 0;
912 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
913 p->numa_faults_memory[task_faults_idx(nid, 1)];
916 static inline unsigned long group_faults(struct task_struct *p, int nid)
918 if (!p->numa_group)
919 return 0;
921 return p->numa_group->faults[task_faults_idx(nid, 0)] +
922 p->numa_group->faults[task_faults_idx(nid, 1)];
925 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
927 return group->faults_cpu[task_faults_idx(nid, 0)] +
928 group->faults_cpu[task_faults_idx(nid, 1)];
932 * These return the fraction of accesses done by a particular task, or
933 * task group, on a particular numa node. The group weight is given a
934 * larger multiplier, in order to group tasks together that are almost
935 * evenly spread out between numa nodes.
937 static inline unsigned long task_weight(struct task_struct *p, int nid)
939 unsigned long total_faults;
941 if (!p->numa_faults_memory)
942 return 0;
944 total_faults = p->total_numa_faults;
946 if (!total_faults)
947 return 0;
949 return 1000 * task_faults(p, nid) / total_faults;
952 static inline unsigned long group_weight(struct task_struct *p, int nid)
954 if (!p->numa_group || !p->numa_group->total_faults)
955 return 0;
957 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
960 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
961 int src_nid, int dst_cpu)
963 struct numa_group *ng = p->numa_group;
964 int dst_nid = cpu_to_node(dst_cpu);
965 int last_cpupid, this_cpupid;
967 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
970 * Multi-stage node selection is used in conjunction with a periodic
971 * migration fault to build a temporal task<->page relation. By using
972 * a two-stage filter we remove short/unlikely relations.
974 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
975 * a task's usage of a particular page (n_p) per total usage of this
976 * page (n_t) (in a given time-span) to a probability.
978 * Our periodic faults will sample this probability and getting the
979 * same result twice in a row, given these samples are fully
980 * independent, is then given by P(n)^2, provided our sample period
981 * is sufficiently short compared to the usage pattern.
983 * This quadric squishes small probabilities, making it less likely we
984 * act on an unlikely task<->page relation.
986 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
987 if (!cpupid_pid_unset(last_cpupid) &&
988 cpupid_to_nid(last_cpupid) != dst_nid)
989 return false;
991 /* Always allow migrate on private faults */
992 if (cpupid_match_pid(p, last_cpupid))
993 return true;
995 /* A shared fault, but p->numa_group has not been set up yet. */
996 if (!ng)
997 return true;
1000 * Do not migrate if the destination is not a node that
1001 * is actively used by this numa group.
1003 if (!node_isset(dst_nid, ng->active_nodes))
1004 return false;
1007 * Source is a node that is not actively used by this
1008 * numa group, while the destination is. Migrate.
1010 if (!node_isset(src_nid, ng->active_nodes))
1011 return true;
1014 * Both source and destination are nodes in active
1015 * use by this numa group. Maximize memory bandwidth
1016 * by migrating from more heavily used groups, to less
1017 * heavily used ones, spreading the load around.
1018 * Use a 1/4 hysteresis to avoid spurious page movement.
1020 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1023 static unsigned long weighted_cpuload(const int cpu);
1024 static unsigned long source_load(int cpu, int type);
1025 static unsigned long target_load(int cpu, int type);
1026 static unsigned long power_of(int cpu);
1027 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1029 /* Cached statistics for all CPUs within a node */
1030 struct numa_stats {
1031 unsigned long nr_running;
1032 unsigned long load;
1034 /* Total compute capacity of CPUs on a node */
1035 unsigned long power;
1037 /* Approximate capacity in terms of runnable tasks on a node */
1038 unsigned long capacity;
1039 int has_capacity;
1043 * XXX borrowed from update_sg_lb_stats
1045 static void update_numa_stats(struct numa_stats *ns, int nid)
1047 int cpu, cpus = 0;
1049 memset(ns, 0, sizeof(*ns));
1050 for_each_cpu(cpu, cpumask_of_node(nid)) {
1051 struct rq *rq = cpu_rq(cpu);
1053 ns->nr_running += rq->nr_running;
1054 ns->load += weighted_cpuload(cpu);
1055 ns->power += power_of(cpu);
1057 cpus++;
1061 * If we raced with hotplug and there are no CPUs left in our mask
1062 * the @ns structure is NULL'ed and task_numa_compare() will
1063 * not find this node attractive.
1065 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1066 * and bail there.
1068 if (!cpus)
1069 return;
1071 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1072 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1073 ns->has_capacity = (ns->nr_running < ns->capacity);
1076 struct task_numa_env {
1077 struct task_struct *p;
1079 int src_cpu, src_nid;
1080 int dst_cpu, dst_nid;
1082 struct numa_stats src_stats, dst_stats;
1084 int imbalance_pct;
1086 struct task_struct *best_task;
1087 long best_imp;
1088 int best_cpu;
1091 static void task_numa_assign(struct task_numa_env *env,
1092 struct task_struct *p, long imp)
1094 if (env->best_task)
1095 put_task_struct(env->best_task);
1096 if (p)
1097 get_task_struct(p);
1099 env->best_task = p;
1100 env->best_imp = imp;
1101 env->best_cpu = env->dst_cpu;
1105 * This checks if the overall compute and NUMA accesses of the system would
1106 * be improved if the source tasks was migrated to the target dst_cpu taking
1107 * into account that it might be best if task running on the dst_cpu should
1108 * be exchanged with the source task
1110 static void task_numa_compare(struct task_numa_env *env,
1111 long taskimp, long groupimp)
1113 struct rq *src_rq = cpu_rq(env->src_cpu);
1114 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1115 struct task_struct *cur;
1116 long dst_load, src_load;
1117 long load;
1118 long imp = (groupimp > 0) ? groupimp : taskimp;
1120 rcu_read_lock();
1121 cur = ACCESS_ONCE(dst_rq->curr);
1122 if (cur->pid == 0) /* idle */
1123 cur = NULL;
1126 * "imp" is the fault differential for the source task between the
1127 * source and destination node. Calculate the total differential for
1128 * the source task and potential destination task. The more negative
1129 * the value is, the more rmeote accesses that would be expected to
1130 * be incurred if the tasks were swapped.
1132 if (cur) {
1133 /* Skip this swap candidate if cannot move to the source cpu */
1134 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1135 goto unlock;
1138 * If dst and source tasks are in the same NUMA group, or not
1139 * in any group then look only at task weights.
1141 if (cur->numa_group == env->p->numa_group) {
1142 imp = taskimp + task_weight(cur, env->src_nid) -
1143 task_weight(cur, env->dst_nid);
1145 * Add some hysteresis to prevent swapping the
1146 * tasks within a group over tiny differences.
1148 if (cur->numa_group)
1149 imp -= imp/16;
1150 } else {
1152 * Compare the group weights. If a task is all by
1153 * itself (not part of a group), use the task weight
1154 * instead.
1156 if (env->p->numa_group)
1157 imp = groupimp;
1158 else
1159 imp = taskimp;
1161 if (cur->numa_group)
1162 imp += group_weight(cur, env->src_nid) -
1163 group_weight(cur, env->dst_nid);
1164 else
1165 imp += task_weight(cur, env->src_nid) -
1166 task_weight(cur, env->dst_nid);
1170 if (imp < env->best_imp)
1171 goto unlock;
1173 if (!cur) {
1174 /* Is there capacity at our destination? */
1175 if (env->src_stats.has_capacity &&
1176 !env->dst_stats.has_capacity)
1177 goto unlock;
1179 goto balance;
1182 /* Balance doesn't matter much if we're running a task per cpu */
1183 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1184 goto assign;
1187 * In the overloaded case, try and keep the load balanced.
1189 balance:
1190 dst_load = env->dst_stats.load;
1191 src_load = env->src_stats.load;
1193 /* XXX missing power terms */
1194 load = task_h_load(env->p);
1195 dst_load += load;
1196 src_load -= load;
1198 if (cur) {
1199 load = task_h_load(cur);
1200 dst_load -= load;
1201 src_load += load;
1204 /* make src_load the smaller */
1205 if (dst_load < src_load)
1206 swap(dst_load, src_load);
1208 if (src_load * env->imbalance_pct < dst_load * 100)
1209 goto unlock;
1211 assign:
1212 task_numa_assign(env, cur, imp);
1213 unlock:
1214 rcu_read_unlock();
1217 static void task_numa_find_cpu(struct task_numa_env *env,
1218 long taskimp, long groupimp)
1220 int cpu;
1222 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1223 /* Skip this CPU if the source task cannot migrate */
1224 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1225 continue;
1227 env->dst_cpu = cpu;
1228 task_numa_compare(env, taskimp, groupimp);
1232 static int task_numa_migrate(struct task_struct *p)
1234 struct task_numa_env env = {
1235 .p = p,
1237 .src_cpu = task_cpu(p),
1238 .src_nid = task_node(p),
1240 .imbalance_pct = 112,
1242 .best_task = NULL,
1243 .best_imp = 0,
1244 .best_cpu = -1
1246 struct sched_domain *sd;
1247 unsigned long taskweight, groupweight;
1248 int nid, ret;
1249 long taskimp, groupimp;
1252 * Pick the lowest SD_NUMA domain, as that would have the smallest
1253 * imbalance and would be the first to start moving tasks about.
1255 * And we want to avoid any moving of tasks about, as that would create
1256 * random movement of tasks -- counter the numa conditions we're trying
1257 * to satisfy here.
1259 rcu_read_lock();
1260 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1261 if (sd)
1262 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1263 rcu_read_unlock();
1266 * Cpusets can break the scheduler domain tree into smaller
1267 * balance domains, some of which do not cross NUMA boundaries.
1268 * Tasks that are "trapped" in such domains cannot be migrated
1269 * elsewhere, so there is no point in (re)trying.
1271 if (unlikely(!sd)) {
1272 p->numa_preferred_nid = task_node(p);
1273 return -EINVAL;
1276 taskweight = task_weight(p, env.src_nid);
1277 groupweight = group_weight(p, env.src_nid);
1278 update_numa_stats(&env.src_stats, env.src_nid);
1279 env.dst_nid = p->numa_preferred_nid;
1280 taskimp = task_weight(p, env.dst_nid) - taskweight;
1281 groupimp = group_weight(p, env.dst_nid) - groupweight;
1282 update_numa_stats(&env.dst_stats, env.dst_nid);
1284 /* If the preferred nid has capacity, try to use it. */
1285 if (env.dst_stats.has_capacity)
1286 task_numa_find_cpu(&env, taskimp, groupimp);
1288 /* No space available on the preferred nid. Look elsewhere. */
1289 if (env.best_cpu == -1) {
1290 for_each_online_node(nid) {
1291 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1292 continue;
1294 /* Only consider nodes where both task and groups benefit */
1295 taskimp = task_weight(p, nid) - taskweight;
1296 groupimp = group_weight(p, nid) - groupweight;
1297 if (taskimp < 0 && groupimp < 0)
1298 continue;
1300 env.dst_nid = nid;
1301 update_numa_stats(&env.dst_stats, env.dst_nid);
1302 task_numa_find_cpu(&env, taskimp, groupimp);
1306 /* No better CPU than the current one was found. */
1307 if (env.best_cpu == -1)
1308 return -EAGAIN;
1310 sched_setnuma(p, env.dst_nid);
1313 * Reset the scan period if the task is being rescheduled on an
1314 * alternative node to recheck if the tasks is now properly placed.
1316 p->numa_scan_period = task_scan_min(p);
1318 if (env.best_task == NULL) {
1319 ret = migrate_task_to(p, env.best_cpu);
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1322 return ret;
1325 ret = migrate_swap(p, env.best_task);
1326 if (ret != 0)
1327 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1328 put_task_struct(env.best_task);
1329 return ret;
1332 /* Attempt to migrate a task to a CPU on the preferred node. */
1333 static void numa_migrate_preferred(struct task_struct *p)
1335 /* This task has no NUMA fault statistics yet */
1336 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1337 return;
1339 /* Periodically retry migrating the task to the preferred node */
1340 p->numa_migrate_retry = jiffies + HZ;
1342 /* Success if task is already running on preferred CPU */
1343 if (task_node(p) == p->numa_preferred_nid)
1344 return;
1346 /* Otherwise, try migrate to a CPU on the preferred node */
1347 task_numa_migrate(p);
1351 * Find the nodes on which the workload is actively running. We do this by
1352 * tracking the nodes from which NUMA hinting faults are triggered. This can
1353 * be different from the set of nodes where the workload's memory is currently
1354 * located.
1356 * The bitmask is used to make smarter decisions on when to do NUMA page
1357 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1358 * are added when they cause over 6/16 of the maximum number of faults, but
1359 * only removed when they drop below 3/16.
1361 static void update_numa_active_node_mask(struct numa_group *numa_group)
1363 unsigned long faults, max_faults = 0;
1364 int nid;
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (faults > max_faults)
1369 max_faults = faults;
1372 for_each_online_node(nid) {
1373 faults = group_faults_cpu(numa_group, nid);
1374 if (!node_isset(nid, numa_group->active_nodes)) {
1375 if (faults > max_faults * 6 / 16)
1376 node_set(nid, numa_group->active_nodes);
1377 } else if (faults < max_faults * 3 / 16)
1378 node_clear(nid, numa_group->active_nodes);
1383 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1384 * increments. The more local the fault statistics are, the higher the scan
1385 * period will be for the next scan window. If local/remote ratio is below
1386 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1387 * scan period will decrease
1389 #define NUMA_PERIOD_SLOTS 10
1390 #define NUMA_PERIOD_THRESHOLD 3
1393 * Increase the scan period (slow down scanning) if the majority of
1394 * our memory is already on our local node, or if the majority of
1395 * the page accesses are shared with other processes.
1396 * Otherwise, decrease the scan period.
1398 static void update_task_scan_period(struct task_struct *p,
1399 unsigned long shared, unsigned long private)
1401 unsigned int period_slot;
1402 int ratio;
1403 int diff;
1405 unsigned long remote = p->numa_faults_locality[0];
1406 unsigned long local = p->numa_faults_locality[1];
1409 * If there were no record hinting faults then either the task is
1410 * completely idle or all activity is areas that are not of interest
1411 * to automatic numa balancing. Scan slower
1413 if (local + shared == 0) {
1414 p->numa_scan_period = min(p->numa_scan_period_max,
1415 p->numa_scan_period << 1);
1417 p->mm->numa_next_scan = jiffies +
1418 msecs_to_jiffies(p->numa_scan_period);
1420 return;
1424 * Prepare to scale scan period relative to the current period.
1425 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1426 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1427 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1429 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1430 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1431 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1432 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1433 if (!slot)
1434 slot = 1;
1435 diff = slot * period_slot;
1436 } else {
1437 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1440 * Scale scan rate increases based on sharing. There is an
1441 * inverse relationship between the degree of sharing and
1442 * the adjustment made to the scanning period. Broadly
1443 * speaking the intent is that there is little point
1444 * scanning faster if shared accesses dominate as it may
1445 * simply bounce migrations uselessly
1447 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1448 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1451 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1452 task_scan_min(p), task_scan_max(p));
1453 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1457 * Get the fraction of time the task has been running since the last
1458 * NUMA placement cycle. The scheduler keeps similar statistics, but
1459 * decays those on a 32ms period, which is orders of magnitude off
1460 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1461 * stats only if the task is so new there are no NUMA statistics yet.
1463 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1465 u64 runtime, delta, now;
1466 /* Use the start of this time slice to avoid calculations. */
1467 now = p->se.exec_start;
1468 runtime = p->se.sum_exec_runtime;
1470 if (p->last_task_numa_placement) {
1471 delta = runtime - p->last_sum_exec_runtime;
1472 *period = now - p->last_task_numa_placement;
1473 } else {
1474 delta = p->se.avg.runnable_avg_sum;
1475 *period = p->se.avg.runnable_avg_period;
1478 p->last_sum_exec_runtime = runtime;
1479 p->last_task_numa_placement = now;
1481 return delta;
1484 static void task_numa_placement(struct task_struct *p)
1486 int seq, nid, max_nid = -1, max_group_nid = -1;
1487 unsigned long max_faults = 0, max_group_faults = 0;
1488 unsigned long fault_types[2] = { 0, 0 };
1489 unsigned long total_faults;
1490 u64 runtime, period;
1491 spinlock_t *group_lock = NULL;
1493 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1494 if (p->numa_scan_seq == seq)
1495 return;
1496 p->numa_scan_seq = seq;
1497 p->numa_scan_period_max = task_scan_max(p);
1499 total_faults = p->numa_faults_locality[0] +
1500 p->numa_faults_locality[1];
1501 runtime = numa_get_avg_runtime(p, &period);
1503 /* If the task is part of a group prevent parallel updates to group stats */
1504 if (p->numa_group) {
1505 group_lock = &p->numa_group->lock;
1506 spin_lock(group_lock);
1509 /* Find the node with the highest number of faults */
1510 for_each_online_node(nid) {
1511 unsigned long faults = 0, group_faults = 0;
1512 int priv, i;
1514 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1515 long diff, f_diff, f_weight;
1517 i = task_faults_idx(nid, priv);
1519 /* Decay existing window, copy faults since last scan */
1520 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1521 fault_types[priv] += p->numa_faults_buffer_memory[i];
1522 p->numa_faults_buffer_memory[i] = 0;
1525 * Normalize the faults_from, so all tasks in a group
1526 * count according to CPU use, instead of by the raw
1527 * number of faults. Tasks with little runtime have
1528 * little over-all impact on throughput, and thus their
1529 * faults are less important.
1531 f_weight = div64_u64(runtime << 16, period + 1);
1532 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1533 (total_faults + 1);
1534 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1535 p->numa_faults_buffer_cpu[i] = 0;
1537 p->numa_faults_memory[i] += diff;
1538 p->numa_faults_cpu[i] += f_diff;
1539 faults += p->numa_faults_memory[i];
1540 p->total_numa_faults += diff;
1541 if (p->numa_group) {
1542 /* safe because we can only change our own group */
1543 p->numa_group->faults[i] += diff;
1544 p->numa_group->faults_cpu[i] += f_diff;
1545 p->numa_group->total_faults += diff;
1546 group_faults += p->numa_group->faults[i];
1550 if (faults > max_faults) {
1551 max_faults = faults;
1552 max_nid = nid;
1555 if (group_faults > max_group_faults) {
1556 max_group_faults = group_faults;
1557 max_group_nid = nid;
1561 update_task_scan_period(p, fault_types[0], fault_types[1]);
1563 if (p->numa_group) {
1564 update_numa_active_node_mask(p->numa_group);
1566 * If the preferred task and group nids are different,
1567 * iterate over the nodes again to find the best place.
1569 if (max_nid != max_group_nid) {
1570 unsigned long weight, max_weight = 0;
1572 for_each_online_node(nid) {
1573 weight = task_weight(p, nid) + group_weight(p, nid);
1574 if (weight > max_weight) {
1575 max_weight = weight;
1576 max_nid = nid;
1581 spin_unlock(group_lock);
1584 /* Preferred node as the node with the most faults */
1585 if (max_faults && max_nid != p->numa_preferred_nid) {
1586 /* Update the preferred nid and migrate task if possible */
1587 sched_setnuma(p, max_nid);
1588 numa_migrate_preferred(p);
1592 static inline int get_numa_group(struct numa_group *grp)
1594 return atomic_inc_not_zero(&grp->refcount);
1597 static inline void put_numa_group(struct numa_group *grp)
1599 if (atomic_dec_and_test(&grp->refcount))
1600 kfree_rcu(grp, rcu);
1603 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1604 int *priv)
1606 struct numa_group *grp, *my_grp;
1607 struct task_struct *tsk;
1608 bool join = false;
1609 int cpu = cpupid_to_cpu(cpupid);
1610 int i;
1612 if (unlikely(!p->numa_group)) {
1613 unsigned int size = sizeof(struct numa_group) +
1614 4*nr_node_ids*sizeof(unsigned long);
1616 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1617 if (!grp)
1618 return;
1620 atomic_set(&grp->refcount, 1);
1621 spin_lock_init(&grp->lock);
1622 INIT_LIST_HEAD(&grp->task_list);
1623 grp->gid = p->pid;
1624 /* Second half of the array tracks nids where faults happen */
1625 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1626 nr_node_ids;
1628 node_set(task_node(current), grp->active_nodes);
1630 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1631 grp->faults[i] = p->numa_faults_memory[i];
1633 grp->total_faults = p->total_numa_faults;
1635 list_add(&p->numa_entry, &grp->task_list);
1636 grp->nr_tasks++;
1637 rcu_assign_pointer(p->numa_group, grp);
1640 rcu_read_lock();
1641 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1643 if (!cpupid_match_pid(tsk, cpupid))
1644 goto no_join;
1646 grp = rcu_dereference(tsk->numa_group);
1647 if (!grp)
1648 goto no_join;
1650 my_grp = p->numa_group;
1651 if (grp == my_grp)
1652 goto no_join;
1655 * Only join the other group if its bigger; if we're the bigger group,
1656 * the other task will join us.
1658 if (my_grp->nr_tasks > grp->nr_tasks)
1659 goto no_join;
1662 * Tie-break on the grp address.
