Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/btrfs-unstable.git] / kernel / events / uprobes.c
blobc445e392e93ff1a977f2f61ca25dc69de7e61bcc
1 /*
2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
41 #include <linux/uprobes.h>
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
46 static struct rb_root uprobes_tree = RB_ROOT;
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
60 static struct percpu_rw_semaphore dup_mmap_sem;
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
65 struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
74 unsigned long flags;
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
86 struct arch_uprobe arch;
89 struct return_instance {
90 struct uprobe *uprobe;
91 unsigned long func;
92 unsigned long orig_ret_vaddr; /* original return address */
93 bool chained; /* true, if instance is nested */
95 struct return_instance *next; /* keep as stack */
99 * Execute out of line area: anonymous executable mapping installed
100 * by the probed task to execute the copy of the original instruction
101 * mangled by set_swbp().
103 * On a breakpoint hit, thread contests for a slot. It frees the
104 * slot after singlestep. Currently a fixed number of slots are
105 * allocated.
107 struct xol_area {
108 wait_queue_head_t wq; /* if all slots are busy */
109 atomic_t slot_count; /* number of in-use slots */
110 unsigned long *bitmap; /* 0 = free slot */
111 struct page *page;
114 * We keep the vma's vm_start rather than a pointer to the vma
115 * itself. The probed process or a naughty kernel module could make
116 * the vma go away, and we must handle that reasonably gracefully.
118 unsigned long vaddr; /* Page(s) of instruction slots */
122 * valid_vma: Verify if the specified vma is an executable vma
123 * Relax restrictions while unregistering: vm_flags might have
124 * changed after breakpoint was inserted.
125 * - is_register: indicates if we are in register context.
126 * - Return 1 if the specified virtual address is in an
127 * executable vma.
129 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
131 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
133 if (is_register)
134 flags |= VM_WRITE;
136 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
141 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
146 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
150 * __replace_page - replace page in vma by new page.
151 * based on replace_page in mm/ksm.c
153 * @vma: vma that holds the pte pointing to page
154 * @addr: address the old @page is mapped at
155 * @page: the cowed page we are replacing by kpage
156 * @kpage: the modified page we replace page by
158 * Returns 0 on success, -EFAULT on failure.
160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161 struct page *page, struct page *kpage)
163 struct mm_struct *mm = vma->vm_mm;
164 spinlock_t *ptl;
165 pte_t *ptep;
166 int err;
167 /* For mmu_notifiers */
168 const unsigned long mmun_start = addr;
169 const unsigned long mmun_end = addr + PAGE_SIZE;
171 /* For try_to_free_swap() and munlock_vma_page() below */
172 lock_page(page);
174 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
175 err = -EAGAIN;
176 ptep = page_check_address(page, mm, addr, &ptl, 0);
177 if (!ptep)
178 goto unlock;
180 get_page(kpage);
181 page_add_new_anon_rmap(kpage, vma, addr);
183 if (!PageAnon(page)) {
184 dec_mm_counter(mm, MM_FILEPAGES);
185 inc_mm_counter(mm, MM_ANONPAGES);
188 flush_cache_page(vma, addr, pte_pfn(*ptep));
189 ptep_clear_flush(vma, addr, ptep);
190 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
192 page_remove_rmap(page);
193 if (!page_mapped(page))
194 try_to_free_swap(page);
195 pte_unmap_unlock(ptep, ptl);
197 if (vma->vm_flags & VM_LOCKED)
198 munlock_vma_page(page);
199 put_page(page);
201 err = 0;
202 unlock:
203 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
204 unlock_page(page);
205 return err;
209 * is_swbp_insn - check if instruction is breakpoint instruction.
210 * @insn: instruction to be checked.
211 * Default implementation of is_swbp_insn
212 * Returns true if @insn is a breakpoint instruction.
214 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
216 return *insn == UPROBE_SWBP_INSN;
220 * is_trap_insn - check if instruction is breakpoint instruction.
221 * @insn: instruction to be checked.
222 * Default implementation of is_trap_insn
223 * Returns true if @insn is a breakpoint instruction.
225 * This function is needed for the case where an architecture has multiple
226 * trap instructions (like powerpc).
228 bool __weak is_trap_insn(uprobe_opcode_t *insn)
230 return is_swbp_insn(insn);
233 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
235 void *kaddr = kmap_atomic(page);
236 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
237 kunmap_atomic(kaddr);
240 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
242 void *kaddr = kmap_atomic(page);
243 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
244 kunmap_atomic(kaddr);
247 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
249 uprobe_opcode_t old_opcode;
250 bool is_swbp;
253 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
254 * We do not check if it is any other 'trap variant' which could
255 * be conditional trap instruction such as the one powerpc supports.
257 * The logic is that we do not care if the underlying instruction
258 * is a trap variant; uprobes always wins over any other (gdb)
259 * breakpoint.
261 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
262 is_swbp = is_swbp_insn(&old_opcode);
264 if (is_swbp_insn(new_opcode)) {
265 if (is_swbp) /* register: already installed? */
266 return 0;
267 } else {
268 if (!is_swbp) /* unregister: was it changed by us? */
269 return 0;
272 return 1;
276 * NOTE:
277 * Expect the breakpoint instruction to be the smallest size instruction for
278 * the architecture. If an arch has variable length instruction and the
279 * breakpoint instruction is not of the smallest length instruction
280 * supported by that architecture then we need to modify is_trap_at_addr and
281 * uprobe_write_opcode accordingly. This would never be a problem for archs
282 * that have fixed length instructions.
284 * uprobe_write_opcode - write the opcode at a given virtual address.
285 * @mm: the probed process address space.
286 * @vaddr: the virtual address to store the opcode.
287 * @opcode: opcode to be written at @vaddr.
289 * Called with mm->mmap_sem held for write.
290 * Return 0 (success) or a negative errno.
