powerpc: export debug registers save function for KVM
[linux-2.6/btrfs-unstable.git] / arch / powerpc / kernel / process.c
blob4d42c4de8b9b26305d437c5aa3c601b80812cfc5
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
68 extern unsigned long _get_SP(void);
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
77 #ifdef CONFIG_PPC_FPU
79 * Make sure the floating-point register state in the
80 * the thread_struct is up to date for task tsk.
82 void flush_fp_to_thread(struct task_struct *tsk)
84 if (tsk->thread.regs) {
86 * We need to disable preemption here because if we didn't,
87 * another process could get scheduled after the regs->msr
88 * test but before we have finished saving the FP registers
89 * to the thread_struct. That process could take over the
90 * FPU, and then when we get scheduled again we would store
91 * bogus values for the remaining FP registers.
93 preempt_disable();
94 if (tsk->thread.regs->msr & MSR_FP) {
95 #ifdef CONFIG_SMP
97 * This should only ever be called for current or
98 * for a stopped child process. Since we save away
99 * the FP register state on context switch on SMP,
100 * there is something wrong if a stopped child appears
101 * to still have its FP state in the CPU registers.
103 BUG_ON(tsk != current);
104 #endif
105 giveup_fpu(tsk);
107 preempt_enable();
110 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
111 #endif
113 void enable_kernel_fp(void)
115 WARN_ON(preemptible());
117 #ifdef CONFIG_SMP
118 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
119 giveup_fpu(current);
120 else
121 giveup_fpu(NULL); /* just enables FP for kernel */
122 #else
123 giveup_fpu(last_task_used_math);
124 #endif /* CONFIG_SMP */
126 EXPORT_SYMBOL(enable_kernel_fp);
128 #ifdef CONFIG_ALTIVEC
129 void enable_kernel_altivec(void)
131 WARN_ON(preemptible());
133 #ifdef CONFIG_SMP
134 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
135 giveup_altivec(current);
136 else
137 giveup_altivec_notask();
138 #else
139 giveup_altivec(last_task_used_altivec);
140 #endif /* CONFIG_SMP */
142 EXPORT_SYMBOL(enable_kernel_altivec);
145 * Make sure the VMX/Altivec register state in the
146 * the thread_struct is up to date for task tsk.
148 void flush_altivec_to_thread(struct task_struct *tsk)
150 if (tsk->thread.regs) {
151 preempt_disable();
152 if (tsk->thread.regs->msr & MSR_VEC) {
153 #ifdef CONFIG_SMP
154 BUG_ON(tsk != current);
155 #endif
156 giveup_altivec(tsk);
158 preempt_enable();
161 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
162 #endif /* CONFIG_ALTIVEC */
164 #ifdef CONFIG_VSX
165 #if 0
166 /* not currently used, but some crazy RAID module might want to later */
167 void enable_kernel_vsx(void)
169 WARN_ON(preemptible());
171 #ifdef CONFIG_SMP
172 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
173 giveup_vsx(current);
174 else
175 giveup_vsx(NULL); /* just enable vsx for kernel - force */
176 #else
177 giveup_vsx(last_task_used_vsx);
178 #endif /* CONFIG_SMP */
180 EXPORT_SYMBOL(enable_kernel_vsx);
181 #endif
183 void giveup_vsx(struct task_struct *tsk)
185 giveup_fpu(tsk);
186 giveup_altivec(tsk);
187 __giveup_vsx(tsk);
190 void flush_vsx_to_thread(struct task_struct *tsk)
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VSX) {
195 #ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197 #endif
198 giveup_vsx(tsk);
200 preempt_enable();
203 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
204 #endif /* CONFIG_VSX */
206 #ifdef CONFIG_SPE
208 void enable_kernel_spe(void)
210 WARN_ON(preemptible());
212 #ifdef CONFIG_SMP
213 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
214 giveup_spe(current);
215 else
216 giveup_spe(NULL); /* just enable SPE for kernel - force */
217 #else
218 giveup_spe(last_task_used_spe);
219 #endif /* __SMP __ */
221 EXPORT_SYMBOL(enable_kernel_spe);
223 void flush_spe_to_thread(struct task_struct *tsk)
225 if (tsk->thread.regs) {
226 preempt_disable();
227 if (tsk->thread.regs->msr & MSR_SPE) {
228 #ifdef CONFIG_SMP
229 BUG_ON(tsk != current);
230 #endif
231 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
232 giveup_spe(tsk);
234 preempt_enable();
237 #endif /* CONFIG_SPE */
239 #ifndef CONFIG_SMP
241 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
242 * and the current task has some state, discard it.