1664 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1665 goto no_join;
1667 /* Always join threads in the same process. */
1668 if (tsk->mm == current->mm)
1669 join = true;
1671 /* Simple filter to avoid false positives due to PID collisions */
1672 if (flags & TNF_SHARED)
1673 join = true;
1675 /* Update priv based on whether false sharing was detected */
1676 *priv = !join;
1678 if (join && !get_numa_group(grp))
1679 goto no_join;
1681 rcu_read_unlock();
1683 if (!join)
1684 return;
1686 double_lock(&my_grp->lock, &grp->lock);
1688 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1689 my_grp->faults[i] -= p->numa_faults_memory[i];
1690 grp->faults[i] += p->numa_faults_memory[i];
1692 my_grp->total_faults -= p->total_numa_faults;
1693 grp->total_faults += p->total_numa_faults;
1695 list_move(&p->numa_entry, &grp->task_list);
1696 my_grp->nr_tasks--;
1697 grp->nr_tasks++;
1699 spin_unlock(&my_grp->lock);
1700 spin_unlock(&grp->lock);
1702 rcu_assign_pointer(p->numa_group, grp);
1704 put_numa_group(my_grp);
1705 return;
1707 no_join:
1708 rcu_read_unlock();
1709 return;
1712 void task_numa_free(struct task_struct *p)
1714 struct numa_group *grp = p->numa_group;
1715 int i;
1716 void *numa_faults = p->numa_faults_memory;
1718 if (grp) {
1719 spin_lock(&grp->lock);
1720 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1721 grp->faults[i] -= p->numa_faults_memory[i];
1722 grp->total_faults -= p->total_numa_faults;
1724 list_del(&p->numa_entry);
1725 grp->nr_tasks--;
1726 spin_unlock(&grp->lock);
1727 rcu_assign_pointer(p->numa_group, NULL);
1728 put_numa_group(grp);
1731 p->numa_faults_memory = NULL;
1732 p->numa_faults_buffer_memory = NULL;
1733 p->numa_faults_cpu= NULL;
1734 p->numa_faults_buffer_cpu = NULL;
1735 kfree(numa_faults);
1739 * Got a PROT_NONE fault for a page on @node.
1741 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1743 struct task_struct *p = current;
1744 bool migrated = flags & TNF_MIGRATED;
1745 int cpu_node = task_node(current);
1746 int priv;
1748 if (!numabalancing_enabled)
1749 return;
1751 /* for example, ksmd faulting in a user's mm */
1752 if (!p->mm)
1753 return;
1755 /* Do not worry about placement if exiting */
1756 if (p->state == TASK_DEAD)
1757 return;
1759 /* Allocate buffer to track faults on a per-node basis */
1760 if (unlikely(!p->numa_faults_memory)) {
1761 int size = sizeof(*p->numa_faults_memory) *
1762 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1764 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1765 if (!p->numa_faults_memory)
1766 return;
1768 BUG_ON(p->numa_faults_buffer_memory);
1770 * The averaged statistics, shared & private, memory & cpu,
1771 * occupy the first half of the array. The second half of the
1772 * array is for current counters, which are averaged into the
1773 * first set by task_numa_placement.
1775 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1776 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1777 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1778 p->total_numa_faults = 0;
1779 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1783 * First accesses are treated as private, otherwise consider accesses
1784 * to be private if the accessing pid has not changed
1786 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1787 priv = 1;
1788 } else {
1789 priv = cpupid_match_pid(p, last_cpupid);
1790 if (!priv && !(flags & TNF_NO_GROUP))
1791 task_numa_group(p, last_cpupid, flags, &priv);
1794 task_numa_placement(p);
1797 * Retry task to preferred node migration periodically, in case it
1798 * case it previously failed, or the scheduler moved us.
1800 if (time_after(jiffies, p->numa_migrate_retry))
1801 numa_migrate_preferred(p);
1803 if (migrated)
1804 p->numa_pages_migrated += pages;
1806 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1807 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1808 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1811 static void reset_ptenuma_scan(struct task_struct *p)
1813 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1814 p->mm->numa_scan_offset = 0;
1818 * The expensive part of numa migration is done from task_work context.
1819 * Triggered from task_tick_numa().
1821 void task_numa_work(struct callback_head *work)
1823 unsigned long migrate, next_scan, now = jiffies;
1824 struct task_struct *p = current;
1825 struct mm_struct *mm = p->mm;
1826 struct vm_area_struct *vma;
1827 unsigned long start, end;
1828 unsigned long nr_pte_updates = 0;
1829 long pages;
1831 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1833 work->next = work; /* protect against double add */
1835 * Who cares about NUMA placement when they're dying.
1837 * NOTE: make sure not to dereference p->mm before this check,
1838 * exit_task_work() happens _after_ exit_mm() so we could be called
1839 * without p->mm even though we still had it when we enqueued this
1840 * work.
1842 if (p->flags & PF_EXITING)
1843 return;
1845 if (!mm->numa_next_scan) {
1846 mm->numa_next_scan = now +
1847 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1851 * Enforce maximal scan/migration frequency..
1853 migrate = mm->numa_next_scan;
1854 if (time_before(now, migrate))
1855 return;
1857 if (p->numa_scan_period == 0) {
1858 p->numa_scan_period_max = task_scan_max(p);
1859 p->numa_scan_period = task_scan_min(p);
1862 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1863 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1864 return;
1867 * Delay this task enough that another task of this mm will likely win
1868 * the next time around.
1870 p->node_stamp += 2 * TICK_NSEC;
1872 start = mm->numa_scan_offset;
1873 pages = sysctl_numa_balancing_scan_size;
1874 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1875 if (!pages)
1876 return;
1878 down_read(&mm->mmap_sem);
1879 vma = find_vma(mm, start);
1880 if (!vma) {
1881 reset_ptenuma_scan(p);
1882 start = 0;
1883 vma = mm->mmap;
1885 for (; vma; vma = vma->vm_next) {
1886 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1887 continue;
1890 * Shared library pages mapped by multiple processes are not
1891 * migrated as it is expected they are cache replicated. Avoid
1892 * hinting faults in read-only file-backed mappings or the vdso
1893 * as migrating the pages will be of marginal benefit.
1895 if (!vma->vm_mm ||
1896 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1897 continue;
1900 * Skip inaccessible VMAs to avoid any confusion between
1901 * PROT_NONE and NUMA hinting ptes
1903 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1904 continue;
1906 do {
1907 start = max(start, vma->vm_start);
1908 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1909 end = min(end, vma->vm_end);
1910 nr_pte_updates += change_prot_numa(vma, start, end);
1913 * Scan sysctl_numa_balancing_scan_size but ensure that
1914 * at least one PTE is updated so that unused virtual
1915 * address space is quickly skipped.
1917 if (nr_pte_updates)
1918 pages -= (end - start) >> PAGE_SHIFT;
1920 start = end;
1921 if (pages <= 0)
1922 goto out;
1923 } while (end != vma->vm_end);
1926 out:
1928 * It is possible to reach the end of the VMA list but the last few
1929 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1930 * would find the !migratable VMA on the next scan but not reset the
1931 * scanner to the start so check it now.
1933 if (vma)
1934 mm->numa_scan_offset = start;
1935 else
1936 reset_ptenuma_scan(p);
1937 up_read(&mm->mmap_sem);
1941 * Drive the periodic memory faults..
1943 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1945 struct callback_head *work = &curr->numa_work;
1946 u64 period, now;
1949 * We don't care about NUMA placement if we don't have memory.
1951 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1952 return;
1955 * Using runtime rather than walltime has the dual advantage that
1956 * we (mostly) drive the selection from busy threads and that the
1957 * task needs to have done some actual work before we bother with
1958 * NUMA placement.
1960 now = curr->se.sum_exec_runtime;
1961 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1963 if (now - curr->node_stamp > period) {
1964 if (!curr->node_stamp)
1965 curr->numa_scan_period = task_scan_min(curr);
1966 curr->node_stamp += period;
1968 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1969 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1970 task_work_add(curr, work, true);
1974 #else
1975 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1979 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1983 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1986 #endif /* CONFIG_NUMA_BALANCING */
1988 static void
1989 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1991 update_load_add(&cfs_rq->load, se->load.weight);
1992 if (!parent_entity(se))
1993 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1994 #ifdef CONFIG_SMP
1995 if (entity_is_task(se)) {
1996 struct rq *rq = rq_of(cfs_rq);
1998 account_numa_enqueue(rq, task_of(se));
1999 list_add(&se->group_node, &rq->cfs_tasks);
2001 #endif
2002 cfs_rq->nr_running++;
2005 static void
2006 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2008 update_load_sub(&cfs_rq->load, se->load.weight);
2009 if (!parent_entity(se))
2010 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2011 if (entity_is_task(se)) {
2012 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2013 list_del_init(&se->group_node);
2015 cfs_rq->nr_running--;
2018 #ifdef CONFIG_FAIR_GROUP_SCHED
2019 # ifdef CONFIG_SMP
2020 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2022 long tg_weight;
2025 * Use this CPU's actual weight instead of the last load_contribution
2026 * to gain a more accurate current total weight. See
2027 * update_cfs_rq_load_contribution().
2029 tg_weight = atomic_long_read(&tg->load_avg);
2030 tg_weight -= cfs_rq->tg_load_contrib;
2031 tg_weight += cfs_rq->load.weight;
2033 return tg_weight;
2036 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2038 long tg_weight, load, shares;
2040 tg_weight = calc_tg_weight(tg, cfs_rq);
2041 load = cfs_rq->load.weight;
2043 shares = (tg->shares * load);
2044 if (tg_weight)
2045 shares /= tg_weight;
2047 if (shares < MIN_SHARES)
2048 shares = MIN_SHARES;
2049 if (shares > tg->shares)
2050 shares = tg->shares;
2052 return shares;
2054 # else /* CONFIG_SMP */
2055 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2057 return tg->shares;
2059 # endif /* CONFIG_SMP */
2060 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2061 unsigned long weight)
2063 if (se->on_rq) {
2064 /* commit outstanding execution time */
2065 if (cfs_rq->curr == se)
2066 update_curr(cfs_rq);
2067 account_entity_dequeue(cfs_rq, se);
2070 update_load_set(&se->load, weight);
2072 if (se->on_rq)
2073 account_entity_enqueue(cfs_rq, se);
2076 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2078 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2080 struct task_group *tg;
2081 struct sched_entity *se;
2082 long shares;
2084 tg = cfs_rq->tg;
2085 se = tg->se[cpu_of(rq_of(cfs_rq))];
2086 if (!se || throttled_hierarchy(cfs_rq))
2087 return;
2088 #ifndef CONFIG_SMP
2089 if (likely(se->load.weight == tg->shares))
2090 return;
2091 #endif
2092 shares = calc_cfs_shares(cfs_rq, tg);
2094 reweight_entity(cfs_rq_of(se), se, shares);
2096 #else /* CONFIG_FAIR_GROUP_SCHED */
2097 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2100 #endif /* CONFIG_FAIR_GROUP_SCHED */
2102 #ifdef CONFIG_SMP
2104 * We choose a half-life close to 1 scheduling period.
2105 * Note: The tables below are dependent on this value.
2107 #define LOAD_AVG_PERIOD 32
2108 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2109 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2111 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2112 static const u32 runnable_avg_yN_inv[] = {
2113 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2114 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2115 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2116 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2117 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2118 0x85aac367, 0x82cd8698,
2122 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2123 * over-estimates when re-combining.
2125 static const u32 runnable_avg_yN_sum[] = {
2126 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2127 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2128 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2132 * Approximate:
2133 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2135 static __always_inline u64 decay_load(u64 val, u64 n)
2137 unsigned int local_n;
2139 if (!n)
2140 return val;
2141 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2142 return 0;
2144 /* after bounds checking we can collapse to 32-bit */
2145 local_n = n;
2148 * As y^PERIOD = 1/2, we can combine
2149 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2150 * With a look-up table which covers k^n (n<PERIOD)
2152 * To achieve constant time decay_load.
2154 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2155 val >>= local_n / LOAD_AVG_PERIOD;
2156 local_n %= LOAD_AVG_PERIOD;
2159 val *= runnable_avg_yN_inv[local_n];
2160 /* We don't use SRR here since we always want to round down. */
2161 return val >> 32;
2165 * For updates fully spanning n periods, the contribution to runnable
2166 * average will be: \Sum 1024*y^n
2168 * We can compute this reasonably efficiently by combining:
2169 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2171 static u32 __compute_runnable_contrib(u64 n)
2173 u32 contrib = 0;
2175 if (likely(n <= LOAD_AVG_PERIOD))
2176 return runnable_avg_yN_sum[n];
2177 else if (unlikely(n >= LOAD_AVG_MAX_N))
2178 return LOAD_AVG_MAX;
2180 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2181 do {
2182 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2183 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2185 n -= LOAD_AVG_PERIOD;
2186 } while (n > LOAD_AVG_PERIOD);
2188 contrib = decay_load(contrib, n);
2189 return contrib + runnable_avg_yN_sum[n];
2193 * We can represent the historical contribution to runnable average as the
2194 * coefficients of a geometric series. To do this we sub-divide our runnable
2195 * history into segments of approximately 1ms (1024us); label the segment that
2196 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2198 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2199 * p0 p1 p2
2200 * (now) (~1ms ago) (~2ms ago)
2202 * Let u_i denote the fraction of p_i that the entity was runnable.
2204 * We then designate the fractions u_i as our co-efficients, yielding the
2205 * following representation of historical load:
2206 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2208 * We choose y based on the with of a reasonably scheduling period, fixing:
2209 * y^32 = 0.5
2211 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2212 * approximately half as much as the contribution to load within the last ms
2213 * (u_0).
2215 * When a period "rolls over" and we have new u_0`, multiplying the previous
2216 * sum again by y is sufficient to update:
2217 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2218 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2220 static __always_inline int __update_entity_runnable_avg(u64 now,
2221 struct sched_avg *sa,
2222 int runnable)
2224 u64 delta, periods;
2225 u32 runnable_contrib;
2226 int delta_w, decayed = 0;
2228 delta = now - sa->last_runnable_update;
2230 * This should only happen when time goes backwards, which it
2231 * unfortunately does during sched clock init when we swap over to TSC.
2233 if ((s64)delta < 0) {
2234 sa->last_runnable_update = now;
2235 return 0;
2239 * Use 1024ns as the unit of measurement since it's a reasonable
2240 * approximation of 1us and fast to compute.
2242 delta >>= 10;
2243 if (!delta)
2244 return 0;
2245 sa->last_runnable_update = now;
2247 /* delta_w is the amount already accumulated against our next period */
2248 delta_w = sa->runnable_avg_period % 1024;
2249 if (delta + delta_w >= 1024) {
2250 /* period roll-over */
2251 decayed = 1;
2254 * Now that we know we're crossing a period boundary, figure
2255 * out how much from delta we need to complete the current
2256 * period and accrue it.
2258 delta_w = 1024 - delta_w;
2259 if (runnable)
2260 sa->runnable_avg_sum += delta_w;
2261 sa->runnable_avg_period += delta_w;
2263 delta -= delta_w;
2265 /* Figure out how many additional periods this update spans */
2266 periods = delta / 1024;
2267 delta %= 1024;
2269 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2270 periods + 1);
2271 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2272 periods + 1);
2274 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2275 runnable_contrib = __compute_runnable_contrib(periods);
2276 if (runnable)
2277 sa->runnable_avg_sum += runnable_contrib;
2278 sa->runnable_avg_period += runnable_contrib;
2281 /* Remainder of delta accrued against u_0` */
2282 if (runnable)
2283 sa->runnable_avg_sum += delta;
2284 sa->runnable_avg_period += delta;
2286 return decayed;
2289 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2290 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2292 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2293 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2295 decays -= se->avg.decay_count;
2296 if (!decays)
2297 return 0;
2299 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2300 se->avg.decay_count = 0;
2302 return decays;
2305 #ifdef CONFIG_FAIR_GROUP_SCHED
2306 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2307 int force_update)
2309 struct task_group *tg = cfs_rq->tg;
2310 long tg_contrib;
2312 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2313 tg_contrib -= cfs_rq->tg_load_contrib;
2315 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2316 atomic_long_add(tg_contrib, &tg->load_avg);
2317 cfs_rq->tg_load_contrib += tg_contrib;
2322 * Aggregate cfs_rq runnable averages into an equivalent task_group
2323 * representation for computing load contributions.
2325 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2326 struct cfs_rq *cfs_rq)
2328 struct task_group *tg = cfs_rq->tg;
2329 long contrib;
2331 /* The fraction of a cpu used by this cfs_rq */
2332 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2333 sa->runnable_avg_period + 1);
2334 contrib -= cfs_rq->tg_runnable_contrib;
2336 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2337 atomic_add(contrib, &tg->runnable_avg);
2338 cfs_rq->tg_runnable_contrib += contrib;
2342 static inline void __update_group_entity_contrib(struct sched_entity *se)
2344 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2345 struct task_group *tg = cfs_rq->tg;
2346 int runnable_avg;
2348 u64 contrib;
2350 contrib = cfs_rq->tg_load_contrib * tg->shares;
2351 se->avg.load_avg_contrib = div_u64(contrib,
2352 atomic_long_read(&tg->load_avg) + 1);
2355 * For group entities we need to compute a correction term in the case
2356 * that they are consuming <1 cpu so that we would contribute the same
2357 * load as a task of equal weight.
2359 * Explicitly co-ordinating this measurement would be expensive, but
2360 * fortunately the sum of each cpus contribution forms a usable
2361 * lower-bound on the true value.
2363 * Consider the aggregate of 2 contributions. Either they are disjoint
2364 * (and the sum represents true value) or they are disjoint and we are
2365 * understating by the aggregate of their overlap.
2367 * Extending this to N cpus, for a given overlap, the maximum amount we
2368 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2369 * cpus that overlap for this interval and w_i is the interval width.
2371 * On a small machine; the first term is well-bounded which bounds the
2372 * total error since w_i is a subset of the period. Whereas on a
2373 * larger machine, while this first term can be larger, if w_i is the
2374 * of consequential size guaranteed to see n_i*w_i quickly converge to
2375 * our upper bound of 1-cpu.
2377 runnable_avg = atomic_read(&tg->runnable_avg);
2378 if (runnable_avg < NICE_0_LOAD) {
2379 se->avg.load_avg_contrib *= runnable_avg;
2380 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2383 #else
2384 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2385 int force_update) {}
2386 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2387 struct cfs_rq *cfs_rq) {}
2388 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2389 #endif
2391 static inline void __update_task_entity_contrib(struct sched_entity *se)
2393 u32 contrib;
2395 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2396 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2397 contrib /= (se->avg.runnable_avg_period + 1);
2398 se->avg.load_avg_contrib = scale_load(contrib);
2401 /* Compute the current contribution to load_avg by se, return any delta */
2402 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2404 long old_contrib = se->avg.load_avg_contrib;
2406 if (entity_is_task(se)) {
2407 __update_task_entity_contrib(se);
2408 } else {
2409 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2410 __update_group_entity_contrib(se);
2413 return se->avg.load_avg_contrib - old_contrib;
2416 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2417 long load_contrib)
2419 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2420 cfs_rq->blocked_load_avg -= load_contrib;
2421 else
2422 cfs_rq->blocked_load_avg = 0;
2425 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2427 /* Update a sched_entity's runnable average */
2428 static inline void update_entity_load_avg(struct sched_entity *se,
2429 int update_cfs_rq)
2431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2432 long contrib_delta;
2433 u64 now;
2436 * For a group entity we need to use their owned cfs_rq_clock_task() in
2437 * case they are the parent of a throttled hierarchy.
2439 if (entity_is_task(se))
2440 now = cfs_rq_clock_task(cfs_rq);
2441 else
2442 now = cfs_rq_clock_task(group_cfs_rq(se));
2444 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2445 return;
2447 contrib_delta = __update_entity_load_avg_contrib(se);
2449 if (!update_cfs_rq)
2450 return;
2452 if (se->on_rq)
2453 cfs_rq->runnable_load_avg += contrib_delta;
2454 else
2455 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2459 * Decay the load contributed by all blocked children and account this so that
2460 * their contribution may appropriately discounted when they wake up.
2462 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2464 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2465 u64 decays;
2467 decays = now - cfs_rq->last_decay;
2468 if (!decays && !force_update)
2469 return;
2471 if (atomic_long_read(&cfs_rq->removed_load)) {
2472 unsigned long removed_load;
2473 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2474 subtract_blocked_load_contrib(cfs_rq, removed_load);
2477 if (decays) {
2478 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2479 decays);
2480 atomic64_add(decays, &cfs_rq->decay_counter);
2481 cfs_rq->last_decay = now;
2484 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2487 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2489 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2490 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2493 /* Add the load generated by se into cfs_rq's child load-average */
2494 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2495 struct sched_entity *se,
2496 int wakeup)
2499 * We track migrations using entity decay_count <= 0, on a wake-up
2500 * migration we use a negative decay count to track the remote decays
2501 * accumulated while sleeping.
2503 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2504 * are seen by enqueue_entity_load_avg() as a migration with an already
2505 * constructed load_avg_contrib.
2507 if (unlikely(se->avg.decay_count <= 0)) {
2508 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2509 if (se->avg.decay_count) {
2511 * In a wake-up migration we have to approximate the
2512 * time sleeping. This is because we can't synchronize
2513 * clock_task between the two cpus, and it is not
2514 * guaranteed to be read-safe. Instead, we can
2515 * approximate this using our carried decays, which are
2516 * explicitly atomically readable.
2518 se->avg.last_runnable_update -= (-se->avg.decay_count)
2519 << 20;
2520 update_entity_load_avg(se, 0);
2521 /* Indicate that we're now synchronized and on-rq */
2522 se->avg.decay_count = 0;
2524 wakeup = 0;
2525 } else {
2526 __synchronize_entity_decay(se);
2529 /* migrated tasks did not contribute to our blocked load */
2530 if (wakeup) {
2531 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2532 update_entity_load_avg(se, 0);
2535 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2536 /* we force update consideration on load-balancer moves */
2537 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2541 * Remove se's load from this cfs_rq child load-average, if the entity is
2542 * transitioning to a blocked state we track its projected decay using
2543 * blocked_load_avg.
2545 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2546 struct sched_entity *se,
2547 int sleep)
2549 update_entity_load_avg(se, 1);
2550 /* we force update consideration on load-balancer moves */
2551 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2553 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2554 if (sleep) {
2555 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2556 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2557 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2561 * Update the rq's load with the elapsed running time before entering
2562 * idle. if the last scheduled task is not a CFS task, idle_enter will
2563 * be the only way to update the runnable statistic.