292 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
293 uprobe_opcode_t opcode)
295 struct page *old_page, *new_page;
296 struct vm_area_struct *vma;
297 int ret;
299 retry:
300 /* Read the page with vaddr into memory */
301 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
302 if (ret <= 0)
303 return ret;
305 ret = verify_opcode(old_page, vaddr, &opcode);
306 if (ret <= 0)
307 goto put_old;
309 ret = anon_vma_prepare(vma);
310 if (ret)
311 goto put_old;
313 ret = -ENOMEM;
314 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315 if (!new_page)
316 goto put_old;
318 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
319 goto put_new;
321 __SetPageUptodate(new_page);
322 copy_highpage(new_page, old_page);
323 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
325 ret = __replace_page(vma, vaddr, old_page, new_page);
326 if (ret)
327 mem_cgroup_uncharge_page(new_page);
329 put_new:
330 page_cache_release(new_page);
331 put_old:
332 put_page(old_page);
334 if (unlikely(ret == -EAGAIN))
335 goto retry;
336 return ret;
340 * set_swbp - store breakpoint at a given address.
341 * @auprobe: arch specific probepoint information.
342 * @mm: the probed process address space.
343 * @vaddr: the virtual address to insert the opcode.
345 * For mm @mm, store the breakpoint instruction at @vaddr.
346 * Return 0 (success) or a negative errno.
348 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
350 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
354 * set_orig_insn - Restore the original instruction.
355 * @mm: the probed process address space.
356 * @auprobe: arch specific probepoint information.
357 * @vaddr: the virtual address to insert the opcode.
359 * For mm @mm, restore the original opcode (opcode) at @vaddr.
360 * Return 0 (success) or a negative errno.
362 int __weak
363 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
365 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
368 static int match_uprobe(struct uprobe *l, struct uprobe *r)
370 if (l->inode < r->inode)
371 return -1;
373 if (l->inode > r->inode)
374 return 1;
376 if (l->offset < r->offset)
377 return -1;
379 if (l->offset > r->offset)
380 return 1;
382 return 0;
385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
387 struct uprobe u = { .inode = inode, .offset = offset };
388 struct rb_node *n = uprobes_tree.rb_node;
389 struct uprobe *uprobe;
390 int match;
392 while (n) {
393 uprobe = rb_entry(n, struct uprobe, rb_node);
394 match = match_uprobe(&u, uprobe);
395 if (!match) {
396 atomic_inc(&uprobe->ref);
397 return uprobe;
400 if (match < 0)
401 n = n->rb_left;
402 else
403 n = n->rb_right;
405 return NULL;
409 * Find a uprobe corresponding to a given inode:offset
410 * Acquires uprobes_treelock
412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
414 struct uprobe *uprobe;
416 spin_lock(&uprobes_treelock);
417 uprobe = __find_uprobe(inode, offset);
418 spin_unlock(&uprobes_treelock);
420 return uprobe;
423 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
425 struct rb_node **p = &uprobes_tree.rb_node;
426 struct rb_node *parent = NULL;
427 struct uprobe *u;
428 int match;
430 while (*p) {
431 parent = *p;
432 u = rb_entry(parent, struct uprobe, rb_node);
433 match = match_uprobe(uprobe, u);
434 if (!match) {
435 atomic_inc(&u->ref);
436 return u;
439 if (match < 0)
440 p = &parent->rb_left;
441 else
442 p = &parent->rb_right;
446 u = NULL;
447 rb_link_node(&uprobe->rb_node, parent, p);
448 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449 /* get access + creation ref */
450 atomic_set(&uprobe->ref, 2);
452 return u;
456 * Acquire uprobes_treelock.
457 * Matching uprobe already exists in rbtree;
458 * increment (access refcount) and return the matching uprobe.
460 * No matching uprobe; insert the uprobe in rb_tree;
461 * get a double refcount (access + creation) and return NULL.
463 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
465 struct uprobe *u;
467 spin_lock(&uprobes_treelock);
468 u = __insert_uprobe(uprobe);
469 spin_unlock(&uprobes_treelock);
471 return u;
474 static void put_uprobe(struct uprobe *uprobe)
476 if (atomic_dec_and_test(&uprobe->ref))
477 kfree(uprobe);
480 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
482 struct uprobe *uprobe, *cur_uprobe;
484 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
485 if (!uprobe)
486 return NULL;
488 uprobe->inode = igrab(inode);
489 uprobe->offset = offset;
490 init_rwsem(&uprobe->register_rwsem);
491 init_rwsem(&uprobe->consumer_rwsem);
493 /* add to uprobes_tree, sorted on inode:offset */
494 cur_uprobe = insert_uprobe(uprobe);
495 /* a uprobe exists for this inode:offset combination */
496 if (cur_uprobe) {
497 kfree(uprobe);
498 uprobe = cur_uprobe;
499 iput(inode);
502 return uprobe;
505 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
507 down_write(&uprobe->consumer_rwsem);
508 uc->next = uprobe->consumers;
509 uprobe->consumers = uc;
510 up_write(&uprobe->consumer_rwsem);
514 * For uprobe @uprobe, delete the consumer @uc.
515 * Return true if the @uc is deleted successfully
516 * or return false.
518 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
520 struct uprobe_consumer **con;
521 bool ret = false;
523 down_write(&uprobe->consumer_rwsem);
524 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
525 if (*con == uc) {
526 *con = uc->next;
527 ret = true;
528 break;
531 up_write(&uprobe->consumer_rwsem);
533 return ret;
536 static int __copy_insn(struct address_space *mapping, struct file *filp,
537 void *insn, int nbytes, loff_t offset)
539 struct page *page;
541 * Ensure that the page that has the original instruction is populated
542 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
543 * see uprobe_register().