244 void discard_lazy_cpu_state(void)
246 preempt_disable();
247 if (last_task_used_math == current)
248 last_task_used_math = NULL;
249 #ifdef CONFIG_ALTIVEC
250 if (last_task_used_altivec == current)
251 last_task_used_altivec = NULL;
252 #endif /* CONFIG_ALTIVEC */
253 #ifdef CONFIG_VSX
254 if (last_task_used_vsx == current)
255 last_task_used_vsx = NULL;
256 #endif /* CONFIG_VSX */
257 #ifdef CONFIG_SPE
258 if (last_task_used_spe == current)
259 last_task_used_spe = NULL;
260 #endif
261 preempt_enable();
263 #endif /* CONFIG_SMP */
265 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
266 void do_send_trap(struct pt_regs *regs, unsigned long address,
267 unsigned long error_code, int signal_code, int breakpt)
269 siginfo_t info;
271 current->thread.trap_nr = signal_code;
272 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273 11, SIGSEGV) == NOTIFY_STOP)
274 return;
276 /* Deliver the signal to userspace */
277 info.si_signo = SIGTRAP;
278 info.si_errno = breakpt; /* breakpoint or watchpoint id */
279 info.si_code = signal_code;
280 info.si_addr = (void __user *)address;
281 force_sig_info(SIGTRAP, &info, current);
283 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
284 void do_break (struct pt_regs *regs, unsigned long address,
285 unsigned long error_code)
287 siginfo_t info;
289 current->thread.trap_nr = TRAP_HWBKPT;
290 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
291 11, SIGSEGV) == NOTIFY_STOP)
292 return;
294 if (debugger_break_match(regs))
295 return;
297 /* Clear the breakpoint */
298 hw_breakpoint_disable();
300 /* Deliver the signal to userspace */
301 info.si_signo = SIGTRAP;
302 info.si_errno = 0;
303 info.si_code = TRAP_HWBKPT;
304 info.si_addr = (void __user *)address;
305 force_sig_info(SIGTRAP, &info, current);
307 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
309 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
313 * Set the debug registers back to their default "safe" values.
315 static void set_debug_reg_defaults(struct thread_struct *thread)
317 thread->debug.iac1 = thread->debug.iac2 = 0;
318 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
319 thread->debug.iac3 = thread->debug.iac4 = 0;
320 #endif
321 thread->debug.dac1 = thread->debug.dac2 = 0;
322 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
323 thread->debug.dvc1 = thread->debug.dvc2 = 0;
324 #endif
325 thread->debug.dbcr0 = 0;
326 #ifdef CONFIG_BOOKE
328 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
330 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
331 DBCR1_IAC3US | DBCR1_IAC4US;
333 * Force Data Address Compare User/Supervisor bits to be User-only
334 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
336 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
337 #else
338 thread->debug.dbcr1 = 0;
339 #endif
342 static void prime_debug_regs(struct thread_struct *thread)
345 * We could have inherited MSR_DE from userspace, since
346 * it doesn't get cleared on exception entry. Make sure
347 * MSR_DE is clear before we enable any debug events.
349 mtmsr(mfmsr() & ~MSR_DE);
351 mtspr(SPRN_IAC1, thread->debug.iac1);
352 mtspr(SPRN_IAC2, thread->debug.iac2);
353 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
354 mtspr(SPRN_IAC3, thread->debug.iac3);
355 mtspr(SPRN_IAC4, thread->debug.iac4);
356 #endif
357 mtspr(SPRN_DAC1, thread->debug.dac1);
358 mtspr(SPRN_DAC2, thread->debug.dac2);
359 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
360 mtspr(SPRN_DVC1, thread->debug.dvc1);
361 mtspr(SPRN_DVC2, thread->debug.dvc2);
362 #endif
363 mtspr(SPRN_DBCR0, thread->debug.dbcr0);
364 mtspr(SPRN_DBCR1, thread->debug.dbcr1);
365 #ifdef CONFIG_BOOKE
366 mtspr(SPRN_DBCR2, thread->debug.dbcr2);
367 #endif
370 * Unless neither the old or new thread are making use of the
371 * debug registers, set the debug registers from the values
372 * stored in the new thread.
374 void switch_booke_debug_regs(struct thread_struct *new_thread)
376 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
377 || (new_thread->debug.dbcr0 & DBCR0_IDM))
378 prime_debug_regs(new_thread);
380 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
381 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
382 #ifndef CONFIG_HAVE_HW_BREAKPOINT
383 static void set_debug_reg_defaults(struct thread_struct *thread)
385 thread->hw_brk.address = 0;
386 thread->hw_brk.type = 0;
387 set_breakpoint(&thread->hw_brk);
389 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
390 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
392 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
393 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
395 mtspr(SPRN_DAC1, dabr);
396 #ifdef CONFIG_PPC_47x
397 isync();
398 #endif
399 return 0;
401 #elif defined(CONFIG_PPC_BOOK3S)
402 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
404 mtspr(SPRN_DABR, dabr);
405 if (cpu_has_feature(CPU_FTR_DABRX))
406 mtspr(SPRN_DABRX, dabrx);
407 return 0;
409 #else
410 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
412 return -EINVAL;
414 #endif
416 static inline int set_dabr(struct arch_hw_breakpoint *brk)
418 unsigned long dabr, dabrx;
420 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
421 dabrx = ((brk->type >> 3) & 0x7);
423 if (ppc_md.set_dabr)
424 return ppc_md.set_dabr(dabr, dabrx);
426 return __set_dabr(dabr, dabrx);
429 static inline int set_dawr(struct arch_hw_breakpoint *brk)
431 unsigned long dawr, dawrx, mrd;
433 dawr = brk->address;
435 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
436 << (63 - 58); //* read/write bits */
437 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
438 << (63 - 59); //* translate */
439 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
440 >> 3; //* PRIM bits */
441 /* dawr length is stored in field MDR bits 48:53. Matches range in
442 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
443 0b111111=64DW.