2565 void idle_enter_fair(struct rq *this_rq)
2567 update_rq_runnable_avg(this_rq, 1);
2571 * Update the rq's load with the elapsed idle time before a task is
2572 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2573 * be the only way to update the runnable statistic.
2575 void idle_exit_fair(struct rq *this_rq)
2577 update_rq_runnable_avg(this_rq, 0);
2580 #else /* CONFIG_SMP */
2582 static inline void update_entity_load_avg(struct sched_entity *se,
2583 int update_cfs_rq) {}
2584 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2585 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2586 struct sched_entity *se,
2587 int wakeup) {}
2588 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2589 struct sched_entity *se,
2590 int sleep) {}
2591 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2592 int force_update) {}
2593 #endif /* CONFIG_SMP */
2595 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2597 #ifdef CONFIG_SCHEDSTATS
2598 struct task_struct *tsk = NULL;
2600 if (entity_is_task(se))
2601 tsk = task_of(se);
2603 if (se->statistics.sleep_start) {
2604 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2606 if ((s64)delta < 0)
2607 delta = 0;
2609 if (unlikely(delta > se->statistics.sleep_max))
2610 se->statistics.sleep_max = delta;
2612 se->statistics.sleep_start = 0;
2613 se->statistics.sum_sleep_runtime += delta;
2615 if (tsk) {
2616 account_scheduler_latency(tsk, delta >> 10, 1);
2617 trace_sched_stat_sleep(tsk, delta);
2620 if (se->statistics.block_start) {
2621 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2623 if ((s64)delta < 0)
2624 delta = 0;
2626 if (unlikely(delta > se->statistics.block_max))
2627 se->statistics.block_max = delta;
2629 se->statistics.block_start = 0;
2630 se->statistics.sum_sleep_runtime += delta;
2632 if (tsk) {
2633 if (tsk->in_iowait) {
2634 se->statistics.iowait_sum += delta;
2635 se->statistics.iowait_count++;
2636 trace_sched_stat_iowait(tsk, delta);
2639 trace_sched_stat_blocked(tsk, delta);
2642 * Blocking time is in units of nanosecs, so shift by
2643 * 20 to get a milliseconds-range estimation of the
2644 * amount of time that the task spent sleeping:
2646 if (unlikely(prof_on == SLEEP_PROFILING)) {
2647 profile_hits(SLEEP_PROFILING,
2648 (void *)get_wchan(tsk),
2649 delta >> 20);
2651 account_scheduler_latency(tsk, delta >> 10, 0);
2654 #endif
2657 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2659 #ifdef CONFIG_SCHED_DEBUG
2660 s64 d = se->vruntime - cfs_rq->min_vruntime;
2662 if (d < 0)
2663 d = -d;
2665 if (d > 3*sysctl_sched_latency)
2666 schedstat_inc(cfs_rq, nr_spread_over);
2667 #endif
2670 static void
2671 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2673 u64 vruntime = cfs_rq->min_vruntime;
2676 * The 'current' period is already promised to the current tasks,
2677 * however the extra weight of the new task will slow them down a
2678 * little, place the new task so that it fits in the slot that
2679 * stays open at the end.
2681 if (initial && sched_feat(START_DEBIT))
2682 vruntime += sched_vslice(cfs_rq, se);
2684 /* sleeps up to a single latency don't count. */
2685 if (!initial) {
2686 unsigned long thresh = sysctl_sched_latency;
2689 * Halve their sleep time's effect, to allow
2690 * for a gentler effect of sleepers:
2692 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2693 thresh >>= 1;
2695 vruntime -= thresh;
2698 /* ensure we never gain time by being placed backwards. */
2699 se->vruntime = max_vruntime(se->vruntime, vruntime);
2702 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2704 static void
2705 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2708 * Update the normalized vruntime before updating min_vruntime
2709 * through calling update_curr().
2711 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2712 se->vruntime += cfs_rq->min_vruntime;
2715 * Update run-time statistics of the 'current'.
2717 update_curr(cfs_rq);
2718 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2719 account_entity_enqueue(cfs_rq, se);
2720 update_cfs_shares(cfs_rq);
2722 if (flags & ENQUEUE_WAKEUP) {
2723 place_entity(cfs_rq, se, 0);
2724 enqueue_sleeper(cfs_rq, se);
2727 update_stats_enqueue(cfs_rq, se);
2728 check_spread(cfs_rq, se);
2729 if (se != cfs_rq->curr)
2730 __enqueue_entity(cfs_rq, se);
2731 se->on_rq = 1;
2733 if (cfs_rq->nr_running == 1) {
2734 list_add_leaf_cfs_rq(cfs_rq);
2735 check_enqueue_throttle(cfs_rq);
2739 static void __clear_buddies_last(struct sched_entity *se)
2741 for_each_sched_entity(se) {
2742 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2743 if (cfs_rq->last != se)
2744 break;
2746 cfs_rq->last = NULL;
2750 static void __clear_buddies_next(struct sched_entity *se)
2752 for_each_sched_entity(se) {
2753 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2754 if (cfs_rq->next != se)
2755 break;
2757 cfs_rq->next = NULL;
2761 static void __clear_buddies_skip(struct sched_entity *se)
2763 for_each_sched_entity(se) {
2764 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2765 if (cfs_rq->skip != se)
2766 break;
2768 cfs_rq->skip = NULL;
2772 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2774 if (cfs_rq->last == se)
2775 __clear_buddies_last(se);
2777 if (cfs_rq->next == se)
2778 __clear_buddies_next(se);
2780 if (cfs_rq->skip == se)
2781 __clear_buddies_skip(se);
2784 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2786 static void
2787 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2790 * Update run-time statistics of the 'current'.
2792 update_curr(cfs_rq);
2793 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2795 update_stats_dequeue(cfs_rq, se);
2796 if (flags & DEQUEUE_SLEEP) {
2797 #ifdef CONFIG_SCHEDSTATS
2798 if (entity_is_task(se)) {
2799 struct task_struct *tsk = task_of(se);
2801 if (tsk->state & TASK_INTERRUPTIBLE)
2802 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2803 if (tsk->state & TASK_UNINTERRUPTIBLE)
2804 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2806 #endif
2809 clear_buddies(cfs_rq, se);
2811 if (se != cfs_rq->curr)
2812 __dequeue_entity(cfs_rq, se);
2813 se->on_rq = 0;
2814 account_entity_dequeue(cfs_rq, se);
2817 * Normalize the entity after updating the min_vruntime because the
2818 * update can refer to the ->curr item and we need to reflect this
2819 * movement in our normalized position.
2821 if (!(flags & DEQUEUE_SLEEP))
2822 se->vruntime -= cfs_rq->min_vruntime;
2824 /* return excess runtime on last dequeue */
2825 return_cfs_rq_runtime(cfs_rq);
2827 update_min_vruntime(cfs_rq);
2828 update_cfs_shares(cfs_rq);
2832 * Preempt the current task with a newly woken task if needed:
2834 static void
2835 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2837 unsigned long ideal_runtime, delta_exec;
2838 struct sched_entity *se;
2839 s64 delta;
2841 ideal_runtime = sched_slice(cfs_rq, curr);
2842 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2843 if (delta_exec > ideal_runtime) {
2844 resched_task(rq_of(cfs_rq)->curr);
2846 * The current task ran long enough, ensure it doesn't get
2847 * re-elected due to buddy favours.
2849 clear_buddies(cfs_rq, curr);
2850 return;
2854 * Ensure that a task that missed wakeup preemption by a
2855 * narrow margin doesn't have to wait for a full slice.
2856 * This also mitigates buddy induced latencies under load.
2858 if (delta_exec < sysctl_sched_min_granularity)
2859 return;
2861 se = __pick_first_entity(cfs_rq);
2862 delta = curr->vruntime - se->vruntime;
2864 if (delta < 0)
2865 return;
2867 if (delta > ideal_runtime)
2868 resched_task(rq_of(cfs_rq)->curr);
2871 static void
2872 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2874 /* 'current' is not kept within the tree. */
2875 if (se->on_rq) {
2877 * Any task has to be enqueued before it get to execute on
2878 * a CPU. So account for the time it spent waiting on the
2879 * runqueue.
2881 update_stats_wait_end(cfs_rq, se);
2882 __dequeue_entity(cfs_rq, se);
2885 update_stats_curr_start(cfs_rq, se);
2886 cfs_rq->curr = se;
2887 #ifdef CONFIG_SCHEDSTATS
2889 * Track our maximum slice length, if the CPU's load is at
2890 * least twice that of our own weight (i.e. dont track it
2891 * when there are only lesser-weight tasks around):
2893 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2894 se->statistics.slice_max = max(se->statistics.slice_max,
2895 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2897 #endif
2898 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2901 static int
2902 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2905 * Pick the next process, keeping these things in mind, in this order:
2906 * 1) keep things fair between processes/task groups
2907 * 2) pick the "next" process, since someone really wants that to run
2908 * 3) pick the "last" process, for cache locality
2909 * 4) do not run the "skip" process, if something else is available
2911 static struct sched_entity *
2912 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2914 struct sched_entity *left = __pick_first_entity(cfs_rq);
2915 struct sched_entity *se;
2918 * If curr is set we have to see if its left of the leftmost entity
2919 * still in the tree, provided there was anything in the tree at all.
2921 if (!left || (curr && entity_before(curr, left)))
2922 left = curr;
2924 se = left; /* ideally we run the leftmost entity */
2927 * Avoid running the skip buddy, if running something else can
2928 * be done without getting too unfair.
2930 if (cfs_rq->skip == se) {
2931 struct sched_entity *second;
2933 if (se == curr) {
2934 second = __pick_first_entity(cfs_rq);
2935 } else {
2936 second = __pick_next_entity(se);
2937 if (!second || (curr && entity_before(curr, second)))
2938 second = curr;
2941 if (second && wakeup_preempt_entity(second, left) < 1)
2942 se = second;
2946 * Prefer last buddy, try to return the CPU to a preempted task.
2948 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2949 se = cfs_rq->last;
2952 * Someone really wants this to run. If it's not unfair, run it.
2954 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2955 se = cfs_rq->next;
2957 clear_buddies(cfs_rq, se);
2959 return se;
2962 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2964 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2967 * If still on the runqueue then deactivate_task()
2968 * was not called and update_curr() has to be done:
2970 if (prev->on_rq)
2971 update_curr(cfs_rq);
2973 /* throttle cfs_rqs exceeding runtime */
2974 check_cfs_rq_runtime(cfs_rq);
2976 check_spread(cfs_rq, prev);
2977 if (prev->on_rq) {
2978 update_stats_wait_start(cfs_rq, prev);
2979 /* Put 'current' back into the tree. */
2980 __enqueue_entity(cfs_rq, prev);
2981 /* in !on_rq case, update occurred at dequeue */
2982 update_entity_load_avg(prev, 1);
2984 cfs_rq->curr = NULL;
2987 static void
2988 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2991 * Update run-time statistics of the 'current'.
2993 update_curr(cfs_rq);
2996 * Ensure that runnable average is periodically updated.
2998 update_entity_load_avg(curr, 1);
2999 update_cfs_rq_blocked_load(cfs_rq, 1);
3000 update_cfs_shares(cfs_rq);
3002 #ifdef CONFIG_SCHED_HRTICK
3004 * queued ticks are scheduled to match the slice, so don't bother
3005 * validating it and just reschedule.
3007 if (queued) {
3008 resched_task(rq_of(cfs_rq)->curr);
3009 return;
3012 * don't let the period tick interfere with the hrtick preemption
3014 if (!sched_feat(DOUBLE_TICK) &&
3015 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3016 return;
3017 #endif
3019 if (cfs_rq->nr_running > 1)
3020 check_preempt_tick(cfs_rq, curr);
3024 /**************************************************
3025 * CFS bandwidth control machinery
3028 #ifdef CONFIG_CFS_BANDWIDTH
3030 #ifdef HAVE_JUMP_LABEL
3031 static struct static_key __cfs_bandwidth_used;
3033 static inline bool cfs_bandwidth_used(void)
3035 return static_key_false(&__cfs_bandwidth_used);
3038 void cfs_bandwidth_usage_inc(void)
3040 static_key_slow_inc(&__cfs_bandwidth_used);
3043 void cfs_bandwidth_usage_dec(void)
3045 static_key_slow_dec(&__cfs_bandwidth_used);
3047 #else /* HAVE_JUMP_LABEL */
3048 static bool cfs_bandwidth_used(void)
3050 return true;
3053 void cfs_bandwidth_usage_inc(void) {}
3054 void cfs_bandwidth_usage_dec(void) {}
3055 #endif /* HAVE_JUMP_LABEL */
3058 * default period for cfs group bandwidth.
3059 * default: 0.1s, units: nanoseconds
3061 static inline u64 default_cfs_period(void)
3063 return 100000000ULL;
3066 static inline u64 sched_cfs_bandwidth_slice(void)
3068 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3072 * Replenish runtime according to assigned quota and update expiration time.
3073 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3074 * additional synchronization around rq->lock.
3076 * requires cfs_b->lock
3078 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3080 u64 now;
3082 if (cfs_b->quota == RUNTIME_INF)
3083 return;
3085 now = sched_clock_cpu(smp_processor_id());
3086 cfs_b->runtime = cfs_b->quota;
3087 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3090 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3092 return &tg->cfs_bandwidth;
3095 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3096 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3098 if (unlikely(cfs_rq->throttle_count))
3099 return cfs_rq->throttled_clock_task;
3101 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3104 /* returns 0 on failure to allocate runtime */
3105 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3107 struct task_group *tg = cfs_rq->tg;
3108 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3109 u64 amount = 0, min_amount, expires;
3111 /* note: this is a positive sum as runtime_remaining <= 0 */
3112 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3114 raw_spin_lock(&cfs_b->lock);
3115 if (cfs_b->quota == RUNTIME_INF)
3116 amount = min_amount;
3117 else {
3119 * If the bandwidth pool has become inactive, then at least one
3120 * period must have elapsed since the last consumption.
3121 * Refresh the global state and ensure bandwidth timer becomes
3122 * active.
3124 if (!cfs_b->timer_active) {
3125 __refill_cfs_bandwidth_runtime(cfs_b);
3126 __start_cfs_bandwidth(cfs_b);
3129 if (cfs_b->runtime > 0) {
3130 amount = min(cfs_b->runtime, min_amount);
3131 cfs_b->runtime -= amount;
3132 cfs_b->idle = 0;
3135 expires = cfs_b->runtime_expires;
3136 raw_spin_unlock(&cfs_b->lock);
3138 cfs_rq->runtime_remaining += amount;
3140 * we may have advanced our local expiration to account for allowed
3141 * spread between our sched_clock and the one on which runtime was
3142 * issued.
3144 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3145 cfs_rq->runtime_expires = expires;
3147 return cfs_rq->runtime_remaining > 0;
3151 * Note: This depends on the synchronization provided by sched_clock and the
3152 * fact that rq->clock snapshots this value.
3154 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3156 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3158 /* if the deadline is ahead of our clock, nothing to do */
3159 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3160 return;
3162 if (cfs_rq->runtime_remaining < 0)
3163 return;
3166 * If the local deadline has passed we have to consider the
3167 * possibility that our sched_clock is 'fast' and the global deadline
3168 * has not truly expired.
3170 * Fortunately we can check determine whether this the case by checking
3171 * whether the global deadline has advanced.
3174 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3175 /* extend local deadline, drift is bounded above by 2 ticks */
3176 cfs_rq->runtime_expires += TICK_NSEC;
3177 } else {
3178 /* global deadline is ahead, expiration has passed */
3179 cfs_rq->runtime_remaining = 0;
3183 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3185 /* dock delta_exec before expiring quota (as it could span periods) */
3186 cfs_rq->runtime_remaining -= delta_exec;
3187 expire_cfs_rq_runtime(cfs_rq);
3189 if (likely(cfs_rq->runtime_remaining > 0))
3190 return;
3193 * if we're unable to extend our runtime we resched so that the active
3194 * hierarchy can be throttled
3196 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3197 resched_task(rq_of(cfs_rq)->curr);
3200 static __always_inline
3201 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3203 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3204 return;
3206 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3209 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3211 return cfs_bandwidth_used() && cfs_rq->throttled;
3214 /* check whether cfs_rq, or any parent, is throttled */
3215 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3217 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3221 * Ensure that neither of the group entities corresponding to src_cpu or
3222 * dest_cpu are members of a throttled hierarchy when performing group
3223 * load-balance operations.
3225 static inline int throttled_lb_pair(struct task_group *tg,
3226 int src_cpu, int dest_cpu)
3228 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3230 src_cfs_rq = tg->cfs_rq[src_cpu];
3231 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3233 return throttled_hierarchy(src_cfs_rq) ||
3234 throttled_hierarchy(dest_cfs_rq);
3237 /* updated child weight may affect parent so we have to do this bottom up */
3238 static int tg_unthrottle_up(struct task_group *tg, void *data)
3240 struct rq *rq = data;
3241 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3243 cfs_rq->throttle_count--;
3244 #ifdef CONFIG_SMP
3245 if (!cfs_rq->throttle_count) {
3246 /* adjust cfs_rq_clock_task() */
3247 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3248 cfs_rq->throttled_clock_task;
3250 #endif
3252 return 0;
3255 static int tg_throttle_down(struct task_group *tg, void *data)
3257 struct rq *rq = data;
3258 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3260 /* group is entering throttled state, stop time */
3261 if (!cfs_rq->throttle_count)
3262 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3263 cfs_rq->throttle_count++;
3265 return 0;
3268 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3270 struct rq *rq = rq_of(cfs_rq);
3271 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3272 struct sched_entity *se;
3273 long task_delta, dequeue = 1;
3275 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3277 /* freeze hierarchy runnable averages while throttled */
3278 rcu_read_lock();
3279 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3280 rcu_read_unlock();
3282 task_delta = cfs_rq->h_nr_running;
3283 for_each_sched_entity(se) {
3284 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3285 /* throttled entity or throttle-on-deactivate */
3286 if (!se->on_rq)
3287 break;
3289 if (dequeue)
3290 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3291 qcfs_rq->h_nr_running -= task_delta;
3293 if (qcfs_rq->load.weight)
3294 dequeue = 0;
3297 if (!se)
3298 rq->nr_running -= task_delta;
3300 cfs_rq->throttled = 1;
3301 cfs_rq->throttled_clock = rq_clock(rq);
3302 raw_spin_lock(&cfs_b->lock);
3303 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3304 if (!cfs_b->timer_active)
3305 __start_cfs_bandwidth(cfs_b);
3306 raw_spin_unlock(&cfs_b->lock);
3309 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3311 struct rq *rq = rq_of(cfs_rq);
3312 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3313 struct sched_entity *se;
3314 int enqueue = 1;
3315 long task_delta;
3317 se = cfs_rq->tg->se[cpu_of(rq)];
3319 cfs_rq->throttled = 0;
3321 update_rq_clock(rq);
3323 raw_spin_lock(&cfs_b->lock);
3324 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3325 list_del_rcu(&cfs_rq->throttled_list);
3326 raw_spin_unlock(&cfs_b->lock);
3328 /* update hierarchical throttle state */
3329 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3331 if (!cfs_rq->load.weight)
3332 return;
3334 task_delta = cfs_rq->h_nr_running;
3335 for_each_sched_entity(se) {
3336 if (se->on_rq)
3337 enqueue = 0;
3339 cfs_rq = cfs_rq_of(se);
3340 if (enqueue)
3341 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3342 cfs_rq->h_nr_running += task_delta;
3344 if (cfs_rq_throttled(cfs_rq))
3345 break;
3348 if (!se)
3349 rq->nr_running += task_delta;
3351 /* determine whether we need to wake up potentially idle cpu */
3352 if (rq->curr == rq->idle && rq->cfs.nr_running)
3353 resched_task(rq->curr);
3356 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3357 u64 remaining, u64 expires)
3359 struct cfs_rq *cfs_rq;
3360 u64 runtime = remaining;
3362 rcu_read_lock();
3363 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3364 throttled_list) {
3365 struct rq *rq = rq_of(cfs_rq);
3367 raw_spin_lock(&rq->lock);
3368 if (!cfs_rq_throttled(cfs_rq))
3369 goto next;
3371 runtime = -cfs_rq->runtime_remaining + 1;
3372 if (runtime > remaining)
3373 runtime = remaining;
3374 remaining -= runtime;
3376 cfs_rq->runtime_remaining += runtime;
3377 cfs_rq->runtime_expires = expires;
3379 /* we check whether we're throttled above */
3380 if (cfs_rq->runtime_remaining > 0)
3381 unthrottle_cfs_rq(cfs_rq);
3383 next:
3384 raw_spin_unlock(&rq->lock);
3386 if (!remaining)
3387 break;
3389 rcu_read_unlock();
3391 return remaining;
3395 * Responsible for refilling a task_group's bandwidth and unthrottling its
3396 * cfs_rqs as appropriate. If there has been no activity within the last
3397 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3398 * used to track this state.
3400 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3402 u64 runtime, runtime_expires;
3403 int idle = 1, throttled;
3405 raw_spin_lock(&cfs_b->lock);
3406 /* no need to continue the timer with no bandwidth constraint */
3407 if (cfs_b->quota == RUNTIME_INF)
3408 goto out_unlock;
3410 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3411 /* idle depends on !throttled (for the case of a large deficit) */
3412 idle = cfs_b->idle && !throttled;
3413 cfs_b->nr_periods += overrun;
3415 /* if we're going inactive then everything else can be deferred */
3416 if (idle)
3417 goto out_unlock;
3420 * if we have relooped after returning idle once, we need to update our
3421 * status as actually running, so that other cpus doing
3422 * __start_cfs_bandwidth will stop trying to cancel us.