545 if (mapping->a_ops->readpage)
546 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
547 else
548 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
549 if (IS_ERR(page))
550 return PTR_ERR(page);
552 copy_from_page(page, offset, insn, nbytes);
553 page_cache_release(page);
555 return 0;
558 static int copy_insn(struct uprobe *uprobe, struct file *filp)
560 struct address_space *mapping = uprobe->inode->i_mapping;
561 loff_t offs = uprobe->offset;
562 void *insn = &uprobe->arch.insn;
563 int size = sizeof(uprobe->arch.insn);
564 int len, err = -EIO;
566 /* Copy only available bytes, -EIO if nothing was read */
567 do {
568 if (offs >= i_size_read(uprobe->inode))
569 break;
571 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
572 err = __copy_insn(mapping, filp, insn, len, offs);
573 if (err)
574 break;
576 insn += len;
577 offs += len;
578 size -= len;
579 } while (size);
581 return err;
584 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
585 struct mm_struct *mm, unsigned long vaddr)
587 int ret = 0;
589 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590 return ret;
592 /* TODO: move this into _register, until then we abuse this sem. */
593 down_write(&uprobe->consumer_rwsem);
594 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
595 goto out;
597 ret = copy_insn(uprobe, file);
598 if (ret)
599 goto out;
601 ret = -ENOTSUPP;
602 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
603 goto out;
605 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
606 if (ret)
607 goto out;
609 /* uprobe_write_opcode() assumes we don't cross page boundary */
610 BUG_ON((uprobe->offset & ~PAGE_MASK) +
611 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
613 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
614 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
616 out:
617 up_write(&uprobe->consumer_rwsem);
619 return ret;
622 static inline bool consumer_filter(struct uprobe_consumer *uc,
623 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
625 return !uc->filter || uc->filter(uc, ctx, mm);
628 static bool filter_chain(struct uprobe *uprobe,
629 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
631 struct uprobe_consumer *uc;
632 bool ret = false;
634 down_read(&uprobe->consumer_rwsem);
635 for (uc = uprobe->consumers; uc; uc = uc->next) {
636 ret = consumer_filter(uc, ctx, mm);
637 if (ret)
638 break;
640 up_read(&uprobe->consumer_rwsem);
642 return ret;
645 static int
646 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
647 struct vm_area_struct *vma, unsigned long vaddr)
649 bool first_uprobe;
650 int ret;
652 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
653 if (ret)
654 return ret;
657 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
658 * the task can hit this breakpoint right after __replace_page().
660 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
661 if (first_uprobe)
662 set_bit(MMF_HAS_UPROBES, &mm->flags);
664 ret = set_swbp(&uprobe->arch, mm, vaddr);
665 if (!ret)
666 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
667 else if (first_uprobe)
668 clear_bit(MMF_HAS_UPROBES, &mm->flags);
670 return ret;
673 static int
674 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
676 set_bit(MMF_RECALC_UPROBES, &mm->flags);
677 return set_orig_insn(&uprobe->arch, mm, vaddr);
680 static inline bool uprobe_is_active(struct uprobe *uprobe)
682 return !RB_EMPTY_NODE(&uprobe->rb_node);
685 * There could be threads that have already hit the breakpoint. They
686 * will recheck the current insn and restart if find_uprobe() fails.
687 * See find_active_uprobe().
689 static void delete_uprobe(struct uprobe *uprobe)
691 if (WARN_ON(!uprobe_is_active(uprobe)))
692 return;
694 spin_lock(&uprobes_treelock);
695 rb_erase(&uprobe->rb_node, &uprobes_tree);
696 spin_unlock(&uprobes_treelock);
697 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
698 iput(uprobe->inode);
699 put_uprobe(uprobe);
702 struct map_info {
703 struct map_info *next;
704 struct mm_struct *mm;
705 unsigned long vaddr;
708 static inline struct map_info *free_map_info(struct map_info *info)
710 struct map_info *next = info->next;
711 kfree(info);
712 return next;
715 static struct map_info *
716 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
718 unsigned long pgoff = offset >> PAGE_SHIFT;
719 struct vm_area_struct *vma;
720 struct map_info *curr = NULL;
721 struct map_info *prev = NULL;
722 struct map_info *info;
723 int more = 0;
725 again:
726 mutex_lock(&mapping->i_mmap_mutex);
727 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
728 if (!valid_vma(vma, is_register))
729 continue;
731 if (!prev && !more) {
733 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
734 * reclaim. This is optimistic, no harm done if it fails.
736 prev = kmalloc(sizeof(struct map_info),
737 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
738 if (prev)
739 prev->next = NULL;
741 if (!prev) {
742 more++;
743 continue;
746 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
747 continue;
749 info = prev;
750 prev = prev->next;
751 info->next = curr;
752 curr = info;
754 info->mm = vma->vm_mm;
755 info->vaddr = offset_to_vaddr(vma, offset);
757 mutex_unlock(&mapping->i_mmap_mutex);
759 if (!more)
760 goto out;
762 prev = curr;
763 while (curr) {
764 mmput(curr->mm);
765 curr = curr->next;
768 do {
769 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
770 if (!info) {
771 curr = ERR_PTR(-ENOMEM);
772 goto out;
774 info->next = prev;
775 prev = info;
776 } while (--more);
778 goto again;
779 out:
780 while (prev)
781 prev = free_map_info(prev);
782 return curr;
785 static int
786 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
788 bool is_register = !!new;
789 struct map_info *info;
790 int err = 0;
792 percpu_down_write(&dup_mmap_sem);
793 info = build_map_info(uprobe->inode->i_mapping,
794 uprobe->offset, is_register);
795 if (IS_ERR(info)) {
796 err = PTR_ERR(info);
797 goto out;
800 while (info) {
801 struct mm_struct *mm = info->mm;
802 struct vm_area_struct *vma;
804 if (err && is_register)
805 goto free;
807 down_write(&mm->mmap_sem);
808 vma = find_vma(mm, info->vaddr);
809 if (!vma || !valid_vma(vma, is_register) ||
810 file_inode(vma->vm_file) != uprobe->inode)
811 goto unlock;
813 if (vma->vm_start > info->vaddr ||
814 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
815 goto unlock;
817 if (is_register) {
818 /* consult only the "caller", new consumer. */
819 if (consumer_filter(new,
820 UPROBE_FILTER_REGISTER, mm))
821 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
822 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
823 if (!filter_chain(uprobe,
824 UPROBE_FILTER_UNREGISTER, mm))
825 err |= remove_breakpoint(uprobe, mm, info->vaddr);
828 unlock:
829 up_write(&mm->mmap_sem);
830 free:
831 mmput(mm);
832 info = free_map_info(info);
834 out:
835 percpu_up_write(&dup_mmap_sem);
836 return err;
839 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
841 consumer_add(uprobe, uc);
842 return register_for_each_vma(uprobe, uc);
845 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
847 int err;
849 if (!consumer_del(uprobe, uc)) /* WARN? */
850 return;
852 err = register_for_each_vma(uprobe, NULL);
853 /* TODO : cant unregister? schedule a worker thread */
854 if (!uprobe->consumers && !err)
855 delete_uprobe(uprobe);
859 * uprobe_register - register a probe
860 * @inode: the file in which the probe has to be placed.