444 brk->len is in bytes.
445 This aligns up to double word size, shifts and does the bias.
447 mrd = ((brk->len + 7) >> 3) - 1;
448 dawrx |= (mrd & 0x3f) << (63 - 53);
450 if (ppc_md.set_dawr)
451 return ppc_md.set_dawr(dawr, dawrx);
452 mtspr(SPRN_DAWR, dawr);
453 mtspr(SPRN_DAWRX, dawrx);
454 return 0;
457 int set_breakpoint(struct arch_hw_breakpoint *brk)
459 __get_cpu_var(current_brk) = *brk;
461 if (cpu_has_feature(CPU_FTR_DAWR))
462 return set_dawr(brk);
464 return set_dabr(brk);
467 #ifdef CONFIG_PPC64
468 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
469 #endif
471 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
472 struct arch_hw_breakpoint *b)
474 if (a->address != b->address)
475 return false;
476 if (a->type != b->type)
477 return false;
478 if (a->len != b->len)
479 return false;
480 return true;
482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
483 static inline void tm_reclaim_task(struct task_struct *tsk)
485 /* We have to work out if we're switching from/to a task that's in the
486 * middle of a transaction.
488 * In switching we need to maintain a 2nd register state as
489 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
490 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
491 * (current) FPRs into oldtask->thread.transact_fpr[].
493 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
495 struct thread_struct *thr = &tsk->thread;
497 if (!thr->regs)
498 return;
500 if (!MSR_TM_ACTIVE(thr->regs->msr))
501 goto out_and_saveregs;
503 /* Stash the original thread MSR, as giveup_fpu et al will
504 * modify it. We hold onto it to see whether the task used
505 * FP & vector regs.
507 thr->tm_orig_msr = thr->regs->msr;
509 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
510 "ccr=%lx, msr=%lx, trap=%lx)\n",
511 tsk->pid, thr->regs->nip,
512 thr->regs->ccr, thr->regs->msr,
513 thr->regs->trap);
515 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
517 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
518 tsk->pid);
520 out_and_saveregs:
521 /* Always save the regs here, even if a transaction's not active.
522 * This context-switches a thread's TM info SPRs. We do it here to
523 * be consistent with the restore path (in recheckpoint) which
524 * cannot happen later in _switch().
526 tm_save_sprs(thr);
529 static inline void tm_recheckpoint_new_task(struct task_struct *new)
531 unsigned long msr;
533 if (!cpu_has_feature(CPU_FTR_TM))
534 return;
536 /* Recheckpoint the registers of the thread we're about to switch to.
538 * If the task was using FP, we non-lazily reload both the original and
539 * the speculative FP register states. This is because the kernel
540 * doesn't see if/when a TM rollback occurs, so if we take an FP
541 * unavoidable later, we are unable to determine which set of FP regs
542 * need to be restored.
544 if (!new->thread.regs)
545 return;
547 /* The TM SPRs are restored here, so that TEXASR.FS can be set
548 * before the trecheckpoint and no explosion occurs.
550 tm_restore_sprs(&new->thread);
552 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
553 return;
554 msr = new->thread.tm_orig_msr;
555 /* Recheckpoint to restore original checkpointed register state. */
556 TM_DEBUG("*** tm_recheckpoint of pid %d "
557 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
558 new->pid, new->thread.regs->msr, msr);
560 /* This loads the checkpointed FP/VEC state, if used */
561 tm_recheckpoint(&new->thread, msr);
563 /* This loads the speculative FP/VEC state, if used */
564 if (msr & MSR_FP) {
565 do_load_up_transact_fpu(&new->thread);
566 new->thread.regs->msr |=
567 (MSR_FP | new->thread.fpexc_mode);
569 #ifdef CONFIG_ALTIVEC
570 if (msr & MSR_VEC) {
571 do_load_up_transact_altivec(&new->thread);
572 new->thread.regs->msr |= MSR_VEC;
574 #endif
575 /* We may as well turn on VSX too since all the state is restored now */
576 if (msr & MSR_VSX)
577 new->thread.regs->msr |= MSR_VSX;
579 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
580 "(kernel msr 0x%lx)\n",
581 new->pid, mfmsr());
584 static inline void __switch_to_tm(struct task_struct *prev)
586 if (cpu_has_feature(CPU_FTR_TM)) {
587 tm_enable();
588 tm_reclaim_task(prev);
591 #else
592 #define tm_recheckpoint_new_task(new)
593 #define __switch_to_tm(prev)
594 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
596 struct task_struct *__switch_to(struct task_struct *prev,
597 struct task_struct *new)
599 struct thread_struct *new_thread, *old_thread;
600 unsigned long flags;
601 struct task_struct *last;
602 #ifdef CONFIG_PPC_BOOK3S_64
603 struct ppc64_tlb_batch *batch;
604 #endif
606 /* Back up the TAR across context switches.