3424 cfs_b->timer_active = 1;
3426 __refill_cfs_bandwidth_runtime(cfs_b);
3428 if (!throttled) {
3429 /* mark as potentially idle for the upcoming period */
3430 cfs_b->idle = 1;
3431 goto out_unlock;
3434 /* account preceding periods in which throttling occurred */
3435 cfs_b->nr_throttled += overrun;
3438 * There are throttled entities so we must first use the new bandwidth
3439 * to unthrottle them before making it generally available. This
3440 * ensures that all existing debts will be paid before a new cfs_rq is
3441 * allowed to run.
3443 runtime = cfs_b->runtime;
3444 runtime_expires = cfs_b->runtime_expires;
3445 cfs_b->runtime = 0;
3448 * This check is repeated as we are holding onto the new bandwidth
3449 * while we unthrottle. This can potentially race with an unthrottled
3450 * group trying to acquire new bandwidth from the global pool.
3452 while (throttled && runtime > 0) {
3453 raw_spin_unlock(&cfs_b->lock);
3454 /* we can't nest cfs_b->lock while distributing bandwidth */
3455 runtime = distribute_cfs_runtime(cfs_b, runtime,
3456 runtime_expires);
3457 raw_spin_lock(&cfs_b->lock);
3459 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3462 /* return (any) remaining runtime */
3463 cfs_b->runtime = runtime;
3465 * While we are ensured activity in the period following an
3466 * unthrottle, this also covers the case in which the new bandwidth is
3467 * insufficient to cover the existing bandwidth deficit. (Forcing the
3468 * timer to remain active while there are any throttled entities.)
3470 cfs_b->idle = 0;
3471 out_unlock:
3472 if (idle)
3473 cfs_b->timer_active = 0;
3474 raw_spin_unlock(&cfs_b->lock);
3476 return idle;
3479 /* a cfs_rq won't donate quota below this amount */
3480 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3481 /* minimum remaining period time to redistribute slack quota */
3482 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3483 /* how long we wait to gather additional slack before distributing */
3484 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3487 * Are we near the end of the current quota period?
3489 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3490 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3491 * migrate_hrtimers, base is never cleared, so we are fine.
3493 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3495 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3496 u64 remaining;
3498 /* if the call-back is running a quota refresh is already occurring */
3499 if (hrtimer_callback_running(refresh_timer))
3500 return 1;
3502 /* is a quota refresh about to occur? */
3503 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3504 if (remaining < min_expire)
3505 return 1;
3507 return 0;
3510 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3512 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3514 /* if there's a quota refresh soon don't bother with slack */
3515 if (runtime_refresh_within(cfs_b, min_left))
3516 return;
3518 start_bandwidth_timer(&cfs_b->slack_timer,
3519 ns_to_ktime(cfs_bandwidth_slack_period));
3522 /* we know any runtime found here is valid as update_curr() precedes return */
3523 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3525 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3526 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3528 if (slack_runtime <= 0)
3529 return;
3531 raw_spin_lock(&cfs_b->lock);
3532 if (cfs_b->quota != RUNTIME_INF &&
3533 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3534 cfs_b->runtime += slack_runtime;
3536 /* we are under rq->lock, defer unthrottling using a timer */
3537 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3538 !list_empty(&cfs_b->throttled_cfs_rq))
3539 start_cfs_slack_bandwidth(cfs_b);
3541 raw_spin_unlock(&cfs_b->lock);
3543 /* even if it's not valid for return we don't want to try again */
3544 cfs_rq->runtime_remaining -= slack_runtime;
3547 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3549 if (!cfs_bandwidth_used())
3550 return;
3552 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3553 return;
3555 __return_cfs_rq_runtime(cfs_rq);
3559 * This is done with a timer (instead of inline with bandwidth return) since
3560 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3562 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3564 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3565 u64 expires;
3567 /* confirm we're still not at a refresh boundary */
3568 raw_spin_lock(&cfs_b->lock);
3569 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3570 raw_spin_unlock(&cfs_b->lock);
3571 return;
3574 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3575 runtime = cfs_b->runtime;
3576 cfs_b->runtime = 0;
3578 expires = cfs_b->runtime_expires;
3579 raw_spin_unlock(&cfs_b->lock);
3581 if (!runtime)
3582 return;
3584 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3586 raw_spin_lock(&cfs_b->lock);
3587 if (expires == cfs_b->runtime_expires)
3588 cfs_b->runtime = runtime;
3589 raw_spin_unlock(&cfs_b->lock);
3593 * When a group wakes up we want to make sure that its quota is not already
3594 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3595 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3597 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3599 if (!cfs_bandwidth_used())
3600 return;
3602 /* an active group must be handled by the update_curr()->put() path */
3603 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3604 return;
3606 /* ensure the group is not already throttled */
3607 if (cfs_rq_throttled(cfs_rq))
3608 return;
3610 /* update runtime allocation */
3611 account_cfs_rq_runtime(cfs_rq, 0);
3612 if (cfs_rq->runtime_remaining <= 0)
3613 throttle_cfs_rq(cfs_rq);
3616 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3617 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3619 if (!cfs_bandwidth_used())
3620 return false;
3622 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3623 return false;
3626 * it's possible for a throttled entity to be forced into a running
3627 * state (e.g. set_curr_task), in this case we're finished.
3629 if (cfs_rq_throttled(cfs_rq))
3630 return true;
3632 throttle_cfs_rq(cfs_rq);
3633 return true;
3636 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3638 struct cfs_bandwidth *cfs_b =
3639 container_of(timer, struct cfs_bandwidth, slack_timer);
3640 do_sched_cfs_slack_timer(cfs_b);
3642 return HRTIMER_NORESTART;
3645 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3647 struct cfs_bandwidth *cfs_b =
3648 container_of(timer, struct cfs_bandwidth, period_timer);
3649 ktime_t now;
3650 int overrun;
3651 int idle = 0;
3653 for (;;) {
3654 now = hrtimer_cb_get_time(timer);
3655 overrun = hrtimer_forward(timer, now, cfs_b->period);
3657 if (!overrun)
3658 break;
3660 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3663 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3666 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3668 raw_spin_lock_init(&cfs_b->lock);
3669 cfs_b->runtime = 0;
3670 cfs_b->quota = RUNTIME_INF;
3671 cfs_b->period = ns_to_ktime(default_cfs_period());
3673 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3674 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3675 cfs_b->period_timer.function = sched_cfs_period_timer;
3676 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3677 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3680 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3682 cfs_rq->runtime_enabled = 0;
3683 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3686 /* requires cfs_b->lock, may release to reprogram timer */
3687 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3690 * The timer may be active because we're trying to set a new bandwidth
3691 * period or because we're racing with the tear-down path
3692 * (timer_active==0 becomes visible before the hrtimer call-back
3693 * terminates). In either case we ensure that it's re-programmed
3695 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3696 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3697 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3698 raw_spin_unlock(&cfs_b->lock);
3699 cpu_relax();
3700 raw_spin_lock(&cfs_b->lock);
3701 /* if someone else restarted the timer then we're done */
3702 if (cfs_b->timer_active)
3703 return;
3706 cfs_b->timer_active = 1;
3707 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3710 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3712 hrtimer_cancel(&cfs_b->period_timer);
3713 hrtimer_cancel(&cfs_b->slack_timer);
3716 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3718 struct cfs_rq *cfs_rq;
3720 for_each_leaf_cfs_rq(rq, cfs_rq) {
3721 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3723 if (!cfs_rq->runtime_enabled)
3724 continue;
3727 * clock_task is not advancing so we just need to make sure
3728 * there's some valid quota amount
3730 cfs_rq->runtime_remaining = cfs_b->quota;
3731 if (cfs_rq_throttled(cfs_rq))
3732 unthrottle_cfs_rq(cfs_rq);
3736 #else /* CONFIG_CFS_BANDWIDTH */
3737 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3739 return rq_clock_task(rq_of(cfs_rq));
3742 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3743 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3744 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3745 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3747 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3749 return 0;
3752 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3754 return 0;
3757 static inline int throttled_lb_pair(struct task_group *tg,
3758 int src_cpu, int dest_cpu)
3760 return 0;
3763 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3765 #ifdef CONFIG_FAIR_GROUP_SCHED
3766 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3767 #endif
3769 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3771 return NULL;
3773 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3774 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3776 #endif /* CONFIG_CFS_BANDWIDTH */
3778 /**************************************************
3779 * CFS operations on tasks:
3782 #ifdef CONFIG_SCHED_HRTICK
3783 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3785 struct sched_entity *se = &p->se;
3786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3788 WARN_ON(task_rq(p) != rq);
3790 if (cfs_rq->nr_running > 1) {
3791 u64 slice = sched_slice(cfs_rq, se);
3792 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3793 s64 delta = slice - ran;
3795 if (delta < 0) {
3796 if (rq->curr == p)
3797 resched_task(p);
3798 return;
3802 * Don't schedule slices shorter than 10000ns, that just
3803 * doesn't make sense. Rely on vruntime for fairness.
3805 if (rq->curr != p)
3806 delta = max_t(s64, 10000LL, delta);
3808 hrtick_start(rq, delta);
3813 * called from enqueue/dequeue and updates the hrtick when the
3814 * current task is from our class and nr_running is low enough
3815 * to matter.
3817 static void hrtick_update(struct rq *rq)
3819 struct task_struct *curr = rq->curr;
3821 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3822 return;
3824 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3825 hrtick_start_fair(rq, curr);
3827 #else /* !CONFIG_SCHED_HRTICK */
3828 static inline void
3829 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3833 static inline void hrtick_update(struct rq *rq)
3836 #endif
3839 * The enqueue_task method is called before nr_running is
3840 * increased. Here we update the fair scheduling stats and
3841 * then put the task into the rbtree:
3843 static void
3844 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3846 struct cfs_rq *cfs_rq;
3847 struct sched_entity *se = &p->se;
3849 for_each_sched_entity(se) {
3850 if (se->on_rq)
3851 break;
3852 cfs_rq = cfs_rq_of(se);
3853 enqueue_entity(cfs_rq, se, flags);
3856 * end evaluation on encountering a throttled cfs_rq
3858 * note: in the case of encountering a throttled cfs_rq we will
3859 * post the final h_nr_running increment below.
3861 if (cfs_rq_throttled(cfs_rq))
3862 break;
3863 cfs_rq->h_nr_running++;
3865 flags = ENQUEUE_WAKEUP;
3868 for_each_sched_entity(se) {
3869 cfs_rq = cfs_rq_of(se);
3870 cfs_rq->h_nr_running++;
3872 if (cfs_rq_throttled(cfs_rq))
3873 break;
3875 update_cfs_shares(cfs_rq);
3876 update_entity_load_avg(se, 1);
3879 if (!se) {
3880 update_rq_runnable_avg(rq, rq->nr_running);
3881 inc_nr_running(rq);
3883 hrtick_update(rq);
3886 static void set_next_buddy(struct sched_entity *se);
3889 * The dequeue_task method is called before nr_running is
3890 * decreased. We remove the task from the rbtree and
3891 * update the fair scheduling stats:
3893 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3895 struct cfs_rq *cfs_rq;
3896 struct sched_entity *se = &p->se;
3897 int task_sleep = flags & DEQUEUE_SLEEP;
3899 for_each_sched_entity(se) {
3900 cfs_rq = cfs_rq_of(se);
3901 dequeue_entity(cfs_rq, se, flags);
3904 * end evaluation on encountering a throttled cfs_rq
3906 * note: in the case of encountering a throttled cfs_rq we will
3907 * post the final h_nr_running decrement below.
3909 if (cfs_rq_throttled(cfs_rq))
3910 break;
3911 cfs_rq->h_nr_running--;
3913 /* Don't dequeue parent if it has other entities besides us */
3914 if (cfs_rq->load.weight) {
3916 * Bias pick_next to pick a task from this cfs_rq, as
3917 * p is sleeping when it is within its sched_slice.
3919 if (task_sleep && parent_entity(se))
3920 set_next_buddy(parent_entity(se));
3922 /* avoid re-evaluating load for this entity */
3923 se = parent_entity(se);
3924 break;
3926 flags |= DEQUEUE_SLEEP;
3929 for_each_sched_entity(se) {
3930 cfs_rq = cfs_rq_of(se);
3931 cfs_rq->h_nr_running--;
3933 if (cfs_rq_throttled(cfs_rq))
3934 break;
3936 update_cfs_shares(cfs_rq);
3937 update_entity_load_avg(se, 1);
3940 if (!se) {
3941 dec_nr_running(rq);
3942 update_rq_runnable_avg(rq, 1);
3944 hrtick_update(rq);
3947 #ifdef CONFIG_SMP
3948 /* Used instead of source_load when we know the type == 0 */
3949 static unsigned long weighted_cpuload(const int cpu)
3951 return cpu_rq(cpu)->cfs.runnable_load_avg;
3955 * Return a low guess at the load of a migration-source cpu weighted
3956 * according to the scheduling class and "nice" value.
3958 * We want to under-estimate the load of migration sources, to
3959 * balance conservatively.
3961 static unsigned long source_load(int cpu, int type)
3963 struct rq *rq = cpu_rq(cpu);
3964 unsigned long total = weighted_cpuload(cpu);
3966 if (type == 0 || !sched_feat(LB_BIAS))
3967 return total;
3969 return min(rq->cpu_load[type-1], total);
3973 * Return a high guess at the load of a migration-target cpu weighted
3974 * according to the scheduling class and "nice" value.
3976 static unsigned long target_load(int cpu, int type)
3978 struct rq *rq = cpu_rq(cpu);
3979 unsigned long total = weighted_cpuload(cpu);
3981 if (type == 0 || !sched_feat(LB_BIAS))
3982 return total;
3984 return max(rq->cpu_load[type-1], total);
3987 static unsigned long power_of(int cpu)
3989 return cpu_rq(cpu)->cpu_power;
3992 static unsigned long cpu_avg_load_per_task(int cpu)
3994 struct rq *rq = cpu_rq(cpu);
3995 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3996 unsigned long load_avg = rq->cfs.runnable_load_avg;
3998 if (nr_running)
3999 return load_avg / nr_running;
4001 return 0;
4004 static void record_wakee(struct task_struct *p)
4007 * Rough decay (wiping) for cost saving, don't worry
4008 * about the boundary, really active task won't care
4009 * about the loss.
4011 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4012 current->wakee_flips = 0;
4013 current->wakee_flip_decay_ts = jiffies;
4016 if (current->last_wakee != p) {
4017 current->last_wakee = p;
4018 current->wakee_flips++;
4022 static void task_waking_fair(struct task_struct *p)
4024 struct sched_entity *se = &p->se;
4025 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4026 u64 min_vruntime;
4028 #ifndef CONFIG_64BIT
4029 u64 min_vruntime_copy;
4031 do {
4032 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4033 smp_rmb();
4034 min_vruntime = cfs_rq->min_vruntime;
4035 } while (min_vruntime != min_vruntime_copy);
4036 #else
4037 min_vruntime = cfs_rq->min_vruntime;
4038 #endif
4040 se->vruntime -= min_vruntime;
4041 record_wakee(p);
4044 #ifdef CONFIG_FAIR_GROUP_SCHED
4046 * effective_load() calculates the load change as seen from the root_task_group
4048 * Adding load to a group doesn't make a group heavier, but can cause movement
4049 * of group shares between cpus. Assuming the shares were perfectly aligned one
4050 * can calculate the shift in shares.
4052 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4053 * on this @cpu and results in a total addition (subtraction) of @wg to the
4054 * total group weight.
4056 * Given a runqueue weight distribution (rw_i) we can compute a shares
4057 * distribution (s_i) using:
4059 * s_i = rw_i / \Sum rw_j (1)
4061 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4062 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4063 * shares distribution (s_i):
4065 * rw_i = { 2, 4, 1, 0 }
4066 * s_i = { 2/7, 4/7, 1/7, 0 }
4068 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4069 * task used to run on and the CPU the waker is running on), we need to
4070 * compute the effect of waking a task on either CPU and, in case of a sync
4071 * wakeup, compute the effect of the current task going to sleep.
4073 * So for a change of @wl to the local @cpu with an overall group weight change
4074 * of @wl we can compute the new shares distribution (s'_i) using:
4076 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4078 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4079 * differences in waking a task to CPU 0. The additional task changes the
4080 * weight and shares distributions like:
4082 * rw'_i = { 3, 4, 1, 0 }
4083 * s'_i = { 3/8, 4/8, 1/8, 0 }
4085 * We can then compute the difference in effective weight by using:
4087 * dw_i = S * (s'_i - s_i) (3)
4089 * Where 'S' is the group weight as seen by its parent.
4091 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4092 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4093 * 4/7) times the weight of the group.
4095 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4097 struct sched_entity *se = tg->se[cpu];
4099 if (!tg->parent) /* the trivial, non-cgroup case */
4100 return wl;
4102 for_each_sched_entity(se) {
4103 long w, W;
4105 tg = se->my_q->tg;
4108 * W = @wg + \Sum rw_j
4110 W = wg + calc_tg_weight(tg, se->my_q);
4113 * w = rw_i + @wl
4115 w = se->my_q->load.weight + wl;
4118 * wl = S * s'_i; see (2)
4120 if (W > 0 && w < W)
4121 wl = (w * tg->shares) / W;
4122 else
4123 wl = tg->shares;
4126 * Per the above, wl is the new se->load.weight value; since
4127 * those are clipped to [MIN_SHARES, ...) do so now. See
4128 * calc_cfs_shares().
4130 if (wl < MIN_SHARES)
4131 wl = MIN_SHARES;
4134 * wl = dw_i = S * (s'_i - s_i); see (3)
4136 wl -= se->load.weight;
4139 * Recursively apply this logic to all parent groups to compute
4140 * the final effective load change on the root group. Since
4141 * only the @tg group gets extra weight, all parent groups can
4142 * only redistribute existing shares. @wl is the shift in shares
4143 * resulting from this level per the above.
4145 wg = 0;
4148 return wl;
4150 #else
4152 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4154 return wl;
4157 #endif
4159 static int wake_wide(struct task_struct *p)
4161 int factor = this_cpu_read(sd_llc_size);
4164 * Yeah, it's the switching-frequency, could means many wakee or
4165 * rapidly switch, use factor here will just help to automatically
4166 * adjust the loose-degree, so bigger node will lead to more pull.
4168 if (p->wakee_flips > factor) {
4170 * wakee is somewhat hot, it needs certain amount of cpu
4171 * resource, so if waker is far more hot, prefer to leave
4172 * it alone.
4174 if (current->wakee_flips > (factor * p->wakee_flips))
4175 return 1;
4178 return 0;
4181 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4183 s64 this_load, load;
4184 int idx, this_cpu, prev_cpu;
4185 unsigned long tl_per_task;
4186 struct task_group *tg;
4187 unsigned long weight;
4188 int balanced;
4191 * If we wake multiple tasks be careful to not bounce
4192 * ourselves around too much.
4194 if (wake_wide(p))
4195 return 0;
4197 idx = sd->wake_idx;
4198 this_cpu = smp_processor_id();
4199 prev_cpu = task_cpu(p);
4200 load = source_load(prev_cpu, idx);
4201 this_load = target_load(this_cpu, idx);
4204 * If sync wakeup then subtract the (maximum possible)
4205 * effect of the currently running task from the load
4206 * of the current CPU:
4208 if (sync) {
4209 tg = task_group(current);
4210 weight = current->se.load.weight;
4212 this_load += effective_load(tg, this_cpu, -weight, -weight);
4213 load += effective_load(tg, prev_cpu, 0, -weight);
4216 tg = task_group(p);
4217 weight = p->se.load.weight;
4220 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4221 * due to the sync cause above having dropped this_load to 0, we'll
4222 * always have an imbalance, but there's really nothing you can do
4223 * about that, so that's good too.
4225 * Otherwise check if either cpus are near enough in load to allow this
4226 * task to be woken on this_cpu.
4228 if (this_load > 0) {
4229 s64 this_eff_load, prev_eff_load;
4231 this_eff_load = 100;
4232 this_eff_load *= power_of(prev_cpu);
4233 this_eff_load *= this_load +
4234 effective_load(tg, this_cpu, weight, weight);
4236 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4237 prev_eff_load *= power_of(this_cpu);
4238 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4240 balanced = this_eff_load <= prev_eff_load;
4241 } else
4242 balanced = true;
4245 * If the currently running task will sleep within
4246 * a reasonable amount of time then attract this newly
4247 * woken task:
4249 if (sync && balanced)
4250 return 1;
4252 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4253 tl_per_task = cpu_avg_load_per_task(this_cpu);
4255 if (balanced ||
4256 (this_load <= load &&
4257 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4259 * This domain has SD_WAKE_AFFINE and
4260 * p is cache cold in this domain, and
4261 * there is no bad imbalance.
4263 schedstat_inc(sd, ttwu_move_affine);
4264 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4266 return 1;
4268 return 0;
4272 * find_idlest_group finds and returns the least busy CPU group within the
4273 * domain.
4275 static struct sched_group *
4276 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4277 int this_cpu, int sd_flag)
4279 struct sched_group *idlest = NULL, *group = sd->groups;
4280 unsigned long min_load = ULONG_MAX, this_load = 0;
4281 int load_idx = sd->forkexec_idx;
4282 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4284 if (sd_flag & SD_BALANCE_WAKE)
4285 load_idx = sd->wake_idx;
4287 do {
4288 unsigned long load, avg_load;
4289 int local_group;
4290 int i;
4292 /* Skip over this group if it has no CPUs allowed */
4293 if (!cpumask_intersects(sched_group_cpus(group),
4294 tsk_cpus_allowed(p)))
4295 continue;
4297 local_group = cpumask_test_cpu(this_cpu,
4298 sched_group_cpus(group));
4300 /* Tally up the load of all CPUs in the group */
4301 avg_load = 0;
4303 for_each_cpu(i, sched_group_cpus(group)) {
4304 /* Bias balancing toward cpus of our domain */
4305 if (local_group)
4306 load = source_load(i, load_idx);
4307 else
4308 load = target_load(i, load_idx);
4310 avg_load += load;
4313 /* Adjust by relative CPU power of the group */
4314 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4316 if (local_group) {
4317 this_load = avg_load;
4318 } else if (avg_load < min_load) {
4319 min_load = avg_load;
4320 idlest = group;
4322 } while (group = group->next, group != sd->groups);
4324 if (!idlest || 100*this_load < imbalance*min_load)
4325 return NULL;
4326 return idlest;
4330 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4332 static int
4333 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4335 unsigned long load, min_load = ULONG_MAX;
4336 int idlest = -1;
4337 int i;
4339 /* Traverse only the allowed CPUs */
4340 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4341 load = weighted_cpuload(i);
4343 if (load < min_load || (load == min_load && i == this_cpu)) {
4344 min_load = load;
4345 idlest = i;
4349 return idlest;
4353 * Try and locate an idle CPU in the sched_domain.
