perf bpf: Allow BPF program attach to uprobe events
[linux-2.6/btrfs-unstable.git] / drivers / md / raid10.c
blob96f36596830696c2f1ba1bd8bc6fbb24d30a43d8
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
75 * Number of guaranteed r10bios in case of extreme VM load:
77 #define NR_RAID10_BIOS 256
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
89 #define IO_MADE_GOOD ((struct bio *)2)
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
97 static int max_queued_requests = 1024;
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
110 struct r10conf *conf = data;
111 int size = offsetof(struct r10bio, devs[conf->copies]);
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
115 return kzalloc(size, gfp_flags);
118 static void r10bio_pool_free(void *r10_bio, void *data)
120 kfree(r10_bio);
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
140 struct r10conf *conf = data;
141 struct page *page;
142 struct r10bio *r10_bio;
143 struct bio *bio;
144 int i, j;
145 int nalloc;
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 if (!r10_bio)
149 return NULL;
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
158 * Allocate bios.
160 for (j = nalloc ; j-- ; ) {
161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
176 for (j = 0 ; j < nalloc; j++) {
177 struct bio *rbio = r10_bio->devs[j].repl_bio;
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
189 if (unlikely(!page))
190 goto out_free_pages;
192 bio->bi_io_vec[i].bv_page = page;
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
198 return r10_bio;
200 out_free_pages:
201 for ( ; i > 0 ; i--)
202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 j = 0;
207 out_free_bio:
208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
218 static void r10buf_pool_free(void *__r10_bio, void *data)
220 int i;
221 struct r10conf *conf = data;
222 struct r10bio *r10bio = __r10_bio;
223 int j;
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
229 safe_put_page(bio->bi_io_vec[i].bv_page);
230 bio->bi_io_vec[i].bv_page = NULL;
232 bio_put(bio);
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
238 r10bio_pool_free(r10bio, conf);
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
243 int i;
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
257 static void free_r10bio(struct r10bio *r10_bio)
259 struct r10conf *conf = r10_bio->mddev->private;
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
265 static void put_buf(struct r10bio *r10_bio)
267 struct r10conf *conf = r10_bio->mddev->private;
269 mempool_free(r10_bio, conf->r10buf_pool);
271 lower_barrier(conf);
274 static void reschedule_retry(struct r10bio *r10_bio)
276 unsigned long flags;
277 struct mddev *mddev = r10_bio->mddev;
278 struct r10conf *conf = mddev->private;
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
282 conf->nr_queued ++;
283 spin_unlock_irqrestore(&conf->device_lock, flags);
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
296 static void raid_end_bio_io(struct r10bio *r10_bio)
298 struct bio *bio = r10_bio->master_bio;
299 int done;
300 struct r10conf *conf = r10_bio->mddev->private;
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 bio->bi_error = -EIO;
312 if (done) {
313 bio_endio(bio);
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
318 allow_barrier(conf);
320 free_r10bio(r10_bio);
324 * Update disk head position estimator based on IRQ completion info.
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
328 struct r10conf *conf = r10_bio->mddev->private;
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
335 * Find the disk number which triggered given bio
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 struct bio *bio, int *slotp, int *replp)
340 int slot;
341 int repl = 0;
343 for (slot = 0; slot < conf->copies; slot++) {
344 if (r10_bio->devs[slot].bio == bio)
345 break;
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
355 if (slotp)
356 *slotp = slot;
357 if (replp)
358 *replp = repl;
359 return r10_bio->devs[slot].devnum;
362 static void raid10_end_read_request(struct bio *bio)
364 int uptodate = !bio->bi_error;
365 struct r10bio *r10_bio = bio->bi_private;
366 int slot, dev;
367 struct md_rdev *rdev;
368 struct r10conf *conf = r10_bio->mddev->private;
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot, r10_bio);
378 if (uptodate) {
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
404 * oops, read error - keep the refcount on the rdev
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
417 static void close_write(struct r10bio *r10_bio)
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
424 md_write_end(r10_bio->mddev);
427 static void one_write_done(struct r10bio *r10_bio)
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
442 static void raid10_end_write_request(struct bio *bio)
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
461 * this branch is our 'one mirror IO has finished' event handler:
463 if (bio->bi_error) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
477 } else {
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
487 sector_t first_bad;
488 int bad_sectors;
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
519 * Let's see if all mirrored write operations have finished
520 * already.
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
578 sector += stripe << geo->chunk_shift;
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 struct geom *geo = &conf->geo;
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
627 __raid10_find_phys(geo, r10bio);
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
668 chunk = sector >> geo->chunk_shift;
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
687 * The rdev for the device selected will have nr_pending incremented.
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
694 static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
698 const sector_t this_sector = r10_bio->sector;
699 int disk, slot;
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
702 sector_t new_distance, best_dist;
703 struct md_rdev *best_rdev, *rdev = NULL;
704 int do_balance;
705 int best_slot;
706 struct geom *geo = &conf->geo;
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
710 retry:
711 sectors = r10_bio->sectors;
712 best_slot = -1;
713 best_rdev = NULL;
714 best_dist = MaxSector;
715 best_good_sectors = 0;
716 do_balance = 1;
718 * Check if we can balance. We can balance on the whole
719 * device if no resync is going on (recovery is ok), or below
720 * the resync window. We take the first readable disk when
721 * above the resync window.
723 if (conf->mddev->recovery_cp < MaxSector
724 && (this_sector + sectors >= conf->next_resync))
725 do_balance = 0;
727 for (slot = 0; slot < conf->copies ; slot++) {
728 sector_t first_bad;
729 int bad_sectors;
730 sector_t dev_sector;
732 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733 continue;
734 disk = r10_bio->devs[slot].devnum;
735 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738 rdev = rcu_dereference(conf->mirrors[disk].rdev);
739 if (rdev == NULL ||
740 test_bit(Faulty, &rdev->flags))
741 continue;
742 if (!test_bit(In_sync, &rdev->flags) &&
743 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744 continue;
746 dev_sector = r10_bio->devs[slot].addr;
747 if (is_badblock(rdev, dev_sector, sectors,
748 &first_bad, &bad_sectors)) {
749 if (best_dist < MaxSector)
750 /* Already have a better slot */
751 continue;
752 if (first_bad <= dev_sector) {
753 /* Cannot read here. If this is the
754 * 'primary' device, then we must not read
755 * beyond 'bad_sectors' from another device.
757 bad_sectors -= (dev_sector - first_bad);
758 if (!do_balance && sectors > bad_sectors)
759 sectors = bad_sectors;
760 if (best_good_sectors > sectors)
761 best_good_sectors = sectors;
762 } else {
763 sector_t good_sectors =
764 first_bad - dev_sector;
765 if (good_sectors > best_good_sectors) {
766 best_good_sectors = good_sectors;
767 best_slot = slot;
768 best_rdev = rdev;
770 if (!do_balance)
771 /* Must read from here */
772 break;
774 continue;
775 } else
776 best_good_sectors = sectors;
778 if (!do_balance)
779 break;
781 /* This optimisation is debatable, and completely destroys
782 * sequential read speed for 'far copies' arrays. So only
783 * keep it for 'near' arrays, and review those later.
785 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786 break;
788 /* for far > 1 always use the lowest address */
789 if (geo->far_copies > 1)
790 new_distance = r10_bio->devs[slot].addr;
791 else
792 new_distance = abs(r10_bio->devs[slot].addr -
793 conf->mirrors[disk].head_position);
794 if (new_distance < best_dist) {
795 best_dist = new_distance;
796 best_slot = slot;
797 best_rdev = rdev;
800 if (slot >= conf->copies) {
801 slot = best_slot;
802 rdev = best_rdev;
805 if (slot >= 0) {
806 atomic_inc(&rdev->nr_pending);
807 if (test_bit(Faulty, &rdev->flags)) {
808 /* Cannot risk returning a device that failed
809 * before we inc'ed nr_pending
811 rdev_dec_pending(rdev, conf->mddev);
812 goto retry;
814 r10_bio->read_slot = slot;
815 } else
816 rdev = NULL;
817 rcu_read_unlock();
818 *max_sectors = best_good_sectors;
820 return rdev;
823 static int raid10_congested(struct mddev *mddev, int bits)
825 struct r10conf *conf = mddev->private;
826 int i, ret = 0;
828 if ((bits & (1 << WB_async_congested)) &&
829 conf->pending_count >= max_queued_requests)
830 return 1;
832 rcu_read_lock();
833 for (i = 0;
834 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835 && ret == 0;
836 i++) {
837 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838 if (rdev && !test_bit(Faulty, &rdev->flags)) {
839 struct request_queue *q = bdev_get_queue(rdev->bdev);
841 ret |= bdi_congested(&q->backing_dev_info, bits);
844 rcu_read_unlock();
845 return ret;
848 static void flush_pending_writes(struct r10conf *conf)
850 /* Any writes that have been queued but are awaiting
851 * bitmap updates get flushed here.
853 spin_lock_irq(&conf->device_lock);
855 if (conf->pending_bio_list.head) {
856 struct bio *bio;
857 bio = bio_list_get(&conf->pending_bio_list);
858 conf->pending_count = 0;
859 spin_unlock_irq(&conf->device_lock);
860 /* flush any pending bitmap writes to disk
861 * before proceeding w/ I/O */
862 bitmap_unplug(conf->mddev->bitmap);
863 wake_up(&conf->wait_barrier);
865 while (bio) { /* submit pending writes */
866 struct bio *next = bio->bi_next;
867 bio->bi_next = NULL;
868 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870 /* Just ignore it */
871 bio_endio(bio);
872 else
873 generic_make_request(bio);
874 bio = next;
876 } else
877 spin_unlock_irq(&conf->device_lock);
880 /* Barriers....
881 * Sometimes we need to suspend IO while we do something else,
882 * either some resync/recovery, or reconfigure the array.
883 * To do this we raise a 'barrier'.
884 * The 'barrier' is a counter that can be raised multiple times
885 * to count how many activities are happening which preclude
886 * normal IO.
887 * We can only raise the barrier if there is no pending IO.
888 * i.e. if nr_pending == 0.
889 * We choose only to raise the barrier if no-one is waiting for the
890 * barrier to go down. This means that as soon as an IO request
891 * is ready, no other operations which require a barrier will start
892 * until the IO request has had a chance.
894 * So: regular IO calls 'wait_barrier'. When that returns there
895 * is no backgroup IO happening, It must arrange to call
896 * allow_barrier when it has finished its IO.
897 * backgroup IO calls must call raise_barrier. Once that returns
898 * there is no normal IO happeing. It must arrange to call
899 * lower_barrier when the particular background IO completes.
902 static void raise_barrier(struct r10conf *conf, int force)
904 BUG_ON(force && !conf->barrier);
905 spin_lock_irq(&conf->resync_lock);
907 /* Wait until no block IO is waiting (unless 'force') */
908 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909 conf->resync_lock);
911 /* block any new IO from starting */
912 conf->barrier++;
914 /* Now wait for all pending IO to complete */
915 wait_event_lock_irq(conf->wait_barrier,
916 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917 conf->resync_lock);
919 spin_unlock_irq(&conf->resync_lock);
922 static void lower_barrier(struct r10conf *conf)
924 unsigned long flags;
925 spin_lock_irqsave(&conf->resync_lock, flags);
926 conf->barrier--;
927 spin_unlock_irqrestore(&conf->resync_lock, flags);
928 wake_up(&conf->wait_barrier);
931 static void wait_barrier(struct r10conf *conf)
933 spin_lock_irq(&conf->resync_lock);
934 if (conf->barrier) {
935 conf->nr_waiting++;
936 /* Wait for the barrier to drop.
937 * However if there are already pending
938 * requests (preventing the barrier from
939 * rising completely), and the
940 * pre-process bio queue isn't empty,
941 * then don't wait, as we need to empty
942 * that queue to get the nr_pending
943 * count down.
945 wait_event_lock_irq(conf->wait_barrier,
946 !conf->barrier ||
947 (conf->nr_pending &&
948 current->bio_list &&
949 !bio_list_empty(current->bio_list)),
950 conf->resync_lock);
951 conf->nr_waiting--;
953 conf->nr_pending++;
954 spin_unlock_irq(&conf->resync_lock);
957 static void allow_barrier(struct r10conf *conf)
959 unsigned long flags;
960 spin_lock_irqsave(&conf->resync_lock, flags);
961 conf->nr_pending--;
962 spin_unlock_irqrestore(&conf->resync_lock, flags);
963 wake_up(&conf->wait_barrier);
966 static void freeze_array(struct r10conf *conf, int extra)
968 /* stop syncio and normal IO and wait for everything to
969 * go quiet.
970 * We increment barrier and nr_waiting, and then
971 * wait until nr_pending match nr_queued+extra
972 * This is called in the context of one normal IO request
973 * that has failed. Thus any sync request that might be pending
974 * will be blocked by nr_pending, and we need to wait for
975 * pending IO requests to complete or be queued for re-try.
976 * Thus the number queued (nr_queued) plus this request (extra)
977 * must match the number of pending IOs (nr_pending) before
978 * we continue.
980 spin_lock_irq(&conf->resync_lock);
981 conf->barrier++;
982 conf->nr_waiting++;
983 wait_event_lock_irq_cmd(conf->wait_barrier,
984 conf->nr_pending == conf->nr_queued+extra,
985 conf->resync_lock,
986 flush_pending_writes(conf));
988 spin_unlock_irq(&conf->resync_lock);
991 static void unfreeze_array(struct r10conf *conf)
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf->resync_lock);
995 conf->barrier--;
996 conf->nr_waiting--;
997 wake_up(&conf->wait_barrier);
998 spin_unlock_irq(&conf->resync_lock);
1001 static sector_t choose_data_offset(struct r10bio *r10_bio,
1002 struct md_rdev *rdev)
1004 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005 test_bit(R10BIO_Previous, &r10_bio->state))
1006 return rdev->data_offset;
1007 else
1008 return rdev->new_data_offset;
1011 struct raid10_plug_cb {
1012 struct blk_plug_cb cb;
1013 struct bio_list pending;
1014 int pending_cnt;
1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1019 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020 cb);
1021 struct mddev *mddev = plug->cb.data;
1022 struct r10conf *conf = mddev->private;
1023 struct bio *bio;
1025 if (from_schedule || current->bio_list) {
1026 spin_lock_irq(&conf->device_lock);
1027 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028 conf->pending_count += plug->pending_cnt;
1029 spin_unlock_irq(&conf->device_lock);
1030 wake_up(&conf->wait_barrier);
1031 md_wakeup_thread(mddev->thread);
1032 kfree(plug);
1033 return;
1036 /* we aren't scheduling, so we can do the write-out directly. */
1037 bio = bio_list_get(&plug->pending);
1038 bitmap_unplug(mddev->bitmap);
1039 wake_up(&conf->wait_barrier);
1041 while (bio) { /* submit pending writes */
1042 struct bio *next = bio->bi_next;
1043 bio->bi_next = NULL;
1044 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046 /* Just ignore it */
1047 bio_endio(bio);
1048 else
1049 generic_make_request(bio);
1050 bio = next;
1052 kfree(plug);
1055 static void __make_request(struct mddev *mddev, struct bio *bio)
1057 struct r10conf *conf = mddev->private;
1058 struct r10bio *r10_bio;
1059 struct bio *read_bio;
1060 int i;
1061 const int rw = bio_data_dir(bio);
1062 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064 const unsigned long do_discard = (bio->bi_rw
1065 & (REQ_DISCARD | REQ_SECURE));
1066 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067 unsigned long flags;
1068 struct md_rdev *blocked_rdev;
1069 struct blk_plug_cb *cb;
1070 struct raid10_plug_cb *plug = NULL;
1071 int sectors_handled;
1072 int max_sectors;
1073 int sectors;
1076 * Register the new request and wait if the reconstruction
1077 * thread has put up a bar for new requests.
1078 * Continue immediately if no resync is active currently.