607 * Note that the TAR is not available for use in the kernel. (To
608 * provide this, the TAR should be backed up/restored on exception
609 * entry/exit instead, and be in pt_regs. FIXME, this should be in
610 * pt_regs anyway (for debug).)
611 * Save the TAR here before we do treclaim/trecheckpoint as these
612 * will change the TAR.
614 save_tar(&prev->thread);
616 __switch_to_tm(prev);
618 #ifdef CONFIG_SMP
619 /* avoid complexity of lazy save/restore of fpu
620 * by just saving it every time we switch out if
621 * this task used the fpu during the last quantum.
623 * If it tries to use the fpu again, it'll trap and
624 * reload its fp regs. So we don't have to do a restore
625 * every switch, just a save.
626 * -- Cort
628 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
629 giveup_fpu(prev);
630 #ifdef CONFIG_ALTIVEC
632 * If the previous thread used altivec in the last quantum
633 * (thus changing altivec regs) then save them.
634 * We used to check the VRSAVE register but not all apps
635 * set it, so we don't rely on it now (and in fact we need
636 * to save & restore VSCR even if VRSAVE == 0). -- paulus
638 * On SMP we always save/restore altivec regs just to avoid the
639 * complexity of changing processors.
640 * -- Cort
642 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
643 giveup_altivec(prev);
644 #endif /* CONFIG_ALTIVEC */
645 #ifdef CONFIG_VSX
646 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
647 /* VMX and FPU registers are already save here */
648 __giveup_vsx(prev);
649 #endif /* CONFIG_VSX */
650 #ifdef CONFIG_SPE
652 * If the previous thread used spe in the last quantum
653 * (thus changing spe regs) then save them.
655 * On SMP we always save/restore spe regs just to avoid the
656 * complexity of changing processors.
658 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
659 giveup_spe(prev);
660 #endif /* CONFIG_SPE */
662 #else /* CONFIG_SMP */
663 #ifdef CONFIG_ALTIVEC
664 /* Avoid the trap. On smp this this never happens since
665 * we don't set last_task_used_altivec -- Cort
667 if (new->thread.regs && last_task_used_altivec == new)
668 new->thread.regs->msr |= MSR_VEC;
669 #endif /* CONFIG_ALTIVEC */
670 #ifdef CONFIG_VSX
671 if (new->thread.regs && last_task_used_vsx == new)
672 new->thread.regs->msr |= MSR_VSX;
673 #endif /* CONFIG_VSX */
674 #ifdef CONFIG_SPE
675 /* Avoid the trap. On smp this this never happens since
676 * we don't set last_task_used_spe
678 if (new->thread.regs && last_task_used_spe == new)
679 new->thread.regs->msr |= MSR_SPE;
680 #endif /* CONFIG_SPE */
682 #endif /* CONFIG_SMP */
684 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
685 switch_booke_debug_regs(&new->thread);
686 #else
688 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
689 * schedule DABR
691 #ifndef CONFIG_HAVE_HW_BREAKPOINT
692 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
693 set_breakpoint(&new->thread.hw_brk);
694 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
695 #endif
698 new_thread = &new->thread;
699 old_thread = &current->thread;
701 #ifdef CONFIG_PPC64
703 * Collect processor utilization data per process
705 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
706 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
707 long unsigned start_tb, current_tb;
708 start_tb = old_thread->start_tb;
709 cu->current_tb = current_tb = mfspr(SPRN_PURR);
710 old_thread->accum_tb += (current_tb - start_tb);
711 new_thread->start_tb = current_tb;
713 #endif /* CONFIG_PPC64 */
715 #ifdef CONFIG_PPC_BOOK3S_64
716 batch = &__get_cpu_var(ppc64_tlb_batch);
717 if (batch->active) {
718 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
719 if (batch->index)
720 __flush_tlb_pending(batch);
721 batch->active = 0;
723 #endif /* CONFIG_PPC_BOOK3S_64 */
725 local_irq_save(flags);
728 * We can't take a PMU exception inside _switch() since there is a
729 * window where the kernel stack SLB and the kernel stack are out
730 * of sync. Hard disable here.
732 hard_irq_disable();
734 tm_recheckpoint_new_task(new);
736 last = _switch(old_thread, new_thread);
738 #ifdef CONFIG_PPC_BOOK3S_64
739 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
740 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
741 batch = &__get_cpu_var(ppc64_tlb_batch);
742 batch->active = 1;
744 #endif /* CONFIG_PPC_BOOK3S_64 */
746 local_irq_restore(flags);
748 return last;
751 static int instructions_to_print = 16;
753 static void show_instructions(struct pt_regs *regs)
755 int i;
756 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
757 sizeof(int));
759 printk("Instruction dump:");
761 for (i = 0; i < instructions_to_print; i++) {
762 int instr;
764 if (!(i % 8))
765 printk("\n");
767 #if !defined(CONFIG_BOOKE)
768 /* If executing with the IMMU off, adjust pc rather
769 * than print XXXXXXXX.