4355 static int select_idle_sibling(struct task_struct *p, int target)
4357 struct sched_domain *sd;
4358 struct sched_group *sg;
4359 int i = task_cpu(p);
4361 if (idle_cpu(target))
4362 return target;
4365 * If the prevous cpu is cache affine and idle, don't be stupid.
4367 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4368 return i;
4371 * Otherwise, iterate the domains and find an elegible idle cpu.
4373 sd = rcu_dereference(per_cpu(sd_llc, target));
4374 for_each_lower_domain(sd) {
4375 sg = sd->groups;
4376 do {
4377 if (!cpumask_intersects(sched_group_cpus(sg),
4378 tsk_cpus_allowed(p)))
4379 goto next;
4381 for_each_cpu(i, sched_group_cpus(sg)) {
4382 if (i == target || !idle_cpu(i))
4383 goto next;
4386 target = cpumask_first_and(sched_group_cpus(sg),
4387 tsk_cpus_allowed(p));
4388 goto done;
4389 next:
4390 sg = sg->next;
4391 } while (sg != sd->groups);
4393 done:
4394 return target;
4398 * sched_balance_self: balance the current task (running on cpu) in domains
4399 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4400 * SD_BALANCE_EXEC.
4402 * Balance, ie. select the least loaded group.
4404 * Returns the target CPU number, or the same CPU if no balancing is needed.
4406 * preempt must be disabled.
4408 static int
4409 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4411 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4412 int cpu = smp_processor_id();
4413 int new_cpu = cpu;
4414 int want_affine = 0;
4415 int sync = wake_flags & WF_SYNC;
4417 if (p->nr_cpus_allowed == 1)
4418 return prev_cpu;
4420 if (sd_flag & SD_BALANCE_WAKE) {
4421 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4422 want_affine = 1;
4423 new_cpu = prev_cpu;
4426 rcu_read_lock();
4427 for_each_domain(cpu, tmp) {
4428 if (!(tmp->flags & SD_LOAD_BALANCE))
4429 continue;
4432 * If both cpu and prev_cpu are part of this domain,
4433 * cpu is a valid SD_WAKE_AFFINE target.
4435 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4436 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4437 affine_sd = tmp;
4438 break;
4441 if (tmp->flags & sd_flag)
4442 sd = tmp;
4445 if (affine_sd) {
4446 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4447 prev_cpu = cpu;
4449 new_cpu = select_idle_sibling(p, prev_cpu);
4450 goto unlock;
4453 while (sd) {
4454 struct sched_group *group;
4455 int weight;
4457 if (!(sd->flags & sd_flag)) {
4458 sd = sd->child;
4459 continue;
4462 group = find_idlest_group(sd, p, cpu, sd_flag);
4463 if (!group) {
4464 sd = sd->child;
4465 continue;
4468 new_cpu = find_idlest_cpu(group, p, cpu);
4469 if (new_cpu == -1 || new_cpu == cpu) {
4470 /* Now try balancing at a lower domain level of cpu */
4471 sd = sd->child;
4472 continue;
4475 /* Now try balancing at a lower domain level of new_cpu */
4476 cpu = new_cpu;
4477 weight = sd->span_weight;
4478 sd = NULL;
4479 for_each_domain(cpu, tmp) {
4480 if (weight <= tmp->span_weight)
4481 break;
4482 if (tmp->flags & sd_flag)
4483 sd = tmp;
4485 /* while loop will break here if sd == NULL */
4487 unlock:
4488 rcu_read_unlock();
4490 return new_cpu;
4494 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4495 * cfs_rq_of(p) references at time of call are still valid and identify the
4496 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4497 * other assumptions, including the state of rq->lock, should be made.
4499 static void
4500 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4502 struct sched_entity *se = &p->se;
4503 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4506 * Load tracking: accumulate removed load so that it can be processed
4507 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4508 * to blocked load iff they have a positive decay-count. It can never
4509 * be negative here since on-rq tasks have decay-count == 0.
4511 if (se->avg.decay_count) {
4512 se->avg.decay_count = -__synchronize_entity_decay(se);
4513 atomic_long_add(se->avg.load_avg_contrib,
4514 &cfs_rq->removed_load);
4517 #endif /* CONFIG_SMP */
4519 static unsigned long
4520 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4522 unsigned long gran = sysctl_sched_wakeup_granularity;
4525 * Since its curr running now, convert the gran from real-time
4526 * to virtual-time in his units.
4528 * By using 'se' instead of 'curr' we penalize light tasks, so
4529 * they get preempted easier. That is, if 'se' < 'curr' then
4530 * the resulting gran will be larger, therefore penalizing the
4531 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4532 * be smaller, again penalizing the lighter task.
4534 * This is especially important for buddies when the leftmost
4535 * task is higher priority than the buddy.
4537 return calc_delta_fair(gran, se);
4541 * Should 'se' preempt 'curr'.
4543 * |s1
4544 * |s2
4545 * |s3
4547 * |<--->|c
4549 * w(c, s1) = -1
4550 * w(c, s2) = 0
4551 * w(c, s3) = 1
4554 static int
4555 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4557 s64 gran, vdiff = curr->vruntime - se->vruntime;
4559 if (vdiff <= 0)
4560 return -1;
4562 gran = wakeup_gran(curr, se);
4563 if (vdiff > gran)
4564 return 1;
4566 return 0;
4569 static void set_last_buddy(struct sched_entity *se)
4571 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4572 return;
4574 for_each_sched_entity(se)
4575 cfs_rq_of(se)->last = se;
4578 static void set_next_buddy(struct sched_entity *se)
4580 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4581 return;
4583 for_each_sched_entity(se)
4584 cfs_rq_of(se)->next = se;
4587 static void set_skip_buddy(struct sched_entity *se)
4589 for_each_sched_entity(se)
4590 cfs_rq_of(se)->skip = se;
4594 * Preempt the current task with a newly woken task if needed:
4596 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4598 struct task_struct *curr = rq->curr;
4599 struct sched_entity *se = &curr->se, *pse = &p->se;
4600 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4601 int scale = cfs_rq->nr_running >= sched_nr_latency;
4602 int next_buddy_marked = 0;
4604 if (unlikely(se == pse))
4605 return;
4608 * This is possible from callers such as move_task(), in which we
4609 * unconditionally check_prempt_curr() after an enqueue (which may have
4610 * lead to a throttle). This both saves work and prevents false
4611 * next-buddy nomination below.
4613 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4614 return;
4616 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4617 set_next_buddy(pse);
4618 next_buddy_marked = 1;
4622 * We can come here with TIF_NEED_RESCHED already set from new task
4623 * wake up path.
4625 * Note: this also catches the edge-case of curr being in a throttled
4626 * group (e.g. via set_curr_task), since update_curr() (in the
4627 * enqueue of curr) will have resulted in resched being set. This
4628 * prevents us from potentially nominating it as a false LAST_BUDDY
4629 * below.
4631 if (test_tsk_need_resched(curr))
4632 return;
4634 /* Idle tasks are by definition preempted by non-idle tasks. */
4635 if (unlikely(curr->policy == SCHED_IDLE) &&
4636 likely(p->policy != SCHED_IDLE))
4637 goto preempt;
4640 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4641 * is driven by the tick):
4643 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4644 return;
4646 find_matching_se(&se, &pse);
4647 update_curr(cfs_rq_of(se));
4648 BUG_ON(!pse);
4649 if (wakeup_preempt_entity(se, pse) == 1) {
4651 * Bias pick_next to pick the sched entity that is
4652 * triggering this preemption.
4654 if (!next_buddy_marked)
4655 set_next_buddy(pse);
4656 goto preempt;
4659 return;
4661 preempt:
4662 resched_task(curr);
4664 * Only set the backward buddy when the current task is still
4665 * on the rq. This can happen when a wakeup gets interleaved
4666 * with schedule on the ->pre_schedule() or idle_balance()
4667 * point, either of which can * drop the rq lock.
4669 * Also, during early boot the idle thread is in the fair class,
4670 * for obvious reasons its a bad idea to schedule back to it.
4672 if (unlikely(!se->on_rq || curr == rq->idle))
4673 return;
4675 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4676 set_last_buddy(se);
4679 static struct task_struct *
4680 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4682 struct cfs_rq *cfs_rq = &rq->cfs;
4683 struct sched_entity *se;
4684 struct task_struct *p;
4686 again: __maybe_unused
4687 #ifdef CONFIG_FAIR_GROUP_SCHED
4688 if (!cfs_rq->nr_running)
4689 goto idle;
4691 if (!prev || prev->sched_class != &fair_sched_class)
4692 goto simple;
4695 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4696 * likely that a next task is from the same cgroup as the current.
4698 * Therefore attempt to avoid putting and setting the entire cgroup
4699 * hierarchy, only change the part that actually changes.
4702 do {
4703 struct sched_entity *curr = cfs_rq->curr;
4706 * Since we got here without doing put_prev_entity() we also
4707 * have to consider cfs_rq->curr. If it is still a runnable
4708 * entity, update_curr() will update its vruntime, otherwise
4709 * forget we've ever seen it.
4711 if (curr && curr->on_rq)
4712 update_curr(cfs_rq);
4713 else
4714 curr = NULL;
4717 * This call to check_cfs_rq_runtime() will do the throttle and
4718 * dequeue its entity in the parent(s). Therefore the 'simple'
4719 * nr_running test will indeed be correct.
4721 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4722 goto simple;
4724 se = pick_next_entity(cfs_rq, curr);
4725 cfs_rq = group_cfs_rq(se);
4726 } while (cfs_rq);
4728 p = task_of(se);
4731 * Since we haven't yet done put_prev_entity and if the selected task
4732 * is a different task than we started out with, try and touch the
4733 * least amount of cfs_rqs.
4735 if (prev != p) {
4736 struct sched_entity *pse = &prev->se;
4738 while (!(cfs_rq = is_same_group(se, pse))) {
4739 int se_depth = se->depth;
4740 int pse_depth = pse->depth;
4742 if (se_depth <= pse_depth) {
4743 put_prev_entity(cfs_rq_of(pse), pse);
4744 pse = parent_entity(pse);
4746 if (se_depth >= pse_depth) {
4747 set_next_entity(cfs_rq_of(se), se);
4748 se = parent_entity(se);
4752 put_prev_entity(cfs_rq, pse);
4753 set_next_entity(cfs_rq, se);
4756 if (hrtick_enabled(rq))
4757 hrtick_start_fair(rq, p);
4759 return p;
4760 simple:
4761 cfs_rq = &rq->cfs;
4762 #endif
4764 if (!cfs_rq->nr_running)
4765 goto idle;
4767 if (prev)
4768 prev->sched_class->put_prev_task(rq, prev);
4770 do {
4771 se = pick_next_entity(cfs_rq, NULL);
4772 set_next_entity(cfs_rq, se);
4773 cfs_rq = group_cfs_rq(se);
4774 } while (cfs_rq);
4776 p = task_of(se);
4778 if (hrtick_enabled(rq))
4779 hrtick_start_fair(rq, p);
4781 return p;
4783 idle:
4784 #ifdef CONFIG_SMP
4785 idle_enter_fair(rq);
4787 * We must set idle_stamp _before_ calling idle_balance(), such that we
4788 * measure the duration of idle_balance() as idle time.
4790 rq->idle_stamp = rq_clock(rq);
4791 if (idle_balance(rq)) { /* drops rq->lock */
4792 rq->idle_stamp = 0;
4793 goto again;
4795 #endif
4797 return NULL;
4801 * Account for a descheduled task:
4803 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4805 struct sched_entity *se = &prev->se;
4806 struct cfs_rq *cfs_rq;
4808 for_each_sched_entity(se) {
4809 cfs_rq = cfs_rq_of(se);
4810 put_prev_entity(cfs_rq, se);
4815 * sched_yield() is very simple
4817 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4819 static void yield_task_fair(struct rq *rq)
4821 struct task_struct *curr = rq->curr;
4822 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4823 struct sched_entity *se = &curr->se;
4826 * Are we the only task in the tree?
4828 if (unlikely(rq->nr_running == 1))
4829 return;
4831 clear_buddies(cfs_rq, se);
4833 if (curr->policy != SCHED_BATCH) {
4834 update_rq_clock(rq);
4836 * Update run-time statistics of the 'current'.
4838 update_curr(cfs_rq);
4840 * Tell update_rq_clock() that we've just updated,
4841 * so we don't do microscopic update in schedule()
4842 * and double the fastpath cost.
4844 rq->skip_clock_update = 1;
4847 set_skip_buddy(se);
4850 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4852 struct sched_entity *se = &p->se;
4854 /* throttled hierarchies are not runnable */
4855 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4856 return false;
4858 /* Tell the scheduler that we'd really like pse to run next. */
4859 set_next_buddy(se);
4861 yield_task_fair(rq);
4863 return true;
4866 #ifdef CONFIG_SMP
4867 /**************************************************
4868 * Fair scheduling class load-balancing methods.
4870 * BASICS
4872 * The purpose of load-balancing is to achieve the same basic fairness the
4873 * per-cpu scheduler provides, namely provide a proportional amount of compute
4874 * time to each task. This is expressed in the following equation:
4876 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4878 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4879 * W_i,0 is defined as:
4881 * W_i,0 = \Sum_j w_i,j (2)
4883 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4884 * is derived from the nice value as per prio_to_weight[].
4886 * The weight average is an exponential decay average of the instantaneous
4887 * weight:
4889 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4891 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4892 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4893 * can also include other factors [XXX].
4895 * To achieve this balance we define a measure of imbalance which follows
4896 * directly from (1):
4898 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4900 * We them move tasks around to minimize the imbalance. In the continuous
4901 * function space it is obvious this converges, in the discrete case we get
4902 * a few fun cases generally called infeasible weight scenarios.
4904 * [XXX expand on:
4905 * - infeasible weights;
4906 * - local vs global optima in the discrete case. ]
4909 * SCHED DOMAINS
4911 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4912 * for all i,j solution, we create a tree of cpus that follows the hardware
4913 * topology where each level pairs two lower groups (or better). This results
4914 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4915 * tree to only the first of the previous level and we decrease the frequency
4916 * of load-balance at each level inv. proportional to the number of cpus in
4917 * the groups.
4919 * This yields:
4921 * log_2 n 1 n
4922 * \Sum { --- * --- * 2^i } = O(n) (5)
4923 * i = 0 2^i 2^i
4924 * `- size of each group
4925 * | | `- number of cpus doing load-balance
4926 * | `- freq
4927 * `- sum over all levels
4929 * Coupled with a limit on how many tasks we can migrate every balance pass,
4930 * this makes (5) the runtime complexity of the balancer.
4932 * An important property here is that each CPU is still (indirectly) connected
4933 * to every other cpu in at most O(log n) steps:
4935 * The adjacency matrix of the resulting graph is given by:
4937 * log_2 n
4938 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4939 * k = 0
4941 * And you'll find that:
4943 * A^(log_2 n)_i,j != 0 for all i,j (7)
4945 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4946 * The task movement gives a factor of O(m), giving a convergence complexity
4947 * of:
4949 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4952 * WORK CONSERVING
4954 * In order to avoid CPUs going idle while there's still work to do, new idle
4955 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4956 * tree itself instead of relying on other CPUs to bring it work.
4958 * This adds some complexity to both (5) and (8) but it reduces the total idle
4959 * time.
4961 * [XXX more?]
4964 * CGROUPS
4966 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4968 * s_k,i
4969 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4970 * S_k
4972 * Where
4974 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4976 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4978 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4979 * property.
4981 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4982 * rewrite all of this once again.]
4985 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4987 enum fbq_type { regular, remote, all };
4989 #define LBF_ALL_PINNED 0x01
4990 #define LBF_NEED_BREAK 0x02
4991 #define LBF_DST_PINNED 0x04
4992 #define LBF_SOME_PINNED 0x08
4994 struct lb_env {
4995 struct sched_domain *sd;
4997 struct rq *src_rq;
4998 int src_cpu;
5000 int dst_cpu;
5001 struct rq *dst_rq;
5003 struct cpumask *dst_grpmask;
5004 int new_dst_cpu;
5005 enum cpu_idle_type idle;
5006 long imbalance;
5007 /* The set of CPUs under consideration for load-balancing */
5008 struct cpumask *cpus;
5010 unsigned int flags;
5012 unsigned int loop;
5013 unsigned int loop_break;
5014 unsigned int loop_max;
5016 enum fbq_type fbq_type;
5020 * move_task - move a task from one runqueue to another runqueue.
5021 * Both runqueues must be locked.
5023 static void move_task(struct task_struct *p, struct lb_env *env)
5025 deactivate_task(env->src_rq, p, 0);
5026 set_task_cpu(p, env->dst_cpu);
5027 activate_task(env->dst_rq, p, 0);
5028 check_preempt_curr(env->dst_rq, p, 0);
5032 * Is this task likely cache-hot:
5034 static int
5035 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
5037 s64 delta;
5039 if (p->sched_class != &fair_sched_class)
5040 return 0;
5042 if (unlikely(p->policy == SCHED_IDLE))
5043 return 0;
5046 * Buddy candidates are cache hot:
5048 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5049 (&p->se == cfs_rq_of(&p->se)->next ||
5050 &p->se == cfs_rq_of(&p->se)->last))
5051 return 1;
5053 if (sysctl_sched_migration_cost == -1)
5054 return 1;
5055 if (sysctl_sched_migration_cost == 0)
5056 return 0;
5058 delta = now - p->se.exec_start;
5060 return delta < (s64)sysctl_sched_migration_cost;
5063 #ifdef CONFIG_NUMA_BALANCING
5064 /* Returns true if the destination node has incurred more faults */
5065 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5067 int src_nid, dst_nid;
5069 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5070 !(env->sd->flags & SD_NUMA)) {
5071 return false;
5074 src_nid = cpu_to_node(env->src_cpu);
5075 dst_nid = cpu_to_node(env->dst_cpu);
5077 if (src_nid == dst_nid)
5078 return false;
5080 /* Always encourage migration to the preferred node. */
5081 if (dst_nid == p->numa_preferred_nid)
5082 return true;
5084 /* If both task and group weight improve, this move is a winner. */
5085 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5086 group_weight(p, dst_nid) > group_weight(p, src_nid))
5087 return true;
5089 return false;
5093 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5095 int src_nid, dst_nid;
5097 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5098 return false;
5100 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5101 return false;
5103 src_nid = cpu_to_node(env->src_cpu);
5104 dst_nid = cpu_to_node(env->dst_cpu);
5106 if (src_nid == dst_nid)
5107 return false;
5109 /* Migrating away from the preferred node is always bad. */
5110 if (src_nid == p->numa_preferred_nid)
5111 return true;
5113 /* If either task or group weight get worse, don't do it. */
5114 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5115 group_weight(p, dst_nid) < group_weight(p, src_nid))
5116 return true;
5118 return false;
5121 #else
5122 static inline bool migrate_improves_locality(struct task_struct *p,
5123 struct lb_env *env)
5125 return false;
5128 static inline bool migrate_degrades_locality(struct task_struct *p,
5129 struct lb_env *env)
5131 return false;
5133 #endif
5136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5138 static
5139 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5141 int tsk_cache_hot = 0;
5143 * We do not migrate tasks that are:
5144 * 1) throttled_lb_pair, or
5145 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5146 * 3) running (obviously), or
5147 * 4) are cache-hot on their current CPU.
5149 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5150 return 0;
5152 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5153 int cpu;
5155 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5157 env->flags |= LBF_SOME_PINNED;
5160 * Remember if this task can be migrated to any other cpu in
5161 * our sched_group. We may want to revisit it if we couldn't
5162 * meet load balance goals by pulling other tasks on src_cpu.
5164 * Also avoid computing new_dst_cpu if we have already computed
5165 * one in current iteration.
5167 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5168 return 0;
5170 /* Prevent to re-select dst_cpu via env's cpus */
5171 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5172 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5173 env->flags |= LBF_DST_PINNED;
5174 env->new_dst_cpu = cpu;
5175 break;
5179 return 0;
5182 /* Record that we found atleast one task that could run on dst_cpu */
5183 env->flags &= ~LBF_ALL_PINNED;
5185 if (task_running(env->src_rq, p)) {
5186 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5187 return 0;
5191 * Aggressive migration if:
5192 * 1) destination numa is preferred
5193 * 2) task is cache cold, or
5194 * 3) too many balance attempts have failed.
5196 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
5197 if (!tsk_cache_hot)
5198 tsk_cache_hot = migrate_degrades_locality(p, env);
5200 if (migrate_improves_locality(p, env)) {
5201 #ifdef CONFIG_SCHEDSTATS
5202 if (tsk_cache_hot) {
5203 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5204 schedstat_inc(p, se.statistics.nr_forced_migrations);
5206 #endif
5207 return 1;
5210 if (!tsk_cache_hot ||
5211 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5213 if (tsk_cache_hot) {
5214 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5215 schedstat_inc(p, se.statistics.nr_forced_migrations);
5218 return 1;
5221 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5222 return 0;
5226 * move_one_task tries to move exactly one task from busiest to this_rq, as
5227 * part of active balancing operations within "domain".