861 * @offset: offset from the start of the file.
862 * @uc: information on howto handle the probe..
864 * Apart from the access refcount, uprobe_register() takes a creation
865 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
866 * inserted into the rbtree (i.e first consumer for a @inode:@offset
867 * tuple). Creation refcount stops uprobe_unregister from freeing the
868 * @uprobe even before the register operation is complete. Creation
869 * refcount is released when the last @uc for the @uprobe
870 * unregisters.
872 * Return errno if it cannot successully install probes
873 * else return 0 (success)
875 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
877 struct uprobe *uprobe;
878 int ret;
880 /* Uprobe must have at least one set consumer */
881 if (!uc->handler && !uc->ret_handler)
882 return -EINVAL;
884 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
885 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
886 return -EIO;
887 /* Racy, just to catch the obvious mistakes */
888 if (offset > i_size_read(inode))
889 return -EINVAL;
891 retry:
892 uprobe = alloc_uprobe(inode, offset);
893 if (!uprobe)
894 return -ENOMEM;
896 * We can race with uprobe_unregister()->delete_uprobe().
897 * Check uprobe_is_active() and retry if it is false.
899 down_write(&uprobe->register_rwsem);
900 ret = -EAGAIN;
901 if (likely(uprobe_is_active(uprobe))) {
902 ret = __uprobe_register(uprobe, uc);
903 if (ret)
904 __uprobe_unregister(uprobe, uc);
906 up_write(&uprobe->register_rwsem);
907 put_uprobe(uprobe);
909 if (unlikely(ret == -EAGAIN))
910 goto retry;
911 return ret;
913 EXPORT_SYMBOL_GPL(uprobe_register);
916 * uprobe_apply - unregister a already registered probe.
917 * @inode: the file in which the probe has to be removed.
918 * @offset: offset from the start of the file.
919 * @uc: consumer which wants to add more or remove some breakpoints
920 * @add: add or remove the breakpoints
922 int uprobe_apply(struct inode *inode, loff_t offset,
923 struct uprobe_consumer *uc, bool add)
925 struct uprobe *uprobe;
926 struct uprobe_consumer *con;
927 int ret = -ENOENT;
929 uprobe = find_uprobe(inode, offset);
930 if (!uprobe)
931 return ret;
933 down_write(&uprobe->register_rwsem);
934 for (con = uprobe->consumers; con && con != uc ; con = con->next)
936 if (con)
937 ret = register_for_each_vma(uprobe, add ? uc : NULL);
938 up_write(&uprobe->register_rwsem);
939 put_uprobe(uprobe);
941 return ret;
945 * uprobe_unregister - unregister a already registered probe.
946 * @inode: the file in which the probe has to be removed.
947 * @offset: offset from the start of the file.
948 * @uc: identify which probe if multiple probes are colocated.
950 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
952 struct uprobe *uprobe;
954 uprobe = find_uprobe(inode, offset);
955 if (!uprobe)
956 return;
958 down_write(&uprobe->register_rwsem);
959 __uprobe_unregister(uprobe, uc);
960 up_write(&uprobe->register_rwsem);
961 put_uprobe(uprobe);
963 EXPORT_SYMBOL_GPL(uprobe_unregister);
965 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
967 struct vm_area_struct *vma;
968 int err = 0;
970 down_read(&mm->mmap_sem);
971 for (vma = mm->mmap; vma; vma = vma->vm_next) {
972 unsigned long vaddr;
973 loff_t offset;
975 if (!valid_vma(vma, false) ||
976 file_inode(vma->vm_file) != uprobe->inode)
977 continue;
979 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
980 if (uprobe->offset < offset ||
981 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
982 continue;
984 vaddr = offset_to_vaddr(vma, uprobe->offset);
985 err |= remove_breakpoint(uprobe, mm, vaddr);
987 up_read(&mm->mmap_sem);
989 return err;
992 static struct rb_node *
993 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
995 struct rb_node *n = uprobes_tree.rb_node;
997 while (n) {
998 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1000 if (inode < u->inode) {
1001 n = n->rb_left;
1002 } else if (inode > u->inode) {
1003 n = n->rb_right;
1004 } else {
1005 if (max < u->offset)
1006 n = n->rb_left;
1007 else if (min > u->offset)
1008 n = n->rb_right;
1009 else
1010 break;
1014 return n;
1018 * For a given range in vma, build a list of probes that need to be inserted.
