3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5 (C) 2012 Michel Lespinasse <walken@google.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
30 * 1) A node is either red or black
31 * 2) The root is black
32 * 3) All leaves (NULL) are black
33 * 4) Both children of every red node are black
34 * 5) Every simple path from root to leaves contains the same number
37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 * consecutive red nodes in a path and every red node is therefore followed by
39 * a black. So if B is the number of black nodes on every simple path (as per
40 * 5), then the longest possible path due to 4 is 2B.
42 * We shall indicate color with case, where black nodes are uppercase and red
43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 * parentheses and have some accompanying text comment.
48 * Notes on lockless lookups:
50 * All stores to the tree structure (rb_left and rb_right) must be done using
51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52 * tree structure as seen in program order.
54 * These two requirements will allow lockless iteration of the tree -- not
55 * correct iteration mind you, tree rotations are not atomic so a lookup might
56 * miss entire subtrees.
58 * But they do guarantee that any such traversal will only see valid elements
59 * and that it will indeed complete -- does not get stuck in a loop.
61 * It also guarantees that if the lookup returns an element it is the 'correct'
62 * one. But not returning an element does _NOT_ mean it's not present.
66 * Stores to __rb_parent_color are not important for simple lookups so those
67 * are left undone as of now. Nor did I check for loops involving parent
71 static inline void rb_set_black(struct rb_node
*rb
)
73 rb
->__rb_parent_color
|= RB_BLACK
;
76 static inline struct rb_node
*rb_red_parent(struct rb_node
*red
)
78 return (struct rb_node
*)red
->__rb_parent_color
;
82 * Helper function for rotations:
83 * - old's parent and color get assigned to new
84 * - old gets assigned new as a parent and 'color' as a color.
87 __rb_rotate_set_parents(struct rb_node
*old
, struct rb_node
*new,
88 struct rb_root
*root
, int color
)
90 struct rb_node
*parent
= rb_parent(old
);
91 new->__rb_parent_color
= old
->__rb_parent_color
;
92 rb_set_parent_color(old
, new, color
);
93 __rb_change_child(old
, new, parent
, root
);
96 static __always_inline
void
97 __rb_insert(struct rb_node
*node
, struct rb_root
*root
,
98 bool newleft
, struct rb_node
**leftmost
,
99 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
101 struct rb_node
*parent
= rb_red_parent(node
), *gparent
, *tmp
;
108 * Loop invariant: node is red.
110 if (unlikely(!parent
)) {
112 * The inserted node is root. Either this is the
113 * first node, or we recursed at Case 1 below and
114 * are no longer violating 4).
116 rb_set_parent_color(node
, NULL
, RB_BLACK
);
121 * If there is a black parent, we are done.
122 * Otherwise, take some corrective action as,
123 * per 4), we don't want a red root or two
124 * consecutive red nodes.
126 if(rb_is_black(parent
))
129 gparent
= rb_red_parent(parent
);
131 tmp
= gparent
->rb_right
;
132 if (parent
!= tmp
) { /* parent == gparent->rb_left */
133 if (tmp
&& rb_is_red(tmp
)) {
135 * Case 1 - node's uncle is red (color flips).
143 * However, since g's parent might be red, and
144 * 4) does not allow this, we need to recurse
147 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
148 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
150 parent
= rb_parent(node
);
151 rb_set_parent_color(node
, parent
, RB_RED
);
155 tmp
= parent
->rb_right
;
158 * Case 2 - node's uncle is black and node is
159 * the parent's right child (left rotate at parent).
167 * This still leaves us in violation of 4), the
168 * continuation into Case 3 will fix that.
171 WRITE_ONCE(parent
->rb_right
, tmp
);
172 WRITE_ONCE(node
->rb_left
, parent
);
174 rb_set_parent_color(tmp
, parent
,
176 rb_set_parent_color(parent
, node
, RB_RED
);
177 augment_rotate(parent
, node
);
179 tmp
= node
->rb_right
;
183 * Case 3 - node's uncle is black and node is
184 * the parent's left child (right rotate at gparent).