5228 * Returns 1 if successful and 0 otherwise.
5230 * Called with both runqueues locked.
5232 static int move_one_task(struct lb_env *env)
5234 struct task_struct *p, *n;
5236 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5237 if (!can_migrate_task(p, env))
5238 continue;
5240 move_task(p, env);
5242 * Right now, this is only the second place move_task()
5243 * is called, so we can safely collect move_task()
5244 * stats here rather than inside move_task().
5246 schedstat_inc(env->sd, lb_gained[env->idle]);
5247 return 1;
5249 return 0;
5252 static const unsigned int sched_nr_migrate_break = 32;
5255 * move_tasks tries to move up to imbalance weighted load from busiest to
5256 * this_rq, as part of a balancing operation within domain "sd".
5257 * Returns 1 if successful and 0 otherwise.
5259 * Called with both runqueues locked.
5261 static int move_tasks(struct lb_env *env)
5263 struct list_head *tasks = &env->src_rq->cfs_tasks;
5264 struct task_struct *p;
5265 unsigned long load;
5266 int pulled = 0;
5268 if (env->imbalance <= 0)
5269 return 0;
5271 while (!list_empty(tasks)) {
5272 p = list_first_entry(tasks, struct task_struct, se.group_node);
5274 env->loop++;
5275 /* We've more or less seen every task there is, call it quits */
5276 if (env->loop > env->loop_max)
5277 break;
5279 /* take a breather every nr_migrate tasks */
5280 if (env->loop > env->loop_break) {
5281 env->loop_break += sched_nr_migrate_break;
5282 env->flags |= LBF_NEED_BREAK;
5283 break;
5286 if (!can_migrate_task(p, env))
5287 goto next;
5289 load = task_h_load(p);
5291 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5292 goto next;
5294 if ((load / 2) > env->imbalance)
5295 goto next;
5297 move_task(p, env);
5298 pulled++;
5299 env->imbalance -= load;
5301 #ifdef CONFIG_PREEMPT
5303 * NEWIDLE balancing is a source of latency, so preemptible
5304 * kernels will stop after the first task is pulled to minimize
5305 * the critical section.
5307 if (env->idle == CPU_NEWLY_IDLE)
5308 break;
5309 #endif
5312 * We only want to steal up to the prescribed amount of
5313 * weighted load.
5315 if (env->imbalance <= 0)
5316 break;
5318 continue;
5319 next:
5320 list_move_tail(&p->se.group_node, tasks);
5324 * Right now, this is one of only two places move_task() is called,
5325 * so we can safely collect move_task() stats here rather than
5326 * inside move_task().
5328 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5330 return pulled;
5333 #ifdef CONFIG_FAIR_GROUP_SCHED
5335 * update tg->load_weight by folding this cpu's load_avg
5337 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5339 struct sched_entity *se = tg->se[cpu];
5340 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5342 /* throttled entities do not contribute to load */
5343 if (throttled_hierarchy(cfs_rq))
5344 return;
5346 update_cfs_rq_blocked_load(cfs_rq, 1);
5348 if (se) {
5349 update_entity_load_avg(se, 1);
5351 * We pivot on our runnable average having decayed to zero for
5352 * list removal. This generally implies that all our children
5353 * have also been removed (modulo rounding error or bandwidth
5354 * control); however, such cases are rare and we can fix these
5355 * at enqueue.
5357 * TODO: fix up out-of-order children on enqueue.
5359 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5360 list_del_leaf_cfs_rq(cfs_rq);
5361 } else {
5362 struct rq *rq = rq_of(cfs_rq);
5363 update_rq_runnable_avg(rq, rq->nr_running);
5367 static void update_blocked_averages(int cpu)
5369 struct rq *rq = cpu_rq(cpu);
5370 struct cfs_rq *cfs_rq;
5371 unsigned long flags;
5373 raw_spin_lock_irqsave(&rq->lock, flags);
5374 update_rq_clock(rq);
5376 * Iterates the task_group tree in a bottom up fashion, see
5377 * list_add_leaf_cfs_rq() for details.
5379 for_each_leaf_cfs_rq(rq, cfs_rq) {
5381 * Note: We may want to consider periodically releasing
5382 * rq->lock about these updates so that creating many task
5383 * groups does not result in continually extending hold time.
5385 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5388 raw_spin_unlock_irqrestore(&rq->lock, flags);
5392 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5393 * This needs to be done in a top-down fashion because the load of a child
5394 * group is a fraction of its parents load.
5396 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5398 struct rq *rq = rq_of(cfs_rq);
5399 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5400 unsigned long now = jiffies;
5401 unsigned long load;
5403 if (cfs_rq->last_h_load_update == now)
5404 return;
5406 cfs_rq->h_load_next = NULL;
5407 for_each_sched_entity(se) {
5408 cfs_rq = cfs_rq_of(se);
5409 cfs_rq->h_load_next = se;
5410 if (cfs_rq->last_h_load_update == now)
5411 break;
5414 if (!se) {
5415 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5416 cfs_rq->last_h_load_update = now;
5419 while ((se = cfs_rq->h_load_next) != NULL) {
5420 load = cfs_rq->h_load;
5421 load = div64_ul(load * se->avg.load_avg_contrib,
5422 cfs_rq->runnable_load_avg + 1);
5423 cfs_rq = group_cfs_rq(se);
5424 cfs_rq->h_load = load;
5425 cfs_rq->last_h_load_update = now;
5429 static unsigned long task_h_load(struct task_struct *p)
5431 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5433 update_cfs_rq_h_load(cfs_rq);
5434 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5435 cfs_rq->runnable_load_avg + 1);
5437 #else
5438 static inline void update_blocked_averages(int cpu)
5442 static unsigned long task_h_load(struct task_struct *p)
5444 return p->se.avg.load_avg_contrib;
5446 #endif
5448 /********** Helpers for find_busiest_group ************************/
5450 * sg_lb_stats - stats of a sched_group required for load_balancing
5452 struct sg_lb_stats {
5453 unsigned long avg_load; /*Avg load across the CPUs of the group */
5454 unsigned long group_load; /* Total load over the CPUs of the group */
5455 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5456 unsigned long load_per_task;
5457 unsigned long group_power;
5458 unsigned int sum_nr_running; /* Nr tasks running in the group */
5459 unsigned int group_capacity;
5460 unsigned int idle_cpus;
5461 unsigned int group_weight;
5462 int group_imb; /* Is there an imbalance in the group ? */
5463 int group_has_capacity; /* Is there extra capacity in the group? */
5464 #ifdef CONFIG_NUMA_BALANCING
5465 unsigned int nr_numa_running;
5466 unsigned int nr_preferred_running;
5467 #endif
5471 * sd_lb_stats - Structure to store the statistics of a sched_domain
5472 * during load balancing.
5474 struct sd_lb_stats {
5475 struct sched_group *busiest; /* Busiest group in this sd */
5476 struct sched_group *local; /* Local group in this sd */
5477 unsigned long total_load; /* Total load of all groups in sd */
5478 unsigned long total_pwr; /* Total power of all groups in sd */
5479 unsigned long avg_load; /* Average load across all groups in sd */
5481 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5482 struct sg_lb_stats local_stat; /* Statistics of the local group */
5485 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5488 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5489 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5490 * We must however clear busiest_stat::avg_load because
5491 * update_sd_pick_busiest() reads this before assignment.
5493 *sds = (struct sd_lb_stats){
5494 .busiest = NULL,
5495 .local = NULL,
5496 .total_load = 0UL,
5497 .total_pwr = 0UL,
5498 .busiest_stat = {
5499 .avg_load = 0UL,
5505 * get_sd_load_idx - Obtain the load index for a given sched domain.
5506 * @sd: The sched_domain whose load_idx is to be obtained.
5507 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5509 * Return: The load index.
5511 static inline int get_sd_load_idx(struct sched_domain *sd,
5512 enum cpu_idle_type idle)
5514 int load_idx;
5516 switch (idle) {
5517 case CPU_NOT_IDLE:
5518 load_idx = sd->busy_idx;
5519 break;
5521 case CPU_NEWLY_IDLE:
5522 load_idx = sd->newidle_idx;
5523 break;
5524 default:
5525 load_idx = sd->idle_idx;
5526 break;
5529 return load_idx;
5532 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5534 return SCHED_POWER_SCALE;
5537 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5539 return default_scale_freq_power(sd, cpu);
5542 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5544 unsigned long weight = sd->span_weight;
5545 unsigned long smt_gain = sd->smt_gain;
5547 smt_gain /= weight;
5549 return smt_gain;
5552 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5554 return default_scale_smt_power(sd, cpu);
5557 static unsigned long scale_rt_power(int cpu)
5559 struct rq *rq = cpu_rq(cpu);
5560 u64 total, available, age_stamp, avg;
5563 * Since we're reading these variables without serialization make sure
5564 * we read them once before doing sanity checks on them.
5566 age_stamp = ACCESS_ONCE(rq->age_stamp);
5567 avg = ACCESS_ONCE(rq->rt_avg);
5569 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5571 if (unlikely(total < avg)) {
5572 /* Ensures that power won't end up being negative */
5573 available = 0;
5574 } else {
5575 available = total - avg;
5578 if (unlikely((s64)total < SCHED_POWER_SCALE))
5579 total = SCHED_POWER_SCALE;
5581 total >>= SCHED_POWER_SHIFT;
5583 return div_u64(available, total);
5586 static void update_cpu_power(struct sched_domain *sd, int cpu)
5588 unsigned long weight = sd->span_weight;
5589 unsigned long power = SCHED_POWER_SCALE;
5590 struct sched_group *sdg = sd->groups;
5592 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5593 if (sched_feat(ARCH_POWER))
5594 power *= arch_scale_smt_power(sd, cpu);
5595 else
5596 power *= default_scale_smt_power(sd, cpu);
5598 power >>= SCHED_POWER_SHIFT;
5601 sdg->sgp->power_orig = power;
5603 if (sched_feat(ARCH_POWER))
5604 power *= arch_scale_freq_power(sd, cpu);
5605 else
5606 power *= default_scale_freq_power(sd, cpu);
5608 power >>= SCHED_POWER_SHIFT;
5610 power *= scale_rt_power(cpu);
5611 power >>= SCHED_POWER_SHIFT;
5613 if (!power)
5614 power = 1;
5616 cpu_rq(cpu)->cpu_power = power;
5617 sdg->sgp->power = power;
5620 void update_group_power(struct sched_domain *sd, int cpu)
5622 struct sched_domain *child = sd->child;
5623 struct sched_group *group, *sdg = sd->groups;
5624 unsigned long power, power_orig;
5625 unsigned long interval;
5627 interval = msecs_to_jiffies(sd->balance_interval);
5628 interval = clamp(interval, 1UL, max_load_balance_interval);
5629 sdg->sgp->next_update = jiffies + interval;
5631 if (!child) {
5632 update_cpu_power(sd, cpu);
5633 return;
5636 power_orig = power = 0;
5638 if (child->flags & SD_OVERLAP) {
5640 * SD_OVERLAP domains cannot assume that child groups
5641 * span the current group.
5644 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5645 struct sched_group_power *sgp;
5646 struct rq *rq = cpu_rq(cpu);
5649 * build_sched_domains() -> init_sched_groups_power()
5650 * gets here before we've attached the domains to the
5651 * runqueues.
5653 * Use power_of(), which is set irrespective of domains
5654 * in update_cpu_power().
5656 * This avoids power/power_orig from being 0 and
5657 * causing divide-by-zero issues on boot.
5659 * Runtime updates will correct power_orig.
5661 if (unlikely(!rq->sd)) {
5662 power_orig += power_of(cpu);
5663 power += power_of(cpu);
5664 continue;
5667 sgp = rq->sd->groups->sgp;
5668 power_orig += sgp->power_orig;
5669 power += sgp->power;
5671 } else {
5673 * !SD_OVERLAP domains can assume that child groups
5674 * span the current group.
5677 group = child->groups;
5678 do {
5679 power_orig += group->sgp->power_orig;
5680 power += group->sgp->power;
5681 group = group->next;
5682 } while (group != child->groups);
5685 sdg->sgp->power_orig = power_orig;
5686 sdg->sgp->power = power;
5690 * Try and fix up capacity for tiny siblings, this is needed when
5691 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5692 * which on its own isn't powerful enough.
5694 * See update_sd_pick_busiest() and check_asym_packing().
5696 static inline int
5697 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5700 * Only siblings can have significantly less than SCHED_POWER_SCALE
5702 if (!(sd->flags & SD_SHARE_CPUPOWER))
5703 return 0;
5706 * If ~90% of the cpu_power is still there, we're good.
5708 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5709 return 1;
5711 return 0;
5715 * Group imbalance indicates (and tries to solve) the problem where balancing
5716 * groups is inadequate due to tsk_cpus_allowed() constraints.
5718 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5719 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5720 * Something like:
5722 * { 0 1 2 3 } { 4 5 6 7 }
5723 * * * * *
5725 * If we were to balance group-wise we'd place two tasks in the first group and
5726 * two tasks in the second group. Clearly this is undesired as it will overload
5727 * cpu 3 and leave one of the cpus in the second group unused.
5729 * The current solution to this issue is detecting the skew in the first group
5730 * by noticing the lower domain failed to reach balance and had difficulty
5731 * moving tasks due to affinity constraints.
5733 * When this is so detected; this group becomes a candidate for busiest; see
5734 * update_sd_pick_busiest(). And calculate_imbalance() and
5735 * find_busiest_group() avoid some of the usual balance conditions to allow it
5736 * to create an effective group imbalance.
5738 * This is a somewhat tricky proposition since the next run might not find the
5739 * group imbalance and decide the groups need to be balanced again. A most
5740 * subtle and fragile situation.
5743 static inline int sg_imbalanced(struct sched_group *group)
5745 return group->sgp->imbalance;
5749 * Compute the group capacity.
5751 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5752 * first dividing out the smt factor and computing the actual number of cores
5753 * and limit power unit capacity with that.
5755 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5757 unsigned int capacity, smt, cpus;
5758 unsigned int power, power_orig;
5760 power = group->sgp->power;
5761 power_orig = group->sgp->power_orig;
5762 cpus = group->group_weight;
5764 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5765 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5766 capacity = cpus / smt; /* cores */
5768 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5769 if (!capacity)
5770 capacity = fix_small_capacity(env->sd, group);
5772 return capacity;
5776 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5777 * @env: The load balancing environment.
5778 * @group: sched_group whose statistics are to be updated.
5779 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5780 * @local_group: Does group contain this_cpu.
5781 * @sgs: variable to hold the statistics for this group.
5783 static inline void update_sg_lb_stats(struct lb_env *env,
5784 struct sched_group *group, int load_idx,
5785 int local_group, struct sg_lb_stats *sgs)
5787 unsigned long load;
5788 int i;
5790 memset(sgs, 0, sizeof(*sgs));
5792 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5793 struct rq *rq = cpu_rq(i);
5795 /* Bias balancing toward cpus of our domain */
5796 if (local_group)
5797 load = target_load(i, load_idx);
5798 else
5799 load = source_load(i, load_idx);
5801 sgs->group_load += load;
5802 sgs->sum_nr_running += rq->nr_running;
5803 #ifdef CONFIG_NUMA_BALANCING
5804 sgs->nr_numa_running += rq->nr_numa_running;
5805 sgs->nr_preferred_running += rq->nr_preferred_running;
5806 #endif
5807 sgs->sum_weighted_load += weighted_cpuload(i);
5808 if (idle_cpu(i))
5809 sgs->idle_cpus++;
5812 /* Adjust by relative CPU power of the group */
5813 sgs->group_power = group->sgp->power;
5814 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5816 if (sgs->sum_nr_running)
5817 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5819 sgs->group_weight = group->group_weight;
5821 sgs->group_imb = sg_imbalanced(group);
5822 sgs->group_capacity = sg_capacity(env, group);
5824 if (sgs->group_capacity > sgs->sum_nr_running)
5825 sgs->group_has_capacity = 1;
5829 * update_sd_pick_busiest - return 1 on busiest group
5830 * @env: The load balancing environment.
5831 * @sds: sched_domain statistics
5832 * @sg: sched_group candidate to be checked for being the busiest
5833 * @sgs: sched_group statistics
5835 * Determine if @sg is a busier group than the previously selected
5836 * busiest group.
5838 * Return: %true if @sg is a busier group than the previously selected
5839 * busiest group. %false otherwise.
5841 static bool update_sd_pick_busiest(struct lb_env *env,
5842 struct sd_lb_stats *sds,
5843 struct sched_group *sg,
5844 struct sg_lb_stats *sgs)
5846 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5847 return false;
5849 if (sgs->sum_nr_running > sgs->group_capacity)
5850 return true;
5852 if (sgs->group_imb)
5853 return true;
5856 * ASYM_PACKING needs to move all the work to the lowest
5857 * numbered CPUs in the group, therefore mark all groups
5858 * higher than ourself as busy.
5860 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5861 env->dst_cpu < group_first_cpu(sg)) {
5862 if (!sds->busiest)
5863 return true;
5865 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5866 return true;
5869 return false;
5872 #ifdef CONFIG_NUMA_BALANCING
5873 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5875 if (sgs->sum_nr_running > sgs->nr_numa_running)
5876 return regular;
5877 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5878 return remote;
5879 return all;
5882 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5884 if (rq->nr_running > rq->nr_numa_running)
5885 return regular;
5886 if (rq->nr_running > rq->nr_preferred_running)
5887 return remote;
5888 return all;
5890 #else
5891 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5893 return all;
5896 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5898 return regular;
5900 #endif /* CONFIG_NUMA_BALANCING */
5903 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5904 * @env: The load balancing environment.
5905 * @sds: variable to hold the statistics for this sched_domain.
5907 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5909 struct sched_domain *child = env->sd->child;
5910 struct sched_group *sg = env->sd->groups;
5911 struct sg_lb_stats tmp_sgs;
5912 int load_idx, prefer_sibling = 0;
5914 if (child && child->flags & SD_PREFER_SIBLING)
5915 prefer_sibling = 1;
5917 load_idx = get_sd_load_idx(env->sd, env->idle);
5919 do {
5920 struct sg_lb_stats *sgs = &tmp_sgs;
5921 int local_group;
5923 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5924 if (local_group) {
5925 sds->local = sg;
5926 sgs = &sds->local_stat;
5928 if (env->idle != CPU_NEWLY_IDLE ||
5929 time_after_eq(jiffies, sg->sgp->next_update))
5930 update_group_power(env->sd, env->dst_cpu);
5933 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5935 if (local_group)
5936 goto next_group;
5939 * In case the child domain prefers tasks go to siblings
5940 * first, lower the sg capacity to one so that we'll try
5941 * and move all the excess tasks away. We lower the capacity
5942 * of a group only if the local group has the capacity to fit
5943 * these excess tasks, i.e. nr_running < group_capacity. The
5944 * extra check prevents the case where you always pull from the
5945 * heaviest group when it is already under-utilized (possible
5946 * with a large weight task outweighs the tasks on the system).
5948 if (prefer_sibling && sds->local &&
5949 sds->local_stat.group_has_capacity)
5950 sgs->group_capacity = min(sgs->group_capacity, 1U);
5952 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5953 sds->busiest = sg;
5954 sds->busiest_stat = *sgs;
5957 next_group:
5958 /* Now, start updating sd_lb_stats */
5959 sds->total_load += sgs->group_load;
5960 sds->total_pwr += sgs->group_power;
5962 sg = sg->next;
5963 } while (sg != env->sd->groups);
5965 if (env->sd->flags & SD_NUMA)
5966 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5970 * check_asym_packing - Check to see if the group is packed into the
5971 * sched doman.
5973 * This is primarily intended to used at the sibling level. Some
5974 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5975 * case of POWER7, it can move to lower SMT modes only when higher
5976 * threads are idle. When in lower SMT modes, the threads will
5977 * perform better since they share less core resources. Hence when we
5978 * have idle threads, we want them to be the higher ones.
5980 * This packing function is run on idle threads. It checks to see if
5981 * the busiest CPU in this domain (core in the P7 case) has a higher
5982 * CPU number than the packing function is being run on. Here we are
5983 * assuming lower CPU number will be equivalent to lower a SMT thread
5984 * number.
5986 * Return: 1 when packing is required and a task should be moved to
5987 * this CPU. The amount of the imbalance is returned in *imbalance.
5989 * @env: The load balancing environment.
5990 * @sds: Statistics of the sched_domain which is to be packed
5992 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5994 int busiest_cpu;
5996 if (!(env->sd->flags & SD_ASYM_PACKING))
5997 return 0;
5999 if (!sds->busiest)
6000 return 0;
6002 busiest_cpu = group_first_cpu(sds->busiest);
6003 if (env->dst_cpu > busiest_cpu)
6004 return 0;
6006 env->imbalance = DIV_ROUND_CLOSEST(
6007 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6008 SCHED_POWER_SCALE);
6010 return 1;
6014 * fix_small_imbalance - Calculate the minor imbalance that exists
6015 * amongst the groups of a sched_domain, during
6016 * load balancing.
6017 * @env: The load balancing environment.
6018 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6020 static inline
6021 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6023 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6024 unsigned int imbn = 2;
6025 unsigned long scaled_busy_load_per_task;
6026 struct sg_lb_stats *local, *busiest;
6028 local = &sds->local_stat;
6029 busiest = &sds->busiest_stat;
6031 if (!local->sum_nr_running)
6032 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6033 else if (busiest->load_per_task > local->load_per_task)
6034 imbn = 1;
6036 scaled_busy_load_per_task =
6037 (busiest->load_per_task * SCHED_POWER_SCALE) /
6038 busiest->group_power;
6040 if (busiest->avg_load + scaled_busy_load_per_task >=
6041 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6042 env->imbalance = busiest->load_per_task;
6043 return;
6047 * OK, we don't have enough imbalance to justify moving tasks,
6048 * however we may be able to increase total CPU power used by
6049 * moving them.