771 if (!(regs->msr & MSR_IR))
772 pc = (unsigned long)phys_to_virt(pc);
773 #endif
775 /* We use __get_user here *only* to avoid an OOPS on a
776 * bad address because the pc *should* only be a
777 * kernel address.
779 if (!__kernel_text_address(pc) ||
780 __get_user(instr, (unsigned int __user *)pc)) {
781 printk(KERN_CONT "XXXXXXXX ");
782 } else {
783 if (regs->nip == pc)
784 printk(KERN_CONT "<%08x> ", instr);
785 else
786 printk(KERN_CONT "%08x ", instr);
789 pc += sizeof(int);
792 printk("\n");
795 static struct regbit {
796 unsigned long bit;
797 const char *name;
798 } msr_bits[] = {
799 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
800 {MSR_SF, "SF"},
801 {MSR_HV, "HV"},
802 #endif
803 {MSR_VEC, "VEC"},
804 {MSR_VSX, "VSX"},
805 #ifdef CONFIG_BOOKE
806 {MSR_CE, "CE"},
807 #endif
808 {MSR_EE, "EE"},
809 {MSR_PR, "PR"},
810 {MSR_FP, "FP"},
811 {MSR_ME, "ME"},
812 #ifdef CONFIG_BOOKE
813 {MSR_DE, "DE"},
814 #else
815 {MSR_SE, "SE"},
816 {MSR_BE, "BE"},
817 #endif
818 {MSR_IR, "IR"},
819 {MSR_DR, "DR"},
820 {MSR_PMM, "PMM"},
821 #ifndef CONFIG_BOOKE
822 {MSR_RI, "RI"},
823 {MSR_LE, "LE"},
824 #endif
825 {0, NULL}
828 static void printbits(unsigned long val, struct regbit *bits)
830 const char *sep = "";
832 printk("<");
833 for (; bits->bit; ++bits)
834 if (val & bits->bit) {
835 printk("%s%s", sep, bits->name);
836 sep = ",";
838 printk(">");
841 #ifdef CONFIG_PPC64
842 #define REG "%016lx"
843 #define REGS_PER_LINE 4
844 #define LAST_VOLATILE 13
845 #else
846 #define REG "%08lx"
847 #define REGS_PER_LINE 8
848 #define LAST_VOLATILE 12
849 #endif
851 void show_regs(struct pt_regs * regs)
853 int i, trap;
855 show_regs_print_info(KERN_DEFAULT);
857 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
858 regs->nip, regs->link, regs->ctr);
859 printk("REGS: %p TRAP: %04lx %s (%s)\n",
860 regs, regs->trap, print_tainted(), init_utsname()->release);
861 printk("MSR: "REG" ", regs->msr);
862 printbits(regs->msr, msr_bits);
863 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
864 #ifdef CONFIG_PPC64
865 printk("SOFTE: %ld\n", regs->softe);
866 #endif
867 trap = TRAP(regs);
868 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
869 printk("CFAR: "REG"\n", regs->orig_gpr3);
870 if (trap == 0x300 || trap == 0x600)
871 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
872 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
873 #else
874 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
875 #endif
877 for (i = 0; i < 32; i++) {
878 if ((i % REGS_PER_LINE) == 0)
879 printk("\nGPR%02d: ", i);
880 printk(REG " ", regs->gpr[i]);
881 if (i == LAST_VOLATILE && !FULL_REGS(regs))
882 break;
884 printk("\n");
885 #ifdef CONFIG_KALLSYMS
887 * Lookup NIP late so we have the best change of getting the
888 * above info out without failing
890 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
891 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
892 #endif
893 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
894 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
895 #endif
896 show_stack(current, (unsigned long *) regs->gpr[1]);
897 if (!user_mode(regs))
898 show_instructions(regs);
901 void exit_thread(void)
903 discard_lazy_cpu_state();
906 void flush_thread(void)
908 discard_lazy_cpu_state();
910 #ifdef CONFIG_HAVE_HW_BREAKPOINT
911 flush_ptrace_hw_breakpoint(current);
912 #else /* CONFIG_HAVE_HW_BREAKPOINT */
913 set_debug_reg_defaults(&current->thread);
914 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
917 void
918 release_thread(struct task_struct *t)
923 * this gets called so that we can store coprocessor state into memory and
924 * copy the current task into the new thread.
926 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
928 flush_fp_to_thread(src);
929 flush_altivec_to_thread(src);
930 flush_vsx_to_thread(src);
931 flush_spe_to_thread(src);
933 *dst = *src;
935 clear_task_ebb(dst);
937 return 0;
941 * Copy a thread..
