kvm: Delete prototype for non-existent function complete_pio
[linux-2.6/btrfs-unstable.git] / virt / kvm / kvm_main.c
blob10015d6e4d08396bb248849e8dc5c9de5da34cc3
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "iodev.h"
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
68 * Ordering of locks:
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
86 struct dentry *kvm_debugfs_dir;
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
102 static bool largepages_enabled = true;
104 bool kvm_is_mmio_pfn(pfn_t pfn)
106 if (pfn_valid(pfn))
107 return PageReserved(pfn_to_page(pfn));
109 return true;
113 * Switches to specified vcpu, until a matching vcpu_put()
115 int vcpu_load(struct kvm_vcpu *vcpu)
117 int cpu;
119 if (mutex_lock_killable(&vcpu->mutex))
120 return -EINTR;
121 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
122 /* The thread running this VCPU changed. */
123 struct pid *oldpid = vcpu->pid;
124 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
125 rcu_assign_pointer(vcpu->pid, newpid);
126 synchronize_rcu();
127 put_pid(oldpid);
129 cpu = get_cpu();
130 preempt_notifier_register(&vcpu->preempt_notifier);
131 kvm_arch_vcpu_load(vcpu, cpu);
132 put_cpu();
133 return 0;
136 void vcpu_put(struct kvm_vcpu *vcpu)
138 preempt_disable();
139 kvm_arch_vcpu_put(vcpu);
140 preempt_notifier_unregister(&vcpu->preempt_notifier);
141 preempt_enable();
142 mutex_unlock(&vcpu->mutex);
145 static void ack_flush(void *_completed)
149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 int i, cpu, me;
152 cpumask_var_t cpus;
153 bool called = true;
154 struct kvm_vcpu *vcpu;
156 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158 me = get_cpu();
159 kvm_for_each_vcpu(i, vcpu, kvm) {
160 kvm_make_request(req, vcpu);
161 cpu = vcpu->cpu;
163 /* Set ->requests bit before we read ->mode */
164 smp_mb();
166 if (cpus != NULL && cpu != -1 && cpu != me &&
167 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
168 cpumask_set_cpu(cpu, cpus);
170 if (unlikely(cpus == NULL))
171 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
172 else if (!cpumask_empty(cpus))
173 smp_call_function_many(cpus, ack_flush, NULL, 1);
174 else
175 called = false;
176 put_cpu();
177 free_cpumask_var(cpus);
178 return called;
181 void kvm_flush_remote_tlbs(struct kvm *kvm)
183 long dirty_count = kvm->tlbs_dirty;
185 smp_mb();
186 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
187 ++kvm->stat.remote_tlb_flush;
188 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
190 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
192 void kvm_reload_remote_mmus(struct kvm *kvm)
194 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
197 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
199 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
202 void kvm_make_scan_ioapic_request(struct kvm *kvm)
204 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
207 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
209 struct page *page;
210 int r;
212 mutex_init(&vcpu->mutex);
213 vcpu->cpu = -1;
214 vcpu->kvm = kvm;
215 vcpu->vcpu_id = id;
216 vcpu->pid = NULL;
217 init_waitqueue_head(&vcpu->wq);
218 kvm_async_pf_vcpu_init(vcpu);
220 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
221 if (!page) {
222 r = -ENOMEM;
223 goto fail;
225 vcpu->run = page_address(page);
227 kvm_vcpu_set_in_spin_loop(vcpu, false);
228 kvm_vcpu_set_dy_eligible(vcpu, false);
229 vcpu->preempted = false;
231 r = kvm_arch_vcpu_init(vcpu);
232 if (r < 0)
233 goto fail_free_run;
234 return 0;
236 fail_free_run:
237 free_page((unsigned long)vcpu->run);
238 fail:
239 return r;
241 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
243 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
245 put_pid(vcpu->pid);
246 kvm_arch_vcpu_uninit(vcpu);
247 free_page((unsigned long)vcpu->run);
249 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
251 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
252 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
254 return container_of(mn, struct kvm, mmu_notifier);
257 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
258 struct mm_struct *mm,
259 unsigned long address)
261 struct kvm *kvm = mmu_notifier_to_kvm(mn);
262 int need_tlb_flush, idx;
265 * When ->invalidate_page runs, the linux pte has been zapped
266 * already but the page is still allocated until
267 * ->invalidate_page returns. So if we increase the sequence
268 * here the kvm page fault will notice if the spte can't be
269 * established because the page is going to be freed. If
270 * instead the kvm page fault establishes the spte before
271 * ->invalidate_page runs, kvm_unmap_hva will release it
272 * before returning.
274 * The sequence increase only need to be seen at spin_unlock
275 * time, and not at spin_lock time.
277 * Increasing the sequence after the spin_unlock would be
278 * unsafe because the kvm page fault could then establish the
279 * pte after kvm_unmap_hva returned, without noticing the page
280 * is going to be freed.
282 idx = srcu_read_lock(&kvm->srcu);
283 spin_lock(&kvm->mmu_lock);
285 kvm->mmu_notifier_seq++;
286 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
287 /* we've to flush the tlb before the pages can be freed */
288 if (need_tlb_flush)
289 kvm_flush_remote_tlbs(kvm);
291 spin_unlock(&kvm->mmu_lock);
292 srcu_read_unlock(&kvm->srcu, idx);
295 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
296 struct mm_struct *mm,
297 unsigned long address,
298 pte_t pte)
300 struct kvm *kvm = mmu_notifier_to_kvm(mn);
301 int idx;
303 idx = srcu_read_lock(&kvm->srcu);
304 spin_lock(&kvm->mmu_lock);
305 kvm->mmu_notifier_seq++;
306 kvm_set_spte_hva(kvm, address, pte);
307 spin_unlock(&kvm->mmu_lock);
308 srcu_read_unlock(&kvm->srcu, idx);
311 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
312 struct mm_struct *mm,
313 unsigned long start,
314 unsigned long end)
316 struct kvm *kvm = mmu_notifier_to_kvm(mn);
317 int need_tlb_flush = 0, idx;
319 idx = srcu_read_lock(&kvm->srcu);
320 spin_lock(&kvm->mmu_lock);
322 * The count increase must become visible at unlock time as no
323 * spte can be established without taking the mmu_lock and
324 * count is also read inside the mmu_lock critical section.
326 kvm->mmu_notifier_count++;
327 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
328 need_tlb_flush |= kvm->tlbs_dirty;
329 /* we've to flush the tlb before the pages can be freed */
330 if (need_tlb_flush)
331 kvm_flush_remote_tlbs(kvm);
333 spin_unlock(&kvm->mmu_lock);
334 srcu_read_unlock(&kvm->srcu, idx);
337 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
338 struct mm_struct *mm,
339 unsigned long start,
340 unsigned long end)
342 struct kvm *kvm = mmu_notifier_to_kvm(mn);
344 spin_lock(&kvm->mmu_lock);
346 * This sequence increase will notify the kvm page fault that
347 * the page that is going to be mapped in the spte could have
348 * been freed.
350 kvm->mmu_notifier_seq++;
351 smp_wmb();
353 * The above sequence increase must be visible before the
354 * below count decrease, which is ensured by the smp_wmb above
355 * in conjunction with the smp_rmb in mmu_notifier_retry().
357 kvm->mmu_notifier_count--;
358 spin_unlock(&kvm->mmu_lock);
360 BUG_ON(kvm->mmu_notifier_count < 0);
363 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
364 struct mm_struct *mm,
365 unsigned long address)
367 struct kvm *kvm = mmu_notifier_to_kvm(mn);
368 int young, idx;
370 idx = srcu_read_lock(&kvm->srcu);
371 spin_lock(&kvm->mmu_lock);
373 young = kvm_age_hva(kvm, address);
374 if (young)
375 kvm_flush_remote_tlbs(kvm);
377 spin_unlock(&kvm->mmu_lock);
378 srcu_read_unlock(&kvm->srcu, idx);
380 return young;
383 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
384 struct mm_struct *mm,
385 unsigned long address)
387 struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 int young, idx;
390 idx = srcu_read_lock(&kvm->srcu);
391 spin_lock(&kvm->mmu_lock);
392 young = kvm_test_age_hva(kvm, address);
393 spin_unlock(&kvm->mmu_lock);
394 srcu_read_unlock(&kvm->srcu, idx);
396 return young;
399 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
400 struct mm_struct *mm)
402 struct kvm *kvm = mmu_notifier_to_kvm(mn);
403 int idx;
405 idx = srcu_read_lock(&kvm->srcu);
406 kvm_arch_flush_shadow_all(kvm);
407 srcu_read_unlock(&kvm->srcu, idx);
410 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
411 .invalidate_page = kvm_mmu_notifier_invalidate_page,
412 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
413 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
414 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
415 .test_young = kvm_mmu_notifier_test_young,
416 .change_pte = kvm_mmu_notifier_change_pte,
417 .release = kvm_mmu_notifier_release,
420 static int kvm_init_mmu_notifier(struct kvm *kvm)
422 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
423 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
430 return 0;
433 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
435 static void kvm_init_memslots_id(struct kvm *kvm)
437 int i;
438 struct kvm_memslots *slots = kvm->memslots;
440 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
441 slots->id_to_index[i] = slots->memslots[i].id = i;
444 static struct kvm *kvm_create_vm(unsigned long type)
446 int r, i;
447 struct kvm *kvm = kvm_arch_alloc_vm();
449 if (!kvm)
450 return ERR_PTR(-ENOMEM);
452 r = kvm_arch_init_vm(kvm, type);
453 if (r)
454 goto out_err_nodisable;
456 r = hardware_enable_all();
457 if (r)
458 goto out_err_nodisable;
460 #ifdef CONFIG_HAVE_KVM_IRQCHIP
461 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
462 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
463 #endif
465 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
467 r = -ENOMEM;
468 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
469 if (!kvm->memslots)
470 goto out_err_nosrcu;
471 kvm_init_memslots_id(kvm);
472 if (init_srcu_struct(&kvm->srcu))
473 goto out_err_nosrcu;
474 for (i = 0; i < KVM_NR_BUSES; i++) {
475 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
476 GFP_KERNEL);
477 if (!kvm->buses[i])
478 goto out_err;
481 spin_lock_init(&kvm->mmu_lock);
482 kvm->mm = current->mm;
483 atomic_inc(&kvm->mm->mm_count);
484 kvm_eventfd_init(kvm);
485 mutex_init(&kvm->lock);
486 mutex_init(&kvm->irq_lock);
487 mutex_init(&kvm->slots_lock);
488 atomic_set(&kvm->users_count, 1);
489 INIT_LIST_HEAD(&kvm->devices);
491 r = kvm_init_mmu_notifier(kvm);
492 if (r)
493 goto out_err;
495 spin_lock(&kvm_lock);
496 list_add(&kvm->vm_list, &vm_list);
497 spin_unlock(&kvm_lock);
499 return kvm;
501 out_err:
502 cleanup_srcu_struct(&kvm->srcu);
503 out_err_nosrcu:
504 hardware_disable_all();
505 out_err_nodisable:
506 for (i = 0; i < KVM_NR_BUSES; i++)
507 kfree(kvm->buses[i]);
508 kfree(kvm->memslots);
509 kvm_arch_free_vm(kvm);
510 return ERR_PTR(r);
514 * Avoid using vmalloc for a small buffer.