192 WRITE_ONCE(gparent
->rb_left
, tmp
); /* == parent->rb_right */
193 WRITE_ONCE(parent
->rb_right
, gparent
);
195 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
196 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
197 augment_rotate(gparent
, parent
);
200 tmp
= gparent
->rb_left
;
201 if (tmp
&& rb_is_red(tmp
)) {
202 /* Case 1 - color flips */
203 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
204 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
206 parent
= rb_parent(node
);
207 rb_set_parent_color(node
, parent
, RB_RED
);
211 tmp
= parent
->rb_left
;
213 /* Case 2 - right rotate at parent */
214 tmp
= node
->rb_right
;
215 WRITE_ONCE(parent
->rb_left
, tmp
);
216 WRITE_ONCE(node
->rb_right
, parent
);
218 rb_set_parent_color(tmp
, parent
,
220 rb_set_parent_color(parent
, node
, RB_RED
);
221 augment_rotate(parent
, node
);
226 /* Case 3 - left rotate at gparent */
227 WRITE_ONCE(gparent
->rb_right
, tmp
); /* == parent->rb_left */
228 WRITE_ONCE(parent
->rb_left
, gparent
);
230 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
231 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
232 augment_rotate(gparent
, parent
);
239 * Inline version for rb_erase() use - we want to be able to inline
240 * and eliminate the dummy_rotate callback there
242 static __always_inline
void
243 ____rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
244 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
246 struct rb_node
*node
= NULL
, *sibling
, *tmp1
, *tmp2
;
251 * - node is black (or NULL on first iteration)
252 * - node is not the root (parent is not NULL)
253 * - All leaf paths going through parent and node have a
254 * black node count that is 1 lower than other leaf paths.
256 sibling
= parent
->rb_right
;
257 if (node
!= sibling
) { /* node == parent->rb_left */
258 if (rb_is_red(sibling
)) {
260 * Case 1 - left rotate at parent
268 tmp1
= sibling
->rb_left
;
269 WRITE_ONCE(parent
->rb_right
, tmp1
);
270 WRITE_ONCE(sibling
->rb_left
, parent
);
271 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
272 __rb_rotate_set_parents(parent
, sibling
, root
,
274 augment_rotate(parent
, sibling
);
277 tmp1
= sibling
->rb_right
;
278 if (!tmp1
|| rb_is_black(tmp1
)) {
279 tmp2
= sibling
->rb_left
;
280 if (!tmp2
|| rb_is_black(tmp2
)) {
282 * Case 2 - sibling color flip
283 * (p could be either color here)
291 * This leaves us violating 5) which
292 * can be fixed by flipping p to black
293 * if it was red, or by recursing at p.
294 * p is red when coming from Case 1.
296 rb_set_parent_color(sibling
, parent
,
298 if (rb_is_red(parent
))
299 rb_set_black(parent
);
302 parent
= rb_parent(node
);
309 * Case 3 - right rotate at sibling
310 * (p could be either color here)
320 * Note: p might be red, and then both
321 * p and sl are red after rotation(which
322 * breaks property 4). This is fixed in
323 * Case 4 (in __rb_rotate_set_parents()
324 * which set sl the color of p
325 * and set p RB_BLACK)
335 tmp1
= tmp2
->rb_right
;
336 WRITE_ONCE(sibling
->rb_left
, tmp1
);
337 WRITE_ONCE(tmp2
->rb_right
, sibling
);
338 WRITE_ONCE(parent
->rb_right
, tmp2
);
340 rb_set_parent_color(tmp1
, sibling
,
342 augment_rotate(sibling
, tmp2
);
347 * Case 4 - left rotate at parent + color flips
348 * (p and sl could be either color here.