1080 wait_barrier(conf);
1082 sectors = bio_sectors(bio);
1083 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084 bio->bi_iter.bi_sector < conf->reshape_progress &&
1085 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086 /* IO spans the reshape position. Need to wait for
1087 * reshape to pass
1089 allow_barrier(conf);
1090 wait_event(conf->wait_barrier,
1091 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092 conf->reshape_progress >= bio->bi_iter.bi_sector +
1093 sectors);
1094 wait_barrier(conf);
1096 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097 bio_data_dir(bio) == WRITE &&
1098 (mddev->reshape_backwards
1099 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103 /* Need to update reshape_position in metadata */
1104 mddev->reshape_position = conf->reshape_progress;
1105 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107 md_wakeup_thread(mddev->thread);
1108 wait_event(mddev->sb_wait,
1109 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1111 conf->reshape_safe = mddev->reshape_position;
1114 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1116 r10_bio->master_bio = bio;
1117 r10_bio->sectors = sectors;
1119 r10_bio->mddev = mddev;
1120 r10_bio->sector = bio->bi_iter.bi_sector;
1121 r10_bio->state = 0;
1123 /* We might need to issue multiple reads to different
1124 * devices if there are bad blocks around, so we keep
1125 * track of the number of reads in bio->bi_phys_segments.
1126 * If this is 0, there is only one r10_bio and no locking
1127 * will be needed when the request completes. If it is
1128 * non-zero, then it is the number of not-completed requests.
1130 bio->bi_phys_segments = 0;
1131 bio_clear_flag(bio, BIO_SEG_VALID);
1133 if (rw == READ) {
1135 * read balancing logic:
1137 struct md_rdev *rdev;
1138 int slot;
1140 read_again:
1141 rdev = read_balance(conf, r10_bio, &max_sectors);
1142 if (!rdev) {
1143 raid_end_bio_io(r10_bio);
1144 return;
1146 slot = r10_bio->read_slot;
1148 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150 max_sectors);
1152 r10_bio->devs[slot].bio = read_bio;
1153 r10_bio->devs[slot].rdev = rdev;
1155 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156 choose_data_offset(r10_bio, rdev);
1157 read_bio->bi_bdev = rdev->bdev;
1158 read_bio->bi_end_io = raid10_end_read_request;
1159 read_bio->bi_rw = READ | do_sync;
1160 read_bio->bi_private = r10_bio;
1162 if (max_sectors < r10_bio->sectors) {
1163 /* Could not read all from this device, so we will
1164 * need another r10_bio.
1166 sectors_handled = (r10_bio->sector + max_sectors
1167 - bio->bi_iter.bi_sector);
1168 r10_bio->sectors = max_sectors;
1169 spin_lock_irq(&conf->device_lock);
1170 if (bio->bi_phys_segments == 0)
1171 bio->bi_phys_segments = 2;
1172 else
1173 bio->bi_phys_segments++;
1174 spin_unlock_irq(&conf->device_lock);
1175 /* Cannot call generic_make_request directly
1176 * as that will be queued in __generic_make_request
1177 * and subsequent mempool_alloc might block
1178 * waiting for it. so hand bio over to raid10d.
1180 reschedule_retry(r10_bio);
1182 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1184 r10_bio->master_bio = bio;
1185 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1186 r10_bio->state = 0;
1187 r10_bio->mddev = mddev;
1188 r10_bio->sector = bio->bi_iter.bi_sector +
1189 sectors_handled;
1190 goto read_again;
1191 } else
1192 generic_make_request(read_bio);
1193 return;
1197 * WRITE:
1199 if (conf->pending_count >= max_queued_requests) {
1200 md_wakeup_thread(mddev->thread);
1201 wait_event(conf->wait_barrier,
1202 conf->pending_count < max_queued_requests);
1204 /* first select target devices under rcu_lock and
1205 * inc refcount on their rdev. Record them by setting
1206 * bios[x] to bio
1207 * If there are known/acknowledged bad blocks on any device
1208 * on which we have seen a write error, we want to avoid
1209 * writing to those blocks. This potentially requires several
1210 * writes to write around the bad blocks. Each set of writes
1211 * gets its own r10_bio with a set of bios attached. The number
1212 * of r10_bios is recored in bio->bi_phys_segments just as with
1213 * the read case.
1216 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217 raid10_find_phys(conf, r10_bio);
1218 retry_write:
1219 blocked_rdev = NULL;
1220 rcu_read_lock();
1221 max_sectors = r10_bio->sectors;
1223 for (i = 0; i < conf->copies; i++) {
1224 int d = r10_bio->devs[i].devnum;
1225 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226 struct md_rdev *rrdev = rcu_dereference(
1227 conf->mirrors[d].replacement);
1228 if (rdev == rrdev)
1229 rrdev = NULL;
1230 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231 atomic_inc(&rdev->nr_pending);
1232 blocked_rdev = rdev;
1233 break;
1235 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236 atomic_inc(&rrdev->nr_pending);
1237 blocked_rdev = rrdev;
1238 break;
1240 if (rdev && (test_bit(Faulty, &rdev->flags)))
1241 rdev = NULL;
1242 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243 rrdev = NULL;
1245 r10_bio->devs[i].bio = NULL;
1246 r10_bio->devs[i].repl_bio = NULL;
1248 if (!rdev && !rrdev) {
1249 set_bit(R10BIO_Degraded, &r10_bio->state);
1250 continue;
1252 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253 sector_t first_bad;
1254 sector_t dev_sector = r10_bio->devs[i].addr;
1255 int bad_sectors;
1256 int is_bad;
1258 is_bad = is_badblock(rdev, dev_sector,
1259 max_sectors,
1260 &first_bad, &bad_sectors);
1261 if (is_bad < 0) {
1262 /* Mustn't write here until the bad block
1263 * is acknowledged
1265 atomic_inc(&rdev->nr_pending);
1266 set_bit(BlockedBadBlocks, &rdev->flags);
1267 blocked_rdev = rdev;
1268 break;
1270 if (is_bad && first_bad <= dev_sector) {
1271 /* Cannot write here at all */
1272 bad_sectors -= (dev_sector - first_bad);
1273 if (bad_sectors < max_sectors)
1274 /* Mustn't write more than bad_sectors
1275 * to other devices yet
1277 max_sectors = bad_sectors;
1278 /* We don't set R10BIO_Degraded as that
1279 * only applies if the disk is missing,
1280 * so it might be re-added, and we want to
1281 * know to recover this chunk.
1282 * In this case the device is here, and the
1283 * fact that this chunk is not in-sync is
1284 * recorded in the bad block log.
1286 continue;
1288 if (is_bad) {
1289 int good_sectors = first_bad - dev_sector;
1290 if (good_sectors < max_sectors)
1291 max_sectors = good_sectors;
1294 if (rdev) {
1295 r10_bio->devs[i].bio = bio;
1296 atomic_inc(&rdev->nr_pending);
1298 if (rrdev) {
1299 r10_bio->devs[i].repl_bio = bio;
1300 atomic_inc(&rrdev->nr_pending);
1303 rcu_read_unlock();
1305 if (unlikely(blocked_rdev)) {
1306 /* Have to wait for this device to get unblocked, then retry */
1307 int j;
1308 int d;
1310 for (j = 0; j < i; j++) {
1311 if (r10_bio->devs[j].bio) {
1312 d = r10_bio->devs[j].devnum;
1313 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1315 if (r10_bio->devs[j].repl_bio) {
1316 struct md_rdev *rdev;
1317 d = r10_bio->devs[j].devnum;
1318 rdev = conf->mirrors[d].replacement;
1319 if (!rdev) {
1320 /* Race with remove_disk */
1321 smp_mb();
1322 rdev = conf->mirrors[d].rdev;
1324 rdev_dec_pending(rdev, mddev);
1327 allow_barrier(conf);
1328 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329 wait_barrier(conf);
1330 goto retry_write;
1333 if (max_sectors < r10_bio->sectors) {
1334 /* We are splitting this into multiple parts, so
1335 * we need to prepare for allocating another r10_bio.
1337 r10_bio->sectors = max_sectors;
1338 spin_lock_irq(&conf->device_lock);
1339 if (bio->bi_phys_segments == 0)
1340 bio->bi_phys_segments = 2;
1341 else
1342 bio->bi_phys_segments++;
1343 spin_unlock_irq(&conf->device_lock);
1345 sectors_handled = r10_bio->sector + max_sectors -
1346 bio->bi_iter.bi_sector;
1348 atomic_set(&r10_bio->remaining, 1);
1349 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1351 for (i = 0; i < conf->copies; i++) {
1352 struct bio *mbio;
1353 int d = r10_bio->devs[i].devnum;
1354 if (r10_bio->devs[i].bio) {
1355 struct md_rdev *rdev = conf->mirrors[d].rdev;
1356 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358 max_sectors);
1359 r10_bio->devs[i].bio = mbio;
1361 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1362 choose_data_offset(r10_bio,
1363 rdev));
1364 mbio->bi_bdev = rdev->bdev;
1365 mbio->bi_end_io = raid10_end_write_request;
1366 mbio->bi_rw =
1367 WRITE | do_sync | do_fua | do_discard | do_same;
1368 mbio->bi_private = r10_bio;
1370 atomic_inc(&r10_bio->remaining);
1372 cb = blk_check_plugged(raid10_unplug, mddev,
1373 sizeof(*plug));
1374 if (cb)
1375 plug = container_of(cb, struct raid10_plug_cb,
1376 cb);
1377 else
1378 plug = NULL;
1379 spin_lock_irqsave(&conf->device_lock, flags);
1380 if (plug) {
1381 bio_list_add(&plug->pending, mbio);
1382 plug->pending_cnt++;
1383 } else {
1384 bio_list_add(&conf->pending_bio_list, mbio);
1385 conf->pending_count++;
1387 spin_unlock_irqrestore(&conf->device_lock, flags);
1388 if (!plug)
1389 md_wakeup_thread(mddev->thread);
1392 if (r10_bio->devs[i].repl_bio) {
1393 struct md_rdev *rdev = conf->mirrors[d].replacement;
1394 if (rdev == NULL) {
1395 /* Replacement just got moved to main 'rdev' */
1396 smp_mb();
1397 rdev = conf->mirrors[d].rdev;
1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401 max_sectors);
1402 r10_bio->devs[i].repl_bio = mbio;
1404 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1405 choose_data_offset(
1406 r10_bio, rdev));
1407 mbio->bi_bdev = rdev->bdev;
1408 mbio->bi_end_io = raid10_end_write_request;
1409 mbio->bi_rw =
1410 WRITE | do_sync | do_fua | do_discard | do_same;
1411 mbio->bi_private = r10_bio;
1413 atomic_inc(&r10_bio->remaining);
1414 spin_lock_irqsave(&conf->device_lock, flags);
1415 bio_list_add(&conf->pending_bio_list, mbio);
1416 conf->pending_count++;
1417 spin_unlock_irqrestore(&conf->device_lock, flags);
1418 if (!mddev_check_plugged(mddev))
1419 md_wakeup_thread(mddev->thread);
1423 /* Don't remove the bias on 'remaining' (one_write_done) until
1424 * after checking if we need to go around again.
1427 if (sectors_handled < bio_sectors(bio)) {
1428 one_write_done(r10_bio);
1429 /* We need another r10_bio. It has already been counted
1430 * in bio->bi_phys_segments.
1432 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1434 r10_bio->master_bio = bio;
1435 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1437 r10_bio->mddev = mddev;
1438 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 r10_bio->state = 0;
1440 goto retry_write;
1442 one_write_done(r10_bio);
1445 static void make_request(struct mddev *mddev, struct bio *bio)
1447 struct r10conf *conf = mddev->private;
1448 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449 int chunk_sects = chunk_mask + 1;
1451 struct bio *split;
1453 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454 md_flush_request(mddev, bio);
1455 return;
1458 md_write_start(mddev, bio);
1460 do {
1463 * If this request crosses a chunk boundary, we need to split
1464 * it.
1466 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467 bio_sectors(bio) > chunk_sects
1468 && (conf->geo.near_copies < conf->geo.raid_disks
1469 || conf->prev.near_copies <
1470 conf->prev.raid_disks))) {
1471 split = bio_split(bio, chunk_sects -
1472 (bio->bi_iter.bi_sector &
1473 (chunk_sects - 1)),
1474 GFP_NOIO, fs_bio_set);
1475 bio_chain(split, bio);
1476 } else {
1477 split = bio;
1480 __make_request(mddev, split);
1481 } while (split != bio);
1483 /* In case raid10d snuck in to freeze_array */
1484 wake_up(&conf->wait_barrier);
1487 static void status(struct seq_file *seq, struct mddev *mddev)
1489 struct r10conf *conf = mddev->private;
1490 int i;
1492 if (conf->geo.near_copies < conf->geo.raid_disks)
1493 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494 if (conf->geo.near_copies > 1)
1495 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496 if (conf->geo.far_copies > 1) {
1497 if (conf->geo.far_offset)
1498 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499 else
1500 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501 if (conf->geo.far_set_size != conf->geo.raid_disks)
1502 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1504 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505 conf->geo.raid_disks - mddev->degraded);
1506 for (i = 0; i < conf->geo.raid_disks; i++)
1507 seq_printf(seq, "%s",
1508 conf->mirrors[i].rdev &&
1509 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510 seq_printf(seq, "]");
1513 /* check if there are enough drives for
1514 * every block to appear on atleast one.
1515 * Don't consider the device numbered 'ignore'
1516 * as we might be about to remove it.
1518 static int _enough(struct r10conf *conf, int previous, int ignore)
1520 int first = 0;
1521 int has_enough = 0;
1522 int disks, ncopies;
1523 if (previous) {
1524 disks = conf->prev.raid_disks;
1525 ncopies = conf->prev.near_copies;
1526 } else {
1527 disks = conf->geo.raid_disks;
1528 ncopies = conf->geo.near_copies;
1531 rcu_read_lock();
1532 do {
1533 int n = conf->copies;
1534 int cnt = 0;
1535 int this = first;
1536 while (n--) {
1537 struct md_rdev *rdev;
1538 if (this != ignore &&
1539 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540 test_bit(In_sync, &rdev->flags))
1541 cnt++;
1542 this = (this+1) % disks;
1544 if (cnt == 0)
1545 goto out;
1546 first = (first + ncopies) % disks;
1547 } while (first != 0);
1548 has_enough = 1;
1549 out:
1550 rcu_read_unlock();
1551 return has_enough;
1554 static int enough(struct r10conf *conf, int ignore)
1556 /* when calling 'enough', both 'prev' and 'geo' must
1557 * be stable.
1558 * This is ensured if ->reconfig_mutex or ->device_lock
1559 * is held.
1561 return _enough(conf, 0, ignore) &&
1562 _enough(conf, 1, ignore);
1565 static void error(struct mddev *mddev, struct md_rdev *rdev)
1567 char b[BDEVNAME_SIZE];
1568 struct r10conf *conf = mddev->private;
1569 unsigned long flags;
1572 * If it is not operational, then we have already marked it as dead
1573 * else if it is the last working disks, ignore the error, let the
1574 * next level up know.
1575 * else mark the drive as failed
1577 spin_lock_irqsave(&conf->device_lock, flags);
1578 if (test_bit(In_sync, &rdev->flags)
1579 && !enough(conf, rdev->raid_disk)) {
1581 * Don't fail the drive, just return an IO error.
1583 spin_unlock_irqrestore(&conf->device_lock, flags);
1584 return;
1586 if (test_and_clear_bit(In_sync, &rdev->flags))
1587 mddev->degraded++;
1589 * If recovery is running, make sure it aborts.