515 * Should not be used when the size is statically known.
517 void *kvm_kvzalloc(unsigned long size)
519 if (size > PAGE_SIZE)
520 return vzalloc(size);
521 else
522 return kzalloc(size, GFP_KERNEL);
525 void kvm_kvfree(const void *addr)
527 if (is_vmalloc_addr(addr))
528 vfree(addr);
529 else
530 kfree(addr);
533 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
535 if (!memslot->dirty_bitmap)
536 return;
538 kvm_kvfree(memslot->dirty_bitmap);
539 memslot->dirty_bitmap = NULL;
543 * Free any memory in @free but not in @dont.
545 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
546 struct kvm_memory_slot *dont)
548 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
549 kvm_destroy_dirty_bitmap(free);
551 kvm_arch_free_memslot(kvm, free, dont);
553 free->npages = 0;
556 void kvm_free_physmem(struct kvm *kvm)
558 struct kvm_memslots *slots = kvm->memslots;
559 struct kvm_memory_slot *memslot;
561 kvm_for_each_memslot(memslot, slots)
562 kvm_free_physmem_slot(kvm, memslot, NULL);
564 kfree(kvm->memslots);
567 static void kvm_destroy_devices(struct kvm *kvm)
569 struct list_head *node, *tmp;
571 list_for_each_safe(node, tmp, &kvm->devices) {
572 struct kvm_device *dev =
573 list_entry(node, struct kvm_device, vm_node);
575 list_del(node);
576 dev->ops->destroy(dev);
580 static void kvm_destroy_vm(struct kvm *kvm)
582 int i;
583 struct mm_struct *mm = kvm->mm;
585 kvm_arch_sync_events(kvm);
586 spin_lock(&kvm_lock);
587 list_del(&kvm->vm_list);
588 spin_unlock(&kvm_lock);
589 kvm_free_irq_routing(kvm);
590 for (i = 0; i < KVM_NR_BUSES; i++)
591 kvm_io_bus_destroy(kvm->buses[i]);
592 kvm_coalesced_mmio_free(kvm);
593 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
594 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
595 #else
596 kvm_arch_flush_shadow_all(kvm);
597 #endif
598 kvm_arch_destroy_vm(kvm);
599 kvm_destroy_devices(kvm);
600 kvm_free_physmem(kvm);
601 cleanup_srcu_struct(&kvm->srcu);
602 kvm_arch_free_vm(kvm);
603 hardware_disable_all();
604 mmdrop(mm);
607 void kvm_get_kvm(struct kvm *kvm)
609 atomic_inc(&kvm->users_count);
611 EXPORT_SYMBOL_GPL(kvm_get_kvm);
613 void kvm_put_kvm(struct kvm *kvm)
615 if (atomic_dec_and_test(&kvm->users_count))
616 kvm_destroy_vm(kvm);
618 EXPORT_SYMBOL_GPL(kvm_put_kvm);
621 static int kvm_vm_release(struct inode *inode, struct file *filp)
623 struct kvm *kvm = filp->private_data;
625 kvm_irqfd_release(kvm);
627 kvm_put_kvm(kvm);
628 return 0;
632 * Allocation size is twice as large as the actual dirty bitmap size.
633 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
635 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
637 #ifndef CONFIG_S390
638 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
640 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
641 if (!memslot->dirty_bitmap)
642 return -ENOMEM;
644 #endif /* !CONFIG_S390 */
645 return 0;
648 static int cmp_memslot(const void *slot1, const void *slot2)
650 struct kvm_memory_slot *s1, *s2;
652 s1 = (struct kvm_memory_slot *)slot1;
653 s2 = (struct kvm_memory_slot *)slot2;
655 if (s1->npages < s2->npages)
656 return 1;
657 if (s1->npages > s2->npages)
658 return -1;
660 return 0;
664 * Sort the memslots base on its size, so the larger slots
665 * will get better fit.
667 static void sort_memslots(struct kvm_memslots *slots)
669 int i;
671 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
672 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
674 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
675 slots->id_to_index[slots->memslots[i].id] = i;
678 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
679 u64 last_generation)
681 if (new) {
682 int id = new->id;
683 struct kvm_memory_slot *old = id_to_memslot(slots, id);
684 unsigned long npages = old->npages;
686 *old = *new;
687 if (new->npages != npages)
688 sort_memslots(slots);
691 slots->generation = last_generation + 1;
694 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
696 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
698 #ifdef KVM_CAP_READONLY_MEM
699 valid_flags |= KVM_MEM_READONLY;
700 #endif
702 if (mem->flags & ~valid_flags)
703 return -EINVAL;
705 return 0;
708 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
709 struct kvm_memslots *slots, struct kvm_memory_slot *new)
711 struct kvm_memslots *old_memslots = kvm->memslots;
713 update_memslots(slots, new, kvm->memslots->generation);
714 rcu_assign_pointer(kvm->memslots, slots);
715 synchronize_srcu_expedited(&kvm->srcu);
717 kvm_arch_memslots_updated(kvm);
719 return old_memslots;
723 * Allocate some memory and give it an address in the guest physical address
724 * space.
726 * Discontiguous memory is allowed, mostly for framebuffers.
728 * Must be called holding mmap_sem for write.
730 int __kvm_set_memory_region(struct kvm *kvm,
731 struct kvm_userspace_memory_region *mem)
733 int r;
734 gfn_t base_gfn;
735 unsigned long npages;
736 struct kvm_memory_slot *slot;
737 struct kvm_memory_slot old, new;
738 struct kvm_memslots *slots = NULL, *old_memslots;
739 enum kvm_mr_change change;
741 r = check_memory_region_flags(mem);
742 if (r)
743 goto out;
745 r = -EINVAL;
746 /* General sanity checks */
747 if (mem->memory_size & (PAGE_SIZE - 1))
748 goto out;
749 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
750 goto out;
751 /* We can read the guest memory with __xxx_user() later on. */
752 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
753 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
754 !access_ok(VERIFY_WRITE,
755 (void __user *)(unsigned long)mem->userspace_addr,
756 mem->memory_size)))
757 goto out;
758 if (mem->slot >= KVM_MEM_SLOTS_NUM)
759 goto out;
760 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
761 goto out;
763 slot = id_to_memslot(kvm->memslots, mem->slot);
764 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
765 npages = mem->memory_size >> PAGE_SHIFT;
767 r = -EINVAL;
768 if (npages > KVM_MEM_MAX_NR_PAGES)
769 goto out;
771 if (!npages)
772 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
774 new = old = *slot;
776 new.id = mem->slot;
777 new.base_gfn = base_gfn;
778 new.npages = npages;
779 new.flags = mem->flags;
781 r = -EINVAL;
782 if (npages) {
783 if (!old.npages)
784 change = KVM_MR_CREATE;
785 else { /* Modify an existing slot. */
786 if ((mem->userspace_addr != old.userspace_addr) ||
787 (npages != old.npages) ||
788 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
789 goto out;
791 if (base_gfn != old.base_gfn)
792 change = KVM_MR_MOVE;
793 else if (new.flags != old.flags)
794 change = KVM_MR_FLAGS_ONLY;
795 else { /* Nothing to change. */
796 r = 0;
797 goto out;
800 } else if (old.npages) {
801 change = KVM_MR_DELETE;
802 } else /* Modify a non-existent slot: disallowed. */
803 goto out;
805 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
806 /* Check for overlaps */
807 r = -EEXIST;
808 kvm_for_each_memslot(slot, kvm->memslots) {
809 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
810 (slot->id == mem->slot))
811 continue;
812 if (!((base_gfn + npages <= slot->base_gfn) ||
813 (base_gfn >= slot->base_gfn + slot->npages)))
814 goto out;
818 /* Free page dirty bitmap if unneeded */
819 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
820 new.dirty_bitmap = NULL;
822 r = -ENOMEM;
823 if (change == KVM_MR_CREATE) {
824 new.userspace_addr = mem->userspace_addr;
826 if (kvm_arch_create_memslot(kvm, &new, npages))
827 goto out_free;
830 /* Allocate page dirty bitmap if needed */
831 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
832 if (kvm_create_dirty_bitmap(&new) < 0)
833 goto out_free;
836 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
837 r = -ENOMEM;
838 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839 GFP_KERNEL);
840 if (!slots)
841 goto out_free;
842 slot = id_to_memslot(slots, mem->slot);
843 slot->flags |= KVM_MEMSLOT_INVALID;
845 old_memslots = install_new_memslots(kvm, slots, NULL);
847 /* slot was deleted or moved, clear iommu mapping */
848 kvm_iommu_unmap_pages(kvm, &old);
849 /* From this point no new shadow pages pointing to a deleted,
850 * or moved, memslot will be created.