943 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
945 int copy_thread(unsigned long clone_flags, unsigned long usp,
946 unsigned long arg, struct task_struct *p)
948 struct pt_regs *childregs, *kregs;
949 extern void ret_from_fork(void);
950 extern void ret_from_kernel_thread(void);
951 void (*f)(void);
952 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
954 /* Copy registers */
955 sp -= sizeof(struct pt_regs);
956 childregs = (struct pt_regs *) sp;
957 if (unlikely(p->flags & PF_KTHREAD)) {
958 struct thread_info *ti = (void *)task_stack_page(p);
959 memset(childregs, 0, sizeof(struct pt_regs));
960 childregs->gpr[1] = sp + sizeof(struct pt_regs);
961 childregs->gpr[14] = usp; /* function */
962 #ifdef CONFIG_PPC64
963 clear_tsk_thread_flag(p, TIF_32BIT);
964 childregs->softe = 1;
965 #endif
966 childregs->gpr[15] = arg;
967 p->thread.regs = NULL; /* no user register state */
968 ti->flags |= _TIF_RESTOREALL;
969 f = ret_from_kernel_thread;
970 } else {
971 struct pt_regs *regs = current_pt_regs();
972 CHECK_FULL_REGS(regs);
973 *childregs = *regs;
974 if (usp)
975 childregs->gpr[1] = usp;
976 p->thread.regs = childregs;
977 childregs->gpr[3] = 0; /* Result from fork() */
978 if (clone_flags & CLONE_SETTLS) {
979 #ifdef CONFIG_PPC64
980 if (!is_32bit_task())
981 childregs->gpr[13] = childregs->gpr[6];
982 else
983 #endif
984 childregs->gpr[2] = childregs->gpr[6];
987 f = ret_from_fork;
989 sp -= STACK_FRAME_OVERHEAD;
992 * The way this works is that at some point in the future
993 * some task will call _switch to switch to the new task.
994 * That will pop off the stack frame created below and start
995 * the new task running at ret_from_fork. The new task will
996 * do some house keeping and then return from the fork or clone
997 * system call, using the stack frame created above.
999 ((unsigned long *)sp)[0] = 0;
1000 sp -= sizeof(struct pt_regs);
1001 kregs = (struct pt_regs *) sp;
1002 sp -= STACK_FRAME_OVERHEAD;
1003 p->thread.ksp = sp;
1004 #ifdef CONFIG_PPC32
1005 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1006 _ALIGN_UP(sizeof(struct thread_info), 16);
1007 #endif
1008 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1009 p->thread.ptrace_bps[0] = NULL;
1010 #endif
1012 p->thread.fp_save_area = NULL;
1013 #ifdef CONFIG_ALTIVEC
1014 p->thread.vr_save_area = NULL;
1015 #endif
1017 #ifdef CONFIG_PPC_STD_MMU_64
1018 if (mmu_has_feature(MMU_FTR_SLB)) {
1019 unsigned long sp_vsid;
1020 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1022 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1023 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1024 << SLB_VSID_SHIFT_1T;
1025 else
1026 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1027 << SLB_VSID_SHIFT;
1028 sp_vsid |= SLB_VSID_KERNEL | llp;
1029 p->thread.ksp_vsid = sp_vsid;
1031 #endif /* CONFIG_PPC_STD_MMU_64 */
1032 #ifdef CONFIG_PPC64
1033 if (cpu_has_feature(CPU_FTR_DSCR)) {
1034 p->thread.dscr_inherit = current->thread.dscr_inherit;
1035 p->thread.dscr = current->thread.dscr;
1037 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1038 p->thread.ppr = INIT_PPR;
1039 #endif
1041 * The PPC64 ABI makes use of a TOC to contain function
1042 * pointers. The function (ret_from_except) is actually a pointer
1043 * to the TOC entry. The first entry is a pointer to the actual
1044 * function.
1046 #ifdef CONFIG_PPC64
1047 kregs->nip = *((unsigned long *)f);
1048 #else
1049 kregs->nip = (unsigned long)f;
1050 #endif
1051 return 0;
1055 * Set up a thread for executing a new program
1057 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1059 #ifdef CONFIG_PPC64
1060 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1061 #endif
1064 * If we exec out of a kernel thread then thread.regs will not be
1065 * set. Do it now.
1067 if (!current->thread.regs) {
1068 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1069 current->thread.regs = regs - 1;
1072 memset(regs->gpr, 0, sizeof(regs->gpr));
1073 regs->ctr = 0;
1074 regs->link = 0;
1075 regs->xer = 0;
1076 regs->ccr = 0;
1077 regs->gpr[1] = sp;
1080 * We have just cleared all the nonvolatile GPRs, so make
1081 * FULL_REGS(regs) return true. This is necessary to allow
1082 * ptrace to examine the thread immediately after exec.
1084 regs->trap &= ~1UL;
1086 #ifdef CONFIG_PPC32
1087 regs->mq = 0;
1088 regs->nip = start;
1089 regs->msr = MSR_USER;
1090 #else
1091 if (!is_32bit_task()) {
1092 unsigned long entry, toc;
1094 /* start is a relocated pointer to the function descriptor for
1095 * the elf _start routine. The first entry in the function
1096 * descriptor is the entry address of _start and the second
1097 * entry is the TOC value we need to use.
1099 __get_user(entry, (unsigned long __user *)start);
1100 __get_user(toc, (unsigned long __user *)start+1);
1102 /* Check whether the e_entry function descriptor entries
1103 * need to be relocated before we can use them.