349 * After rotation, p becomes black, s acquires
350 * p's color, and sl keeps its color)
358 tmp2
= sibling
->rb_left
;
359 WRITE_ONCE(parent
->rb_right
, tmp2
);
360 WRITE_ONCE(sibling
->rb_left
, parent
);
361 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
363 rb_set_parent(tmp2
, parent
);
364 __rb_rotate_set_parents(parent
, sibling
, root
,
366 augment_rotate(parent
, sibling
);
369 sibling
= parent
->rb_left
;
370 if (rb_is_red(sibling
)) {
371 /* Case 1 - right rotate at parent */
372 tmp1
= sibling
->rb_right
;
373 WRITE_ONCE(parent
->rb_left
, tmp1
);
374 WRITE_ONCE(sibling
->rb_right
, parent
);
375 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
376 __rb_rotate_set_parents(parent
, sibling
, root
,
378 augment_rotate(parent
, sibling
);
381 tmp1
= sibling
->rb_left
;
382 if (!tmp1
|| rb_is_black(tmp1
)) {
383 tmp2
= sibling
->rb_right
;
384 if (!tmp2
|| rb_is_black(tmp2
)) {
385 /* Case 2 - sibling color flip */
386 rb_set_parent_color(sibling
, parent
,
388 if (rb_is_red(parent
))
389 rb_set_black(parent
);
392 parent
= rb_parent(node
);
398 /* Case 3 - left rotate at sibling */
399 tmp1
= tmp2
->rb_left
;
400 WRITE_ONCE(sibling
->rb_right
, tmp1
);
401 WRITE_ONCE(tmp2
->rb_left
, sibling
);
402 WRITE_ONCE(parent
->rb_left
, tmp2
);
404 rb_set_parent_color(tmp1
, sibling
,
406 augment_rotate(sibling
, tmp2
);
410 /* Case 4 - right rotate at parent + color flips */
411 tmp2
= sibling
->rb_right
;
412 WRITE_ONCE(parent
->rb_left
, tmp2
);
413 WRITE_ONCE(sibling
->rb_right
, parent
);
414 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
416 rb_set_parent(tmp2
, parent
);
417 __rb_rotate_set_parents(parent
, sibling
, root
,
419 augment_rotate(parent
, sibling
);
425 /* Non-inline version for rb_erase_augmented() use */
426 void __rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
427 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
429 ____rb_erase_color(parent
, root
, augment_rotate
);
431 EXPORT_SYMBOL(__rb_erase_color
);
434 * Non-augmented rbtree manipulation functions.
436 * We use dummy augmented callbacks here, and have the compiler optimize them
437 * out of the rb_insert_color() and rb_erase() function definitions.
440 static inline void dummy_propagate(struct rb_node
*node
, struct rb_node
*stop
) {}
441 static inline void dummy_copy(struct rb_node
*old
, struct rb_node
*new) {}
442 static inline void dummy_rotate(struct rb_node
*old
, struct rb_node
*new) {}
444 static const struct rb_augment_callbacks dummy_callbacks
= {
445 .propagate
= dummy_propagate
,
447 .rotate
= dummy_rotate
450 void rb_insert_color(struct rb_node
*node
, struct rb_root
*root
)
452 __rb_insert(node
, root
, false, NULL
, dummy_rotate
);
454 EXPORT_SYMBOL(rb_insert_color
);
456 void rb_erase(struct rb_node
*node
, struct rb_root
*root
)
458 struct rb_node
*rebalance
;
459 rebalance
= __rb_erase_augmented(node
, root
,
460 NULL
, &dummy_callbacks
);
462 ____rb_erase_color(rebalance
, root
, dummy_rotate
);
464 EXPORT_SYMBOL(rb_erase
);
466 void rb_insert_color_cached(struct rb_node
*node
,
467 struct rb_root_cached
*root
, bool leftmost
)
469 __rb_insert(node
, &root
->rb_root
, leftmost
,
470 &root
->rb_leftmost
, dummy_rotate
);
472 EXPORT_SYMBOL(rb_insert_color_cached
);
474 void rb_erase_cached(struct rb_node
*node
, struct rb_root_cached
*root
)
476 struct rb_node
*rebalance
;
477 rebalance
= __rb_erase_augmented(node
, &root
->rb_root
,
478 &root
->rb_leftmost
, &dummy_callbacks
);
480 ____rb_erase_color(rebalance
, &root
->rb_root
, dummy_rotate
);
482 EXPORT_SYMBOL(rb_erase_cached
);
485 * Augmented rbtree manipulation functions.
487 * This instantiates the same __always_inline functions as in the non-augmented
488 * case, but this time with user-defined callbacks.
491 void __rb_insert_augmented(struct rb_node
*node
, struct rb_root
*root
,
492 bool newleft
, struct rb_node
**leftmost
,
493 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
495 __rb_insert(node
, root
, newleft
, leftmost
, augment_rotate
);
497 EXPORT_SYMBOL(__rb_insert_augmented
);
500 * This function returns the first node (in sort order) of the tree.