852 * validation of sp->gfn happens in:
853 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
854 * - kvm_is_visible_gfn (mmu_check_roots)
856 kvm_arch_flush_shadow_memslot(kvm, slot);
857 slots = old_memslots;
860 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
861 if (r)
862 goto out_slots;
864 r = -ENOMEM;
866 * We can re-use the old_memslots from above, the only difference
867 * from the currently installed memslots is the invalid flag. This
868 * will get overwritten by update_memslots anyway.
870 if (!slots) {
871 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
872 GFP_KERNEL);
873 if (!slots)
874 goto out_free;
877 /* actual memory is freed via old in kvm_free_physmem_slot below */
878 if (change == KVM_MR_DELETE) {
879 new.dirty_bitmap = NULL;
880 memset(&new.arch, 0, sizeof(new.arch));
883 old_memslots = install_new_memslots(kvm, slots, &new);
885 kvm_arch_commit_memory_region(kvm, mem, &old, change);
887 kvm_free_physmem_slot(kvm, &old, &new);
888 kfree(old_memslots);
891 * IOMMU mapping: New slots need to be mapped. Old slots need to be
892 * un-mapped and re-mapped if their base changes. Since base change
893 * unmapping is handled above with slot deletion, mapping alone is
894 * needed here. Anything else the iommu might care about for existing
895 * slots (size changes, userspace addr changes and read-only flag
896 * changes) is disallowed above, so any other attribute changes getting
897 * here can be skipped.
899 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
900 r = kvm_iommu_map_pages(kvm, &new);
901 return r;
904 return 0;
906 out_slots:
907 kfree(slots);
908 out_free:
909 kvm_free_physmem_slot(kvm, &new, &old);
910 out:
911 return r;
913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
915 int kvm_set_memory_region(struct kvm *kvm,
916 struct kvm_userspace_memory_region *mem)
918 int r;
920 mutex_lock(&kvm->slots_lock);
921 r = __kvm_set_memory_region(kvm, mem);
922 mutex_unlock(&kvm->slots_lock);
923 return r;
925 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
927 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
928 struct kvm_userspace_memory_region *mem)
930 if (mem->slot >= KVM_USER_MEM_SLOTS)
931 return -EINVAL;
932 return kvm_set_memory_region(kvm, mem);
935 int kvm_get_dirty_log(struct kvm *kvm,
936 struct kvm_dirty_log *log, int *is_dirty)
938 struct kvm_memory_slot *memslot;
939 int r, i;
940 unsigned long n;
941 unsigned long any = 0;
943 r = -EINVAL;
944 if (log->slot >= KVM_USER_MEM_SLOTS)
945 goto out;
947 memslot = id_to_memslot(kvm->memslots, log->slot);
948 r = -ENOENT;
949 if (!memslot->dirty_bitmap)
950 goto out;
952 n = kvm_dirty_bitmap_bytes(memslot);
954 for (i = 0; !any && i < n/sizeof(long); ++i)
955 any = memslot->dirty_bitmap[i];
957 r = -EFAULT;
958 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
959 goto out;
961 if (any)
962 *is_dirty = 1;
964 r = 0;
965 out:
966 return r;
968 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
970 bool kvm_largepages_enabled(void)
972 return largepages_enabled;
975 void kvm_disable_largepages(void)
977 largepages_enabled = false;
979 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
983 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
989 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
991 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
992 memslot->flags & KVM_MEMSLOT_INVALID)
993 return 0;
995 return 1;
997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1001 struct vm_area_struct *vma;
1002 unsigned long addr, size;
1004 size = PAGE_SIZE;
1006 addr = gfn_to_hva(kvm, gfn);
1007 if (kvm_is_error_hva(addr))
1008 return PAGE_SIZE;
1010 down_read(&current->mm->mmap_sem);
1011 vma = find_vma(current->mm, addr);
1012 if (!vma)
1013 goto out;
1015 size = vma_kernel_pagesize(vma);
1017 out:
1018 up_read(&current->mm->mmap_sem);
1020 return size;
1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1025 return slot->flags & KVM_MEM_READONLY;
1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 gfn_t *nr_pages, bool write)
1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 return KVM_HVA_ERR_BAD;
1034 if (memslot_is_readonly(slot) && write)
1035 return KVM_HVA_ERR_RO_BAD;
1037 if (nr_pages)
1038 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1040 return __gfn_to_hva_memslot(slot, gfn);
1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044 gfn_t *nr_pages)
1046 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1050 gfn_t gfn)
1052 return gfn_to_hva_many(slot, gfn, NULL);
1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1058 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1060 EXPORT_SYMBOL_GPL(gfn_to_hva);
1063 * If writable is set to false, the hva returned by this function is only
1064 * allowed to be read.
1066 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1068 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1069 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1071 if (!kvm_is_error_hva(hva) && writable)
1072 *writable = !memslot_is_readonly(slot);
1074 return hva;
1077 static int kvm_read_hva(void *data, void __user *hva, int len)
1079 return __copy_from_user(data, hva, len);
1082 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1084 return __copy_from_user_inatomic(data, hva, len);
1087 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1088 unsigned long start, int write, struct page **page)
1090 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1092 if (write)
1093 flags |= FOLL_WRITE;
1095 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1098 static inline int check_user_page_hwpoison(unsigned long addr)
1100 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1102 rc = __get_user_pages(current, current->mm, addr, 1,
1103 flags, NULL, NULL, NULL);
1104 return rc == -EHWPOISON;
1108 * The atomic path to get the writable pfn which will be stored in @pfn,
1109 * true indicates success, otherwise false is returned.
1111 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1112 bool write_fault, bool *writable, pfn_t *pfn)
1114 struct page *page[1];
1115 int npages;
1117 if (!(async || atomic))
1118 return false;
1121 * Fast pin a writable pfn only if it is a write fault request
1122 * or the caller allows to map a writable pfn for a read fault
1123 * request.
1125 if (!(write_fault || writable))
1126 return false;
1128 npages = __get_user_pages_fast(addr, 1, 1, page);
1129 if (npages == 1) {
1130 *pfn = page_to_pfn(page[0]);
1132 if (writable)
1133 *writable = true;
1134 return true;
1137 return false;
1141 * The slow path to get the pfn of the specified host virtual address,
1142 * 1 indicates success, -errno is returned if error is detected.
1144 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1145 bool *writable, pfn_t *pfn)
1147 struct page *page[1];
1148 int npages = 0;
1150 might_sleep();
1152 if (writable)
1153 *writable = write_fault;
1155 if (async) {
1156 down_read(&current->mm->mmap_sem);
1157 npages = get_user_page_nowait(current, current->mm,
1158 addr, write_fault, page);
1159 up_read(&current->mm->mmap_sem);
1160 } else
1161 npages = get_user_pages_fast(addr, 1, write_fault,
1162 page);
1163 if (npages != 1)
1164 return npages;
1166 /* map read fault as writable if possible */
1167 if (unlikely(!write_fault) && writable) {
1168 struct page *wpage[1];
1170 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1171 if (npages == 1) {
1172 *writable = true;
1173 put_page(page[0]);
1174 page[0] = wpage[0];
1177 npages = 1;
1179 *pfn = page_to_pfn(page[0]);
1180 return npages;
1183 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1185 if (unlikely(!(vma->vm_flags & VM_READ)))
1186 return false;
1188 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1189 return false;
1191 return true;
1195 * Pin guest page in memory and return its pfn.
1196 * @addr: host virtual address which maps memory to the guest
1197 * @atomic: whether this function can sleep
1198 * @async: whether this function need to wait IO complete if the
1199 * host page is not in the memory
1200 * @write_fault: whether we should get a writable host page
1201 * @writable: whether it allows to map a writable host page for !@write_fault
1203 * The function will map a writable host page for these two cases:
1204 * 1): @write_fault = true
1205 * 2): @write_fault = false && @writable, @writable will tell the caller
1206 * whether the mapping is writable.