1591 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1592 set_bit(Blocked, &rdev->flags);
1593 set_bit(Faulty, &rdev->flags);
1594 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1595 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1596 spin_unlock_irqrestore(&conf->device_lock, flags);
1597 printk(KERN_ALERT
1598 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599 "md/raid10:%s: Operation continuing on %d devices.\n",
1600 mdname(mddev), bdevname(rdev->bdev, b),
1601 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1604 static void print_conf(struct r10conf *conf)
1606 int i;
1607 struct raid10_info *tmp;
1609 printk(KERN_DEBUG "RAID10 conf printout:\n");
1610 if (!conf) {
1611 printk(KERN_DEBUG "(!conf)\n");
1612 return;
1614 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615 conf->geo.raid_disks);
1617 for (i = 0; i < conf->geo.raid_disks; i++) {
1618 char b[BDEVNAME_SIZE];
1619 tmp = conf->mirrors + i;
1620 if (tmp->rdev)
1621 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622 i, !test_bit(In_sync, &tmp->rdev->flags),
1623 !test_bit(Faulty, &tmp->rdev->flags),
1624 bdevname(tmp->rdev->bdev,b));
1628 static void close_sync(struct r10conf *conf)
1630 wait_barrier(conf);
1631 allow_barrier(conf);
1633 mempool_destroy(conf->r10buf_pool);
1634 conf->r10buf_pool = NULL;
1637 static int raid10_spare_active(struct mddev *mddev)
1639 int i;
1640 struct r10conf *conf = mddev->private;
1641 struct raid10_info *tmp;
1642 int count = 0;
1643 unsigned long flags;
1646 * Find all non-in_sync disks within the RAID10 configuration
1647 * and mark them in_sync
1649 for (i = 0; i < conf->geo.raid_disks; i++) {
1650 tmp = conf->mirrors + i;
1651 if (tmp->replacement
1652 && tmp->replacement->recovery_offset == MaxSector
1653 && !test_bit(Faulty, &tmp->replacement->flags)
1654 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655 /* Replacement has just become active */
1656 if (!tmp->rdev
1657 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658 count++;
1659 if (tmp->rdev) {
1660 /* Replaced device not technically faulty,
1661 * but we need to be sure it gets removed
1662 * and never re-added.
1664 set_bit(Faulty, &tmp->rdev->flags);
1665 sysfs_notify_dirent_safe(
1666 tmp->rdev->sysfs_state);
1668 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669 } else if (tmp->rdev
1670 && tmp->rdev->recovery_offset == MaxSector
1671 && !test_bit(Faulty, &tmp->rdev->flags)
1672 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673 count++;
1674 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1677 spin_lock_irqsave(&conf->device_lock, flags);
1678 mddev->degraded -= count;
1679 spin_unlock_irqrestore(&conf->device_lock, flags);
1681 print_conf(conf);
1682 return count;
1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1687 struct r10conf *conf = mddev->private;
1688 int err = -EEXIST;
1689 int mirror;
1690 int first = 0;
1691 int last = conf->geo.raid_disks - 1;
1693 if (mddev->recovery_cp < MaxSector)
1694 /* only hot-add to in-sync arrays, as recovery is
1695 * very different from resync
1697 return -EBUSY;
1698 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699 return -EINVAL;
1701 if (rdev->raid_disk >= 0)
1702 first = last = rdev->raid_disk;
1704 if (rdev->saved_raid_disk >= first &&
1705 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706 mirror = rdev->saved_raid_disk;
1707 else
1708 mirror = first;
1709 for ( ; mirror <= last ; mirror++) {
1710 struct raid10_info *p = &conf->mirrors[mirror];
1711 if (p->recovery_disabled == mddev->recovery_disabled)
1712 continue;
1713 if (p->rdev) {
1714 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715 p->replacement != NULL)
1716 continue;
1717 clear_bit(In_sync, &rdev->flags);
1718 set_bit(Replacement, &rdev->flags);
1719 rdev->raid_disk = mirror;
1720 err = 0;
1721 if (mddev->gendisk)
1722 disk_stack_limits(mddev->gendisk, rdev->bdev,
1723 rdev->data_offset << 9);
1724 conf->fullsync = 1;
1725 rcu_assign_pointer(p->replacement, rdev);
1726 break;
1729 if (mddev->gendisk)
1730 disk_stack_limits(mddev->gendisk, rdev->bdev,
1731 rdev->data_offset << 9);
1733 p->head_position = 0;
1734 p->recovery_disabled = mddev->recovery_disabled - 1;
1735 rdev->raid_disk = mirror;
1736 err = 0;
1737 if (rdev->saved_raid_disk != mirror)
1738 conf->fullsync = 1;
1739 rcu_assign_pointer(p->rdev, rdev);
1740 break;
1742 md_integrity_add_rdev(rdev, mddev);
1743 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1744 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1746 print_conf(conf);
1747 return err;
1750 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1752 struct r10conf *conf = mddev->private;
1753 int err = 0;
1754 int number = rdev->raid_disk;
1755 struct md_rdev **rdevp;
1756 struct raid10_info *p = conf->mirrors + number;
1758 print_conf(conf);
1759 if (rdev == p->rdev)
1760 rdevp = &p->rdev;
1761 else if (rdev == p->replacement)
1762 rdevp = &p->replacement;
1763 else
1764 return 0;
1766 if (test_bit(In_sync, &rdev->flags) ||
1767 atomic_read(&rdev->nr_pending)) {
1768 err = -EBUSY;
1769 goto abort;
1771 /* Only remove faulty devices if recovery
1772 * is not possible.
1774 if (!test_bit(Faulty, &rdev->flags) &&
1775 mddev->recovery_disabled != p->recovery_disabled &&
1776 (!p->replacement || p->replacement == rdev) &&
1777 number < conf->geo.raid_disks &&
1778 enough(conf, -1)) {
1779 err = -EBUSY;
1780 goto abort;
1782 *rdevp = NULL;
1783 synchronize_rcu();
1784 if (atomic_read(&rdev->nr_pending)) {
1785 /* lost the race, try later */
1786 err = -EBUSY;
1787 *rdevp = rdev;
1788 goto abort;
1789 } else if (p->replacement) {
1790 /* We must have just cleared 'rdev' */
1791 p->rdev = p->replacement;
1792 clear_bit(Replacement, &p->replacement->flags);
1793 smp_mb(); /* Make sure other CPUs may see both as identical
1794 * but will never see neither -- if they are careful.
1796 p->replacement = NULL;
1797 clear_bit(WantReplacement, &rdev->flags);
1798 } else
1799 /* We might have just remove the Replacement as faulty
1800 * Clear the flag just in case
1802 clear_bit(WantReplacement, &rdev->flags);
1804 err = md_integrity_register(mddev);
1806 abort:
1808 print_conf(conf);
1809 return err;
1812 static void end_sync_read(struct bio *bio)
1814 struct r10bio *r10_bio = bio->bi_private;
1815 struct r10conf *conf = r10_bio->mddev->private;
1816 int d;
1818 if (bio == r10_bio->master_bio) {
1819 /* this is a reshape read */
1820 d = r10_bio->read_slot; /* really the read dev */
1821 } else
1822 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1824 if (!bio->bi_error)
1825 set_bit(R10BIO_Uptodate, &r10_bio->state);
1826 else
1827 /* The write handler will notice the lack of
1828 * R10BIO_Uptodate and record any errors etc
1830 atomic_add(r10_bio->sectors,
1831 &conf->mirrors[d].rdev->corrected_errors);
1833 /* for reconstruct, we always reschedule after a read.
1834 * for resync, only after all reads
1836 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1837 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1838 atomic_dec_and_test(&r10_bio->remaining)) {
1839 /* we have read all the blocks,
1840 * do the comparison in process context in raid10d
1842 reschedule_retry(r10_bio);
1846 static void end_sync_request(struct r10bio *r10_bio)
1848 struct mddev *mddev = r10_bio->mddev;
1850 while (atomic_dec_and_test(&r10_bio->remaining)) {
1851 if (r10_bio->master_bio == NULL) {
1852 /* the primary of several recovery bios */
1853 sector_t s = r10_bio->sectors;
1854 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1855 test_bit(R10BIO_WriteError, &r10_bio->state))
1856 reschedule_retry(r10_bio);
1857 else
1858 put_buf(r10_bio);
1859 md_done_sync(mddev, s, 1);
1860 break;
1861 } else {
1862 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1863 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1864 test_bit(R10BIO_WriteError, &r10_bio->state))
1865 reschedule_retry(r10_bio);
1866 else
1867 put_buf(r10_bio);
1868 r10_bio = r10_bio2;
1873 static void end_sync_write(struct bio *bio)
1875 struct r10bio *r10_bio = bio->bi_private;
1876 struct mddev *mddev = r10_bio->mddev;
1877 struct r10conf *conf = mddev->private;
1878 int d;
1879 sector_t first_bad;
1880 int bad_sectors;
1881 int slot;
1882 int repl;
1883 struct md_rdev *rdev = NULL;
1885 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1886 if (repl)
1887 rdev = conf->mirrors[d].replacement;
1888 else
1889 rdev = conf->mirrors[d].rdev;
1891 if (bio->bi_error) {
1892 if (repl)
1893 md_error(mddev, rdev);
1894 else {
1895 set_bit(WriteErrorSeen, &rdev->flags);
1896 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1897 set_bit(MD_RECOVERY_NEEDED,
1898 &rdev->mddev->recovery);
1899 set_bit(R10BIO_WriteError, &r10_bio->state);
1901 } else if (is_badblock(rdev,
1902 r10_bio->devs[slot].addr,
1903 r10_bio->sectors,
1904 &first_bad, &bad_sectors))
1905 set_bit(R10BIO_MadeGood, &r10_bio->state);
1907 rdev_dec_pending(rdev, mddev);
1909 end_sync_request(r10_bio);
1913 * Note: sync and recover and handled very differently for raid10
1914 * This code is for resync.
1915 * For resync, we read through virtual addresses and read all blocks.
1916 * If there is any error, we schedule a write. The lowest numbered
1917 * drive is authoritative.
1918 * However requests come for physical address, so we need to map.
1919 * For every physical address there are raid_disks/copies virtual addresses,
1920 * which is always are least one, but is not necessarly an integer.
1921 * This means that a physical address can span multiple chunks, so we may
1922 * have to submit multiple io requests for a single sync request.
1925 * We check if all blocks are in-sync and only write to blocks that
1926 * aren't in sync
1928 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1930 struct r10conf *conf = mddev->private;
1931 int i, first;
1932 struct bio *tbio, *fbio;
1933 int vcnt;
1935 atomic_set(&r10_bio->remaining, 1);
1937 /* find the first device with a block */
1938 for (i=0; i<conf->copies; i++)
1939 if (!r10_bio->devs[i].bio->bi_error)
1940 break;
1942 if (i == conf->copies)
1943 goto done;
1945 first = i;
1946 fbio = r10_bio->devs[i].bio;
1948 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1949 /* now find blocks with errors */
1950 for (i=0 ; i < conf->copies ; i++) {
1951 int j, d;
1953 tbio = r10_bio->devs[i].bio;
1955 if (tbio->bi_end_io != end_sync_read)
1956 continue;
1957 if (i == first)
1958 continue;
1959 if (!r10_bio->devs[i].bio->bi_error) {
1960 /* We know that the bi_io_vec layout is the same for
1961 * both 'first' and 'i', so we just compare them.
1962 * All vec entries are PAGE_SIZE;
1964 int sectors = r10_bio->sectors;
1965 for (j = 0; j < vcnt; j++) {
1966 int len = PAGE_SIZE;
1967 if (sectors < (len / 512))
1968 len = sectors * 512;
1969 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1970 page_address(tbio->bi_io_vec[j].bv_page),
1971 len))
1972 break;
1973 sectors -= len/512;
1975 if (j == vcnt)
1976 continue;
1977 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1978 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1979 /* Don't fix anything. */
1980 continue;
1982 /* Ok, we need to write this bio, either to correct an
1983 * inconsistency or to correct an unreadable block.
1984 * First we need to fixup bv_offset, bv_len and
1985 * bi_vecs, as the read request might have corrupted these
1987 bio_reset(tbio);
1989 tbio->bi_vcnt = vcnt;
1990 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1991 tbio->bi_rw = WRITE;
1992 tbio->bi_private = r10_bio;
1993 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1994 tbio->bi_end_io = end_sync_write;
1996 bio_copy_data(tbio, fbio);
1998 d = r10_bio->devs[i].devnum;
1999 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2000 atomic_inc(&r10_bio->remaining);
2001 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2003 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2004 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2005 generic_make_request(tbio);
2008 /* Now write out to any replacement devices
2009 * that are active
2011 for (i = 0; i < conf->copies; i++) {
2012 int d;
2014 tbio = r10_bio->devs[i].repl_bio;
2015 if (!tbio || !tbio->bi_end_io)
2016 continue;
2017 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2018 && r10_bio->devs[i].bio != fbio)
2019 bio_copy_data(tbio, fbio);
2020 d = r10_bio->devs[i].devnum;
2021 atomic_inc(&r10_bio->remaining);
2022 md_sync_acct(conf->mirrors[d].replacement->bdev,
2023 bio_sectors(tbio));
2024 generic_make_request(tbio);
2027 done:
2028 if (atomic_dec_and_test(&r10_bio->remaining)) {
2029 md_done_sync(mddev, r10_bio->sectors, 1);
2030 put_buf(r10_bio);
2035 * Now for the recovery code.
2036 * Recovery happens across physical sectors.
2037 * We recover all non-is_sync drives by finding the virtual address of
2038 * each, and then choose a working drive that also has that virt address.
2039 * There is a separate r10_bio for each non-in_sync drive.
2040 * Only the first two slots are in use. The first for reading,
2041 * The second for writing.
2044 static void fix_recovery_read_error(struct r10bio *r10_bio)
2046 /* We got a read error during recovery.
2047 * We repeat the read in smaller page-sized sections.
2048 * If a read succeeds, write it to the new device or record
2049 * a bad block if we cannot.
2050 * If a read fails, record a bad block on both old and
2051 * new devices.
2053 struct mddev *mddev = r10_bio->mddev;
2054 struct r10conf *conf = mddev->private;
2055 struct bio *bio = r10_bio->devs[0].bio;
2056 sector_t sect = 0;
2057 int sectors = r10_bio->sectors;
2058 int idx = 0;
2059 int dr = r10_bio->devs[0].devnum;
2060 int dw = r10_bio->devs[1].devnum;
2062 while (sectors) {
2063 int s = sectors;
2064 struct md_rdev *rdev;
2065 sector_t addr;
2066 int ok;
2068 if (s > (PAGE_SIZE>>9))
2069 s = PAGE_SIZE >> 9;
2071 rdev = conf->mirrors[dr].rdev;
2072 addr = r10_bio->devs[0].addr + sect,
2073 ok = sync_page_io(rdev,
2074 addr,
2075 s << 9,
2076 bio->bi_io_vec[idx].bv_page,
2077 READ, false);
2078 if (ok) {
2079 rdev = conf->mirrors[dw].rdev;
2080 addr = r10_bio->devs[1].addr + sect;
2081 ok = sync_page_io(rdev,
2082 addr,
2083 s << 9,
2084 bio->bi_io_vec[idx].bv_page,
2085 WRITE, false);
2086 if (!ok) {
2087 set_bit(WriteErrorSeen, &rdev->flags);
2088 if (!test_and_set_bit(WantReplacement,
2089 &rdev->flags))
2090 set_bit(MD_RECOVERY_NEEDED,
2091 &rdev->mddev->recovery);
2094 if (!ok) {
2095 /* We don't worry if we cannot set a bad block -
2096 * it really is bad so there is no loss in not
2097 * recording it yet
2099 rdev_set_badblocks(rdev, addr, s, 0);
2101 if (rdev != conf->mirrors[dw].rdev) {
2102 /* need bad block on destination too */
2103 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2104 addr = r10_bio->devs[1].addr + sect;
2105 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2106 if (!ok) {
2107 /* just abort the recovery */
2108 printk(KERN_NOTICE
2109 "md/raid10:%s: recovery aborted"
2110 " due to read error\n",
2111 mdname(mddev));
2113 conf->mirrors[dw].recovery_disabled
2114 = mddev->recovery_disabled;
2115 set_bit(MD_RECOVERY_INTR,
2116 &mddev->recovery);
2117 break;
2122 sectors -= s;
2123 sect += s;
2124 idx++;
2128 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2130 struct r10conf *conf = mddev->private;
2131 int d;
2132 struct bio *wbio, *wbio2;
2134 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2135 fix_recovery_read_error(r10_bio);
2136 end_sync_request(r10_bio);
2137 return;
2141 * share the pages with the first bio
2142 * and submit the write request
2144 d = r10_bio->devs[1].devnum;
2145 wbio = r10_bio->devs[1].bio;
2146 wbio2 = r10_bio->devs[1].repl_bio;
2147 /* Need to test wbio2->bi_end_io before we call
2148 * generic_make_request as if the former is NULL,
2149 * the latter is free to free wbio2.