1105 if (load_addr != 0) {
1106 entry += load_addr;
1107 toc += load_addr;
1109 regs->nip = entry;
1110 regs->gpr[2] = toc;
1111 regs->msr = MSR_USER64;
1112 } else {
1113 regs->nip = start;
1114 regs->gpr[2] = 0;
1115 regs->msr = MSR_USER32;
1117 #endif
1118 discard_lazy_cpu_state();
1119 #ifdef CONFIG_VSX
1120 current->thread.used_vsr = 0;
1121 #endif
1122 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1123 current->thread.fp_save_area = NULL;
1124 #ifdef CONFIG_ALTIVEC
1125 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1126 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1127 current->thread.vr_save_area = NULL;
1128 current->thread.vrsave = 0;
1129 current->thread.used_vr = 0;
1130 #endif /* CONFIG_ALTIVEC */
1131 #ifdef CONFIG_SPE
1132 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1133 current->thread.acc = 0;
1134 current->thread.spefscr = 0;
1135 current->thread.used_spe = 0;
1136 #endif /* CONFIG_SPE */
1137 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1138 if (cpu_has_feature(CPU_FTR_TM))
1139 regs->msr |= MSR_TM;
1140 current->thread.tm_tfhar = 0;
1141 current->thread.tm_texasr = 0;
1142 current->thread.tm_tfiar = 0;
1143 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1146 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1147 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1149 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1151 struct pt_regs *regs = tsk->thread.regs;
1153 /* This is a bit hairy. If we are an SPE enabled processor
1154 * (have embedded fp) we store the IEEE exception enable flags in
1155 * fpexc_mode. fpexc_mode is also used for setting FP exception
1156 * mode (asyn, precise, disabled) for 'Classic' FP. */
1157 if (val & PR_FP_EXC_SW_ENABLE) {
1158 #ifdef CONFIG_SPE
1159 if (cpu_has_feature(CPU_FTR_SPE)) {
1160 tsk->thread.fpexc_mode = val &
1161 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1162 return 0;
1163 } else {
1164 return -EINVAL;
1166 #else
1167 return -EINVAL;
1168 #endif
1171 /* on a CONFIG_SPE this does not hurt us. The bits that
1172 * __pack_fe01 use do not overlap with bits used for
1173 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1174 * on CONFIG_SPE implementations are reserved so writing to
1175 * them does not change anything */
1176 if (val > PR_FP_EXC_PRECISE)
1177 return -EINVAL;
1178 tsk->thread.fpexc_mode = __pack_fe01(val);
1179 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1180 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1181 | tsk->thread.fpexc_mode;
1182 return 0;
1185 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1187 unsigned int val;
1189 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1190 #ifdef CONFIG_SPE
1191 if (cpu_has_feature(CPU_FTR_SPE))
1192 val = tsk->thread.fpexc_mode;
1193 else
1194 return -EINVAL;
1195 #else
1196 return -EINVAL;
1197 #endif
1198 else
1199 val = __unpack_fe01(tsk->thread.fpexc_mode);
1200 return put_user(val, (unsigned int __user *) adr);
1203 int set_endian(struct task_struct *tsk, unsigned int val)
1205 struct pt_regs *regs = tsk->thread.regs;
1207 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1208 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1209 return -EINVAL;
1211 if (regs == NULL)
1212 return -EINVAL;
1214 if (val == PR_ENDIAN_BIG)
1215 regs->msr &= ~MSR_LE;
1216 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1217 regs->msr |= MSR_LE;
1218 else
1219 return -EINVAL;
1221 return 0;
1224 int get_endian(struct task_struct *tsk, unsigned long adr)
1226 struct pt_regs *regs = tsk->thread.regs;
1227 unsigned int val;
1229 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1230 !cpu_has_feature(CPU_FTR_REAL_LE))
1231 return -EINVAL;
1233 if (regs == NULL)
1234 return -EINVAL;
1236 if (regs->msr & MSR_LE) {
1237 if (cpu_has_feature(CPU_FTR_REAL_LE))
1238 val = PR_ENDIAN_LITTLE;
1239 else
1240 val = PR_ENDIAN_PPC_LITTLE;
1241 } else
1242 val = PR_ENDIAN_BIG;
1244 return put_user(val, (unsigned int __user *)adr);
1247 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1249 tsk->thread.align_ctl = val;
1250 return 0;
1253 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1255 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1258 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1259 unsigned long nbytes)
1261 unsigned long stack_page;
1262 unsigned long cpu = task_cpu(p);
1265 * Avoid crashing if the stack has overflowed and corrupted
1266 * task_cpu(p), which is in the thread_info struct.