1020 static void build_probe_list(struct inode *inode,
1021 struct vm_area_struct *vma,
1022 unsigned long start, unsigned long end,
1023 struct list_head *head)
1025 loff_t min, max;
1026 struct rb_node *n, *t;
1027 struct uprobe *u;
1029 INIT_LIST_HEAD(head);
1030 min = vaddr_to_offset(vma, start);
1031 max = min + (end - start) - 1;
1033 spin_lock(&uprobes_treelock);
1034 n = find_node_in_range(inode, min, max);
1035 if (n) {
1036 for (t = n; t; t = rb_prev(t)) {
1037 u = rb_entry(t, struct uprobe, rb_node);
1038 if (u->inode != inode || u->offset < min)
1039 break;
1040 list_add(&u->pending_list, head);
1041 atomic_inc(&u->ref);
1043 for (t = n; (t = rb_next(t)); ) {
1044 u = rb_entry(t, struct uprobe, rb_node);
1045 if (u->inode != inode || u->offset > max)
1046 break;
1047 list_add(&u->pending_list, head);
1048 atomic_inc(&u->ref);
1051 spin_unlock(&uprobes_treelock);
1055 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1057 * Currently we ignore all errors and always return 0, the callers
1058 * can't handle the failure anyway.
1060 int uprobe_mmap(struct vm_area_struct *vma)
1062 struct list_head tmp_list;
1063 struct uprobe *uprobe, *u;
1064 struct inode *inode;
1066 if (no_uprobe_events() || !valid_vma(vma, true))
1067 return 0;
1069 inode = file_inode(vma->vm_file);
1070 if (!inode)
1071 return 0;
1073 mutex_lock(uprobes_mmap_hash(inode));
1074 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1076 * We can race with uprobe_unregister(), this uprobe can be already
1077 * removed. But in this case filter_chain() must return false, all
1078 * consumers have gone away.
1080 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1081 if (!fatal_signal_pending(current) &&
1082 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1083 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1084 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1086 put_uprobe(uprobe);
1088 mutex_unlock(uprobes_mmap_hash(inode));
1090 return 0;
1093 static bool
1094 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1096 loff_t min, max;
1097 struct inode *inode;
1098 struct rb_node *n;
1100 inode = file_inode(vma->vm_file);
1102 min = vaddr_to_offset(vma, start);
1103 max = min + (end - start) - 1;
1105 spin_lock(&uprobes_treelock);
1106 n = find_node_in_range(inode, min, max);
1107 spin_unlock(&uprobes_treelock);
1109 return !!n;
1113 * Called in context of a munmap of a vma.
1115 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1117 if (no_uprobe_events() || !valid_vma(vma, false))
1118 return;
1120 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1121 return;
1123 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1124 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1125 return;
1127 if (vma_has_uprobes(vma, start, end))
1128 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1131 /* Slot allocation for XOL */
1132 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1134 int ret = -EALREADY;
1136 down_write(&mm->mmap_sem);
1137 if (mm->uprobes_state.xol_area)
1138 goto fail;
1140 if (!area->vaddr) {
1141 /* Try to map as high as possible, this is only a hint. */
1142 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1143 PAGE_SIZE, 0, 0);
1144 if (area->vaddr & ~PAGE_MASK) {
1145 ret = area->vaddr;
1146 goto fail;
1150 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1151 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1152 if (ret)
1153 goto fail;
1155 smp_wmb(); /* pairs with get_xol_area() */
1156 mm->uprobes_state.xol_area = area;
1157 fail:
1158 up_write(&mm->mmap_sem);
1160 return ret;
1163 static struct xol_area *__create_xol_area(unsigned long vaddr)
1165 struct mm_struct *mm = current->mm;
1166 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1167 struct xol_area *area;
1169 area = kmalloc(sizeof(*area), GFP_KERNEL);
1170 if (unlikely(!area))
1171 goto out;
1173 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1174 if (!area->bitmap)
1175 goto free_area;
1177 area->page = alloc_page(GFP_HIGHUSER);
1178 if (!area->page)
1179 goto free_bitmap;
1181 area->vaddr = vaddr;
1182 init_waitqueue_head(&area->wq);
1183 /* Reserve the 1st slot for get_trampoline_vaddr() */
1184 set_bit(0, area->bitmap);
1185 atomic_set(&area->slot_count, 1);
1186 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1188 if (!xol_add_vma(mm, area))
1189 return area;
1191 __free_page(area->page);
1192 free_bitmap:
1193 kfree(area->bitmap);
1194 free_area:
1195 kfree(area);
1196 out:
1197 return NULL;
1201 * get_xol_area - Allocate process's xol_area if necessary.
1202 * This area will be used for storing instructions for execution out of line.
1204 * Returns the allocated area or NULL.
1206 static struct xol_area *get_xol_area(void)
1208 struct mm_struct *mm = current->mm;
1209 struct xol_area *area;
1211 if (!mm->uprobes_state.xol_area)
1212 __create_xol_area(0);
1214 area = mm->uprobes_state.xol_area;
1215 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1216 return area;
1220 * uprobe_clear_state - Free the area allocated for slots.
1222 void uprobe_clear_state(struct mm_struct *mm)
1224 struct xol_area *area = mm->uprobes_state.xol_area;
1226 if (!area)
1227 return;
1229 put_page(area->page);
1230 kfree(area->bitmap);
1231 kfree(area);
1234 void uprobe_start_dup_mmap(void)
1236 percpu_down_read(&dup_mmap_sem);
1239 void uprobe_end_dup_mmap(void)
1241 percpu_up_read(&dup_mmap_sem);
1244 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1246 newmm->uprobes_state.xol_area = NULL;
1248 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1249 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1250 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1251 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1256 * - search for a free slot.
1258 static unsigned long xol_take_insn_slot(struct xol_area *area)
1260 unsigned long slot_addr;
1261 int slot_nr;
1263 do {
1264 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1265 if (slot_nr < UINSNS_PER_PAGE) {
1266 if (!test_and_set_bit(slot_nr, area->bitmap))
1267 break;
1269 slot_nr = UINSNS_PER_PAGE;
1270 continue;
1272 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1273 } while (slot_nr >= UINSNS_PER_PAGE);
1275 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1276 atomic_inc(&area->slot_count);
1278 return slot_addr;
1282 * xol_get_insn_slot - allocate a slot for xol.