2151 if (wbio2 && !wbio2->bi_end_io)
2152 wbio2 = NULL;
2153 if (wbio->bi_end_io) {
2154 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2155 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2156 generic_make_request(wbio);
2158 if (wbio2) {
2159 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2160 md_sync_acct(conf->mirrors[d].replacement->bdev,
2161 bio_sectors(wbio2));
2162 generic_make_request(wbio2);
2167 * Used by fix_read_error() to decay the per rdev read_errors.
2168 * We halve the read error count for every hour that has elapsed
2169 * since the last recorded read error.
2172 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2174 struct timespec cur_time_mon;
2175 unsigned long hours_since_last;
2176 unsigned int read_errors = atomic_read(&rdev->read_errors);
2178 ktime_get_ts(&cur_time_mon);
2180 if (rdev->last_read_error.tv_sec == 0 &&
2181 rdev->last_read_error.tv_nsec == 0) {
2182 /* first time we've seen a read error */
2183 rdev->last_read_error = cur_time_mon;
2184 return;
2187 hours_since_last = (cur_time_mon.tv_sec -
2188 rdev->last_read_error.tv_sec) / 3600;
2190 rdev->last_read_error = cur_time_mon;
2193 * if hours_since_last is > the number of bits in read_errors
2194 * just set read errors to 0. We do this to avoid
2195 * overflowing the shift of read_errors by hours_since_last.
2197 if (hours_since_last >= 8 * sizeof(read_errors))
2198 atomic_set(&rdev->read_errors, 0);
2199 else
2200 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204 int sectors, struct page *page, int rw)
2206 sector_t first_bad;
2207 int bad_sectors;
2209 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211 return -1;
2212 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2213 /* success */
2214 return 1;
2215 if (rw == WRITE) {
2216 set_bit(WriteErrorSeen, &rdev->flags);
2217 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218 set_bit(MD_RECOVERY_NEEDED,
2219 &rdev->mddev->recovery);
2221 /* need to record an error - either for the block or the device */
2222 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223 md_error(rdev->mddev, rdev);
2224 return 0;
2228 * This is a kernel thread which:
2230 * 1. Retries failed read operations on working mirrors.
2231 * 2. Updates the raid superblock when problems encounter.
2232 * 3. Performs writes following reads for array synchronising.
2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2237 int sect = 0; /* Offset from r10_bio->sector */
2238 int sectors = r10_bio->sectors;
2239 struct md_rdev*rdev;
2240 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2243 /* still own a reference to this rdev, so it cannot
2244 * have been cleared recently.
2246 rdev = conf->mirrors[d].rdev;
2248 if (test_bit(Faulty, &rdev->flags))
2249 /* drive has already been failed, just ignore any
2250 more fix_read_error() attempts */
2251 return;
2253 check_decay_read_errors(mddev, rdev);
2254 atomic_inc(&rdev->read_errors);
2255 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256 char b[BDEVNAME_SIZE];
2257 bdevname(rdev->bdev, b);
2259 printk(KERN_NOTICE
2260 "md/raid10:%s: %s: Raid device exceeded "
2261 "read_error threshold [cur %d:max %d]\n",
2262 mdname(mddev), b,
2263 atomic_read(&rdev->read_errors), max_read_errors);
2264 printk(KERN_NOTICE
2265 "md/raid10:%s: %s: Failing raid device\n",
2266 mdname(mddev), b);
2267 md_error(mddev, conf->mirrors[d].rdev);
2268 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269 return;
2272 while(sectors) {
2273 int s = sectors;
2274 int sl = r10_bio->read_slot;
2275 int success = 0;
2276 int start;
2278 if (s > (PAGE_SIZE>>9))
2279 s = PAGE_SIZE >> 9;
2281 rcu_read_lock();
2282 do {
2283 sector_t first_bad;
2284 int bad_sectors;
2286 d = r10_bio->devs[sl].devnum;
2287 rdev = rcu_dereference(conf->mirrors[d].rdev);
2288 if (rdev &&
2289 test_bit(In_sync, &rdev->flags) &&
2290 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2291 &first_bad, &bad_sectors) == 0) {
2292 atomic_inc(&rdev->nr_pending);
2293 rcu_read_unlock();
2294 success = sync_page_io(rdev,
2295 r10_bio->devs[sl].addr +
2296 sect,
2297 s<<9,
2298 conf->tmppage, READ, false);
2299 rdev_dec_pending(rdev, mddev);
2300 rcu_read_lock();
2301 if (success)
2302 break;
2304 sl++;
2305 if (sl == conf->copies)
2306 sl = 0;
2307 } while (!success && sl != r10_bio->read_slot);
2308 rcu_read_unlock();
2310 if (!success) {
2311 /* Cannot read from anywhere, just mark the block
2312 * as bad on the first device to discourage future
2313 * reads.
2315 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2316 rdev = conf->mirrors[dn].rdev;
2318 if (!rdev_set_badblocks(
2319 rdev,
2320 r10_bio->devs[r10_bio->read_slot].addr
2321 + sect,
2322 s, 0)) {
2323 md_error(mddev, rdev);
2324 r10_bio->devs[r10_bio->read_slot].bio
2325 = IO_BLOCKED;
2327 break;
2330 start = sl;
2331 /* write it back and re-read */
2332 rcu_read_lock();
2333 while (sl != r10_bio->read_slot) {
2334 char b[BDEVNAME_SIZE];
2336 if (sl==0)
2337 sl = conf->copies;
2338 sl--;
2339 d = r10_bio->devs[sl].devnum;
2340 rdev = rcu_dereference(conf->mirrors[d].rdev);
2341 if (!rdev ||
2342 !test_bit(In_sync, &rdev->flags))
2343 continue;
2345 atomic_inc(&rdev->nr_pending);
2346 rcu_read_unlock();
2347 if (r10_sync_page_io(rdev,
2348 r10_bio->devs[sl].addr +
2349 sect,
2350 s, conf->tmppage, WRITE)
2351 == 0) {
2352 /* Well, this device is dead */
2353 printk(KERN_NOTICE
2354 "md/raid10:%s: read correction "
2355 "write failed"
2356 " (%d sectors at %llu on %s)\n",
2357 mdname(mddev), s,
2358 (unsigned long long)(
2359 sect +
2360 choose_data_offset(r10_bio,
2361 rdev)),
2362 bdevname(rdev->bdev, b));
2363 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2364 "drive\n",
2365 mdname(mddev),
2366 bdevname(rdev->bdev, b));
2368 rdev_dec_pending(rdev, mddev);
2369 rcu_read_lock();
2371 sl = start;
2372 while (sl != r10_bio->read_slot) {
2373 char b[BDEVNAME_SIZE];
2375 if (sl==0)
2376 sl = conf->copies;
2377 sl--;
2378 d = r10_bio->devs[sl].devnum;
2379 rdev = rcu_dereference(conf->mirrors[d].rdev);
2380 if (!rdev ||
2381 !test_bit(In_sync, &rdev->flags))
2382 continue;
2384 atomic_inc(&rdev->nr_pending);
2385 rcu_read_unlock();
2386 switch (r10_sync_page_io(rdev,
2387 r10_bio->devs[sl].addr +
2388 sect,
2389 s, conf->tmppage,
2390 READ)) {
2391 case 0:
2392 /* Well, this device is dead */
2393 printk(KERN_NOTICE
2394 "md/raid10:%s: unable to read back "
2395 "corrected sectors"
2396 " (%d sectors at %llu on %s)\n",
2397 mdname(mddev), s,
2398 (unsigned long long)(
2399 sect +
2400 choose_data_offset(r10_bio, rdev)),
2401 bdevname(rdev->bdev, b));
2402 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2403 "drive\n",
2404 mdname(mddev),
2405 bdevname(rdev->bdev, b));
2406 break;
2407 case 1:
2408 printk(KERN_INFO
2409 "md/raid10:%s: read error corrected"
2410 " (%d sectors at %llu on %s)\n",
2411 mdname(mddev), s,
2412 (unsigned long long)(
2413 sect +
2414 choose_data_offset(r10_bio, rdev)),
2415 bdevname(rdev->bdev, b));
2416 atomic_add(s, &rdev->corrected_errors);
2419 rdev_dec_pending(rdev, mddev);
2420 rcu_read_lock();
2422 rcu_read_unlock();
2424 sectors -= s;
2425 sect += s;
2429 static int narrow_write_error(struct r10bio *r10_bio, int i)
2431 struct bio *bio = r10_bio->master_bio;
2432 struct mddev *mddev = r10_bio->mddev;
2433 struct r10conf *conf = mddev->private;
2434 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2435 /* bio has the data to be written to slot 'i' where
2436 * we just recently had a write error.
2437 * We repeatedly clone the bio and trim down to one block,
2438 * then try the write. Where the write fails we record
2439 * a bad block.
2440 * It is conceivable that the bio doesn't exactly align with
2441 * blocks. We must handle this.
2443 * We currently own a reference to the rdev.
2446 int block_sectors;
2447 sector_t sector;
2448 int sectors;
2449 int sect_to_write = r10_bio->sectors;
2450 int ok = 1;
2452 if (rdev->badblocks.shift < 0)
2453 return 0;
2455 block_sectors = roundup(1 << rdev->badblocks.shift,
2456 bdev_logical_block_size(rdev->bdev) >> 9);
2457 sector = r10_bio->sector;
2458 sectors = ((r10_bio->sector + block_sectors)
2459 & ~(sector_t)(block_sectors - 1))
2460 - sector;
2462 while (sect_to_write) {
2463 struct bio *wbio;
2464 if (sectors > sect_to_write)
2465 sectors = sect_to_write;
2466 /* Write at 'sector' for 'sectors' */
2467 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2468 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2469 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2470 choose_data_offset(r10_bio, rdev) +
2471 (sector - r10_bio->sector));
2472 wbio->bi_bdev = rdev->bdev;
2473 if (submit_bio_wait(WRITE, wbio) < 0)
2474 /* Failure! */
2475 ok = rdev_set_badblocks(rdev, sector,
2476 sectors, 0)
2477 && ok;
2479 bio_put(wbio);
2480 sect_to_write -= sectors;
2481 sector += sectors;
2482 sectors = block_sectors;
2484 return ok;
2487 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2489 int slot = r10_bio->read_slot;
2490 struct bio *bio;
2491 struct r10conf *conf = mddev->private;
2492 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2493 char b[BDEVNAME_SIZE];
2494 unsigned long do_sync;
2495 int max_sectors;
2497 /* we got a read error. Maybe the drive is bad. Maybe just
2498 * the block and we can fix it.
2499 * We freeze all other IO, and try reading the block from
2500 * other devices. When we find one, we re-write
2501 * and check it that fixes the read error.
2502 * This is all done synchronously while the array is
2503 * frozen.
2505 bio = r10_bio->devs[slot].bio;
2506 bdevname(bio->bi_bdev, b);
2507 bio_put(bio);
2508 r10_bio->devs[slot].bio = NULL;
2510 if (mddev->ro == 0) {
2511 freeze_array(conf, 1);
2512 fix_read_error(conf, mddev, r10_bio);
2513 unfreeze_array(conf);
2514 } else
2515 r10_bio->devs[slot].bio = IO_BLOCKED;
2517 rdev_dec_pending(rdev, mddev);
2519 read_more:
2520 rdev = read_balance(conf, r10_bio, &max_sectors);
2521 if (rdev == NULL) {
2522 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2523 " read error for block %llu\n",
2524 mdname(mddev), b,
2525 (unsigned long long)r10_bio->sector);
2526 raid_end_bio_io(r10_bio);
2527 return;
2530 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2531 slot = r10_bio->read_slot;
2532 printk_ratelimited(
2533 KERN_ERR
2534 "md/raid10:%s: %s: redirecting "
2535 "sector %llu to another mirror\n",
2536 mdname(mddev),
2537 bdevname(rdev->bdev, b),
2538 (unsigned long long)r10_bio->sector);
2539 bio = bio_clone_mddev(r10_bio->master_bio,
2540 GFP_NOIO, mddev);
2541 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2542 r10_bio->devs[slot].bio = bio;
2543 r10_bio->devs[slot].rdev = rdev;
2544 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2545 + choose_data_offset(r10_bio, rdev);
2546 bio->bi_bdev = rdev->bdev;
2547 bio->bi_rw = READ | do_sync;
2548 bio->bi_private = r10_bio;
2549 bio->bi_end_io = raid10_end_read_request;
2550 if (max_sectors < r10_bio->sectors) {
2551 /* Drat - have to split this up more */
2552 struct bio *mbio = r10_bio->master_bio;
2553 int sectors_handled =
2554 r10_bio->sector + max_sectors
2555 - mbio->bi_iter.bi_sector;
2556 r10_bio->sectors = max_sectors;
2557 spin_lock_irq(&conf->device_lock);
2558 if (mbio->bi_phys_segments == 0)
2559 mbio->bi_phys_segments = 2;
2560 else
2561 mbio->bi_phys_segments++;
2562 spin_unlock_irq(&conf->device_lock);
2563 generic_make_request(bio);
2565 r10_bio = mempool_alloc(conf->r10bio_pool,
2566 GFP_NOIO);
2567 r10_bio->master_bio = mbio;
2568 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2569 r10_bio->state = 0;
2570 set_bit(R10BIO_ReadError,
2571 &r10_bio->state);
2572 r10_bio->mddev = mddev;
2573 r10_bio->sector = mbio->bi_iter.bi_sector
2574 + sectors_handled;
2576 goto read_more;
2577 } else
2578 generic_make_request(bio);
2581 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2583 /* Some sort of write request has finished and it
2584 * succeeded in writing where we thought there was a
2585 * bad block. So forget the bad block.
2586 * Or possibly if failed and we need to record
2587 * a bad block.