1208 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1209 bool write_fault, bool *writable)
1211 struct vm_area_struct *vma;
1212 pfn_t pfn = 0;
1213 int npages;
1215 /* we can do it either atomically or asynchronously, not both */
1216 BUG_ON(atomic && async);
1218 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1219 return pfn;
1221 if (atomic)
1222 return KVM_PFN_ERR_FAULT;
1224 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1225 if (npages == 1)
1226 return pfn;
1228 down_read(&current->mm->mmap_sem);
1229 if (npages == -EHWPOISON ||
1230 (!async && check_user_page_hwpoison(addr))) {
1231 pfn = KVM_PFN_ERR_HWPOISON;
1232 goto exit;
1235 vma = find_vma_intersection(current->mm, addr, addr + 1);
1237 if (vma == NULL)
1238 pfn = KVM_PFN_ERR_FAULT;
1239 else if ((vma->vm_flags & VM_PFNMAP)) {
1240 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1241 vma->vm_pgoff;
1242 BUG_ON(!kvm_is_mmio_pfn(pfn));
1243 } else {
1244 if (async && vma_is_valid(vma, write_fault))
1245 *async = true;
1246 pfn = KVM_PFN_ERR_FAULT;
1248 exit:
1249 up_read(&current->mm->mmap_sem);
1250 return pfn;
1253 static pfn_t
1254 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1255 bool *async, bool write_fault, bool *writable)
1257 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1259 if (addr == KVM_HVA_ERR_RO_BAD)
1260 return KVM_PFN_ERR_RO_FAULT;
1262 if (kvm_is_error_hva(addr))
1263 return KVM_PFN_NOSLOT;
1265 /* Do not map writable pfn in the readonly memslot. */
1266 if (writable && memslot_is_readonly(slot)) {
1267 *writable = false;
1268 writable = NULL;
1271 return hva_to_pfn(addr, atomic, async, write_fault,
1272 writable);
1275 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1276 bool write_fault, bool *writable)
1278 struct kvm_memory_slot *slot;
1280 if (async)
1281 *async = false;
1283 slot = gfn_to_memslot(kvm, gfn);
1285 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1286 writable);
1289 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1291 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1293 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1295 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1296 bool write_fault, bool *writable)
1298 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1302 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1304 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1306 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1308 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1309 bool *writable)
1311 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1315 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1317 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1320 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1322 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1324 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1326 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1327 int nr_pages)
1329 unsigned long addr;
1330 gfn_t entry;
1332 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1333 if (kvm_is_error_hva(addr))
1334 return -1;
1336 if (entry < nr_pages)
1337 return 0;
1339 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1341 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1343 static struct page *kvm_pfn_to_page(pfn_t pfn)
1345 if (is_error_noslot_pfn(pfn))
1346 return KVM_ERR_PTR_BAD_PAGE;
1348 if (kvm_is_mmio_pfn(pfn)) {
1349 WARN_ON(1);
1350 return KVM_ERR_PTR_BAD_PAGE;
1353 return pfn_to_page(pfn);
1356 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1358 pfn_t pfn;
1360 pfn = gfn_to_pfn(kvm, gfn);
1362 return kvm_pfn_to_page(pfn);
1365 EXPORT_SYMBOL_GPL(gfn_to_page);
1367 void kvm_release_page_clean(struct page *page)
1369 WARN_ON(is_error_page(page));
1371 kvm_release_pfn_clean(page_to_pfn(page));
1373 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1375 void kvm_release_pfn_clean(pfn_t pfn)
1377 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1378 put_page(pfn_to_page(pfn));
1380 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1382 void kvm_release_page_dirty(struct page *page)
1384 WARN_ON(is_error_page(page));
1386 kvm_release_pfn_dirty(page_to_pfn(page));
1388 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1390 void kvm_release_pfn_dirty(pfn_t pfn)
1392 kvm_set_pfn_dirty(pfn);
1393 kvm_release_pfn_clean(pfn);
1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1397 void kvm_set_page_dirty(struct page *page)
1399 kvm_set_pfn_dirty(page_to_pfn(page));
1401 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1403 void kvm_set_pfn_dirty(pfn_t pfn)
1405 if (!kvm_is_mmio_pfn(pfn)) {
1406 struct page *page = pfn_to_page(pfn);
1407 if (!PageReserved(page))
1408 SetPageDirty(page);
1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1413 void kvm_set_pfn_accessed(pfn_t pfn)
1415 if (!kvm_is_mmio_pfn(pfn))
1416 mark_page_accessed(pfn_to_page(pfn));
1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1420 void kvm_get_pfn(pfn_t pfn)
1422 if (!kvm_is_mmio_pfn(pfn))
1423 get_page(pfn_to_page(pfn));
1425 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1427 static int next_segment(unsigned long len, int offset)
1429 if (len > PAGE_SIZE - offset)
1430 return PAGE_SIZE - offset;
1431 else
1432 return len;
1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1436 int len)
1438 int r;
1439 unsigned long addr;
1441 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1442 if (kvm_is_error_hva(addr))
1443 return -EFAULT;
1444 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1445 if (r)
1446 return -EFAULT;
1447 return 0;
1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1453 gfn_t gfn = gpa >> PAGE_SHIFT;
1454 int seg;
1455 int offset = offset_in_page(gpa);
1456 int ret;
1458 while ((seg = next_segment(len, offset)) != 0) {
1459 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1460 if (ret < 0)
1461 return ret;
1462 offset = 0;
1463 len -= seg;
1464 data += seg;
1465 ++gfn;
1467 return 0;
1469 EXPORT_SYMBOL_GPL(kvm_read_guest);
1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1472 unsigned long len)
1474 int r;
1475 unsigned long addr;
1476 gfn_t gfn = gpa >> PAGE_SHIFT;
1477 int offset = offset_in_page(gpa);
1479 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1480 if (kvm_is_error_hva(addr))
1481 return -EFAULT;
1482 pagefault_disable();
1483 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1484 pagefault_enable();
1485 if (r)
1486 return -EFAULT;
1487 return 0;
1489 EXPORT_SYMBOL(kvm_read_guest_atomic);
1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1492 int offset, int len)
1494 int r;
1495 unsigned long addr;
1497 addr = gfn_to_hva(kvm, gfn);
1498 if (kvm_is_error_hva(addr))
1499 return -EFAULT;
1500 r = __copy_to_user((void __user *)addr + offset, data, len);
1501 if (r)
1502 return -EFAULT;
1503 mark_page_dirty(kvm, gfn);
1504 return 0;
1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1509 unsigned long len)
1511 gfn_t gfn = gpa >> PAGE_SHIFT;
1512 int seg;
1513 int offset = offset_in_page(gpa);
1514 int ret;
1516 while ((seg = next_segment(len, offset)) != 0) {
1517 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1518 if (ret < 0)
1519 return ret;
1520 offset = 0;
1521 len -= seg;
1522 data += seg;
1523 ++gfn;
1525 return 0;
1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1529 gpa_t gpa, unsigned long len)
1531 struct kvm_memslots *slots = kvm_memslots(kvm);
1532 int offset = offset_in_page(gpa);
1533 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1534 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1535 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1536 gfn_t nr_pages_avail;
1538 ghc->gpa = gpa;
1539 ghc->generation = slots->generation;
1540 ghc->len = len;
1541 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1542 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1543 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1544 ghc->hva += offset;
1545 } else {
1547 * If the requested region crosses two memslots, we still
1548 * verify that the entire region is valid here.
1550 while (start_gfn <= end_gfn) {
1551 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1552 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1553 &nr_pages_avail);
1554 if (kvm_is_error_hva(ghc->hva))
1555 return -EFAULT;
1556 start_gfn += nr_pages_avail;
1558 /* Use the slow path for cross page reads and writes. */
1559 ghc->memslot = NULL;
1561 return 0;
1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1566 void *data, unsigned long len)
1568 struct kvm_memslots *slots = kvm_memslots(kvm);
1569 int r;
1571 BUG_ON(len > ghc->len);
1573 if (slots->generation != ghc->generation)
1574 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1576 if (unlikely(!ghc->memslot))
1577 return kvm_write_guest(kvm, ghc->gpa, data, len);
1579 if (kvm_is_error_hva(ghc->hva))
1580 return -EFAULT;
1582 r = __copy_to_user((void __user *)ghc->hva, data, len);
1583 if (r)
1584 return -EFAULT;
1585 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1587 return 0;
1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1592 void *data, unsigned long len)
1594 struct kvm_memslots *slots = kvm_memslots(kvm);
1595 int r;
1597 BUG_ON(len > ghc->len);
1599 if (slots->generation != ghc->generation)
1600 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1602 if (unlikely(!ghc->memslot))
1603 return kvm_read_guest(kvm, ghc->gpa, data, len);
1605 if (kvm_is_error_hva(ghc->hva))
1606 return -EFAULT;
1608 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1609 if (r)
1610 return -EFAULT;
1612 return 0;
1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1618 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1619 offset, len);
1621 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1623 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1625 gfn_t gfn = gpa >> PAGE_SHIFT;
1626 int seg;
1627 int offset = offset_in_page(gpa);
1628 int ret;
1630 while ((seg = next_segment(len, offset)) != 0) {
1631 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1632 if (ret < 0)
1633 return ret;
1634 offset = 0;
1635 len -= seg;
1636 ++gfn;
1638 return 0;
1640 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1642 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1643 gfn_t gfn)
1645 if (memslot && memslot->dirty_bitmap) {
1646 unsigned long rel_gfn = gfn - memslot->base_gfn;
1648 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1652 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1654 struct kvm_memory_slot *memslot;
1656 memslot = gfn_to_memslot(kvm, gfn);
1657 mark_page_dirty_in_slot(kvm, memslot, gfn);
1659 EXPORT_SYMBOL_GPL(mark_page_dirty);
1662 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1664 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1666 DEFINE_WAIT(wait);
1668 for (;;) {
1669 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1671 if (kvm_arch_vcpu_runnable(vcpu)) {
1672 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1673 break;
1675 if (kvm_cpu_has_pending_timer(vcpu))
1676 break;
1677 if (signal_pending(current))
1678 break;
1680 schedule();
1683 finish_wait(&vcpu->wq, &wait);
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1687 #ifndef CONFIG_S390
1689 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1691 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1693 int me;
1694 int cpu = vcpu->cpu;
1695 wait_queue_head_t *wqp;
1697 wqp = kvm_arch_vcpu_wq(vcpu);
1698 if (waitqueue_active(wqp)) {
1699 wake_up_interruptible(wqp);
1700 ++vcpu->stat.halt_wakeup;
1703 me = get_cpu();
1704 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1705 if (kvm_arch_vcpu_should_kick(vcpu))
1706 smp_send_reschedule(cpu);
1707 put_cpu();
1709 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1710 #endif /* !CONFIG_S390 */
1712 void kvm_resched(struct kvm_vcpu *vcpu)
1714 if (!need_resched())
1715 return;
1716 cond_resched();
1718 EXPORT_SYMBOL_GPL(kvm_resched);
1720 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1722 struct pid *pid;
1723 struct task_struct *task = NULL;
1724 bool ret = false;
1726 rcu_read_lock();
1727 pid = rcu_dereference(target->pid);
1728 if (pid)
1729 task = get_pid_task(target->pid, PIDTYPE_PID);
1730 rcu_read_unlock();
1731 if (!task)
1732 return ret;
1733 if (task->flags & PF_VCPU) {
1734 put_task_struct(task);
1735 return ret;
1737 ret = yield_to(task, 1);
1738 put_task_struct(task);
1740 return ret;
1742 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1744 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1746 * Helper that checks whether a VCPU is eligible for directed yield.