6052 pwr_now += busiest->group_power *
6053 min(busiest->load_per_task, busiest->avg_load);
6054 pwr_now += local->group_power *
6055 min(local->load_per_task, local->avg_load);
6056 pwr_now /= SCHED_POWER_SCALE;
6058 /* Amount of load we'd subtract */
6059 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6060 busiest->group_power;
6061 if (busiest->avg_load > tmp) {
6062 pwr_move += busiest->group_power *
6063 min(busiest->load_per_task,
6064 busiest->avg_load - tmp);
6067 /* Amount of load we'd add */
6068 if (busiest->avg_load * busiest->group_power <
6069 busiest->load_per_task * SCHED_POWER_SCALE) {
6070 tmp = (busiest->avg_load * busiest->group_power) /
6071 local->group_power;
6072 } else {
6073 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6074 local->group_power;
6076 pwr_move += local->group_power *
6077 min(local->load_per_task, local->avg_load + tmp);
6078 pwr_move /= SCHED_POWER_SCALE;
6080 /* Move if we gain throughput */
6081 if (pwr_move > pwr_now)
6082 env->imbalance = busiest->load_per_task;
6086 * calculate_imbalance - Calculate the amount of imbalance present within the
6087 * groups of a given sched_domain during load balance.
6088 * @env: load balance environment
6089 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6091 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6093 unsigned long max_pull, load_above_capacity = ~0UL;
6094 struct sg_lb_stats *local, *busiest;
6096 local = &sds->local_stat;
6097 busiest = &sds->busiest_stat;
6099 if (busiest->group_imb) {
6101 * In the group_imb case we cannot rely on group-wide averages
6102 * to ensure cpu-load equilibrium, look at wider averages. XXX
6104 busiest->load_per_task =
6105 min(busiest->load_per_task, sds->avg_load);
6109 * In the presence of smp nice balancing, certain scenarios can have
6110 * max load less than avg load(as we skip the groups at or below
6111 * its cpu_power, while calculating max_load..)
6113 if (busiest->avg_load <= sds->avg_load ||
6114 local->avg_load >= sds->avg_load) {
6115 env->imbalance = 0;
6116 return fix_small_imbalance(env, sds);
6119 if (!busiest->group_imb) {
6121 * Don't want to pull so many tasks that a group would go idle.
6122 * Except of course for the group_imb case, since then we might
6123 * have to drop below capacity to reach cpu-load equilibrium.
6125 load_above_capacity =
6126 (busiest->sum_nr_running - busiest->group_capacity);
6128 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6129 load_above_capacity /= busiest->group_power;
6133 * We're trying to get all the cpus to the average_load, so we don't
6134 * want to push ourselves above the average load, nor do we wish to
6135 * reduce the max loaded cpu below the average load. At the same time,
6136 * we also don't want to reduce the group load below the group capacity
6137 * (so that we can implement power-savings policies etc). Thus we look
6138 * for the minimum possible imbalance.
6140 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6142 /* How much load to actually move to equalise the imbalance */
6143 env->imbalance = min(
6144 max_pull * busiest->group_power,
6145 (sds->avg_load - local->avg_load) * local->group_power
6146 ) / SCHED_POWER_SCALE;
6149 * if *imbalance is less than the average load per runnable task
6150 * there is no guarantee that any tasks will be moved so we'll have
6151 * a think about bumping its value to force at least one task to be
6152 * moved
6154 if (env->imbalance < busiest->load_per_task)
6155 return fix_small_imbalance(env, sds);
6158 /******* find_busiest_group() helpers end here *********************/
6161 * find_busiest_group - Returns the busiest group within the sched_domain
6162 * if there is an imbalance. If there isn't an imbalance, and
6163 * the user has opted for power-savings, it returns a group whose
6164 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6165 * such a group exists.
6167 * Also calculates the amount of weighted load which should be moved
6168 * to restore balance.
6170 * @env: The load balancing environment.
6172 * Return: - The busiest group if imbalance exists.
6173 * - If no imbalance and user has opted for power-savings balance,
6174 * return the least loaded group whose CPUs can be
6175 * put to idle by rebalancing its tasks onto our group.
6177 static struct sched_group *find_busiest_group(struct lb_env *env)
6179 struct sg_lb_stats *local, *busiest;
6180 struct sd_lb_stats sds;
6182 init_sd_lb_stats(&sds);
6185 * Compute the various statistics relavent for load balancing at
6186 * this level.
6188 update_sd_lb_stats(env, &sds);
6189 local = &sds.local_stat;
6190 busiest = &sds.busiest_stat;
6192 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6193 check_asym_packing(env, &sds))
6194 return sds.busiest;
6196 /* There is no busy sibling group to pull tasks from */
6197 if (!sds.busiest || busiest->sum_nr_running == 0)
6198 goto out_balanced;
6200 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6203 * If the busiest group is imbalanced the below checks don't
6204 * work because they assume all things are equal, which typically
6205 * isn't true due to cpus_allowed constraints and the like.
6207 if (busiest->group_imb)
6208 goto force_balance;
6210 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6211 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6212 !busiest->group_has_capacity)
6213 goto force_balance;
6216 * If the local group is more busy than the selected busiest group
6217 * don't try and pull any tasks.
6219 if (local->avg_load >= busiest->avg_load)
6220 goto out_balanced;
6223 * Don't pull any tasks if this group is already above the domain
6224 * average load.
6226 if (local->avg_load >= sds.avg_load)
6227 goto out_balanced;
6229 if (env->idle == CPU_IDLE) {
6231 * This cpu is idle. If the busiest group load doesn't
6232 * have more tasks than the number of available cpu's and
6233 * there is no imbalance between this and busiest group
6234 * wrt to idle cpu's, it is balanced.
6236 if ((local->idle_cpus < busiest->idle_cpus) &&
6237 busiest->sum_nr_running <= busiest->group_weight)
6238 goto out_balanced;
6239 } else {
6241 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6242 * imbalance_pct to be conservative.
6244 if (100 * busiest->avg_load <=
6245 env->sd->imbalance_pct * local->avg_load)
6246 goto out_balanced;
6249 force_balance:
6250 /* Looks like there is an imbalance. Compute it */
6251 calculate_imbalance(env, &sds);
6252 return sds.busiest;
6254 out_balanced:
6255 env->imbalance = 0;
6256 return NULL;
6260 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6262 static struct rq *find_busiest_queue(struct lb_env *env,
6263 struct sched_group *group)
6265 struct rq *busiest = NULL, *rq;
6266 unsigned long busiest_load = 0, busiest_power = 1;
6267 int i;
6269 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6270 unsigned long power, capacity, wl;
6271 enum fbq_type rt;
6273 rq = cpu_rq(i);
6274 rt = fbq_classify_rq(rq);
6277 * We classify groups/runqueues into three groups:
6278 * - regular: there are !numa tasks
6279 * - remote: there are numa tasks that run on the 'wrong' node
6280 * - all: there is no distinction
6282 * In order to avoid migrating ideally placed numa tasks,
6283 * ignore those when there's better options.
6285 * If we ignore the actual busiest queue to migrate another
6286 * task, the next balance pass can still reduce the busiest
6287 * queue by moving tasks around inside the node.
6289 * If we cannot move enough load due to this classification
6290 * the next pass will adjust the group classification and
6291 * allow migration of more tasks.
6293 * Both cases only affect the total convergence complexity.
6295 if (rt > env->fbq_type)
6296 continue;
6298 power = power_of(i);
6299 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6300 if (!capacity)
6301 capacity = fix_small_capacity(env->sd, group);
6303 wl = weighted_cpuload(i);
6306 * When comparing with imbalance, use weighted_cpuload()
6307 * which is not scaled with the cpu power.
6309 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6310 continue;
6313 * For the load comparisons with the other cpu's, consider
6314 * the weighted_cpuload() scaled with the cpu power, so that
6315 * the load can be moved away from the cpu that is potentially
6316 * running at a lower capacity.
6318 * Thus we're looking for max(wl_i / power_i), crosswise
6319 * multiplication to rid ourselves of the division works out
6320 * to: wl_i * power_j > wl_j * power_i; where j is our
6321 * previous maximum.
6323 if (wl * busiest_power > busiest_load * power) {
6324 busiest_load = wl;
6325 busiest_power = power;
6326 busiest = rq;
6330 return busiest;
6334 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6335 * so long as it is large enough.
6337 #define MAX_PINNED_INTERVAL 512
6339 /* Working cpumask for load_balance and load_balance_newidle. */
6340 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6342 static int need_active_balance(struct lb_env *env)
6344 struct sched_domain *sd = env->sd;
6346 if (env->idle == CPU_NEWLY_IDLE) {
6349 * ASYM_PACKING needs to force migrate tasks from busy but
6350 * higher numbered CPUs in order to pack all tasks in the
6351 * lowest numbered CPUs.
6353 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6354 return 1;
6357 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6360 static int active_load_balance_cpu_stop(void *data);
6362 static int should_we_balance(struct lb_env *env)
6364 struct sched_group *sg = env->sd->groups;
6365 struct cpumask *sg_cpus, *sg_mask;
6366 int cpu, balance_cpu = -1;
6369 * In the newly idle case, we will allow all the cpu's
6370 * to do the newly idle load balance.
6372 if (env->idle == CPU_NEWLY_IDLE)
6373 return 1;
6375 sg_cpus = sched_group_cpus(sg);
6376 sg_mask = sched_group_mask(sg);
6377 /* Try to find first idle cpu */
6378 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6379 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6380 continue;
6382 balance_cpu = cpu;
6383 break;
6386 if (balance_cpu == -1)
6387 balance_cpu = group_balance_cpu(sg);
6390 * First idle cpu or the first cpu(busiest) in this sched group
6391 * is eligible for doing load balancing at this and above domains.
6393 return balance_cpu == env->dst_cpu;
6397 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6398 * tasks if there is an imbalance.
6400 static int load_balance(int this_cpu, struct rq *this_rq,
6401 struct sched_domain *sd, enum cpu_idle_type idle,
6402 int *continue_balancing)
6404 int ld_moved, cur_ld_moved, active_balance = 0;
6405 struct sched_domain *sd_parent = sd->parent;
6406 struct sched_group *group;
6407 struct rq *busiest;
6408 unsigned long flags;
6409 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6411 struct lb_env env = {
6412 .sd = sd,
6413 .dst_cpu = this_cpu,
6414 .dst_rq = this_rq,
6415 .dst_grpmask = sched_group_cpus(sd->groups),
6416 .idle = idle,
6417 .loop_break = sched_nr_migrate_break,
6418 .cpus = cpus,
6419 .fbq_type = all,
6423 * For NEWLY_IDLE load_balancing, we don't need to consider
6424 * other cpus in our group
6426 if (idle == CPU_NEWLY_IDLE)
6427 env.dst_grpmask = NULL;
6429 cpumask_copy(cpus, cpu_active_mask);
6431 schedstat_inc(sd, lb_count[idle]);
6433 redo:
6434 if (!should_we_balance(&env)) {
6435 *continue_balancing = 0;
6436 goto out_balanced;
6439 group = find_busiest_group(&env);
6440 if (!group) {
6441 schedstat_inc(sd, lb_nobusyg[idle]);
6442 goto out_balanced;
6445 busiest = find_busiest_queue(&env, group);
6446 if (!busiest) {
6447 schedstat_inc(sd, lb_nobusyq[idle]);
6448 goto out_balanced;
6451 BUG_ON(busiest == env.dst_rq);
6453 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6455 ld_moved = 0;
6456 if (busiest->nr_running > 1) {
6458 * Attempt to move tasks. If find_busiest_group has found
6459 * an imbalance but busiest->nr_running <= 1, the group is
6460 * still unbalanced. ld_moved simply stays zero, so it is
6461 * correctly treated as an imbalance.
6463 env.flags |= LBF_ALL_PINNED;
6464 env.src_cpu = busiest->cpu;
6465 env.src_rq = busiest;
6466 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6468 more_balance:
6469 local_irq_save(flags);
6470 double_rq_lock(env.dst_rq, busiest);
6473 * cur_ld_moved - load moved in current iteration
6474 * ld_moved - cumulative load moved across iterations
6476 cur_ld_moved = move_tasks(&env);
6477 ld_moved += cur_ld_moved;
6478 double_rq_unlock(env.dst_rq, busiest);
6479 local_irq_restore(flags);
6482 * some other cpu did the load balance for us.
6484 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6485 resched_cpu(env.dst_cpu);
6487 if (env.flags & LBF_NEED_BREAK) {
6488 env.flags &= ~LBF_NEED_BREAK;
6489 goto more_balance;
6493 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6494 * us and move them to an alternate dst_cpu in our sched_group
6495 * where they can run. The upper limit on how many times we
6496 * iterate on same src_cpu is dependent on number of cpus in our
6497 * sched_group.
6499 * This changes load balance semantics a bit on who can move
6500 * load to a given_cpu. In addition to the given_cpu itself
6501 * (or a ilb_cpu acting on its behalf where given_cpu is
6502 * nohz-idle), we now have balance_cpu in a position to move
6503 * load to given_cpu. In rare situations, this may cause
6504 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6505 * _independently_ and at _same_ time to move some load to
6506 * given_cpu) causing exceess load to be moved to given_cpu.
6507 * This however should not happen so much in practice and
6508 * moreover subsequent load balance cycles should correct the
6509 * excess load moved.
6511 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6513 /* Prevent to re-select dst_cpu via env's cpus */
6514 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6516 env.dst_rq = cpu_rq(env.new_dst_cpu);
6517 env.dst_cpu = env.new_dst_cpu;
6518 env.flags &= ~LBF_DST_PINNED;
6519 env.loop = 0;
6520 env.loop_break = sched_nr_migrate_break;
6523 * Go back to "more_balance" rather than "redo" since we
6524 * need to continue with same src_cpu.
6526 goto more_balance;
6530 * We failed to reach balance because of affinity.
6532 if (sd_parent) {
6533 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6535 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6536 *group_imbalance = 1;
6537 } else if (*group_imbalance)
6538 *group_imbalance = 0;
6541 /* All tasks on this runqueue were pinned by CPU affinity */
6542 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6543 cpumask_clear_cpu(cpu_of(busiest), cpus);
6544 if (!cpumask_empty(cpus)) {
6545 env.loop = 0;
6546 env.loop_break = sched_nr_migrate_break;
6547 goto redo;
6549 goto out_balanced;
6553 if (!ld_moved) {
6554 schedstat_inc(sd, lb_failed[idle]);
6556 * Increment the failure counter only on periodic balance.
6557 * We do not want newidle balance, which can be very
6558 * frequent, pollute the failure counter causing
6559 * excessive cache_hot migrations and active balances.
6561 if (idle != CPU_NEWLY_IDLE)
6562 sd->nr_balance_failed++;
6564 if (need_active_balance(&env)) {
6565 raw_spin_lock_irqsave(&busiest->lock, flags);
6567 /* don't kick the active_load_balance_cpu_stop,
6568 * if the curr task on busiest cpu can't be
6569 * moved to this_cpu
6571 if (!cpumask_test_cpu(this_cpu,
6572 tsk_cpus_allowed(busiest->curr))) {
6573 raw_spin_unlock_irqrestore(&busiest->lock,
6574 flags);
6575 env.flags |= LBF_ALL_PINNED;
6576 goto out_one_pinned;
6580 * ->active_balance synchronizes accesses to
6581 * ->active_balance_work. Once set, it's cleared
6582 * only after active load balance is finished.
6584 if (!busiest->active_balance) {
6585 busiest->active_balance = 1;
6586 busiest->push_cpu = this_cpu;
6587 active_balance = 1;
6589 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6591 if (active_balance) {
6592 stop_one_cpu_nowait(cpu_of(busiest),
6593 active_load_balance_cpu_stop, busiest,
6594 &busiest->active_balance_work);
6598 * We've kicked active balancing, reset the failure
6599 * counter.
6601 sd->nr_balance_failed = sd->cache_nice_tries+1;
6603 } else
6604 sd->nr_balance_failed = 0;
6606 if (likely(!active_balance)) {
6607 /* We were unbalanced, so reset the balancing interval */
6608 sd->balance_interval = sd->min_interval;
6609 } else {
6611 * If we've begun active balancing, start to back off. This
6612 * case may not be covered by the all_pinned logic if there
6613 * is only 1 task on the busy runqueue (because we don't call
6614 * move_tasks).
6616 if (sd->balance_interval < sd->max_interval)
6617 sd->balance_interval *= 2;
6620 goto out;
6622 out_balanced:
6623 schedstat_inc(sd, lb_balanced[idle]);
6625 sd->nr_balance_failed = 0;
6627 out_one_pinned:
6628 /* tune up the balancing interval */
6629 if (((env.flags & LBF_ALL_PINNED) &&
6630 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6631 (sd->balance_interval < sd->max_interval))
6632 sd->balance_interval *= 2;
6634 ld_moved = 0;
6635 out:
6636 return ld_moved;
6640 * idle_balance is called by schedule() if this_cpu is about to become
6641 * idle. Attempts to pull tasks from other CPUs.
6643 int idle_balance(struct rq *this_rq)
6645 struct sched_domain *sd;
6646 int pulled_task = 0;
6647 unsigned long next_balance = jiffies + HZ;
6648 u64 curr_cost = 0;
6649 int this_cpu = this_rq->cpu;
6651 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6652 return 0;
6655 * Drop the rq->lock, but keep IRQ/preempt disabled.
6657 raw_spin_unlock(&this_rq->lock);
6659 update_blocked_averages(this_cpu);
6660 rcu_read_lock();
6661 for_each_domain(this_cpu, sd) {
6662 unsigned long interval;
6663 int continue_balancing = 1;
6664 u64 t0, domain_cost;
6666 if (!(sd->flags & SD_LOAD_BALANCE))
6667 continue;
6669 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6670 break;
6672 if (sd->flags & SD_BALANCE_NEWIDLE) {
6673 t0 = sched_clock_cpu(this_cpu);
6675 /* If we've pulled tasks over stop searching: */
6676 pulled_task = load_balance(this_cpu, this_rq,
6677 sd, CPU_NEWLY_IDLE,
6678 &continue_balancing);
6680 domain_cost = sched_clock_cpu(this_cpu) - t0;
6681 if (domain_cost > sd->max_newidle_lb_cost)
6682 sd->max_newidle_lb_cost = domain_cost;
6684 curr_cost += domain_cost;
6687 interval = msecs_to_jiffies(sd->balance_interval);
6688 if (time_after(next_balance, sd->last_balance + interval))
6689 next_balance = sd->last_balance + interval;
6690 if (pulled_task)
6691 break;
6693 rcu_read_unlock();
6695 raw_spin_lock(&this_rq->lock);
6698 * While browsing the domains, we released the rq lock.
6699 * A task could have be enqueued in the meantime
6701 if (this_rq->nr_running && !pulled_task)
6702 return 1;
6704 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6706 * We are going idle. next_balance may be set based on
6707 * a busy processor. So reset next_balance.
6709 this_rq->next_balance = next_balance;
6712 if (curr_cost > this_rq->max_idle_balance_cost)
6713 this_rq->max_idle_balance_cost = curr_cost;
6715 return pulled_task;
6719 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6720 * running tasks off the busiest CPU onto idle CPUs. It requires at
6721 * least 1 task to be running on each physical CPU where possible, and
6722 * avoids physical / logical imbalances.
6724 static int active_load_balance_cpu_stop(void *data)
6726 struct rq *busiest_rq = data;
6727 int busiest_cpu = cpu_of(busiest_rq);
6728 int target_cpu = busiest_rq->push_cpu;
6729 struct rq *target_rq = cpu_rq(target_cpu);
6730 struct sched_domain *sd;
6732 raw_spin_lock_irq(&busiest_rq->lock);
6734 /* make sure the requested cpu hasn't gone down in the meantime */
6735 if (unlikely(busiest_cpu != smp_processor_id() ||
6736 !busiest_rq->active_balance))
6737 goto out_unlock;
6739 /* Is there any task to move? */
6740 if (busiest_rq->nr_running <= 1)
6741 goto out_unlock;
6744 * This condition is "impossible", if it occurs
6745 * we need to fix it. Originally reported by
6746 * Bjorn Helgaas on a 128-cpu setup.
6748 BUG_ON(busiest_rq == target_rq);
6750 /* move a task from busiest_rq to target_rq */
6751 double_lock_balance(busiest_rq, target_rq);
6753 /* Search for an sd spanning us and the target CPU. */
6754 rcu_read_lock();
6755 for_each_domain(target_cpu, sd) {
6756 if ((sd->flags & SD_LOAD_BALANCE) &&
6757 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6758 break;
6761 if (likely(sd)) {
6762 struct lb_env env = {
6763 .sd = sd,
6764 .dst_cpu = target_cpu,
6765 .dst_rq = target_rq,
6766 .src_cpu = busiest_rq->cpu,
6767 .src_rq = busiest_rq,
6768 .idle = CPU_IDLE,
6771 schedstat_inc(sd, alb_count);
6773 if (move_one_task(&env))
6774 schedstat_inc(sd, alb_pushed);
6775 else
6776 schedstat_inc(sd, alb_failed);
6778 rcu_read_unlock();
6779 double_unlock_balance(busiest_rq, target_rq);
6780 out_unlock:
6781 busiest_rq->active_balance = 0;
6782 raw_spin_unlock_irq(&busiest_rq->lock);
6783 return 0;
6786 #ifdef CONFIG_NO_HZ_COMMON
6788 * idle load balancing details
6789 * - When one of the busy CPUs notice that there may be an idle rebalancing
6790 * needed, they will kick the idle load balancer, which then does idle
6791 * load balancing for all the idle CPUs.