2589 int m;
2590 struct md_rdev *rdev;
2592 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2593 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2594 for (m = 0; m < conf->copies; m++) {
2595 int dev = r10_bio->devs[m].devnum;
2596 rdev = conf->mirrors[dev].rdev;
2597 if (r10_bio->devs[m].bio == NULL)
2598 continue;
2599 if (!r10_bio->devs[m].bio->bi_error) {
2600 rdev_clear_badblocks(
2601 rdev,
2602 r10_bio->devs[m].addr,
2603 r10_bio->sectors, 0);
2604 } else {
2605 if (!rdev_set_badblocks(
2606 rdev,
2607 r10_bio->devs[m].addr,
2608 r10_bio->sectors, 0))
2609 md_error(conf->mddev, rdev);
2611 rdev = conf->mirrors[dev].replacement;
2612 if (r10_bio->devs[m].repl_bio == NULL)
2613 continue;
2615 if (!r10_bio->devs[m].repl_bio->bi_error) {
2616 rdev_clear_badblocks(
2617 rdev,
2618 r10_bio->devs[m].addr,
2619 r10_bio->sectors, 0);
2620 } else {
2621 if (!rdev_set_badblocks(
2622 rdev,
2623 r10_bio->devs[m].addr,
2624 r10_bio->sectors, 0))
2625 md_error(conf->mddev, rdev);
2628 put_buf(r10_bio);
2629 } else {
2630 bool fail = false;
2631 for (m = 0; m < conf->copies; m++) {
2632 int dev = r10_bio->devs[m].devnum;
2633 struct bio *bio = r10_bio->devs[m].bio;
2634 rdev = conf->mirrors[dev].rdev;
2635 if (bio == IO_MADE_GOOD) {
2636 rdev_clear_badblocks(
2637 rdev,
2638 r10_bio->devs[m].addr,
2639 r10_bio->sectors, 0);
2640 rdev_dec_pending(rdev, conf->mddev);
2641 } else if (bio != NULL && bio->bi_error) {
2642 fail = true;
2643 if (!narrow_write_error(r10_bio, m)) {
2644 md_error(conf->mddev, rdev);
2645 set_bit(R10BIO_Degraded,
2646 &r10_bio->state);
2648 rdev_dec_pending(rdev, conf->mddev);
2650 bio = r10_bio->devs[m].repl_bio;
2651 rdev = conf->mirrors[dev].replacement;
2652 if (rdev && bio == IO_MADE_GOOD) {
2653 rdev_clear_badblocks(
2654 rdev,
2655 r10_bio->devs[m].addr,
2656 r10_bio->sectors, 0);
2657 rdev_dec_pending(rdev, conf->mddev);
2660 if (fail) {
2661 spin_lock_irq(&conf->device_lock);
2662 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2663 spin_unlock_irq(&conf->device_lock);
2664 md_wakeup_thread(conf->mddev->thread);
2665 } else {
2666 if (test_bit(R10BIO_WriteError,
2667 &r10_bio->state))
2668 close_write(r10_bio);
2669 raid_end_bio_io(r10_bio);
2674 static void raid10d(struct md_thread *thread)
2676 struct mddev *mddev = thread->mddev;
2677 struct r10bio *r10_bio;
2678 unsigned long flags;
2679 struct r10conf *conf = mddev->private;
2680 struct list_head *head = &conf->retry_list;
2681 struct blk_plug plug;
2683 md_check_recovery(mddev);
2685 if (!list_empty_careful(&conf->bio_end_io_list) &&
2686 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2687 LIST_HEAD(tmp);
2688 spin_lock_irqsave(&conf->device_lock, flags);
2689 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2690 list_add(&tmp, &conf->bio_end_io_list);
2691 list_del_init(&conf->bio_end_io_list);
2693 spin_unlock_irqrestore(&conf->device_lock, flags);
2694 while (!list_empty(&tmp)) {
2695 r10_bio = list_first_entry(&tmp, struct r10bio,
2696 retry_list);
2697 list_del(&r10_bio->retry_list);
2698 if (mddev->degraded)
2699 set_bit(R10BIO_Degraded, &r10_bio->state);
2701 if (test_bit(R10BIO_WriteError,
2702 &r10_bio->state))
2703 close_write(r10_bio);
2704 raid_end_bio_io(r10_bio);
2708 blk_start_plug(&plug);
2709 for (;;) {
2711 flush_pending_writes(conf);
2713 spin_lock_irqsave(&conf->device_lock, flags);
2714 if (list_empty(head)) {
2715 spin_unlock_irqrestore(&conf->device_lock, flags);
2716 break;
2718 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2719 list_del(head->prev);
2720 conf->nr_queued--;
2721 spin_unlock_irqrestore(&conf->device_lock, flags);
2723 mddev = r10_bio->mddev;
2724 conf = mddev->private;
2725 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2726 test_bit(R10BIO_WriteError, &r10_bio->state))
2727 handle_write_completed(conf, r10_bio);
2728 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2729 reshape_request_write(mddev, r10_bio);
2730 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2731 sync_request_write(mddev, r10_bio);
2732 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2733 recovery_request_write(mddev, r10_bio);
2734 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2735 handle_read_error(mddev, r10_bio);
2736 else {
2737 /* just a partial read to be scheduled from a
2738 * separate context
2740 int slot = r10_bio->read_slot;
2741 generic_make_request(r10_bio->devs[slot].bio);
2744 cond_resched();
2745 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2746 md_check_recovery(mddev);
2748 blk_finish_plug(&plug);
2751 static int init_resync(struct r10conf *conf)
2753 int buffs;
2754 int i;
2756 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2757 BUG_ON(conf->r10buf_pool);
2758 conf->have_replacement = 0;
2759 for (i = 0; i < conf->geo.raid_disks; i++)
2760 if (conf->mirrors[i].replacement)
2761 conf->have_replacement = 1;
2762 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2763 if (!conf->r10buf_pool)
2764 return -ENOMEM;
2765 conf->next_resync = 0;
2766 return 0;
2770 * perform a "sync" on one "block"
2772 * We need to make sure that no normal I/O request - particularly write
2773 * requests - conflict with active sync requests.
2775 * This is achieved by tracking pending requests and a 'barrier' concept
2776 * that can be installed to exclude normal IO requests.
2778 * Resync and recovery are handled very differently.
2779 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2781 * For resync, we iterate over virtual addresses, read all copies,
2782 * and update if there are differences. If only one copy is live,
2783 * skip it.
2784 * For recovery, we iterate over physical addresses, read a good
2785 * value for each non-in_sync drive, and over-write.
2787 * So, for recovery we may have several outstanding complex requests for a
2788 * given address, one for each out-of-sync device. We model this by allocating
2789 * a number of r10_bio structures, one for each out-of-sync device.
2790 * As we setup these structures, we collect all bio's together into a list
2791 * which we then process collectively to add pages, and then process again
2792 * to pass to generic_make_request.
2794 * The r10_bio structures are linked using a borrowed master_bio pointer.
2795 * This link is counted in ->remaining. When the r10_bio that points to NULL
2796 * has its remaining count decremented to 0, the whole complex operation
2797 * is complete.
2801 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2802 int *skipped)
2804 struct r10conf *conf = mddev->private;
2805 struct r10bio *r10_bio;
2806 struct bio *biolist = NULL, *bio;
2807 sector_t max_sector, nr_sectors;
2808 int i;
2809 int max_sync;
2810 sector_t sync_blocks;
2811 sector_t sectors_skipped = 0;
2812 int chunks_skipped = 0;
2813 sector_t chunk_mask = conf->geo.chunk_mask;
2815 if (!conf->r10buf_pool)
2816 if (init_resync(conf))
2817 return 0;
2820 * Allow skipping a full rebuild for incremental assembly
2821 * of a clean array, like RAID1 does.
2823 if (mddev->bitmap == NULL &&
2824 mddev->recovery_cp == MaxSector &&
2825 mddev->reshape_position == MaxSector &&
2826 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2827 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2828 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2829 conf->fullsync == 0) {
2830 *skipped = 1;
2831 return mddev->dev_sectors - sector_nr;
2834 skipped:
2835 max_sector = mddev->dev_sectors;
2836 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2837 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2838 max_sector = mddev->resync_max_sectors;
2839 if (sector_nr >= max_sector) {
2840 /* If we aborted, we need to abort the
2841 * sync on the 'current' bitmap chucks (there can
2842 * be several when recovering multiple devices).
2843 * as we may have started syncing it but not finished.
2844 * We can find the current address in
2845 * mddev->curr_resync, but for recovery,
2846 * we need to convert that to several
2847 * virtual addresses.
2849 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2850 end_reshape(conf);
2851 close_sync(conf);
2852 return 0;
2855 if (mddev->curr_resync < max_sector) { /* aborted */
2856 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2857 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2858 &sync_blocks, 1);
2859 else for (i = 0; i < conf->geo.raid_disks; i++) {
2860 sector_t sect =
2861 raid10_find_virt(conf, mddev->curr_resync, i);
2862 bitmap_end_sync(mddev->bitmap, sect,
2863 &sync_blocks, 1);
2865 } else {
2866 /* completed sync */
2867 if ((!mddev->bitmap || conf->fullsync)
2868 && conf->have_replacement
2869 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2870 /* Completed a full sync so the replacements
2871 * are now fully recovered.
2873 for (i = 0; i < conf->geo.raid_disks; i++)
2874 if (conf->mirrors[i].replacement)
2875 conf->mirrors[i].replacement
2876 ->recovery_offset
2877 = MaxSector;
2879 conf->fullsync = 0;
2881 bitmap_close_sync(mddev->bitmap);
2882 close_sync(conf);
2883 *skipped = 1;
2884 return sectors_skipped;
2887 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2888 return reshape_request(mddev, sector_nr, skipped);
2890 if (chunks_skipped >= conf->geo.raid_disks) {
2891 /* if there has been nothing to do on any drive,
2892 * then there is nothing to do at all..
2894 *skipped = 1;
2895 return (max_sector - sector_nr) + sectors_skipped;
2898 if (max_sector > mddev->resync_max)
2899 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2901 /* make sure whole request will fit in a chunk - if chunks
2902 * are meaningful
2904 if (conf->geo.near_copies < conf->geo.raid_disks &&
2905 max_sector > (sector_nr | chunk_mask))
2906 max_sector = (sector_nr | chunk_mask) + 1;
2908 /* Again, very different code for resync and recovery.
2909 * Both must result in an r10bio with a list of bios that
2910 * have bi_end_io, bi_sector, bi_bdev set,
2911 * and bi_private set to the r10bio.
2912 * For recovery, we may actually create several r10bios
2913 * with 2 bios in each, that correspond to the bios in the main one.
2914 * In this case, the subordinate r10bios link back through a
2915 * borrowed master_bio pointer, and the counter in the master
2916 * includes a ref from each subordinate.
2918 /* First, we decide what to do and set ->bi_end_io
2919 * To end_sync_read if we want to read, and
2920 * end_sync_write if we will want to write.
2923 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2924 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2925 /* recovery... the complicated one */
2926 int j;
2927 r10_bio = NULL;
2929 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2930 int still_degraded;
2931 struct r10bio *rb2;
2932 sector_t sect;
2933 int must_sync;
2934 int any_working;
2935 struct raid10_info *mirror = &conf->mirrors[i];
2937 if ((mirror->rdev == NULL ||
2938 test_bit(In_sync, &mirror->rdev->flags))
2940 (mirror->replacement == NULL ||
2941 test_bit(Faulty,
2942 &mirror->replacement->flags)))
2943 continue;
2945 still_degraded = 0;
2946 /* want to reconstruct this device */
2947 rb2 = r10_bio;
2948 sect = raid10_find_virt(conf, sector_nr, i);
2949 if (sect >= mddev->resync_max_sectors) {
2950 /* last stripe is not complete - don't
2951 * try to recover this sector.
2953 continue;
2955 /* Unless we are doing a full sync, or a replacement
2956 * we only need to recover the block if it is set in
2957 * the bitmap
2959 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2960 &sync_blocks, 1);
2961 if (sync_blocks < max_sync)
2962 max_sync = sync_blocks;
2963 if (!must_sync &&
2964 mirror->replacement == NULL &&
2965 !conf->fullsync) {
2966 /* yep, skip the sync_blocks here, but don't assume
2967 * that there will never be anything to do here
2969 chunks_skipped = -1;
2970 continue;
2973 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2974 r10_bio->state = 0;
2975 raise_barrier(conf, rb2 != NULL);
2976 atomic_set(&r10_bio->remaining, 0);
2978 r10_bio->master_bio = (struct bio*)rb2;
2979 if (rb2)
2980 atomic_inc(&rb2->remaining);
2981 r10_bio->mddev = mddev;
2982 set_bit(R10BIO_IsRecover, &r10_bio->state);
2983 r10_bio->sector = sect;
2985 raid10_find_phys(conf, r10_bio);
2987 /* Need to check if the array will still be
2988 * degraded
2990 for (j = 0; j < conf->geo.raid_disks; j++)
2991 if (conf->mirrors[j].rdev == NULL ||
2992 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2993 still_degraded = 1;
2994 break;
2997 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2998 &sync_blocks, still_degraded);
3000 any_working = 0;
3001 for (j=0; j<conf->copies;j++) {
3002 int k;
3003 int d = r10_bio->devs[j].devnum;
3004 sector_t from_addr, to_addr;
3005 struct md_rdev *rdev;
3006 sector_t sector, first_bad;
3007 int bad_sectors;
3008 if (!conf->mirrors[d].rdev ||
3009 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3010 continue;
3011 /* This is where we read from */
3012 any_working = 1;
3013 rdev = conf->mirrors[d].rdev;
3014 sector = r10_bio->devs[j].addr;
3016 if (is_badblock(rdev, sector, max_sync,
3017 &first_bad, &bad_sectors)) {
3018 if (first_bad > sector)
3019 max_sync = first_bad - sector;
3020 else {
3021 bad_sectors -= (sector
3022 - first_bad);
3023 if (max_sync > bad_sectors)
3024 max_sync = bad_sectors;
3025 continue;
3028 bio = r10_bio->devs[0].bio;
3029 bio_reset(bio);
3030 bio->bi_next = biolist;
3031 biolist = bio;
3032 bio->bi_private = r10_bio;
3033 bio->bi_end_io = end_sync_read;
3034 bio->bi_rw = READ;
3035 from_addr = r10_bio->devs[j].addr;
3036 bio->bi_iter.bi_sector = from_addr +
3037 rdev->data_offset;
3038 bio->bi_bdev = rdev->bdev;
3039 atomic_inc(&rdev->nr_pending);
3040 /* and we write to 'i' (if not in_sync) */
3042 for (k=0; k<conf->copies; k++)
3043 if (r10_bio->devs[k].devnum == i)
3044 break;
3045 BUG_ON(k == conf->copies);
3046 to_addr = r10_bio->devs[k].addr;
3047 r10_bio->devs[0].devnum = d;
3048 r10_bio->devs[0].addr = from_addr;
3049 r10_bio->devs[1].devnum = i;
3050 r10_bio->devs[1].addr = to_addr;
3052 rdev = mirror->rdev;
3053 if (!test_bit(In_sync, &rdev->flags)) {
3054 bio = r10_bio->devs[1].bio;
3055 bio_reset(bio);
3056 bio->bi_next = biolist;
3057 biolist = bio;
3058 bio->bi_private = r10_bio;
3059 bio->bi_end_io = end_sync_write;
3060 bio->bi_rw = WRITE;
3061 bio->bi_iter.bi_sector = to_addr
3062 + rdev->data_offset;
3063 bio->bi_bdev = rdev->bdev;
3064 atomic_inc(&r10_bio->remaining);
3065 } else
3066 r10_bio->devs[1].bio->bi_end_io = NULL;
3068 /* and maybe write to replacement */
3069 bio = r10_bio->devs[1].repl_bio;
3070 if (bio)
3071 bio->bi_end_io = NULL;
3072 rdev = mirror->replacement;
3073 /* Note: if rdev != NULL, then bio
3074 * cannot be NULL as r10buf_pool_alloc will
3075 * have allocated it.
3076 * So the second test here is pointless.
3077 * But it keeps semantic-checkers happy, and
3078 * this comment keeps human reviewers
3079 * happy.