1283 * Returns the allocated slot address or 0.
1285 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1287 struct xol_area *area;
1288 unsigned long xol_vaddr;
1290 area = get_xol_area();
1291 if (!area)
1292 return 0;
1294 xol_vaddr = xol_take_insn_slot(area);
1295 if (unlikely(!xol_vaddr))
1296 return 0;
1298 arch_uprobe_copy_ixol(area->page, xol_vaddr,
1299 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1301 return xol_vaddr;
1305 * xol_free_insn_slot - If slot was earlier allocated by
1306 * @xol_get_insn_slot(), make the slot available for
1307 * subsequent requests.
1309 static void xol_free_insn_slot(struct task_struct *tsk)
1311 struct xol_area *area;
1312 unsigned long vma_end;
1313 unsigned long slot_addr;
1315 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1316 return;
1318 slot_addr = tsk->utask->xol_vaddr;
1319 if (unlikely(!slot_addr))
1320 return;
1322 area = tsk->mm->uprobes_state.xol_area;
1323 vma_end = area->vaddr + PAGE_SIZE;
1324 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1325 unsigned long offset;
1326 int slot_nr;
1328 offset = slot_addr - area->vaddr;
1329 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1330 if (slot_nr >= UINSNS_PER_PAGE)
1331 return;
1333 clear_bit(slot_nr, area->bitmap);
1334 atomic_dec(&area->slot_count);
1335 if (waitqueue_active(&area->wq))
1336 wake_up(&area->wq);
1338 tsk->utask->xol_vaddr = 0;
1342 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1343 void *src, unsigned long len)
1345 /* Initialize the slot */
1346 copy_to_page(page, vaddr, src, len);
1349 * We probably need flush_icache_user_range() but it needs vma.
1350 * This should work on most of architectures by default. If
1351 * architecture needs to do something different it can define
1352 * its own version of the function.
1354 flush_dcache_page(page);
1358 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1359 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1360 * instruction.
1361 * Return the address of the breakpoint instruction.
1363 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1365 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1368 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1370 struct uprobe_task *utask = current->utask;
1372 if (unlikely(utask && utask->active_uprobe))
1373 return utask->vaddr;
1375 return instruction_pointer(regs);
1379 * Called with no locks held.
1380 * Called in context of a exiting or a exec-ing thread.
1382 void uprobe_free_utask(struct task_struct *t)
1384 struct uprobe_task *utask = t->utask;
1385 struct return_instance *ri, *tmp;
1387 if (!utask)
1388 return;
1390 if (utask->active_uprobe)
1391 put_uprobe(utask->active_uprobe);
1393 ri = utask->return_instances;
1394 while (ri) {
1395 tmp = ri;
1396 ri = ri->next;
1398 put_uprobe(tmp->uprobe);
1399 kfree(tmp);
1402 xol_free_insn_slot(t);
1403 kfree(utask);
1404 t->utask = NULL;
1408 * Allocate a uprobe_task object for the task if if necessary.
1409 * Called when the thread hits a breakpoint.
1411 * Returns:
1412 * - pointer to new uprobe_task on success
1413 * - NULL otherwise
1415 static struct uprobe_task *get_utask(void)
1417 if (!current->utask)
1418 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1419 return current->utask;
1422 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1424 struct uprobe_task *n_utask;
1425 struct return_instance **p, *o, *n;
1427 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1428 if (!n_utask)
1429 return -ENOMEM;
1430 t->utask = n_utask;
1432 p = &n_utask->return_instances;
1433 for (o = o_utask->return_instances; o; o = o->next) {
1434 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1435 if (!n)
1436 return -ENOMEM;
1438 *n = *o;
1439 atomic_inc(&n->uprobe->ref);
1440 n->next = NULL;
1442 *p = n;
1443 p = &n->next;
1444 n_utask->depth++;
1447 return 0;
1450 static void uprobe_warn(struct task_struct *t, const char *msg)
1452 pr_warn("uprobe: %s:%d failed to %s\n",
1453 current->comm, current->pid, msg);
1456 static void dup_xol_work(struct callback_head *work)
1458 if (current->flags & PF_EXITING)
1459 return;
1461 if (!__create_xol_area(current->utask->dup_xol_addr))
1462 uprobe_warn(current, "dup xol area");
1466 * Called in context of a new clone/fork from copy_process.
1468 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1470 struct uprobe_task *utask = current->utask;
1471 struct mm_struct *mm = current->mm;
1472 struct xol_area *area;
1474 t->utask = NULL;
1476 if (!utask || !utask->return_instances)
1477 return;
1479 if (mm == t->mm && !(flags & CLONE_VFORK))
1480 return;
1482 if (dup_utask(t, utask))
1483 return uprobe_warn(t, "dup ret instances");
1485 /* The task can fork() after dup_xol_work() fails */
1486 area = mm->uprobes_state.xol_area;
1487 if (!area)
1488 return uprobe_warn(t, "dup xol area");
1490 if (mm == t->mm)
1491 return;
1493 t->utask->dup_xol_addr = area->vaddr;
1494 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1495 task_work_add(t, &t->utask->dup_xol_work, true);
1499 * Current area->vaddr notion assume the trampoline address is always
1500 * equal area->vaddr.
1502 * Returns -1 in case the xol_area is not allocated.