1747 * Most eligible candidate to yield is decided by following heuristics:
1749 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1750 * (preempted lock holder), indicated by @in_spin_loop.
1751 * Set at the beiginning and cleared at the end of interception/PLE handler.
1753 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1754 * chance last time (mostly it has become eligible now since we have probably
1755 * yielded to lockholder in last iteration. This is done by toggling
1756 * @dy_eligible each time a VCPU checked for eligibility.)
1758 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1759 * to preempted lock-holder could result in wrong VCPU selection and CPU
1760 * burning. Giving priority for a potential lock-holder increases lock
1761 * progress.
1763 * Since algorithm is based on heuristics, accessing another VCPU data without
1764 * locking does not harm. It may result in trying to yield to same VCPU, fail
1765 * and continue with next VCPU and so on.
1767 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1769 bool eligible;
1771 eligible = !vcpu->spin_loop.in_spin_loop ||
1772 (vcpu->spin_loop.in_spin_loop &&
1773 vcpu->spin_loop.dy_eligible);
1775 if (vcpu->spin_loop.in_spin_loop)
1776 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1778 return eligible;
1780 #endif
1782 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1784 struct kvm *kvm = me->kvm;
1785 struct kvm_vcpu *vcpu;
1786 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1787 int yielded = 0;
1788 int try = 3;
1789 int pass;
1790 int i;
1792 kvm_vcpu_set_in_spin_loop(me, true);
1794 * We boost the priority of a VCPU that is runnable but not
1795 * currently running, because it got preempted by something
1796 * else and called schedule in __vcpu_run. Hopefully that
1797 * VCPU is holding the lock that we need and will release it.
1798 * We approximate round-robin by starting at the last boosted VCPU.
1800 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1801 kvm_for_each_vcpu(i, vcpu, kvm) {
1802 if (!pass && i <= last_boosted_vcpu) {
1803 i = last_boosted_vcpu;
1804 continue;
1805 } else if (pass && i > last_boosted_vcpu)
1806 break;
1807 if (!ACCESS_ONCE(vcpu->preempted))
1808 continue;
1809 if (vcpu == me)
1810 continue;
1811 if (waitqueue_active(&vcpu->wq))
1812 continue;
1813 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1814 continue;
1816 yielded = kvm_vcpu_yield_to(vcpu);
1817 if (yielded > 0) {
1818 kvm->last_boosted_vcpu = i;
1819 break;
1820 } else if (yielded < 0) {
1821 try--;
1822 if (!try)
1823 break;
1827 kvm_vcpu_set_in_spin_loop(me, false);
1829 /* Ensure vcpu is not eligible during next spinloop */
1830 kvm_vcpu_set_dy_eligible(me, false);
1832 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1834 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1836 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1837 struct page *page;
1839 if (vmf->pgoff == 0)
1840 page = virt_to_page(vcpu->run);
1841 #ifdef CONFIG_X86
1842 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1843 page = virt_to_page(vcpu->arch.pio_data);
1844 #endif
1845 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1846 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1847 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1848 #endif
1849 else
1850 return kvm_arch_vcpu_fault(vcpu, vmf);
1851 get_page(page);
1852 vmf->page = page;
1853 return 0;
1856 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1857 .fault = kvm_vcpu_fault,
1860 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1862 vma->vm_ops = &kvm_vcpu_vm_ops;
1863 return 0;
1866 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1868 struct kvm_vcpu *vcpu = filp->private_data;
1870 kvm_put_kvm(vcpu->kvm);
1871 return 0;
1874 static struct file_operations kvm_vcpu_fops = {
1875 .release = kvm_vcpu_release,
1876 .unlocked_ioctl = kvm_vcpu_ioctl,
1877 #ifdef CONFIG_COMPAT
1878 .compat_ioctl = kvm_vcpu_compat_ioctl,
1879 #endif
1880 .mmap = kvm_vcpu_mmap,
1881 .llseek = noop_llseek,
1885 * Allocates an inode for the vcpu.
1887 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1889 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1893 * Creates some virtual cpus. Good luck creating more than one.
1895 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1897 int r;
1898 struct kvm_vcpu *vcpu, *v;
1900 vcpu = kvm_arch_vcpu_create(kvm, id);
1901 if (IS_ERR(vcpu))
1902 return PTR_ERR(vcpu);
1904 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1906 r = kvm_arch_vcpu_setup(vcpu);
1907 if (r)
1908 goto vcpu_destroy;
1910 mutex_lock(&kvm->lock);
1911 if (!kvm_vcpu_compatible(vcpu)) {
1912 r = -EINVAL;
1913 goto unlock_vcpu_destroy;
1915 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1916 r = -EINVAL;
1917 goto unlock_vcpu_destroy;
1920 kvm_for_each_vcpu(r, v, kvm)
1921 if (v->vcpu_id == id) {
1922 r = -EEXIST;
1923 goto unlock_vcpu_destroy;
1926 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1928 /* Now it's all set up, let userspace reach it */
1929 kvm_get_kvm(kvm);
1930 r = create_vcpu_fd(vcpu);
1931 if (r < 0) {
1932 kvm_put_kvm(kvm);
1933 goto unlock_vcpu_destroy;
1936 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1937 smp_wmb();
1938 atomic_inc(&kvm->online_vcpus);
1940 mutex_unlock(&kvm->lock);
1941 kvm_arch_vcpu_postcreate(vcpu);
1942 return r;
1944 unlock_vcpu_destroy:
1945 mutex_unlock(&kvm->lock);
1946 vcpu_destroy:
1947 kvm_arch_vcpu_destroy(vcpu);
1948 return r;
1951 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1953 if (sigset) {
1954 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1955 vcpu->sigset_active = 1;
1956 vcpu->sigset = *sigset;
1957 } else
1958 vcpu->sigset_active = 0;
1959 return 0;
1962 static long kvm_vcpu_ioctl(struct file *filp,
1963 unsigned int ioctl, unsigned long arg)
1965 struct kvm_vcpu *vcpu = filp->private_data;
1966 void __user *argp = (void __user *)arg;
1967 int r;
1968 struct kvm_fpu *fpu = NULL;
1969 struct kvm_sregs *kvm_sregs = NULL;
1971 if (vcpu->kvm->mm != current->mm)
1972 return -EIO;
1974 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1976 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1977 * so vcpu_load() would break it.