3081 if (rdev == NULL || bio == NULL ||
3082 test_bit(Faulty, &rdev->flags))
3083 break;
3084 bio_reset(bio);
3085 bio->bi_next = biolist;
3086 biolist = bio;
3087 bio->bi_private = r10_bio;
3088 bio->bi_end_io = end_sync_write;
3089 bio->bi_rw = WRITE;
3090 bio->bi_iter.bi_sector = to_addr +
3091 rdev->data_offset;
3092 bio->bi_bdev = rdev->bdev;
3093 atomic_inc(&r10_bio->remaining);
3094 break;
3096 if (j == conf->copies) {
3097 /* Cannot recover, so abort the recovery or
3098 * record a bad block */
3099 if (any_working) {
3100 /* problem is that there are bad blocks
3101 * on other device(s)
3103 int k;
3104 for (k = 0; k < conf->copies; k++)
3105 if (r10_bio->devs[k].devnum == i)
3106 break;
3107 if (!test_bit(In_sync,
3108 &mirror->rdev->flags)
3109 && !rdev_set_badblocks(
3110 mirror->rdev,
3111 r10_bio->devs[k].addr,
3112 max_sync, 0))
3113 any_working = 0;
3114 if (mirror->replacement &&
3115 !rdev_set_badblocks(
3116 mirror->replacement,
3117 r10_bio->devs[k].addr,
3118 max_sync, 0))
3119 any_working = 0;
3121 if (!any_working) {
3122 if (!test_and_set_bit(MD_RECOVERY_INTR,
3123 &mddev->recovery))
3124 printk(KERN_INFO "md/raid10:%s: insufficient "
3125 "working devices for recovery.\n",
3126 mdname(mddev));
3127 mirror->recovery_disabled
3128 = mddev->recovery_disabled;
3130 put_buf(r10_bio);
3131 if (rb2)
3132 atomic_dec(&rb2->remaining);
3133 r10_bio = rb2;
3134 break;
3137 if (biolist == NULL) {
3138 while (r10_bio) {
3139 struct r10bio *rb2 = r10_bio;
3140 r10_bio = (struct r10bio*) rb2->master_bio;
3141 rb2->master_bio = NULL;
3142 put_buf(rb2);
3144 goto giveup;
3146 } else {
3147 /* resync. Schedule a read for every block at this virt offset */
3148 int count = 0;
3150 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3152 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3153 &sync_blocks, mddev->degraded) &&
3154 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3155 &mddev->recovery)) {
3156 /* We can skip this block */
3157 *skipped = 1;
3158 return sync_blocks + sectors_skipped;
3160 if (sync_blocks < max_sync)
3161 max_sync = sync_blocks;
3162 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3163 r10_bio->state = 0;
3165 r10_bio->mddev = mddev;
3166 atomic_set(&r10_bio->remaining, 0);
3167 raise_barrier(conf, 0);
3168 conf->next_resync = sector_nr;
3170 r10_bio->master_bio = NULL;
3171 r10_bio->sector = sector_nr;
3172 set_bit(R10BIO_IsSync, &r10_bio->state);
3173 raid10_find_phys(conf, r10_bio);
3174 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3176 for (i = 0; i < conf->copies; i++) {
3177 int d = r10_bio->devs[i].devnum;
3178 sector_t first_bad, sector;
3179 int bad_sectors;
3181 if (r10_bio->devs[i].repl_bio)
3182 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3184 bio = r10_bio->devs[i].bio;
3185 bio_reset(bio);
3186 bio->bi_error = -EIO;
3187 if (conf->mirrors[d].rdev == NULL ||
3188 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3189 continue;
3190 sector = r10_bio->devs[i].addr;
3191 if (is_badblock(conf->mirrors[d].rdev,
3192 sector, max_sync,
3193 &first_bad, &bad_sectors)) {
3194 if (first_bad > sector)
3195 max_sync = first_bad - sector;
3196 else {
3197 bad_sectors -= (sector - first_bad);
3198 if (max_sync > bad_sectors)
3199 max_sync = bad_sectors;
3200 continue;
3203 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3204 atomic_inc(&r10_bio->remaining);
3205 bio->bi_next = biolist;
3206 biolist = bio;
3207 bio->bi_private = r10_bio;
3208 bio->bi_end_io = end_sync_read;
3209 bio->bi_rw = READ;
3210 bio->bi_iter.bi_sector = sector +
3211 conf->mirrors[d].rdev->data_offset;
3212 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3213 count++;
3215 if (conf->mirrors[d].replacement == NULL ||
3216 test_bit(Faulty,
3217 &conf->mirrors[d].replacement->flags))
3218 continue;
3220 /* Need to set up for writing to the replacement */
3221 bio = r10_bio->devs[i].repl_bio;
3222 bio_reset(bio);
3223 bio->bi_error = -EIO;
3225 sector = r10_bio->devs[i].addr;
3226 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3227 bio->bi_next = biolist;
3228 biolist = bio;
3229 bio->bi_private = r10_bio;
3230 bio->bi_end_io = end_sync_write;
3231 bio->bi_rw = WRITE;
3232 bio->bi_iter.bi_sector = sector +
3233 conf->mirrors[d].replacement->data_offset;
3234 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3235 count++;
3238 if (count < 2) {
3239 for (i=0; i<conf->copies; i++) {
3240 int d = r10_bio->devs[i].devnum;
3241 if (r10_bio->devs[i].bio->bi_end_io)
3242 rdev_dec_pending(conf->mirrors[d].rdev,
3243 mddev);
3244 if (r10_bio->devs[i].repl_bio &&
3245 r10_bio->devs[i].repl_bio->bi_end_io)
3246 rdev_dec_pending(
3247 conf->mirrors[d].replacement,
3248 mddev);
3250 put_buf(r10_bio);
3251 biolist = NULL;
3252 goto giveup;
3256 nr_sectors = 0;
3257 if (sector_nr + max_sync < max_sector)
3258 max_sector = sector_nr + max_sync;
3259 do {
3260 struct page *page;
3261 int len = PAGE_SIZE;
3262 if (sector_nr + (len>>9) > max_sector)
3263 len = (max_sector - sector_nr) << 9;
3264 if (len == 0)
3265 break;
3266 for (bio= biolist ; bio ; bio=bio->bi_next) {
3267 struct bio *bio2;
3268 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3269 if (bio_add_page(bio, page, len, 0))
3270 continue;
3272 /* stop here */
3273 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3274 for (bio2 = biolist;
3275 bio2 && bio2 != bio;
3276 bio2 = bio2->bi_next) {
3277 /* remove last page from this bio */
3278 bio2->bi_vcnt--;
3279 bio2->bi_iter.bi_size -= len;
3280 bio_clear_flag(bio2, BIO_SEG_VALID);
3282 goto bio_full;
3284 nr_sectors += len>>9;
3285 sector_nr += len>>9;
3286 } while (biolist->bi_vcnt < RESYNC_PAGES);
3287 bio_full:
3288 r10_bio->sectors = nr_sectors;
3290 while (biolist) {
3291 bio = biolist;
3292 biolist = biolist->bi_next;
3294 bio->bi_next = NULL;
3295 r10_bio = bio->bi_private;
3296 r10_bio->sectors = nr_sectors;
3298 if (bio->bi_end_io == end_sync_read) {
3299 md_sync_acct(bio->bi_bdev, nr_sectors);
3300 bio->bi_error = 0;
3301 generic_make_request(bio);
3305 if (sectors_skipped)
3306 /* pretend they weren't skipped, it makes
3307 * no important difference in this case
3309 md_done_sync(mddev, sectors_skipped, 1);
3311 return sectors_skipped + nr_sectors;
3312 giveup:
3313 /* There is nowhere to write, so all non-sync
3314 * drives must be failed or in resync, all drives
3315 * have a bad block, so try the next chunk...
3317 if (sector_nr + max_sync < max_sector)
3318 max_sector = sector_nr + max_sync;
3320 sectors_skipped += (max_sector - sector_nr);
3321 chunks_skipped ++;
3322 sector_nr = max_sector;
3323 goto skipped;
3326 static sector_t
3327 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3329 sector_t size;
3330 struct r10conf *conf = mddev->private;
3332 if (!raid_disks)
3333 raid_disks = min(conf->geo.raid_disks,
3334 conf->prev.raid_disks);
3335 if (!sectors)
3336 sectors = conf->dev_sectors;
3338 size = sectors >> conf->geo.chunk_shift;
3339 sector_div(size, conf->geo.far_copies);
3340 size = size * raid_disks;
3341 sector_div(size, conf->geo.near_copies);
3343 return size << conf->geo.chunk_shift;
3346 static void calc_sectors(struct r10conf *conf, sector_t size)
3348 /* Calculate the number of sectors-per-device that will
3349 * actually be used, and set conf->dev_sectors and
3350 * conf->stride
3353 size = size >> conf->geo.chunk_shift;
3354 sector_div(size, conf->geo.far_copies);
3355 size = size * conf->geo.raid_disks;
3356 sector_div(size, conf->geo.near_copies);
3357 /* 'size' is now the number of chunks in the array */
3358 /* calculate "used chunks per device" */
3359 size = size * conf->copies;
3361 /* We need to round up when dividing by raid_disks to
3362 * get the stride size.
3364 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3366 conf->dev_sectors = size << conf->geo.chunk_shift;
3368 if (conf->geo.far_offset)
3369 conf->geo.stride = 1 << conf->geo.chunk_shift;
3370 else {
3371 sector_div(size, conf->geo.far_copies);
3372 conf->geo.stride = size << conf->geo.chunk_shift;
3376 enum geo_type {geo_new, geo_old, geo_start};
3377 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3379 int nc, fc, fo;
3380 int layout, chunk, disks;
3381 switch (new) {
3382 case geo_old:
3383 layout = mddev->layout;
3384 chunk = mddev->chunk_sectors;
3385 disks = mddev->raid_disks - mddev->delta_disks;
3386 break;
3387 case geo_new:
3388 layout = mddev->new_layout;
3389 chunk = mddev->new_chunk_sectors;
3390 disks = mddev->raid_disks;
3391 break;
3392 default: /* avoid 'may be unused' warnings */
3393 case geo_start: /* new when starting reshape - raid_disks not
3394 * updated yet. */
3395 layout = mddev->new_layout;
3396 chunk = mddev->new_chunk_sectors;
3397 disks = mddev->raid_disks + mddev->delta_disks;
3398 break;
3400 if (layout >> 19)
3401 return -1;
3402 if (chunk < (PAGE_SIZE >> 9) ||
3403 !is_power_of_2(chunk))
3404 return -2;
3405 nc = layout & 255;
3406 fc = (layout >> 8) & 255;
3407 fo = layout & (1<<16);
3408 geo->raid_disks = disks;
3409 geo->near_copies = nc;
3410 geo->far_copies = fc;
3411 geo->far_offset = fo;
3412 switch (layout >> 17) {
3413 case 0: /* original layout. simple but not always optimal */
3414 geo->far_set_size = disks;
3415 break;
3416 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3417 * actually using this, but leave code here just in case.*/
3418 geo->far_set_size = disks/fc;
3419 WARN(geo->far_set_size < fc,
3420 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3421 break;
3422 case 2: /* "improved" layout fixed to match documentation */
3423 geo->far_set_size = fc * nc;
3424 break;
3425 default: /* Not a valid layout */
3426 return -1;
3428 geo->chunk_mask = chunk - 1;
3429 geo->chunk_shift = ffz(~chunk);
3430 return nc*fc;
3433 static struct r10conf *setup_conf(struct mddev *mddev)
3435 struct r10conf *conf = NULL;
3436 int err = -EINVAL;
3437 struct geom geo;
3438 int copies;
3440 copies = setup_geo(&geo, mddev, geo_new);
3442 if (copies == -2) {
3443 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3444 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3445 mdname(mddev), PAGE_SIZE);
3446 goto out;
3449 if (copies < 2 || copies > mddev->raid_disks) {
3450 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3451 mdname(mddev), mddev->new_layout);
3452 goto out;
3455 err = -ENOMEM;
3456 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3457 if (!conf)
3458 goto out;
3460 /* FIXME calc properly */
3461 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3462 max(0,-mddev->delta_disks)),
3463 GFP_KERNEL);
3464 if (!conf->mirrors)
3465 goto out;
3467 conf->tmppage = alloc_page(GFP_KERNEL);
3468 if (!conf->tmppage)
3469 goto out;
3471 conf->geo = geo;
3472 conf->copies = copies;
3473 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3474 r10bio_pool_free, conf);
3475 if (!conf->r10bio_pool)
3476 goto out;
3478 calc_sectors(conf, mddev->dev_sectors);
3479 if (mddev->reshape_position == MaxSector) {
3480 conf->prev = conf->geo;
3481 conf->reshape_progress = MaxSector;
3482 } else {
3483 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3484 err = -EINVAL;
3485 goto out;
3487 conf->reshape_progress = mddev->reshape_position;
3488 if (conf->prev.far_offset)
3489 conf->prev.stride = 1 << conf->prev.chunk_shift;
3490 else
3491 /* far_copies must be 1 */
3492 conf->prev.stride = conf->dev_sectors;
3494 conf->reshape_safe = conf->reshape_progress;
3495 spin_lock_init(&conf->device_lock);
3496 INIT_LIST_HEAD(&conf->retry_list);
3497 INIT_LIST_HEAD(&conf->bio_end_io_list);
3499 spin_lock_init(&conf->resync_lock);
3500 init_waitqueue_head(&conf->wait_barrier);
3502 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3503 if (!conf->thread)
3504 goto out;
3506 conf->mddev = mddev;
3507 return conf;
3509 out:
3510 if (err == -ENOMEM)
3511 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3512 mdname(mddev));
3513 if (conf) {
3514 mempool_destroy(conf->r10bio_pool);
3515 kfree(conf->mirrors);
3516 safe_put_page(conf->tmppage);
3517 kfree(conf);
3519 return ERR_PTR(err);
3522 static int run(struct mddev *mddev)
3524 struct r10conf *conf;
3525 int i, disk_idx, chunk_size;
3526 struct raid10_info *disk;
3527 struct md_rdev *rdev;
3528 sector_t size;
3529 sector_t min_offset_diff = 0;
3530 int first = 1;
3531 bool discard_supported = false;
3533 if (mddev->private == NULL) {
3534 conf = setup_conf(mddev);
3535 if (IS_ERR(conf))
3536 return PTR_ERR(conf);
3537 mddev->private = conf;
3539 conf = mddev->private;
3540 if (!conf)
3541 goto out;
3543 mddev->thread = conf->thread;
3544 conf->thread = NULL;
3546 chunk_size = mddev->chunk_sectors << 9;
3547 if (mddev->queue) {
3548 blk_queue_max_discard_sectors(mddev->queue,
3549 mddev->chunk_sectors);
3550 blk_queue_max_write_same_sectors(mddev->queue, 0);
3551 blk_queue_io_min(mddev->queue, chunk_size);
3552 if (conf->geo.raid_disks % conf->geo.near_copies)
3553 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3554 else
3555 blk_queue_io_opt(mddev->queue, chunk_size *
3556 (conf->geo.raid_disks / conf->geo.near_copies));
3559 rdev_for_each(rdev, mddev) {
3560 long long diff;
3561 struct request_queue *q;
3563 disk_idx = rdev->raid_disk;
3564 if (disk_idx < 0)
3565 continue;
3566 if (disk_idx >= conf->geo.raid_disks &&
3567 disk_idx >= conf->prev.raid_disks)
3568 continue;
3569 disk = conf->mirrors + disk_idx;
3571 if (test_bit(Replacement, &rdev->flags)) {
3572 if (disk->replacement)
3573 goto out_free_conf;
3574 disk->replacement = rdev;
3575 } else {
3576 if (disk->rdev)
3577 goto out_free_conf;
3578 disk->rdev = rdev;
3580 q = bdev_get_queue(rdev->bdev);
3581 diff = (rdev->new_data_offset - rdev->data_offset);
3582 if (!mddev->reshape_backwards)
3583 diff = -diff;
3584 if (diff < 0)
3585 diff = 0;
3586 if (first || diff < min_offset_diff)
3587 min_offset_diff = diff;
3589 if (mddev->gendisk)
3590 disk_stack_limits(mddev->gendisk, rdev->bdev,
3591 rdev->data_offset << 9);
3593 disk->head_position = 0;
3595 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3596 discard_supported = true;
3599 if (mddev->queue) {
3600 if (discard_supported)
3601 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3602 mddev->queue);
3603 else
3604 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3605 mddev->queue);
3607 /* need to check that every block has at least one working mirror */
3608 if (!enough(conf, -1)) {
3609 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3610 mdname(mddev));
3611 goto out_free_conf;
3614 if (conf->reshape_progress != MaxSector) {
3615 /* must ensure that shape change is supported */
3616 if (conf->geo.far_copies != 1 &&
3617 conf->geo.far_offset == 0)
3618 goto out_free_conf;
3619 if (conf->prev.far_copies != 1 &&
3620 conf->prev.far_offset == 0)
3621 goto out_free_conf;
3624 mddev->degraded = 0;
3625 for (i = 0;
3626 i < conf->geo.raid_disks
3627 || i < conf->prev.raid_disks;
3628 i++) {
3630 disk = conf->mirrors + i;
3632 if (!disk->rdev && disk->replacement) {
3633 /* The replacement is all we have - use it */
3634 disk->rdev = disk->replacement;
3635 disk->replacement = NULL;
3636 clear_bit(Replacement, &disk->rdev->flags);
3639 if (!disk->rdev ||
3640 !test_bit(In_sync, &disk->rdev->flags)) {
3641 disk->head_position = 0;
3642 mddev->degraded++;
3643 if (disk->rdev &&
3644 disk->rdev->saved_raid_disk < 0)
3645 conf->fullsync = 1;
3647 disk->recovery_disabled = mddev->recovery_disabled - 1;
3650 if (mddev->recovery_cp != MaxSector)
3651 printk(KERN_NOTICE "md/raid10:%s: not clean"
3652 " -- starting background reconstruction\n",
3653 mdname(mddev));
3654 printk(KERN_INFO
3655 "md/raid10:%s: active with %d out of %d devices\n",
3656 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3657 conf->geo.raid_disks);
3659 * Ok, everything is just fine now
3661 mddev->dev_sectors = conf->dev_sectors;
3662 size = raid10_size(mddev, 0, 0);
3663 md_set_array_sectors(mddev, size);
3664 mddev->resync_max_sectors = size;
3666 if (mddev->queue) {
3667 int stripe = conf->geo.raid_disks *
3668 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3670 /* Calculate max read-ahead size.