1268 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1269 stack_page = (unsigned long) hardirq_ctx[cpu];
1270 if (sp >= stack_page + sizeof(struct thread_struct)
1271 && sp <= stack_page + THREAD_SIZE - nbytes)
1272 return 1;
1274 stack_page = (unsigned long) softirq_ctx[cpu];
1275 if (sp >= stack_page + sizeof(struct thread_struct)
1276 && sp <= stack_page + THREAD_SIZE - nbytes)
1277 return 1;
1279 return 0;
1282 int validate_sp(unsigned long sp, struct task_struct *p,
1283 unsigned long nbytes)
1285 unsigned long stack_page = (unsigned long)task_stack_page(p);
1287 if (sp >= stack_page + sizeof(struct thread_struct)
1288 && sp <= stack_page + THREAD_SIZE - nbytes)
1289 return 1;
1291 return valid_irq_stack(sp, p, nbytes);
1294 EXPORT_SYMBOL(validate_sp);
1296 unsigned long get_wchan(struct task_struct *p)
1298 unsigned long ip, sp;
1299 int count = 0;
1301 if (!p || p == current || p->state == TASK_RUNNING)
1302 return 0;
1304 sp = p->thread.ksp;
1305 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1306 return 0;
1308 do {
1309 sp = *(unsigned long *)sp;
1310 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1311 return 0;
1312 if (count > 0) {
1313 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1314 if (!in_sched_functions(ip))
1315 return ip;
1317 } while (count++ < 16);
1318 return 0;
1321 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1323 void show_stack(struct task_struct *tsk, unsigned long *stack)
1325 unsigned long sp, ip, lr, newsp;
1326 int count = 0;
1327 int firstframe = 1;
1328 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1329 int curr_frame = current->curr_ret_stack;
1330 extern void return_to_handler(void);
1331 unsigned long rth = (unsigned long)return_to_handler;
1332 unsigned long mrth = -1;
1333 #ifdef CONFIG_PPC64
1334 extern void mod_return_to_handler(void);
1335 rth = *(unsigned long *)rth;
1336 mrth = (unsigned long)mod_return_to_handler;
1337 mrth = *(unsigned long *)mrth;
1338 #endif
1339 #endif
1341 sp = (unsigned long) stack;
1342 if (tsk == NULL)
1343 tsk = current;
1344 if (sp == 0) {
1345 if (tsk == current)
1346 asm("mr %0,1" : "=r" (sp));
1347 else
1348 sp = tsk->thread.ksp;
1351 lr = 0;
1352 printk("Call Trace:\n");
1353 do {
1354 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1355 return;
1357 stack = (unsigned long *) sp;
1358 newsp = stack[0];
1359 ip = stack[STACK_FRAME_LR_SAVE];
1360 if (!firstframe || ip != lr) {
1361 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1362 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1363 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1364 printk(" (%pS)",
1365 (void *)current->ret_stack[curr_frame].ret);
1366 curr_frame--;
1368 #endif
1369 if (firstframe)
1370 printk(" (unreliable)");
1371 printk("\n");
1373 firstframe = 0;
1376 * See if this is an exception frame.
1377 * We look for the "regshere" marker in the current frame.
1379 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1380 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1381 struct pt_regs *regs = (struct pt_regs *)
1382 (sp + STACK_FRAME_OVERHEAD);
1383 lr = regs->link;
1384 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1385 regs->trap, (void *)regs->nip, (void *)lr);
1386 firstframe = 1;
1389 sp = newsp;
1390 } while (count++ < kstack_depth_to_print);
1393 #ifdef CONFIG_PPC64
1394 /* Called with hard IRQs off */
1395 void notrace __ppc64_runlatch_on(void)
1397 struct thread_info *ti = current_thread_info();
1398 unsigned long ctrl;
1400 ctrl = mfspr(SPRN_CTRLF);
1401 ctrl |= CTRL_RUNLATCH;
1402 mtspr(SPRN_CTRLT, ctrl);
1404 ti->local_flags |= _TLF_RUNLATCH;
1407 /* Called with hard IRQs off */
1408 void notrace __ppc64_runlatch_off(void)
1410 struct thread_info *ti = current_thread_info();
1411 unsigned long ctrl;
1413 ti->local_flags &= ~_TLF_RUNLATCH;
1415 ctrl = mfspr(SPRN_CTRLF);
1416 ctrl &= ~CTRL_RUNLATCH;
1417 mtspr(SPRN_CTRLT, ctrl);
1419 #endif /* CONFIG_PPC64 */
1421 unsigned long arch_align_stack(unsigned long sp)
1423 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1424 sp -= get_random_int() & ~PAGE_MASK;
1425 return sp & ~0xf;
1428 static inline unsigned long brk_rnd(void)
1430 unsigned long rnd = 0;
1432 /* 8MB for 32bit, 1GB for 64bit */
1433 if (is_32bit_task())
1434 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1435 else
1436 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1438 return rnd << PAGE_SHIFT;
1441 unsigned long arch_randomize_brk(struct mm_struct *mm)
1443 unsigned long base = mm->brk;
1444 unsigned long ret;
1446 #ifdef CONFIG_PPC_STD_MMU_64
1448 * If we are using 1TB segments and we are allowed to randomise
1449 * the heap, we can put it above 1TB so it is backed by a 1TB
1450 * segment. Otherwise the heap will be in the bottom 1TB
1451 * which always uses 256MB segments and this may result in a
1452 * performance penalty.
1454 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1455 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1456 #endif
1458 ret = PAGE_ALIGN(base + brk_rnd());
1460 if (ret < mm->brk)
1461 return mm->brk;
1463 return ret;
1466 unsigned long randomize_et_dyn(unsigned long base)
1468 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1470 if (ret < base)
1471 return base;
1473 return ret;