1979 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1980 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1981 #endif
1984 r = vcpu_load(vcpu);
1985 if (r)
1986 return r;
1987 switch (ioctl) {
1988 case KVM_RUN:
1989 r = -EINVAL;
1990 if (arg)
1991 goto out;
1992 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1993 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1994 break;
1995 case KVM_GET_REGS: {
1996 struct kvm_regs *kvm_regs;
1998 r = -ENOMEM;
1999 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2000 if (!kvm_regs)
2001 goto out;
2002 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2003 if (r)
2004 goto out_free1;
2005 r = -EFAULT;
2006 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2007 goto out_free1;
2008 r = 0;
2009 out_free1:
2010 kfree(kvm_regs);
2011 break;
2013 case KVM_SET_REGS: {
2014 struct kvm_regs *kvm_regs;
2016 r = -ENOMEM;
2017 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2018 if (IS_ERR(kvm_regs)) {
2019 r = PTR_ERR(kvm_regs);
2020 goto out;
2022 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2023 kfree(kvm_regs);
2024 break;
2026 case KVM_GET_SREGS: {
2027 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2028 r = -ENOMEM;
2029 if (!kvm_sregs)
2030 goto out;
2031 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2032 if (r)
2033 goto out;
2034 r = -EFAULT;
2035 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2036 goto out;
2037 r = 0;
2038 break;
2040 case KVM_SET_SREGS: {
2041 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2042 if (IS_ERR(kvm_sregs)) {
2043 r = PTR_ERR(kvm_sregs);
2044 kvm_sregs = NULL;
2045 goto out;
2047 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2048 break;
2050 case KVM_GET_MP_STATE: {
2051 struct kvm_mp_state mp_state;
2053 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2054 if (r)
2055 goto out;
2056 r = -EFAULT;
2057 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2058 goto out;
2059 r = 0;
2060 break;
2062 case KVM_SET_MP_STATE: {
2063 struct kvm_mp_state mp_state;
2065 r = -EFAULT;
2066 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2067 goto out;
2068 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2069 break;
2071 case KVM_TRANSLATE: {
2072 struct kvm_translation tr;
2074 r = -EFAULT;
2075 if (copy_from_user(&tr, argp, sizeof tr))
2076 goto out;
2077 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2078 if (r)
2079 goto out;
2080 r = -EFAULT;
2081 if (copy_to_user(argp, &tr, sizeof tr))
2082 goto out;
2083 r = 0;
2084 break;
2086 case KVM_SET_GUEST_DEBUG: {
2087 struct kvm_guest_debug dbg;
2089 r = -EFAULT;
2090 if (copy_from_user(&dbg, argp, sizeof dbg))
2091 goto out;
2092 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2093 break;
2095 case KVM_SET_SIGNAL_MASK: {
2096 struct kvm_signal_mask __user *sigmask_arg = argp;
2097 struct kvm_signal_mask kvm_sigmask;
2098 sigset_t sigset, *p;
2100 p = NULL;
2101 if (argp) {
2102 r = -EFAULT;
2103 if (copy_from_user(&kvm_sigmask, argp,
2104 sizeof kvm_sigmask))
2105 goto out;
2106 r = -EINVAL;
2107 if (kvm_sigmask.len != sizeof sigset)
2108 goto out;
2109 r = -EFAULT;
2110 if (copy_from_user(&sigset, sigmask_arg->sigset,
2111 sizeof sigset))
2112 goto out;
2113 p = &sigset;
2115 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2116 break;
2118 case KVM_GET_FPU: {
2119 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2120 r = -ENOMEM;
2121 if (!fpu)
2122 goto out;
2123 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2124 if (r)
2125 goto out;
2126 r = -EFAULT;
2127 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2128 goto out;
2129 r = 0;
2130 break;
2132 case KVM_SET_FPU: {
2133 fpu = memdup_user(argp, sizeof(*fpu));
2134 if (IS_ERR(fpu)) {
2135 r = PTR_ERR(fpu);
2136 fpu = NULL;
2137 goto out;
2139 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2140 break;
2142 default:
2143 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2145 out:
2146 vcpu_put(vcpu);
2147 kfree(fpu);
2148 kfree(kvm_sregs);
2149 return r;
2152 #ifdef CONFIG_COMPAT
2153 static long kvm_vcpu_compat_ioctl(struct file *filp,
2154 unsigned int ioctl, unsigned long arg)
2156 struct kvm_vcpu *vcpu = filp->private_data;
2157 void __user *argp = compat_ptr(arg);
2158 int r;
2160 if (vcpu->kvm->mm != current->mm)
2161 return -EIO;
2163 switch (ioctl) {
2164 case KVM_SET_SIGNAL_MASK: {
2165 struct kvm_signal_mask __user *sigmask_arg = argp;
2166 struct kvm_signal_mask kvm_sigmask;
2167 compat_sigset_t csigset;
2168 sigset_t sigset;
2170 if (argp) {
2171 r = -EFAULT;
2172 if (copy_from_user(&kvm_sigmask, argp,
2173 sizeof kvm_sigmask))
2174 goto out;
2175 r = -EINVAL;
2176 if (kvm_sigmask.len != sizeof csigset)
2177 goto out;
2178 r = -EFAULT;
2179 if (copy_from_user(&csigset, sigmask_arg->sigset,
2180 sizeof csigset))
2181 goto out;
2182 sigset_from_compat(&sigset, &csigset);
2183 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2184 } else
2185 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2186 break;
2188 default:
2189 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2192 out:
2193 return r;
2195 #endif
2197 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2198 int (*accessor)(struct kvm_device *dev,
2199 struct kvm_device_attr *attr),
2200 unsigned long arg)
2202 struct kvm_device_attr attr;
2204 if (!accessor)
2205 return -EPERM;
2207 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2208 return -EFAULT;
2210 return accessor(dev, &attr);
2213 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2214 unsigned long arg)
2216 struct kvm_device *dev = filp->private_data;
2218 switch (ioctl) {
2219 case KVM_SET_DEVICE_ATTR:
2220 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2221 case KVM_GET_DEVICE_ATTR:
2222 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2223 case KVM_HAS_DEVICE_ATTR:
2224 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2225 default:
2226 if (dev->ops->ioctl)
2227 return dev->ops->ioctl(dev, ioctl, arg);
2229 return -ENOTTY;
2233 static int kvm_device_release(struct inode *inode, struct file *filp)
2235 struct kvm_device *dev = filp->private_data;
2236 struct kvm *kvm = dev->kvm;
2238 kvm_put_kvm(kvm);
2239 return 0;
2242 static const struct file_operations kvm_device_fops = {
2243 .unlocked_ioctl = kvm_device_ioctl,
2244 #ifdef CONFIG_COMPAT
2245 .compat_ioctl = kvm_device_ioctl,
2246 #endif
2247 .release = kvm_device_release,
2250 struct kvm_device *kvm_device_from_filp(struct file *filp)
2252 if (filp->f_op != &kvm_device_fops)
2253 return NULL;
2255 return filp->private_data;
2258 static int kvm_ioctl_create_device(struct kvm *kvm,
2259 struct kvm_create_device *cd)
2261 struct kvm_device_ops *ops = NULL;
2262 struct kvm_device *dev;
2263 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2264 int ret;
2266 switch (cd->type) {
2267 #ifdef CONFIG_KVM_MPIC
2268 case KVM_DEV_TYPE_FSL_MPIC_20:
2269 case KVM_DEV_TYPE_FSL_MPIC_42:
2270 ops = &kvm_mpic_ops;
2271 break;
2272 #endif
2273 #ifdef CONFIG_KVM_XICS
2274 case KVM_DEV_TYPE_XICS:
2275 ops = &kvm_xics_ops;
2276 break;
2277 #endif
2278 #ifdef CONFIG_KVM_VFIO
2279 case KVM_DEV_TYPE_VFIO:
2280 ops = &kvm_vfio_ops;
2281 break;
2282 #endif
2283 default:
2284 return -ENODEV;
2287 if (test)
2288 return 0;
2290 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2291 if (!dev)
2292 return -ENOMEM;
2294 dev->ops = ops;
2295 dev->kvm = kvm;
2297 ret = ops->create(dev, cd->type);
2298 if (ret < 0) {
2299 kfree(dev);
2300 return ret;
2303 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2304 if (ret < 0) {
2305 ops->destroy(dev);
2306 return ret;
2309 list_add(&dev->vm_node, &kvm->devices);
2310 kvm_get_kvm(kvm);
2311 cd->fd = ret;
2312 return 0;
2315 static long kvm_vm_ioctl(struct file *filp,
2316 unsigned int ioctl, unsigned long arg)
2318 struct kvm *kvm = filp->private_data;
2319 void __user *argp = (void __user *)arg;
2320 int r;
2322 if (kvm->mm != current->mm)
2323 return -EIO;
2324 switch (ioctl) {
2325 case KVM_CREATE_VCPU:
2326 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2327 break;
2328 case KVM_SET_USER_MEMORY_REGION: {
2329 struct kvm_userspace_memory_region kvm_userspace_mem;
2331 r = -EFAULT;
2332 if (copy_from_user(&kvm_userspace_mem, argp,
2333 sizeof kvm_userspace_mem))
2334 goto out;
2336 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2337 break;
2339 case KVM_GET_DIRTY_LOG: {
2340 struct kvm_dirty_log log;
2342 r = -EFAULT;
2343 if (copy_from_user(&log, argp, sizeof log))
2344 goto out;
2345 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2346 break;
2348 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2349 case KVM_REGISTER_COALESCED_MMIO: {
2350 struct kvm_coalesced_mmio_zone zone;
2351 r = -EFAULT;
2352 if (copy_from_user(&zone, argp, sizeof zone))
2353 goto out;
2354 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2355 break;
2357 case KVM_UNREGISTER_COALESCED_MMIO: {
2358 struct kvm_coalesced_mmio_zone zone;
2359 r = -EFAULT;
2360 if (copy_from_user(&zone, argp, sizeof zone))
2361 goto out;
2362 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2363 break;
2365 #endif
2366 case KVM_IRQFD: {
2367 struct kvm_irqfd data;
2369 r = -EFAULT;
2370 if (copy_from_user(&data, argp, sizeof data))
2371 goto out;
2372 r = kvm_irqfd(kvm, &data);
2373 break;
2375 case KVM_IOEVENTFD: {
2376 struct kvm_ioeventfd data;
2378 r = -EFAULT;
2379 if (copy_from_user(&data, argp, sizeof data))
2380 goto out;
2381 r = kvm_ioeventfd(kvm, &data);
2382 break;
2384 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2385 case KVM_SET_BOOT_CPU_ID:
2386 r = 0;
2387 mutex_lock(&kvm->lock);
2388 if (atomic_read(&kvm->online_vcpus) != 0)
2389 r = -EBUSY;
2390 else
2391 kvm->bsp_vcpu_id = arg;
2392 mutex_unlock(&kvm->lock);
2393 break;
2394 #endif
2395 #ifdef CONFIG_HAVE_KVM_MSI
2396 case KVM_SIGNAL_MSI: {
2397 struct kvm_msi msi;
2399 r = -EFAULT;
2400 if (copy_from_user(&msi, argp, sizeof msi))
2401 goto out;
2402 r = kvm_send_userspace_msi(kvm, &msi);
2403 break;
2405 #endif
2406 #ifdef __KVM_HAVE_IRQ_LINE
2407 case KVM_IRQ_LINE_STATUS:
2408 case KVM_IRQ_LINE: {
2409 struct kvm_irq_level irq_event;
2411 r = -EFAULT;
2412 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2413 goto out;
2415 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2416 ioctl == KVM_IRQ_LINE_STATUS);
2417 if (r)
2418 goto out;
2420 r = -EFAULT;
2421 if (ioctl == KVM_IRQ_LINE_STATUS) {
2422 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2423 goto out;
2426 r = 0;
2427 break;
2429 #endif
2430 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2431 case KVM_SET_GSI_ROUTING: {
2432 struct kvm_irq_routing routing;