3671 * We need to readahead at least twice a whole stripe....
3672 * maybe...
3674 stripe /= conf->geo.near_copies;
3675 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3676 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3679 if (md_integrity_register(mddev))
3680 goto out_free_conf;
3682 if (conf->reshape_progress != MaxSector) {
3683 unsigned long before_length, after_length;
3685 before_length = ((1 << conf->prev.chunk_shift) *
3686 conf->prev.far_copies);
3687 after_length = ((1 << conf->geo.chunk_shift) *
3688 conf->geo.far_copies);
3690 if (max(before_length, after_length) > min_offset_diff) {
3691 /* This cannot work */
3692 printk("md/raid10: offset difference not enough to continue reshape\n");
3693 goto out_free_conf;
3695 conf->offset_diff = min_offset_diff;
3697 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3698 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3699 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3700 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3701 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3702 "reshape");
3705 return 0;
3707 out_free_conf:
3708 md_unregister_thread(&mddev->thread);
3709 mempool_destroy(conf->r10bio_pool);
3710 safe_put_page(conf->tmppage);
3711 kfree(conf->mirrors);
3712 kfree(conf);
3713 mddev->private = NULL;
3714 out:
3715 return -EIO;
3718 static void raid10_free(struct mddev *mddev, void *priv)
3720 struct r10conf *conf = priv;
3722 mempool_destroy(conf->r10bio_pool);
3723 safe_put_page(conf->tmppage);
3724 kfree(conf->mirrors);
3725 kfree(conf->mirrors_old);
3726 kfree(conf->mirrors_new);
3727 kfree(conf);
3730 static void raid10_quiesce(struct mddev *mddev, int state)
3732 struct r10conf *conf = mddev->private;
3734 switch(state) {
3735 case 1:
3736 raise_barrier(conf, 0);
3737 break;
3738 case 0:
3739 lower_barrier(conf);
3740 break;
3744 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3746 /* Resize of 'far' arrays is not supported.
3747 * For 'near' and 'offset' arrays we can set the
3748 * number of sectors used to be an appropriate multiple
3749 * of the chunk size.
3750 * For 'offset', this is far_copies*chunksize.
3751 * For 'near' the multiplier is the LCM of
3752 * near_copies and raid_disks.
3753 * So if far_copies > 1 && !far_offset, fail.
3754 * Else find LCM(raid_disks, near_copy)*far_copies and
3755 * multiply by chunk_size. Then round to this number.
3756 * This is mostly done by raid10_size()
3758 struct r10conf *conf = mddev->private;
3759 sector_t oldsize, size;
3761 if (mddev->reshape_position != MaxSector)
3762 return -EBUSY;
3764 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3765 return -EINVAL;
3767 oldsize = raid10_size(mddev, 0, 0);
3768 size = raid10_size(mddev, sectors, 0);
3769 if (mddev->external_size &&
3770 mddev->array_sectors > size)
3771 return -EINVAL;
3772 if (mddev->bitmap) {
3773 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3774 if (ret)
3775 return ret;
3777 md_set_array_sectors(mddev, size);
3778 set_capacity(mddev->gendisk, mddev->array_sectors);
3779 revalidate_disk(mddev->gendisk);
3780 if (sectors > mddev->dev_sectors &&
3781 mddev->recovery_cp > oldsize) {
3782 mddev->recovery_cp = oldsize;
3783 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3785 calc_sectors(conf, sectors);
3786 mddev->dev_sectors = conf->dev_sectors;
3787 mddev->resync_max_sectors = size;
3788 return 0;
3791 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3793 struct md_rdev *rdev;
3794 struct r10conf *conf;
3796 if (mddev->degraded > 0) {
3797 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3798 mdname(mddev));
3799 return ERR_PTR(-EINVAL);
3801 sector_div(size, devs);
3803 /* Set new parameters */
3804 mddev->new_level = 10;
3805 /* new layout: far_copies = 1, near_copies = 2 */
3806 mddev->new_layout = (1<<8) + 2;
3807 mddev->new_chunk_sectors = mddev->chunk_sectors;
3808 mddev->delta_disks = mddev->raid_disks;
3809 mddev->raid_disks *= 2;
3810 /* make sure it will be not marked as dirty */
3811 mddev->recovery_cp = MaxSector;
3812 mddev->dev_sectors = size;
3814 conf = setup_conf(mddev);
3815 if (!IS_ERR(conf)) {
3816 rdev_for_each(rdev, mddev)
3817 if (rdev->raid_disk >= 0) {
3818 rdev->new_raid_disk = rdev->raid_disk * 2;
3819 rdev->sectors = size;
3821 conf->barrier = 1;
3824 return conf;
3827 static void *raid10_takeover(struct mddev *mddev)
3829 struct r0conf *raid0_conf;
3831 /* raid10 can take over:
3832 * raid0 - providing it has only two drives
3834 if (mddev->level == 0) {
3835 /* for raid0 takeover only one zone is supported */
3836 raid0_conf = mddev->private;
3837 if (raid0_conf->nr_strip_zones > 1) {
3838 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3839 " with more than one zone.\n",
3840 mdname(mddev));
3841 return ERR_PTR(-EINVAL);
3843 return raid10_takeover_raid0(mddev,
3844 raid0_conf->strip_zone->zone_end,
3845 raid0_conf->strip_zone->nb_dev);
3847 return ERR_PTR(-EINVAL);
3850 static int raid10_check_reshape(struct mddev *mddev)
3852 /* Called when there is a request to change
3853 * - layout (to ->new_layout)
3854 * - chunk size (to ->new_chunk_sectors)
3855 * - raid_disks (by delta_disks)
3856 * or when trying to restart a reshape that was ongoing.
3858 * We need to validate the request and possibly allocate
3859 * space if that might be an issue later.
3861 * Currently we reject any reshape of a 'far' mode array,
3862 * allow chunk size to change if new is generally acceptable,
3863 * allow raid_disks to increase, and allow
3864 * a switch between 'near' mode and 'offset' mode.
3866 struct r10conf *conf = mddev->private;
3867 struct geom geo;
3869 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3870 return -EINVAL;
3872 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3873 /* mustn't change number of copies */
3874 return -EINVAL;
3875 if (geo.far_copies > 1 && !geo.far_offset)
3876 /* Cannot switch to 'far' mode */
3877 return -EINVAL;
3879 if (mddev->array_sectors & geo.chunk_mask)
3880 /* not factor of array size */
3881 return -EINVAL;
3883 if (!enough(conf, -1))
3884 return -EINVAL;
3886 kfree(conf->mirrors_new);
3887 conf->mirrors_new = NULL;
3888 if (mddev->delta_disks > 0) {
3889 /* allocate new 'mirrors' list */
3890 conf->mirrors_new = kzalloc(
3891 sizeof(struct raid10_info)
3892 *(mddev->raid_disks +
3893 mddev->delta_disks),
3894 GFP_KERNEL);
3895 if (!conf->mirrors_new)
3896 return -ENOMEM;
3898 return 0;
3902 * Need to check if array has failed when deciding whether to:
3903 * - start an array
3904 * - remove non-faulty devices
3905 * - add a spare
3906 * - allow a reshape
3907 * This determination is simple when no reshape is happening.
3908 * However if there is a reshape, we need to carefully check
3909 * both the before and after sections.
3910 * This is because some failed devices may only affect one
3911 * of the two sections, and some non-in_sync devices may
3912 * be insync in the section most affected by failed devices.
3914 static int calc_degraded(struct r10conf *conf)
3916 int degraded, degraded2;
3917 int i;
3919 rcu_read_lock();
3920 degraded = 0;
3921 /* 'prev' section first */
3922 for (i = 0; i < conf->prev.raid_disks; i++) {
3923 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3924 if (!rdev || test_bit(Faulty, &rdev->flags))
3925 degraded++;
3926 else if (!test_bit(In_sync, &rdev->flags))
3927 /* When we can reduce the number of devices in
3928 * an array, this might not contribute to
3929 * 'degraded'. It does now.
3931 degraded++;
3933 rcu_read_unlock();
3934 if (conf->geo.raid_disks == conf->prev.raid_disks)
3935 return degraded;
3936 rcu_read_lock();
3937 degraded2 = 0;
3938 for (i = 0; i < conf->geo.raid_disks; i++) {
3939 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3940 if (!rdev || test_bit(Faulty, &rdev->flags))
3941 degraded2++;
3942 else if (!test_bit(In_sync, &rdev->flags)) {
3943 /* If reshape is increasing the number of devices,
3944 * this section has already been recovered, so
3945 * it doesn't contribute to degraded.
3946 * else it does.
3948 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3949 degraded2++;
3952 rcu_read_unlock();
3953 if (degraded2 > degraded)
3954 return degraded2;
3955 return degraded;
3958 static int raid10_start_reshape(struct mddev *mddev)
3960 /* A 'reshape' has been requested. This commits
3961 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3962 * This also checks if there are enough spares and adds them
3963 * to the array.
3964 * We currently require enough spares to make the final
3965 * array non-degraded. We also require that the difference
3966 * between old and new data_offset - on each device - is
3967 * enough that we never risk over-writing.
3970 unsigned long before_length, after_length;
3971 sector_t min_offset_diff = 0;
3972 int first = 1;
3973 struct geom new;
3974 struct r10conf *conf = mddev->private;
3975 struct md_rdev *rdev;
3976 int spares = 0;
3977 int ret;
3979 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3980 return -EBUSY;
3982 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3983 return -EINVAL;
3985 before_length = ((1 << conf->prev.chunk_shift) *
3986 conf->prev.far_copies);
3987 after_length = ((1 << conf->geo.chunk_shift) *
3988 conf->geo.far_copies);
3990 rdev_for_each(rdev, mddev) {
3991 if (!test_bit(In_sync, &rdev->flags)
3992 && !test_bit(Faulty, &rdev->flags))
3993 spares++;
3994 if (rdev->raid_disk >= 0) {
3995 long long diff = (rdev->new_data_offset
3996 - rdev->data_offset);
3997 if (!mddev->reshape_backwards)
3998 diff = -diff;
3999 if (diff < 0)
4000 diff = 0;
4001 if (first || diff < min_offset_diff)
4002 min_offset_diff = diff;
4006 if (max(before_length, after_length) > min_offset_diff)
4007 return -EINVAL;
4009 if (spares < mddev->delta_disks)
4010 return -EINVAL;
4012 conf->offset_diff = min_offset_diff;
4013 spin_lock_irq(&conf->device_lock);
4014 if (conf->mirrors_new) {
4015 memcpy(conf->mirrors_new, conf->mirrors,
4016 sizeof(struct raid10_info)*conf->prev.raid_disks);
4017 smp_mb();
4018 kfree(conf->mirrors_old);
4019 conf->mirrors_old = conf->mirrors;
4020 conf->mirrors = conf->mirrors_new;
4021 conf->mirrors_new = NULL;
4023 setup_geo(&conf->geo, mddev, geo_start);
4024 smp_mb();
4025 if (mddev->reshape_backwards) {
4026 sector_t size = raid10_size(mddev, 0, 0);
4027 if (size < mddev->array_sectors) {
4028 spin_unlock_irq(&conf->device_lock);
4029 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4030 mdname(mddev));
4031 return -EINVAL;
4033 mddev->resync_max_sectors = size;
4034 conf->reshape_progress = size;
4035 } else
4036 conf->reshape_progress = 0;
4037 conf->reshape_safe = conf->reshape_progress;
4038 spin_unlock_irq(&conf->device_lock);
4040 if (mddev->delta_disks && mddev->bitmap) {
4041 ret = bitmap_resize(mddev->bitmap,
4042 raid10_size(mddev, 0,
4043 conf->geo.raid_disks),
4044 0, 0);
4045 if (ret)
4046 goto abort;
4048 if (mddev->delta_disks > 0) {
4049 rdev_for_each(rdev, mddev)
4050 if (rdev->raid_disk < 0 &&
4051 !test_bit(Faulty, &rdev->flags)) {
4052 if (raid10_add_disk(mddev, rdev) == 0) {
4053 if (rdev->raid_disk >=
4054 conf->prev.raid_disks)
4055 set_bit(In_sync, &rdev->flags);
4056 else
4057 rdev->recovery_offset = 0;
4059 if (sysfs_link_rdev(mddev, rdev))
4060 /* Failure here is OK */;
4062 } else if (rdev->raid_disk >= conf->prev.raid_disks
4063 && !test_bit(Faulty, &rdev->flags)) {
4064 /* This is a spare that was manually added */
4065 set_bit(In_sync, &rdev->flags);
4068 /* When a reshape changes the number of devices,
4069 * ->degraded is measured against the larger of the
4070 * pre and post numbers.
4072 spin_lock_irq(&conf->device_lock);
4073 mddev->degraded = calc_degraded(conf);
4074 spin_unlock_irq(&conf->device_lock);
4075 mddev->raid_disks = conf->geo.raid_disks;
4076 mddev->reshape_position = conf->reshape_progress;
4077 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4079 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4080 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4081 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4082 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4083 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4085 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4086 "reshape");
4087 if (!mddev->sync_thread) {
4088 ret = -EAGAIN;
4089 goto abort;
4091 conf->reshape_checkpoint = jiffies;
4092 md_wakeup_thread(mddev->sync_thread);
4093 md_new_event(mddev);
4094 return 0;
4096 abort:
4097 mddev->recovery = 0;
4098 spin_lock_irq(&conf->device_lock);
4099 conf->geo = conf->prev;
4100 mddev->raid_disks = conf->geo.raid_disks;
4101 rdev_for_each(rdev, mddev)
4102 rdev->new_data_offset = rdev->data_offset;
4103 smp_wmb();
4104 conf->reshape_progress = MaxSector;
4105 conf->reshape_safe = MaxSector;
4106 mddev->reshape_position = MaxSector;
4107 spin_unlock_irq(&conf->device_lock);
4108 return ret;
4111 /* Calculate the last device-address that could contain
4112 * any block from the chunk that includes the array-address 's'
4113 * and report the next address.
4114 * i.e. the address returned will be chunk-aligned and after
4115 * any data that is in the chunk containing 's'.
4117 static sector_t last_dev_address(sector_t s, struct geom *geo)
4119 s = (s | geo->chunk_mask) + 1;
4120 s >>= geo->chunk_shift;
4121 s *= geo->near_copies;
4122 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4123 s *= geo->far_copies;
4124 s <<= geo->chunk_shift;
4125 return s;
4128 /* Calculate the first device-address that could contain
4129 * any block from the chunk that includes the array-address 's'.