6793 static struct {
6794 cpumask_var_t idle_cpus_mask;
6795 atomic_t nr_cpus;
6796 unsigned long next_balance; /* in jiffy units */
6797 } nohz ____cacheline_aligned;
6799 static inline int find_new_ilb(void)
6801 int ilb = cpumask_first(nohz.idle_cpus_mask);
6803 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6804 return ilb;
6806 return nr_cpu_ids;
6810 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6811 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6812 * CPU (if there is one).
6814 static void nohz_balancer_kick(void)
6816 int ilb_cpu;
6818 nohz.next_balance++;
6820 ilb_cpu = find_new_ilb();
6822 if (ilb_cpu >= nr_cpu_ids)
6823 return;
6825 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6826 return;
6828 * Use smp_send_reschedule() instead of resched_cpu().
6829 * This way we generate a sched IPI on the target cpu which
6830 * is idle. And the softirq performing nohz idle load balance
6831 * will be run before returning from the IPI.
6833 smp_send_reschedule(ilb_cpu);
6834 return;
6837 static inline void nohz_balance_exit_idle(int cpu)
6839 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6840 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6841 atomic_dec(&nohz.nr_cpus);
6842 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6846 static inline void set_cpu_sd_state_busy(void)
6848 struct sched_domain *sd;
6849 int cpu = smp_processor_id();
6851 rcu_read_lock();
6852 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6854 if (!sd || !sd->nohz_idle)
6855 goto unlock;
6856 sd->nohz_idle = 0;
6858 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6859 unlock:
6860 rcu_read_unlock();
6863 void set_cpu_sd_state_idle(void)
6865 struct sched_domain *sd;
6866 int cpu = smp_processor_id();
6868 rcu_read_lock();
6869 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6871 if (!sd || sd->nohz_idle)
6872 goto unlock;
6873 sd->nohz_idle = 1;
6875 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6876 unlock:
6877 rcu_read_unlock();
6881 * This routine will record that the cpu is going idle with tick stopped.
6882 * This info will be used in performing idle load balancing in the future.
6884 void nohz_balance_enter_idle(int cpu)
6887 * If this cpu is going down, then nothing needs to be done.
6889 if (!cpu_active(cpu))
6890 return;
6892 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6893 return;
6895 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6896 atomic_inc(&nohz.nr_cpus);
6897 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6900 static int sched_ilb_notifier(struct notifier_block *nfb,
6901 unsigned long action, void *hcpu)
6903 switch (action & ~CPU_TASKS_FROZEN) {
6904 case CPU_DYING:
6905 nohz_balance_exit_idle(smp_processor_id());
6906 return NOTIFY_OK;
6907 default:
6908 return NOTIFY_DONE;
6911 #endif
6913 static DEFINE_SPINLOCK(balancing);
6916 * Scale the max load_balance interval with the number of CPUs in the system.
6917 * This trades load-balance latency on larger machines for less cross talk.
6919 void update_max_interval(void)
6921 max_load_balance_interval = HZ*num_online_cpus()/10;
6925 * It checks each scheduling domain to see if it is due to be balanced,
6926 * and initiates a balancing operation if so.
6928 * Balancing parameters are set up in init_sched_domains.
6930 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6932 int continue_balancing = 1;
6933 int cpu = rq->cpu;
6934 unsigned long interval;
6935 struct sched_domain *sd;
6936 /* Earliest time when we have to do rebalance again */
6937 unsigned long next_balance = jiffies + 60*HZ;
6938 int update_next_balance = 0;
6939 int need_serialize, need_decay = 0;
6940 u64 max_cost = 0;
6942 update_blocked_averages(cpu);
6944 rcu_read_lock();
6945 for_each_domain(cpu, sd) {
6947 * Decay the newidle max times here because this is a regular
6948 * visit to all the domains. Decay ~1% per second.
6950 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6951 sd->max_newidle_lb_cost =
6952 (sd->max_newidle_lb_cost * 253) / 256;
6953 sd->next_decay_max_lb_cost = jiffies + HZ;
6954 need_decay = 1;
6956 max_cost += sd->max_newidle_lb_cost;
6958 if (!(sd->flags & SD_LOAD_BALANCE))
6959 continue;
6962 * Stop the load balance at this level. There is another
6963 * CPU in our sched group which is doing load balancing more
6964 * actively.
6966 if (!continue_balancing) {
6967 if (need_decay)
6968 continue;
6969 break;
6972 interval = sd->balance_interval;
6973 if (idle != CPU_IDLE)
6974 interval *= sd->busy_factor;
6976 /* scale ms to jiffies */
6977 interval = msecs_to_jiffies(interval);
6978 interval = clamp(interval, 1UL, max_load_balance_interval);
6980 need_serialize = sd->flags & SD_SERIALIZE;
6982 if (need_serialize) {
6983 if (!spin_trylock(&balancing))
6984 goto out;
6987 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6988 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6990 * The LBF_DST_PINNED logic could have changed
6991 * env->dst_cpu, so we can't know our idle
6992 * state even if we migrated tasks. Update it.
6994 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6996 sd->last_balance = jiffies;
6998 if (need_serialize)
6999 spin_unlock(&balancing);
7000 out:
7001 if (time_after(next_balance, sd->last_balance + interval)) {
7002 next_balance = sd->last_balance + interval;
7003 update_next_balance = 1;
7006 if (need_decay) {
7008 * Ensure the rq-wide value also decays but keep it at a
7009 * reasonable floor to avoid funnies with rq->avg_idle.
7011 rq->max_idle_balance_cost =
7012 max((u64)sysctl_sched_migration_cost, max_cost);
7014 rcu_read_unlock();
7017 * next_balance will be updated only when there is a need.
7018 * When the cpu is attached to null domain for ex, it will not be
7019 * updated.
7021 if (likely(update_next_balance))
7022 rq->next_balance = next_balance;
7025 #ifdef CONFIG_NO_HZ_COMMON
7027 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7028 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7030 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7032 int this_cpu = this_rq->cpu;
7033 struct rq *rq;
7034 int balance_cpu;
7036 if (idle != CPU_IDLE ||
7037 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7038 goto end;
7040 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7041 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7042 continue;
7045 * If this cpu gets work to do, stop the load balancing
7046 * work being done for other cpus. Next load
7047 * balancing owner will pick it up.
7049 if (need_resched())
7050 break;
7052 rq = cpu_rq(balance_cpu);
7054 raw_spin_lock_irq(&rq->lock);
7055 update_rq_clock(rq);
7056 update_idle_cpu_load(rq);
7057 raw_spin_unlock_irq(&rq->lock);
7059 rebalance_domains(rq, CPU_IDLE);
7061 if (time_after(this_rq->next_balance, rq->next_balance))
7062 this_rq->next_balance = rq->next_balance;
7064 nohz.next_balance = this_rq->next_balance;
7065 end:
7066 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7070 * Current heuristic for kicking the idle load balancer in the presence
7071 * of an idle cpu is the system.
7072 * - This rq has more than one task.
7073 * - At any scheduler domain level, this cpu's scheduler group has multiple
7074 * busy cpu's exceeding the group's power.
7075 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7076 * domain span are idle.
7078 static inline int nohz_kick_needed(struct rq *rq)
7080 unsigned long now = jiffies;
7081 struct sched_domain *sd;
7082 struct sched_group_power *sgp;
7083 int nr_busy, cpu = rq->cpu;
7085 if (unlikely(rq->idle_balance))
7086 return 0;
7089 * We may be recently in ticked or tickless idle mode. At the first
7090 * busy tick after returning from idle, we will update the busy stats.
7092 set_cpu_sd_state_busy();
7093 nohz_balance_exit_idle(cpu);
7096 * None are in tickless mode and hence no need for NOHZ idle load
7097 * balancing.
7099 if (likely(!atomic_read(&nohz.nr_cpus)))
7100 return 0;
7102 if (time_before(now, nohz.next_balance))
7103 return 0;
7105 if (rq->nr_running >= 2)
7106 goto need_kick;
7108 rcu_read_lock();
7109 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7111 if (sd) {
7112 sgp = sd->groups->sgp;
7113 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7115 if (nr_busy > 1)
7116 goto need_kick_unlock;
7119 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7121 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7122 sched_domain_span(sd)) < cpu))
7123 goto need_kick_unlock;
7125 rcu_read_unlock();
7126 return 0;
7128 need_kick_unlock:
7129 rcu_read_unlock();
7130 need_kick:
7131 return 1;
7133 #else
7134 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7135 #endif
7138 * run_rebalance_domains is triggered when needed from the scheduler tick.
7139 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7141 static void run_rebalance_domains(struct softirq_action *h)
7143 struct rq *this_rq = this_rq();
7144 enum cpu_idle_type idle = this_rq->idle_balance ?
7145 CPU_IDLE : CPU_NOT_IDLE;
7147 rebalance_domains(this_rq, idle);
7150 * If this cpu has a pending nohz_balance_kick, then do the
7151 * balancing on behalf of the other idle cpus whose ticks are
7152 * stopped.
7154 nohz_idle_balance(this_rq, idle);
7157 static inline int on_null_domain(struct rq *rq)
7159 return !rcu_dereference_sched(rq->sd);
7163 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7165 void trigger_load_balance(struct rq *rq)
7167 /* Don't need to rebalance while attached to NULL domain */
7168 if (unlikely(on_null_domain(rq)))
7169 return;
7171 if (time_after_eq(jiffies, rq->next_balance))
7172 raise_softirq(SCHED_SOFTIRQ);
7173 #ifdef CONFIG_NO_HZ_COMMON
7174 if (nohz_kick_needed(rq))
7175 nohz_balancer_kick();
7176 #endif
7179 static void rq_online_fair(struct rq *rq)
7181 update_sysctl();
7184 static void rq_offline_fair(struct rq *rq)
7186 update_sysctl();
7188 /* Ensure any throttled groups are reachable by pick_next_task */
7189 unthrottle_offline_cfs_rqs(rq);
7192 #endif /* CONFIG_SMP */
7195 * scheduler tick hitting a task of our scheduling class:
7197 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7199 struct cfs_rq *cfs_rq;
7200 struct sched_entity *se = &curr->se;
7202 for_each_sched_entity(se) {
7203 cfs_rq = cfs_rq_of(se);
7204 entity_tick(cfs_rq, se, queued);
7207 if (numabalancing_enabled)
7208 task_tick_numa(rq, curr);
7210 update_rq_runnable_avg(rq, 1);
7214 * called on fork with the child task as argument from the parent's context
7215 * - child not yet on the tasklist
7216 * - preemption disabled
7218 static void task_fork_fair(struct task_struct *p)
7220 struct cfs_rq *cfs_rq;
7221 struct sched_entity *se = &p->se, *curr;
7222 int this_cpu = smp_processor_id();
7223 struct rq *rq = this_rq();
7224 unsigned long flags;
7226 raw_spin_lock_irqsave(&rq->lock, flags);
7228 update_rq_clock(rq);
7230 cfs_rq = task_cfs_rq(current);
7231 curr = cfs_rq->curr;
7234 * Not only the cpu but also the task_group of the parent might have
7235 * been changed after parent->se.parent,cfs_rq were copied to
7236 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7237 * of child point to valid ones.
7239 rcu_read_lock();
7240 __set_task_cpu(p, this_cpu);
7241 rcu_read_unlock();
7243 update_curr(cfs_rq);
7245 if (curr)
7246 se->vruntime = curr->vruntime;
7247 place_entity(cfs_rq, se, 1);
7249 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7251 * Upon rescheduling, sched_class::put_prev_task() will place
7252 * 'current' within the tree based on its new key value.
7254 swap(curr->vruntime, se->vruntime);
7255 resched_task(rq->curr);
7258 se->vruntime -= cfs_rq->min_vruntime;
7260 raw_spin_unlock_irqrestore(&rq->lock, flags);
7264 * Priority of the task has changed. Check to see if we preempt
7265 * the current task.
7267 static void
7268 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7270 if (!p->se.on_rq)
7271 return;
7274 * Reschedule if we are currently running on this runqueue and
7275 * our priority decreased, or if we are not currently running on
7276 * this runqueue and our priority is higher than the current's
7278 if (rq->curr == p) {
7279 if (p->prio > oldprio)
7280 resched_task(rq->curr);
7281 } else
7282 check_preempt_curr(rq, p, 0);
7285 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7287 struct sched_entity *se = &p->se;
7288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7291 * Ensure the task's vruntime is normalized, so that when its
7292 * switched back to the fair class the enqueue_entity(.flags=0) will
7293 * do the right thing.
7295 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7296 * have normalized the vruntime, if it was !on_rq, then only when
7297 * the task is sleeping will it still have non-normalized vruntime.
7299 if (!se->on_rq && p->state != TASK_RUNNING) {
7301 * Fix up our vruntime so that the current sleep doesn't
7302 * cause 'unlimited' sleep bonus.
7304 place_entity(cfs_rq, se, 0);
7305 se->vruntime -= cfs_rq->min_vruntime;
7308 #ifdef CONFIG_SMP
7310 * Remove our load from contribution when we leave sched_fair
7311 * and ensure we don't carry in an old decay_count if we
7312 * switch back.
7314 if (se->avg.decay_count) {
7315 __synchronize_entity_decay(se);
7316 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7318 #endif
7322 * We switched to the sched_fair class.
7324 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7326 if (!p->se.on_rq)
7327 return;
7330 * We were most likely switched from sched_rt, so
7331 * kick off the schedule if running, otherwise just see
7332 * if we can still preempt the current task.
7334 if (rq->curr == p)
7335 resched_task(rq->curr);
7336 else
7337 check_preempt_curr(rq, p, 0);
7340 /* Account for a task changing its policy or group.
7342 * This routine is mostly called to set cfs_rq->curr field when a task
7343 * migrates between groups/classes.
7345 static void set_curr_task_fair(struct rq *rq)
7347 struct sched_entity *se = &rq->curr->se;
7349 for_each_sched_entity(se) {
7350 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7352 set_next_entity(cfs_rq, se);
7353 /* ensure bandwidth has been allocated on our new cfs_rq */
7354 account_cfs_rq_runtime(cfs_rq, 0);
7358 void init_cfs_rq(struct cfs_rq *cfs_rq)
7360 cfs_rq->tasks_timeline = RB_ROOT;
7361 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7362 #ifndef CONFIG_64BIT
7363 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7364 #endif
7365 #ifdef CONFIG_SMP
7366 atomic64_set(&cfs_rq->decay_counter, 1);
7367 atomic_long_set(&cfs_rq->removed_load, 0);
7368 #endif
7371 #ifdef CONFIG_FAIR_GROUP_SCHED
7372 static void task_move_group_fair(struct task_struct *p, int on_rq)
7374 struct sched_entity *se = &p->se;
7375 struct cfs_rq *cfs_rq;
7378 * If the task was not on the rq at the time of this cgroup movement
7379 * it must have been asleep, sleeping tasks keep their ->vruntime
7380 * absolute on their old rq until wakeup (needed for the fair sleeper
7381 * bonus in place_entity()).
7383 * If it was on the rq, we've just 'preempted' it, which does convert
7384 * ->vruntime to a relative base.
7386 * Make sure both cases convert their relative position when migrating
7387 * to another cgroup's rq. This does somewhat interfere with the
7388 * fair sleeper stuff for the first placement, but who cares.
7391 * When !on_rq, vruntime of the task has usually NOT been normalized.
7392 * But there are some cases where it has already been normalized:
7394 * - Moving a forked child which is waiting for being woken up by
7395 * wake_up_new_task().
7396 * - Moving a task which has been woken up by try_to_wake_up() and
7397 * waiting for actually being woken up by sched_ttwu_pending().
7399 * To prevent boost or penalty in the new cfs_rq caused by delta
7400 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7402 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7403 on_rq = 1;
7405 if (!on_rq)
7406 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7407 set_task_rq(p, task_cpu(p));
7408 se->depth = se->parent ? se->parent->depth + 1 : 0;
7409 if (!on_rq) {
7410 cfs_rq = cfs_rq_of(se);
7411 se->vruntime += cfs_rq->min_vruntime;
7412 #ifdef CONFIG_SMP
7414 * migrate_task_rq_fair() will have removed our previous
7415 * contribution, but we must synchronize for ongoing future
7416 * decay.
7418 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7419 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7420 #endif
7424 void free_fair_sched_group(struct task_group *tg)
7426 int i;
7428 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7430 for_each_possible_cpu(i) {
7431 if (tg->cfs_rq)
7432 kfree(tg->cfs_rq[i]);
7433 if (tg->se)
7434 kfree(tg->se[i]);
7437 kfree(tg->cfs_rq);
7438 kfree(tg->se);
7441 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7443 struct cfs_rq *cfs_rq;
7444 struct sched_entity *se;
7445 int i;
7447 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7448 if (!tg->cfs_rq)
7449 goto err;
7450 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7451 if (!tg->se)
7452 goto err;
7454 tg->shares = NICE_0_LOAD;
7456 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7458 for_each_possible_cpu(i) {
7459 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7460 GFP_KERNEL, cpu_to_node(i));
7461 if (!cfs_rq)
7462 goto err;
7464 se = kzalloc_node(sizeof(struct sched_entity),
7465 GFP_KERNEL, cpu_to_node(i));
7466 if (!se)
7467 goto err_free_rq;
7469 init_cfs_rq(cfs_rq);
7470 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7473 return 1;
7475 err_free_rq:
7476 kfree(cfs_rq);
7477 err:
7478 return 0;
7481 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7483 struct rq *rq = cpu_rq(cpu);
7484 unsigned long flags;
7487 * Only empty task groups can be destroyed; so we can speculatively
7488 * check on_list without danger of it being re-added.
7490 if (!tg->cfs_rq[cpu]->on_list)
7491 return;
7493 raw_spin_lock_irqsave(&rq->lock, flags);
7494 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7495 raw_spin_unlock_irqrestore(&rq->lock, flags);
7498 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7499 struct sched_entity *se, int cpu,
7500 struct sched_entity *parent)
7502 struct rq *rq = cpu_rq(cpu);
7504 cfs_rq->tg = tg;
7505 cfs_rq->rq = rq;
7506 init_cfs_rq_runtime(cfs_rq);
7508 tg->cfs_rq[cpu] = cfs_rq;
7509 tg->se[cpu] = se;
7511 /* se could be NULL for root_task_group */
7512 if (!se)
7513 return;
7515 if (!parent) {
7516 se->cfs_rq = &rq->cfs;
7517 se->depth = 0;
7518 } else {
7519 se->cfs_rq = parent->my_q;
7520 se->depth = parent->depth + 1;
7523 se->my_q = cfs_rq;
7524 /* guarantee group entities always have weight */
7525 update_load_set(&se->load, NICE_0_LOAD);
7526 se->parent = parent;
7529 static DEFINE_MUTEX(shares_mutex);
7531 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7533 int i;
7534 unsigned long flags;
7537 * We can't change the weight of the root cgroup.
7539 if (!tg->se[0])
7540 return -EINVAL;
7542 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7544 mutex_lock(&shares_mutex);
7545 if (tg->shares == shares)
7546 goto done;
7548 tg->shares = shares;
7549 for_each_possible_cpu(i) {
7550 struct rq *rq = cpu_rq(i);
7551 struct sched_entity *se;
7553 se = tg->se[i];
7554 /* Propagate contribution to hierarchy */
7555 raw_spin_lock_irqsave(&rq->lock, flags);
7557 /* Possible calls to update_curr() need rq clock */
7558 update_rq_clock(rq);
7559 for_each_sched_entity(se)
7560 update_cfs_shares(group_cfs_rq(se));
7561 raw_spin_unlock_irqrestore(&rq->lock, flags);
7564 done:
7565 mutex_unlock(&shares_mutex);
7566 return 0;
7568 #else /* CONFIG_FAIR_GROUP_SCHED */
7570 void free_fair_sched_group(struct task_group *tg) { }
7572 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7574 return 1;
7577 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7579 #endif /* CONFIG_FAIR_GROUP_SCHED */
7582 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7584 struct sched_entity *se = &task->se;
7585 unsigned int rr_interval = 0;
7588 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7589 * idle runqueue:
7591 if (rq->cfs.load.weight)
7592 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7594 return rr_interval;
7598 * All the scheduling class methods:
7600 const struct sched_class fair_sched_class = {
7601 .next = &idle_sched_class,
7602 .enqueue_task = enqueue_task_fair,
7603 .dequeue_task = dequeue_task_fair,
7604 .yield_task = yield_task_fair,
7605 .yield_to_task = yield_to_task_fair,
7607 .check_preempt_curr = check_preempt_wakeup,
7609 .pick_next_task = pick_next_task_fair,
7610 .put_prev_task = put_prev_task_fair,
7612 #ifdef CONFIG_SMP
7613 .select_task_rq = select_task_rq_fair,
7614 .migrate_task_rq = migrate_task_rq_fair,
7616 .rq_online = rq_online_fair,
7617 .rq_offline = rq_offline_fair,
7619 .task_waking = task_waking_fair,
7620 #endif
7622 .set_curr_task = set_curr_task_fair,
7623 .task_tick = task_tick_fair,
7624 .task_fork = task_fork_fair,
7626 .prio_changed = prio_changed_fair,
7627 .switched_from = switched_from_fair,
7628 .switched_to = switched_to_fair,
7630 .get_rr_interval = get_rr_interval_fair,
7632 #ifdef CONFIG_FAIR_GROUP_SCHED
7633 .task_move_group = task_move_group_fair,
7634 #endif
7637 #ifdef CONFIG_SCHED_DEBUG
7638 void print_cfs_stats(struct seq_file *m, int cpu)
7640 struct cfs_rq *cfs_rq;
7642 rcu_read_lock();
7643 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7644 print_cfs_rq(m, cpu, cfs_rq);
7645 rcu_read_unlock();
7647 #endif
7649 __init void init_sched_fair_class(void)
7651 #ifdef CONFIG_SMP
7652 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7654 #ifdef CONFIG_NO_HZ_COMMON
7655 nohz.next_balance = jiffies;
7656 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7657 cpu_notifier(sched_ilb_notifier, 0);
7658 #endif
7659 #endif /* SMP */