2433 struct kvm_irq_routing __user *urouting;
2434 struct kvm_irq_routing_entry *entries;
2436 r = -EFAULT;
2437 if (copy_from_user(&routing, argp, sizeof(routing)))
2438 goto out;
2439 r = -EINVAL;
2440 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2441 goto out;
2442 if (routing.flags)
2443 goto out;
2444 r = -ENOMEM;
2445 entries = vmalloc(routing.nr * sizeof(*entries));
2446 if (!entries)
2447 goto out;
2448 r = -EFAULT;
2449 urouting = argp;
2450 if (copy_from_user(entries, urouting->entries,
2451 routing.nr * sizeof(*entries)))
2452 goto out_free_irq_routing;
2453 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2454 routing.flags);
2455 out_free_irq_routing:
2456 vfree(entries);
2457 break;
2459 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2460 case KVM_CREATE_DEVICE: {
2461 struct kvm_create_device cd;
2463 r = -EFAULT;
2464 if (copy_from_user(&cd, argp, sizeof(cd)))
2465 goto out;
2467 r = kvm_ioctl_create_device(kvm, &cd);
2468 if (r)
2469 goto out;
2471 r = -EFAULT;
2472 if (copy_to_user(argp, &cd, sizeof(cd)))
2473 goto out;
2475 r = 0;
2476 break;
2478 default:
2479 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2480 if (r == -ENOTTY)
2481 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2483 out:
2484 return r;
2487 #ifdef CONFIG_COMPAT
2488 struct compat_kvm_dirty_log {
2489 __u32 slot;
2490 __u32 padding1;
2491 union {
2492 compat_uptr_t dirty_bitmap; /* one bit per page */
2493 __u64 padding2;
2497 static long kvm_vm_compat_ioctl(struct file *filp,
2498 unsigned int ioctl, unsigned long arg)
2500 struct kvm *kvm = filp->private_data;
2501 int r;
2503 if (kvm->mm != current->mm)
2504 return -EIO;
2505 switch (ioctl) {
2506 case KVM_GET_DIRTY_LOG: {
2507 struct compat_kvm_dirty_log compat_log;
2508 struct kvm_dirty_log log;
2510 r = -EFAULT;
2511 if (copy_from_user(&compat_log, (void __user *)arg,
2512 sizeof(compat_log)))
2513 goto out;
2514 log.slot = compat_log.slot;
2515 log.padding1 = compat_log.padding1;
2516 log.padding2 = compat_log.padding2;
2517 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2519 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2520 break;
2522 default:
2523 r = kvm_vm_ioctl(filp, ioctl, arg);
2526 out:
2527 return r;
2529 #endif
2531 static struct file_operations kvm_vm_fops = {
2532 .release = kvm_vm_release,
2533 .unlocked_ioctl = kvm_vm_ioctl,
2534 #ifdef CONFIG_COMPAT
2535 .compat_ioctl = kvm_vm_compat_ioctl,
2536 #endif
2537 .llseek = noop_llseek,
2540 static int kvm_dev_ioctl_create_vm(unsigned long type)
2542 int r;
2543 struct kvm *kvm;
2545 kvm = kvm_create_vm(type);
2546 if (IS_ERR(kvm))
2547 return PTR_ERR(kvm);
2548 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2549 r = kvm_coalesced_mmio_init(kvm);
2550 if (r < 0) {
2551 kvm_put_kvm(kvm);
2552 return r;
2554 #endif
2555 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2556 if (r < 0)
2557 kvm_put_kvm(kvm);
2559 return r;
2562 static long kvm_dev_ioctl_check_extension_generic(long arg)
2564 switch (arg) {
2565 case KVM_CAP_USER_MEMORY:
2566 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2567 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2568 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2569 case KVM_CAP_SET_BOOT_CPU_ID:
2570 #endif
2571 case KVM_CAP_INTERNAL_ERROR_DATA:
2572 #ifdef CONFIG_HAVE_KVM_MSI
2573 case KVM_CAP_SIGNAL_MSI:
2574 #endif
2575 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2576 case KVM_CAP_IRQFD_RESAMPLE:
2577 #endif
2578 return 1;
2579 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2580 case KVM_CAP_IRQ_ROUTING:
2581 return KVM_MAX_IRQ_ROUTES;
2582 #endif
2583 default:
2584 break;
2586 return kvm_dev_ioctl_check_extension(arg);
2589 static long kvm_dev_ioctl(struct file *filp,
2590 unsigned int ioctl, unsigned long arg)
2592 long r = -EINVAL;
2594 switch (ioctl) {
2595 case KVM_GET_API_VERSION:
2596 r = -EINVAL;
2597 if (arg)
2598 goto out;
2599 r = KVM_API_VERSION;
2600 break;
2601 case KVM_CREATE_VM:
2602 r = kvm_dev_ioctl_create_vm(arg);
2603 break;
2604 case KVM_CHECK_EXTENSION:
2605 r = kvm_dev_ioctl_check_extension_generic(arg);
2606 break;
2607 case KVM_GET_VCPU_MMAP_SIZE:
2608 r = -EINVAL;
2609 if (arg)
2610 goto out;
2611 r = PAGE_SIZE; /* struct kvm_run */
2612 #ifdef CONFIG_X86
2613 r += PAGE_SIZE; /* pio data page */
2614 #endif
2615 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2616 r += PAGE_SIZE; /* coalesced mmio ring page */
2617 #endif
2618 break;
2619 case KVM_TRACE_ENABLE:
2620 case KVM_TRACE_PAUSE:
2621 case KVM_TRACE_DISABLE:
2622 r = -EOPNOTSUPP;
2623 break;
2624 default:
2625 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2627 out:
2628 return r;
2631 static struct file_operations kvm_chardev_ops = {
2632 .unlocked_ioctl = kvm_dev_ioctl,
2633 .compat_ioctl = kvm_dev_ioctl,
2634 .llseek = noop_llseek,
2637 static struct miscdevice kvm_dev = {
2638 KVM_MINOR,
2639 "kvm",
2640 &kvm_chardev_ops,
2643 static void hardware_enable_nolock(void *junk)
2645 int cpu = raw_smp_processor_id();
2646 int r;
2648 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2649 return;
2651 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2653 r = kvm_arch_hardware_enable(NULL);
2655 if (r) {
2656 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2657 atomic_inc(&hardware_enable_failed);
2658 printk(KERN_INFO "kvm: enabling virtualization on "
2659 "CPU%d failed\n", cpu);
2663 static void hardware_enable(void)
2665 raw_spin_lock(&kvm_count_lock);
2666 if (kvm_usage_count)
2667 hardware_enable_nolock(NULL);
2668 raw_spin_unlock(&kvm_count_lock);
2671 static void hardware_disable_nolock(void *junk)
2673 int cpu = raw_smp_processor_id();
2675 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2676 return;
2677 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2678 kvm_arch_hardware_disable(NULL);
2681 static void hardware_disable(void)
2683 raw_spin_lock(&kvm_count_lock);
2684 if (kvm_usage_count)
2685 hardware_disable_nolock(NULL);
2686 raw_spin_unlock(&kvm_count_lock);
2689 static void hardware_disable_all_nolock(void)
2691 BUG_ON(!kvm_usage_count);
2693 kvm_usage_count--;
2694 if (!kvm_usage_count)
2695 on_each_cpu(hardware_disable_nolock, NULL, 1);
2698 static void hardware_disable_all(void)
2700 raw_spin_lock(&kvm_count_lock);
2701 hardware_disable_all_nolock();
2702 raw_spin_unlock(&kvm_count_lock);
2705 static int hardware_enable_all(void)
2707 int r = 0;
2709 raw_spin_lock(&kvm_count_lock);
2711 kvm_usage_count++;
2712 if (kvm_usage_count == 1) {
2713 atomic_set(&hardware_enable_failed, 0);
2714 on_each_cpu(hardware_enable_nolock, NULL, 1);
2716 if (atomic_read(&hardware_enable_failed)) {
2717 hardware_disable_all_nolock();
2718 r = -EBUSY;
2722 raw_spin_unlock(&kvm_count_lock);
2724 return r;
2727 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2728 void *v)
2730 int cpu = (long)v;
2732 val &= ~CPU_TASKS_FROZEN;
2733 switch (val) {
2734 case CPU_DYING:
2735 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2736 cpu);
2737 hardware_disable();
2738 break;
2739 case CPU_STARTING:
2740 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2741 cpu);
2742 hardware_enable();
2743 break;
2745 return NOTIFY_OK;
2748 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2749 void *v)
2752 * Some (well, at least mine) BIOSes hang on reboot if
2753 * in vmx root mode.
2755 * And Intel TXT required VMX off for all cpu when system shutdown.
2757 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2758 kvm_rebooting = true;
2759 on_each_cpu(hardware_disable_nolock, NULL, 1);
2760 return NOTIFY_OK;
2763 static struct notifier_block kvm_reboot_notifier = {
2764 .notifier_call = kvm_reboot,
2765 .priority = 0,
2768 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2770 int i;
2772 for (i = 0; i < bus->dev_count; i++) {
2773 struct kvm_io_device *pos = bus->range[i].dev;
2775 kvm_iodevice_destructor(pos);
2777 kfree(bus);
2780 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2781 const struct kvm_io_range *r2)
2783 if (r1->addr < r2->addr)
2784 return -1;
2785 if (r1->addr + r1->len > r2->addr + r2->len)
2786 return 1;
2787 return 0;
2790 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2792 return kvm_io_bus_cmp(p1, p2);
2795 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2796 gpa_t addr, int len)
2798 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2799 .addr = addr,
2800 .len = len,
2801 .dev = dev,
2804 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2805 kvm_io_bus_sort_cmp, NULL);
2807 return 0;
2810 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2811 gpa_t addr, int len)
2813 struct kvm_io_range *range, key;
2814 int off;
2816 key = (struct kvm_io_range) {
2817 .addr = addr,
2818 .len = len,
2821 range = bsearch(&key, bus->range, bus->dev_count,
2822 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2823 if (range == NULL)
2824 return -ENOENT;
2826 off = range - bus->range;
2828 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2829 off--;
2831 return off;
2834 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2835 struct kvm_io_range *range, const void *val)
2837 int idx;
2839 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2840 if (idx < 0)
2841 return -EOPNOTSUPP;
2843 while (idx < bus->dev_count &&
2844 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2845 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2846 range->len, val))
2847 return idx;
2848 idx++;
2851 return -EOPNOTSUPP;
2854 /* kvm_io_bus_write - called under kvm->slots_lock */
2855 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2856 int len, const void *val)
2858 struct kvm_io_bus *bus;
2859 struct kvm_io_range range;
2860 int r;
2862 range = (struct kvm_io_range) {
2863 .addr = addr,
2864 .len = len,
2867 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2868 r = __kvm_io_bus_write(bus, &range, val);
2869 return r < 0 ? r : 0;
2872 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2873 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2874 int len, const void *val, long cookie)
2876 struct kvm_io_bus *bus;
2877 struct kvm_io_range range;
2879 range = (struct kvm_io_range) {
2880 .addr = addr,
2881 .len = len,
2884 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2886 /* First try the device referenced by cookie. */
2887 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2888 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2889 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2890 val))
2891 return cookie;
2894 * cookie contained garbage; fall back to search and return the
2895 * correct cookie value.