4130 * This too will be the start of a chunk
4132 static sector_t first_dev_address(sector_t s, struct geom *geo)
4134 s >>= geo->chunk_shift;
4135 s *= geo->near_copies;
4136 sector_div(s, geo->raid_disks);
4137 s *= geo->far_copies;
4138 s <<= geo->chunk_shift;
4139 return s;
4142 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4143 int *skipped)
4145 /* We simply copy at most one chunk (smallest of old and new)
4146 * at a time, possibly less if that exceeds RESYNC_PAGES,
4147 * or we hit a bad block or something.
4148 * This might mean we pause for normal IO in the middle of
4149 * a chunk, but that is not a problem as mddev->reshape_position
4150 * can record any location.
4152 * If we will want to write to a location that isn't
4153 * yet recorded as 'safe' (i.e. in metadata on disk) then
4154 * we need to flush all reshape requests and update the metadata.
4156 * When reshaping forwards (e.g. to more devices), we interpret
4157 * 'safe' as the earliest block which might not have been copied
4158 * down yet. We divide this by previous stripe size and multiply
4159 * by previous stripe length to get lowest device offset that we
4160 * cannot write to yet.
4161 * We interpret 'sector_nr' as an address that we want to write to.
4162 * From this we use last_device_address() to find where we might
4163 * write to, and first_device_address on the 'safe' position.
4164 * If this 'next' write position is after the 'safe' position,
4165 * we must update the metadata to increase the 'safe' position.
4167 * When reshaping backwards, we round in the opposite direction
4168 * and perform the reverse test: next write position must not be
4169 * less than current safe position.
4171 * In all this the minimum difference in data offsets
4172 * (conf->offset_diff - always positive) allows a bit of slack,
4173 * so next can be after 'safe', but not by more than offset_diff
4175 * We need to prepare all the bios here before we start any IO
4176 * to ensure the size we choose is acceptable to all devices.
4177 * The means one for each copy for write-out and an extra one for
4178 * read-in.
4179 * We store the read-in bio in ->master_bio and the others in
4180 * ->devs[x].bio and ->devs[x].repl_bio.
4182 struct r10conf *conf = mddev->private;
4183 struct r10bio *r10_bio;
4184 sector_t next, safe, last;
4185 int max_sectors;
4186 int nr_sectors;
4187 int s;
4188 struct md_rdev *rdev;
4189 int need_flush = 0;
4190 struct bio *blist;
4191 struct bio *bio, *read_bio;
4192 int sectors_done = 0;
4194 if (sector_nr == 0) {
4195 /* If restarting in the middle, skip the initial sectors */
4196 if (mddev->reshape_backwards &&
4197 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4198 sector_nr = (raid10_size(mddev, 0, 0)
4199 - conf->reshape_progress);
4200 } else if (!mddev->reshape_backwards &&
4201 conf->reshape_progress > 0)
4202 sector_nr = conf->reshape_progress;
4203 if (sector_nr) {
4204 mddev->curr_resync_completed = sector_nr;
4205 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4206 *skipped = 1;
4207 return sector_nr;
4211 /* We don't use sector_nr to track where we are up to
4212 * as that doesn't work well for ->reshape_backwards.
4213 * So just use ->reshape_progress.
4215 if (mddev->reshape_backwards) {
4216 /* 'next' is the earliest device address that we might
4217 * write to for this chunk in the new layout
4219 next = first_dev_address(conf->reshape_progress - 1,
4220 &conf->geo);
4222 /* 'safe' is the last device address that we might read from
4223 * in the old layout after a restart
4225 safe = last_dev_address(conf->reshape_safe - 1,
4226 &conf->prev);
4228 if (next + conf->offset_diff < safe)
4229 need_flush = 1;
4231 last = conf->reshape_progress - 1;
4232 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4233 & conf->prev.chunk_mask);
4234 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4235 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4236 } else {
4237 /* 'next' is after the last device address that we
4238 * might write to for this chunk in the new layout
4240 next = last_dev_address(conf->reshape_progress, &conf->geo);
4242 /* 'safe' is the earliest device address that we might
4243 * read from in the old layout after a restart
4245 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4247 /* Need to update metadata if 'next' might be beyond 'safe'
4248 * as that would possibly corrupt data
4250 if (next > safe + conf->offset_diff)
4251 need_flush = 1;
4253 sector_nr = conf->reshape_progress;
4254 last = sector_nr | (conf->geo.chunk_mask
4255 & conf->prev.chunk_mask);
4257 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4258 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4261 if (need_flush ||
4262 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4263 /* Need to update reshape_position in metadata */
4264 wait_barrier(conf);
4265 mddev->reshape_position = conf->reshape_progress;
4266 if (mddev->reshape_backwards)
4267 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4268 - conf->reshape_progress;
4269 else
4270 mddev->curr_resync_completed = conf->reshape_progress;
4271 conf->reshape_checkpoint = jiffies;
4272 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4273 md_wakeup_thread(mddev->thread);
4274 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4275 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4276 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4277 allow_barrier(conf);
4278 return sectors_done;
4280 conf->reshape_safe = mddev->reshape_position;
4281 allow_barrier(conf);
4284 read_more:
4285 /* Now schedule reads for blocks from sector_nr to last */
4286 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4287 r10_bio->state = 0;
4288 raise_barrier(conf, sectors_done != 0);
4289 atomic_set(&r10_bio->remaining, 0);
4290 r10_bio->mddev = mddev;
4291 r10_bio->sector = sector_nr;
4292 set_bit(R10BIO_IsReshape, &r10_bio->state);
4293 r10_bio->sectors = last - sector_nr + 1;
4294 rdev = read_balance(conf, r10_bio, &max_sectors);
4295 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4297 if (!rdev) {
4298 /* Cannot read from here, so need to record bad blocks
4299 * on all the target devices.
4301 // FIXME
4302 mempool_free(r10_bio, conf->r10buf_pool);
4303 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4304 return sectors_done;
4307 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4309 read_bio->bi_bdev = rdev->bdev;
4310 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4311 + rdev->data_offset);
4312 read_bio->bi_private = r10_bio;
4313 read_bio->bi_end_io = end_sync_read;
4314 read_bio->bi_rw = READ;
4315 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4316 read_bio->bi_error = 0;
4317 read_bio->bi_vcnt = 0;
4318 read_bio->bi_iter.bi_size = 0;
4319 r10_bio->master_bio = read_bio;
4320 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4322 /* Now find the locations in the new layout */
4323 __raid10_find_phys(&conf->geo, r10_bio);
4325 blist = read_bio;
4326 read_bio->bi_next = NULL;
4328 for (s = 0; s < conf->copies*2; s++) {
4329 struct bio *b;
4330 int d = r10_bio->devs[s/2].devnum;
4331 struct md_rdev *rdev2;
4332 if (s&1) {
4333 rdev2 = conf->mirrors[d].replacement;
4334 b = r10_bio->devs[s/2].repl_bio;
4335 } else {
4336 rdev2 = conf->mirrors[d].rdev;
4337 b = r10_bio->devs[s/2].bio;
4339 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4340 continue;
4342 bio_reset(b);
4343 b->bi_bdev = rdev2->bdev;
4344 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4345 rdev2->new_data_offset;
4346 b->bi_private = r10_bio;
4347 b->bi_end_io = end_reshape_write;
4348 b->bi_rw = WRITE;
4349 b->bi_next = blist;
4350 blist = b;
4353 /* Now add as many pages as possible to all of these bios. */
4355 nr_sectors = 0;
4356 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4357 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4358 int len = (max_sectors - s) << 9;
4359 if (len > PAGE_SIZE)
4360 len = PAGE_SIZE;
4361 for (bio = blist; bio ; bio = bio->bi_next) {
4362 struct bio *bio2;
4363 if (bio_add_page(bio, page, len, 0))
4364 continue;
4366 /* Didn't fit, must stop */
4367 for (bio2 = blist;
4368 bio2 && bio2 != bio;
4369 bio2 = bio2->bi_next) {
4370 /* Remove last page from this bio */
4371 bio2->bi_vcnt--;
4372 bio2->bi_iter.bi_size -= len;
4373 bio_clear_flag(bio2, BIO_SEG_VALID);
4375 goto bio_full;
4377 sector_nr += len >> 9;
4378 nr_sectors += len >> 9;
4380 bio_full:
4381 r10_bio->sectors = nr_sectors;
4383 /* Now submit the read */
4384 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4385 atomic_inc(&r10_bio->remaining);
4386 read_bio->bi_next = NULL;
4387 generic_make_request(read_bio);
4388 sector_nr += nr_sectors;
4389 sectors_done += nr_sectors;
4390 if (sector_nr <= last)
4391 goto read_more;
4393 /* Now that we have done the whole section we can
4394 * update reshape_progress
4396 if (mddev->reshape_backwards)
4397 conf->reshape_progress -= sectors_done;
4398 else
4399 conf->reshape_progress += sectors_done;
4401 return sectors_done;
4404 static void end_reshape_request(struct r10bio *r10_bio);
4405 static int handle_reshape_read_error(struct mddev *mddev,
4406 struct r10bio *r10_bio);
4407 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4409 /* Reshape read completed. Hopefully we have a block
4410 * to write out.
4411 * If we got a read error then we do sync 1-page reads from
4412 * elsewhere until we find the data - or give up.
4414 struct r10conf *conf = mddev->private;
4415 int s;
4417 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4418 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4419 /* Reshape has been aborted */
4420 md_done_sync(mddev, r10_bio->sectors, 0);
4421 return;
4424 /* We definitely have the data in the pages, schedule the
4425 * writes.
4427 atomic_set(&r10_bio->remaining, 1);
4428 for (s = 0; s < conf->copies*2; s++) {
4429 struct bio *b;
4430 int d = r10_bio->devs[s/2].devnum;
4431 struct md_rdev *rdev;
4432 if (s&1) {
4433 rdev = conf->mirrors[d].replacement;
4434 b = r10_bio->devs[s/2].repl_bio;
4435 } else {
4436 rdev = conf->mirrors[d].rdev;
4437 b = r10_bio->devs[s/2].bio;
4439 if (!rdev || test_bit(Faulty, &rdev->flags))
4440 continue;
4441 atomic_inc(&rdev->nr_pending);
4442 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4443 atomic_inc(&r10_bio->remaining);
4444 b->bi_next = NULL;
4445 generic_make_request(b);
4447 end_reshape_request(r10_bio);
4450 static void end_reshape(struct r10conf *conf)
4452 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4453 return;
4455 spin_lock_irq(&conf->device_lock);
4456 conf->prev = conf->geo;
4457 md_finish_reshape(conf->mddev);
4458 smp_wmb();
4459 conf->reshape_progress = MaxSector;
4460 conf->reshape_safe = MaxSector;
4461 spin_unlock_irq(&conf->device_lock);
4463 /* read-ahead size must cover two whole stripes, which is
4464 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4466 if (conf->mddev->queue) {
4467 int stripe = conf->geo.raid_disks *
4468 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4469 stripe /= conf->geo.near_copies;
4470 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4471 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4473 conf->fullsync = 0;
4476 static int handle_reshape_read_error(struct mddev *mddev,
4477 struct r10bio *r10_bio)
4479 /* Use sync reads to get the blocks from somewhere else */
4480 int sectors = r10_bio->sectors;
4481 struct r10conf *conf = mddev->private;
4482 struct {
4483 struct r10bio r10_bio;
4484 struct r10dev devs[conf->copies];
4485 } on_stack;
4486 struct r10bio *r10b = &on_stack.r10_bio;
4487 int slot = 0;
4488 int idx = 0;
4489 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4491 r10b->sector = r10_bio->sector;
4492 __raid10_find_phys(&conf->prev, r10b);
4494 while (sectors) {
4495 int s = sectors;
4496 int success = 0;
4497 int first_slot = slot;
4499 if (s > (PAGE_SIZE >> 9))
4500 s = PAGE_SIZE >> 9;
4502 while (!success) {
4503 int d = r10b->devs[slot].devnum;
4504 struct md_rdev *rdev = conf->mirrors[d].rdev;
4505 sector_t addr;
4506 if (rdev == NULL ||
4507 test_bit(Faulty, &rdev->flags) ||
4508 !test_bit(In_sync, &rdev->flags))
4509 goto failed;
4511 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4512 success = sync_page_io(rdev,
4513 addr,
4514 s << 9,
4515 bvec[idx].bv_page,
4516 READ, false);
4517 if (success)
4518 break;
4519 failed:
4520 slot++;
4521 if (slot >= conf->copies)
4522 slot = 0;
4523 if (slot == first_slot)
4524 break;
4526 if (!success) {
4527 /* couldn't read this block, must give up */
4528 set_bit(MD_RECOVERY_INTR,
4529 &mddev->recovery);
4530 return -EIO;
4532 sectors -= s;
4533 idx++;
4535 return 0;
4538 static void end_reshape_write(struct bio *bio)
4540 struct r10bio *r10_bio = bio->bi_private;
4541 struct mddev *mddev = r10_bio->mddev;
4542 struct r10conf *conf = mddev->private;
4543 int d;
4544 int slot;
4545 int repl;
4546 struct md_rdev *rdev = NULL;
4548 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4549 if (repl)
4550 rdev = conf->mirrors[d].replacement;
4551 if (!rdev) {
4552 smp_mb();
4553 rdev = conf->mirrors[d].rdev;
4556 if (bio->bi_error) {
4557 /* FIXME should record badblock */
4558 md_error(mddev, rdev);
4561 rdev_dec_pending(rdev, mddev);
4562 end_reshape_request(r10_bio);
4565 static void end_reshape_request(struct r10bio *r10_bio)
4567 if (!atomic_dec_and_test(&r10_bio->remaining))
4568 return;
4569 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4570 bio_put(r10_bio->master_bio);
4571 put_buf(r10_bio);
4574 static void raid10_finish_reshape(struct mddev *mddev)
4576 struct r10conf *conf = mddev->private;
4578 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4579 return;
4581 if (mddev->delta_disks > 0) {
4582 sector_t size = raid10_size(mddev, 0, 0);
4583 md_set_array_sectors(mddev, size);
4584 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4585 mddev->recovery_cp = mddev->resync_max_sectors;
4586 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4588 mddev->resync_max_sectors = size;
4589 set_capacity(mddev->gendisk, mddev->array_sectors);
4590 revalidate_disk(mddev->gendisk);
4591 } else {
4592 int d;
4593 for (d = conf->geo.raid_disks ;
4594 d < conf->geo.raid_disks - mddev->delta_disks;
4595 d++) {
4596 struct md_rdev *rdev = conf->mirrors[d].rdev;
4597 if (rdev)
4598 clear_bit(In_sync, &rdev->flags);
4599 rdev = conf->mirrors[d].replacement;
4600 if (rdev)
4601 clear_bit(In_sync, &rdev->flags);
4604 mddev->layout = mddev->new_layout;
4605 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4606 mddev->reshape_position = MaxSector;
4607 mddev->delta_disks = 0;
4608 mddev->reshape_backwards = 0;
4611 static struct md_personality raid10_personality =
4613 .name = "raid10",
4614 .level = 10,
4615 .owner = THIS_MODULE,
4616 .make_request = make_request,
4617 .run = run,
4618 .free = raid10_free,
4619 .status = status,
4620 .error_handler = error,
4621 .hot_add_disk = raid10_add_disk,
4622 .hot_remove_disk= raid10_remove_disk,
4623 .spare_active = raid10_spare_active,
4624 .sync_request = sync_request,
4625 .quiesce = raid10_quiesce,
4626 .size = raid10_size,
4627 .resize = raid10_resize,
4628 .takeover = raid10_takeover,
4629 .check_reshape = raid10_check_reshape,
4630 .start_reshape = raid10_start_reshape,
4631 .finish_reshape = raid10_finish_reshape,
4632 .congested = raid10_congested,
4635 static int __init raid_init(void)
4637 return register_md_personality(&raid10_personality);
4640 static void raid_exit(void)
4642 unregister_md_personality(&raid10_personality);
4645 module_init(raid_init);
4646 module_exit(raid_exit);
4647 MODULE_LICENSE("GPL");
4648 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4649 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4650 MODULE_ALIAS("md-raid10");
4651 MODULE_ALIAS("md-level-10");
4653 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);