1504 static unsigned long get_trampoline_vaddr(void)
1506 struct xol_area *area;
1507 unsigned long trampoline_vaddr = -1;
1509 area = current->mm->uprobes_state.xol_area;
1510 smp_read_barrier_depends();
1511 if (area)
1512 trampoline_vaddr = area->vaddr;
1514 return trampoline_vaddr;
1517 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1519 struct return_instance *ri;
1520 struct uprobe_task *utask;
1521 unsigned long orig_ret_vaddr, trampoline_vaddr;
1522 bool chained = false;
1524 if (!get_xol_area())
1525 return;
1527 utask = get_utask();
1528 if (!utask)
1529 return;
1531 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1532 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1533 " nestedness limit pid/tgid=%d/%d\n",
1534 current->pid, current->tgid);
1535 return;
1538 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1539 if (!ri)
1540 goto fail;
1542 trampoline_vaddr = get_trampoline_vaddr();
1543 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1544 if (orig_ret_vaddr == -1)
1545 goto fail;
1548 * We don't want to keep trampoline address in stack, rather keep the
1549 * original return address of first caller thru all the consequent
1550 * instances. This also makes breakpoint unwrapping easier.
1552 if (orig_ret_vaddr == trampoline_vaddr) {
1553 if (!utask->return_instances) {
1555 * This situation is not possible. Likely we have an
1556 * attack from user-space.
1558 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1559 current->pid, current->tgid);
1560 goto fail;
1563 chained = true;
1564 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1567 atomic_inc(&uprobe->ref);
1568 ri->uprobe = uprobe;
1569 ri->func = instruction_pointer(regs);
1570 ri->orig_ret_vaddr = orig_ret_vaddr;
1571 ri->chained = chained;
1573 utask->depth++;
1575 /* add instance to the stack */
1576 ri->next = utask->return_instances;
1577 utask->return_instances = ri;
1579 return;
1581 fail:
1582 kfree(ri);
1585 /* Prepare to single-step probed instruction out of line. */
1586 static int
1587 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1589 struct uprobe_task *utask;
1590 unsigned long xol_vaddr;
1591 int err;
1593 utask = get_utask();
1594 if (!utask)
1595 return -ENOMEM;
1597 xol_vaddr = xol_get_insn_slot(uprobe);
1598 if (!xol_vaddr)
1599 return -ENOMEM;
1601 utask->xol_vaddr = xol_vaddr;
1602 utask->vaddr = bp_vaddr;
1604 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1605 if (unlikely(err)) {
1606 xol_free_insn_slot(current);
1607 return err;
1610 utask->active_uprobe = uprobe;
1611 utask->state = UTASK_SSTEP;
1612 return 0;
1616 * If we are singlestepping, then ensure this thread is not connected to
1617 * non-fatal signals until completion of singlestep. When xol insn itself
1618 * triggers the signal, restart the original insn even if the task is
1619 * already SIGKILL'ed (since coredump should report the correct ip). This
1620 * is even more important if the task has a handler for SIGSEGV/etc, The
1621 * _same_ instruction should be repeated again after return from the signal
1622 * handler, and SSTEP can never finish in this case.
1624 bool uprobe_deny_signal(void)
1626 struct task_struct *t = current;
1627 struct uprobe_task *utask = t->utask;
1629 if (likely(!utask || !utask->active_uprobe))
1630 return false;
1632 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1634 if (signal_pending(t)) {
1635 spin_lock_irq(&t->sighand->siglock);
1636 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1637 spin_unlock_irq(&t->sighand->siglock);
1639 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1640 utask->state = UTASK_SSTEP_TRAPPED;
1641 set_tsk_thread_flag(t, TIF_UPROBE);
1642 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1646 return true;
1649 static void mmf_recalc_uprobes(struct mm_struct *mm)
1651 struct vm_area_struct *vma;
1653 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1654 if (!valid_vma(vma, false))
1655 continue;
1657 * This is not strictly accurate, we can race with
1658 * uprobe_unregister() and see the already removed
1659 * uprobe if delete_uprobe() was not yet called.
1660 * Or this uprobe can be filtered out.
1662 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1663 return;
1666 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1669 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1671 struct page *page;
1672 uprobe_opcode_t opcode;
1673 int result;
1675 pagefault_disable();
1676 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1677 sizeof(opcode));
1678 pagefault_enable();
1680 if (likely(result == 0))
1681 goto out;
1683 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1684 if (result < 0)
1685 return result;
1687 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1688 put_page(page);
1689 out:
1690 /* This needs to return true for any variant of the trap insn */
1691 return is_trap_insn(&opcode);
1694 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1696 struct mm_struct *mm = current->mm;
1697 struct uprobe *uprobe = NULL;
1698 struct vm_area_struct *vma;
1700 down_read(&mm->mmap_sem);
1701 vma = find_vma(mm, bp_vaddr);
1702 if (vma && vma->vm_start <= bp_vaddr) {
1703 if (valid_vma(vma, false)) {
1704 struct inode *inode = file_inode(vma->vm_file);
1705 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1707 uprobe = find_uprobe(inode, offset);
1710 if (!uprobe)
1711 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1712 } else {
1713 *is_swbp = -EFAULT;
1716 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1717 mmf_recalc_uprobes(mm);
1718 up_read(&mm->mmap_sem);
1720 return uprobe;
1723 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1725 struct uprobe_consumer *uc;
1726 int remove = UPROBE_HANDLER_REMOVE;
1727 bool need_prep = false; /* prepare return uprobe, when needed */
1729 down_read(&uprobe->register_rwsem);
1730 for (uc = uprobe->consumers; uc; uc = uc->next) {
1731 int rc = 0;
1733 if (uc->handler) {
1734 rc = uc->handler(uc, regs);
1735 WARN(rc & ~UPROBE_HANDLER_MASK,
1736 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1739 if (uc->ret_handler)
1740 need_prep = true;
1742 remove &= rc;
1745 if (need_prep && !remove)
1746 prepare_uretprobe(uprobe, regs); /* put bp at return */
1748 if (remove && uprobe->consumers) {
1749 WARN_ON(!uprobe_is_active(uprobe));
1750 unapply_uprobe(uprobe, current->mm);
1752 up_read(&uprobe->register_rwsem);
1755 static void
1756 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1758 struct uprobe *uprobe = ri->uprobe;
1759 struct uprobe_consumer *uc;
1761 down_read(&uprobe->register_rwsem);
1762 for (uc = uprobe->consumers; uc; uc = uc->next) {
1763 if (uc->ret_handler)
1764 uc->ret_handler(uc, ri->func, regs);
1766 up_read(&uprobe->register_rwsem);
1769 static bool handle_trampoline(struct pt_regs *regs)
1771 struct uprobe_task *utask;
1772 struct return_instance *ri, *tmp;
1773 bool chained;
1775 utask = current->utask;
1776 if (!utask)
1777 return false;
1779 ri = utask->return_instances;
1780 if (!ri)
1781 return false;
1784 * TODO: we should throw out return_instance's invalidated by
1785 * longjmp(), currently we assume that the probed function always
1786 * returns.