502 struct rb_node
*rb_first(const struct rb_root
*root
)
513 EXPORT_SYMBOL(rb_first
);
515 struct rb_node
*rb_last(const struct rb_root
*root
)
526 EXPORT_SYMBOL(rb_last
);
528 struct rb_node
*rb_next(const struct rb_node
*node
)
530 struct rb_node
*parent
;
532 if (RB_EMPTY_NODE(node
))
536 * If we have a right-hand child, go down and then left as far
539 if (node
->rb_right
) {
540 node
= node
->rb_right
;
541 while (node
->rb_left
)
543 return (struct rb_node
*)node
;
547 * No right-hand children. Everything down and left is smaller than us,
548 * so any 'next' node must be in the general direction of our parent.
549 * Go up the tree; any time the ancestor is a right-hand child of its
550 * parent, keep going up. First time it's a left-hand child of its
551 * parent, said parent is our 'next' node.
553 while ((parent
= rb_parent(node
)) && node
== parent
->rb_right
)
558 EXPORT_SYMBOL(rb_next
);
560 struct rb_node
*rb_prev(const struct rb_node
*node
)
562 struct rb_node
*parent
;
564 if (RB_EMPTY_NODE(node
))
568 * If we have a left-hand child, go down and then right as far
572 node
= node
->rb_left
;
573 while (node
->rb_right
)
575 return (struct rb_node
*)node
;
579 * No left-hand children. Go up till we find an ancestor which
580 * is a right-hand child of its parent.
582 while ((parent
= rb_parent(node
)) && node
== parent
->rb_left
)
587 EXPORT_SYMBOL(rb_prev
);
589 void rb_replace_node(struct rb_node
*victim
, struct rb_node
*new,
590 struct rb_root
*root
)
592 struct rb_node
*parent
= rb_parent(victim
);
594 /* Copy the pointers/colour from the victim to the replacement */
597 /* Set the surrounding nodes to point to the replacement */
599 rb_set_parent(victim
->rb_left
, new);
600 if (victim
->rb_right
)
601 rb_set_parent(victim
->rb_right
, new);
602 __rb_change_child(victim
, new, parent
, root
);
604 EXPORT_SYMBOL(rb_replace_node
);
606 void rb_replace_node_rcu(struct rb_node
*victim
, struct rb_node
*new,
607 struct rb_root
*root
)
609 struct rb_node
*parent
= rb_parent(victim
);
611 /* Copy the pointers/colour from the victim to the replacement */
614 /* Set the surrounding nodes to point to the replacement */
616 rb_set_parent(victim
->rb_left
, new);
617 if (victim
->rb_right
)
618 rb_set_parent(victim
->rb_right
, new);
620 /* Set the parent's pointer to the new node last after an RCU barrier
621 * so that the pointers onwards are seen to be set correctly when doing
622 * an RCU walk over the tree.
624 __rb_change_child_rcu(victim
, new, parent
, root
);
626 EXPORT_SYMBOL(rb_replace_node_rcu
);
628 static struct rb_node
*rb_left_deepest_node(const struct rb_node
*node
)
632 node
= node
->rb_left
;
633 else if (node
->rb_right
)
634 node
= node
->rb_right
;
636 return (struct rb_node
*)node
;
640 struct rb_node
*rb_next_postorder(const struct rb_node
*node
)
642 const struct rb_node
*parent
;
645 parent
= rb_parent(node
);
647 /* If we're sitting on node, we've already seen our children */
648 if (parent
&& node
== parent
->rb_left
&& parent
->rb_right
) {
649 /* If we are the parent's left node, go to the parent's right
650 * node then all the way down to the left */
651 return rb_left_deepest_node(parent
->rb_right
);
653 /* Otherwise we are the parent's right node, and the parent
655 return (struct rb_node
*)parent
;
657 EXPORT_SYMBOL(rb_next_postorder
);
659 struct rb_node
*rb_first_postorder(const struct rb_root
*root
)
664 return rb_left_deepest_node(root
->rb_node
);
666 EXPORT_SYMBOL(rb_first_postorder
);