1788 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1790 for (;;) {
1791 handle_uretprobe_chain(ri, regs);
1793 chained = ri->chained;
1794 put_uprobe(ri->uprobe);
1796 tmp = ri;
1797 ri = ri->next;
1798 kfree(tmp);
1799 utask->depth--;
1801 if (!chained)
1802 break;
1803 BUG_ON(!ri);
1806 utask->return_instances = ri;
1808 return true;
1811 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1813 return false;
1817 * Run handler and ask thread to singlestep.
1818 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1820 static void handle_swbp(struct pt_regs *regs)
1822 struct uprobe *uprobe;
1823 unsigned long bp_vaddr;
1824 int uninitialized_var(is_swbp);
1826 bp_vaddr = uprobe_get_swbp_addr(regs);
1827 if (bp_vaddr == get_trampoline_vaddr()) {
1828 if (handle_trampoline(regs))
1829 return;
1831 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1832 current->pid, current->tgid);
1835 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1836 if (!uprobe) {
1837 if (is_swbp > 0) {
1838 /* No matching uprobe; signal SIGTRAP. */
1839 send_sig(SIGTRAP, current, 0);
1840 } else {
1842 * Either we raced with uprobe_unregister() or we can't
1843 * access this memory. The latter is only possible if
1844 * another thread plays with our ->mm. In both cases
1845 * we can simply restart. If this vma was unmapped we
1846 * can pretend this insn was not executed yet and get
1847 * the (correct) SIGSEGV after restart.
1849 instruction_pointer_set(regs, bp_vaddr);
1851 return;
1854 /* change it in advance for ->handler() and restart */
1855 instruction_pointer_set(regs, bp_vaddr);
1858 * TODO: move copy_insn/etc into _register and remove this hack.
1859 * After we hit the bp, _unregister + _register can install the
1860 * new and not-yet-analyzed uprobe at the same address, restart.
1862 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1863 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1864 goto out;
1866 /* Tracing handlers use ->utask to communicate with fetch methods */
1867 if (!get_utask())
1868 goto out;
1870 if (arch_uprobe_ignore(&uprobe->arch, regs))
1871 goto out;
1873 handler_chain(uprobe, regs);
1875 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1876 goto out;
1878 if (!pre_ssout(uprobe, regs, bp_vaddr))
1879 return;
1881 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1882 out:
1883 put_uprobe(uprobe);
1887 * Perform required fix-ups and disable singlestep.
1888 * Allow pending signals to take effect.
1890 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1892 struct uprobe *uprobe;
1893 int err = 0;
1895 uprobe = utask->active_uprobe;
1896 if (utask->state == UTASK_SSTEP_ACK)
1897 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1898 else if (utask->state == UTASK_SSTEP_TRAPPED)
1899 arch_uprobe_abort_xol(&uprobe->arch, regs);
1900 else
1901 WARN_ON_ONCE(1);
1903 put_uprobe(uprobe);
1904 utask->active_uprobe = NULL;
1905 utask->state = UTASK_RUNNING;
1906 xol_free_insn_slot(current);
1908 spin_lock_irq(&current->sighand->siglock);
1909 recalc_sigpending(); /* see uprobe_deny_signal() */
1910 spin_unlock_irq(&current->sighand->siglock);
1912 if (unlikely(err)) {
1913 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1914 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1919 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1920 * allows the thread to return from interrupt. After that handle_swbp()
1921 * sets utask->active_uprobe.
1923 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1924 * and allows the thread to return from interrupt.
1926 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1927 * uprobe_notify_resume().
1929 void uprobe_notify_resume(struct pt_regs *regs)
1931 struct uprobe_task *utask;
1933 clear_thread_flag(TIF_UPROBE);
1935 utask = current->utask;
1936 if (utask && utask->active_uprobe)
1937 handle_singlestep(utask, regs);
1938 else
1939 handle_swbp(regs);
1943 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1944 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1946 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1948 if (!current->mm)
1949 return 0;
1951 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1952 (!current->utask || !current->utask->return_instances))
1953 return 0;
1955 set_thread_flag(TIF_UPROBE);
1956 return 1;
1960 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1961 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1963 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1965 struct uprobe_task *utask = current->utask;
1967 if (!current->mm || !utask || !utask->active_uprobe)
1968 /* task is currently not uprobed */
1969 return 0;
1971 utask->state = UTASK_SSTEP_ACK;
1972 set_thread_flag(TIF_UPROBE);
1973 return 1;
1976 static struct notifier_block uprobe_exception_nb = {
1977 .notifier_call = arch_uprobe_exception_notify,
1978 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1981 static int __init init_uprobes(void)
1983 int i;
1985 for (i = 0; i < UPROBES_HASH_SZ; i++)
1986 mutex_init(&uprobes_mmap_mutex[i]);
1988 if (percpu_init_rwsem(&dup_mmap_sem))
1989 return -ENOMEM;
1991 return register_die_notifier(&uprobe_exception_nb);
1993 __initcall(init_uprobes);