2897 return __kvm_io_bus_write(bus, &range, val);
2900 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2901 void *val)
2903 int idx;
2905 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2906 if (idx < 0)
2907 return -EOPNOTSUPP;
2909 while (idx < bus->dev_count &&
2910 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2911 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2912 range->len, val))
2913 return idx;
2914 idx++;
2917 return -EOPNOTSUPP;
2920 /* kvm_io_bus_read - called under kvm->slots_lock */
2921 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2922 int len, void *val)
2924 struct kvm_io_bus *bus;
2925 struct kvm_io_range range;
2926 int r;
2928 range = (struct kvm_io_range) {
2929 .addr = addr,
2930 .len = len,
2933 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2934 r = __kvm_io_bus_read(bus, &range, val);
2935 return r < 0 ? r : 0;
2938 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2939 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2940 int len, void *val, long cookie)
2942 struct kvm_io_bus *bus;
2943 struct kvm_io_range range;
2945 range = (struct kvm_io_range) {
2946 .addr = addr,
2947 .len = len,
2950 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2952 /* First try the device referenced by cookie. */
2953 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2954 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2955 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2956 val))
2957 return cookie;
2960 * cookie contained garbage; fall back to search and return the
2961 * correct cookie value.
2963 return __kvm_io_bus_read(bus, &range, val);
2966 /* Caller must hold slots_lock. */
2967 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2968 int len, struct kvm_io_device *dev)
2970 struct kvm_io_bus *new_bus, *bus;
2972 bus = kvm->buses[bus_idx];
2973 /* exclude ioeventfd which is limited by maximum fd */
2974 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2975 return -ENOSPC;
2977 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2978 sizeof(struct kvm_io_range)), GFP_KERNEL);
2979 if (!new_bus)
2980 return -ENOMEM;
2981 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2982 sizeof(struct kvm_io_range)));
2983 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2984 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2985 synchronize_srcu_expedited(&kvm->srcu);
2986 kfree(bus);
2988 return 0;
2991 /* Caller must hold slots_lock. */
2992 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2993 struct kvm_io_device *dev)
2995 int i, r;
2996 struct kvm_io_bus *new_bus, *bus;
2998 bus = kvm->buses[bus_idx];
2999 r = -ENOENT;
3000 for (i = 0; i < bus->dev_count; i++)
3001 if (bus->range[i].dev == dev) {
3002 r = 0;
3003 break;
3006 if (r)
3007 return r;
3009 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3010 sizeof(struct kvm_io_range)), GFP_KERNEL);
3011 if (!new_bus)
3012 return -ENOMEM;
3014 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3015 new_bus->dev_count--;
3016 memcpy(new_bus->range + i, bus->range + i + 1,
3017 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3019 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3020 synchronize_srcu_expedited(&kvm->srcu);
3021 kfree(bus);
3022 return r;
3025 static struct notifier_block kvm_cpu_notifier = {
3026 .notifier_call = kvm_cpu_hotplug,
3029 static int vm_stat_get(void *_offset, u64 *val)
3031 unsigned offset = (long)_offset;
3032 struct kvm *kvm;
3034 *val = 0;
3035 spin_lock(&kvm_lock);
3036 list_for_each_entry(kvm, &vm_list, vm_list)
3037 *val += *(u32 *)((void *)kvm + offset);
3038 spin_unlock(&kvm_lock);
3039 return 0;
3042 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3044 static int vcpu_stat_get(void *_offset, u64 *val)
3046 unsigned offset = (long)_offset;
3047 struct kvm *kvm;
3048 struct kvm_vcpu *vcpu;
3049 int i;
3051 *val = 0;
3052 spin_lock(&kvm_lock);
3053 list_for_each_entry(kvm, &vm_list, vm_list)
3054 kvm_for_each_vcpu(i, vcpu, kvm)
3055 *val += *(u32 *)((void *)vcpu + offset);
3057 spin_unlock(&kvm_lock);
3058 return 0;
3061 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3063 static const struct file_operations *stat_fops[] = {
3064 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3065 [KVM_STAT_VM] = &vm_stat_fops,
3068 static int kvm_init_debug(void)
3070 int r = -EFAULT;
3071 struct kvm_stats_debugfs_item *p;
3073 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3074 if (kvm_debugfs_dir == NULL)
3075 goto out;
3077 for (p = debugfs_entries; p->name; ++p) {
3078 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3079 (void *)(long)p->offset,
3080 stat_fops[p->kind]);
3081 if (p->dentry == NULL)
3082 goto out_dir;
3085 return 0;
3087 out_dir:
3088 debugfs_remove_recursive(kvm_debugfs_dir);
3089 out:
3090 return r;
3093 static void kvm_exit_debug(void)
3095 struct kvm_stats_debugfs_item *p;
3097 for (p = debugfs_entries; p->name; ++p)
3098 debugfs_remove(p->dentry);
3099 debugfs_remove(kvm_debugfs_dir);
3102 static int kvm_suspend(void)
3104 if (kvm_usage_count)
3105 hardware_disable_nolock(NULL);
3106 return 0;
3109 static void kvm_resume(void)
3111 if (kvm_usage_count) {
3112 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3113 hardware_enable_nolock(NULL);
3117 static struct syscore_ops kvm_syscore_ops = {
3118 .suspend = kvm_suspend,
3119 .resume = kvm_resume,
3122 static inline
3123 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3125 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3128 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3130 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3131 if (vcpu->preempted)
3132 vcpu->preempted = false;
3134 kvm_arch_vcpu_load(vcpu, cpu);
3137 static void kvm_sched_out(struct preempt_notifier *pn,
3138 struct task_struct *next)
3140 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3142 if (current->state == TASK_RUNNING)
3143 vcpu->preempted = true;
3144 kvm_arch_vcpu_put(vcpu);
3147 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3148 struct module *module)
3150 int r;
3151 int cpu;
3153 r = kvm_arch_init(opaque);
3154 if (r)
3155 goto out_fail;
3158 * kvm_arch_init makes sure there's at most one caller
3159 * for architectures that support multiple implementations,
3160 * like intel and amd on x86.
3161 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3162 * conflicts in case kvm is already setup for another implementation.
3164 r = kvm_irqfd_init();
3165 if (r)
3166 goto out_irqfd;
3168 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3169 r = -ENOMEM;
3170 goto out_free_0;
3173 r = kvm_arch_hardware_setup();
3174 if (r < 0)
3175 goto out_free_0a;
3177 for_each_online_cpu(cpu) {
3178 smp_call_function_single(cpu,
3179 kvm_arch_check_processor_compat,
3180 &r, 1);
3181 if (r < 0)
3182 goto out_free_1;
3185 r = register_cpu_notifier(&kvm_cpu_notifier);
3186 if (r)
3187 goto out_free_2;
3188 register_reboot_notifier(&kvm_reboot_notifier);
3190 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3191 if (!vcpu_align)
3192 vcpu_align = __alignof__(struct kvm_vcpu);
3193 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3194 0, NULL);
3195 if (!kvm_vcpu_cache) {
3196 r = -ENOMEM;
3197 goto out_free_3;
3200 r = kvm_async_pf_init();
3201 if (r)
3202 goto out_free;
3204 kvm_chardev_ops.owner = module;
3205 kvm_vm_fops.owner = module;
3206 kvm_vcpu_fops.owner = module;
3208 r = misc_register(&kvm_dev);
3209 if (r) {
3210 printk(KERN_ERR "kvm: misc device register failed\n");
3211 goto out_unreg;
3214 register_syscore_ops(&kvm_syscore_ops);
3216 kvm_preempt_ops.sched_in = kvm_sched_in;
3217 kvm_preempt_ops.sched_out = kvm_sched_out;
3219 r = kvm_init_debug();
3220 if (r) {
3221 printk(KERN_ERR "kvm: create debugfs files failed\n");
3222 goto out_undebugfs;
3225 return 0;
3227 out_undebugfs:
3228 unregister_syscore_ops(&kvm_syscore_ops);
3229 misc_deregister(&kvm_dev);
3230 out_unreg:
3231 kvm_async_pf_deinit();
3232 out_free:
3233 kmem_cache_destroy(kvm_vcpu_cache);
3234 out_free_3:
3235 unregister_reboot_notifier(&kvm_reboot_notifier);
3236 unregister_cpu_notifier(&kvm_cpu_notifier);
3237 out_free_2:
3238 out_free_1:
3239 kvm_arch_hardware_unsetup();
3240 out_free_0a:
3241 free_cpumask_var(cpus_hardware_enabled);
3242 out_free_0:
3243 kvm_irqfd_exit();
3244 out_irqfd:
3245 kvm_arch_exit();
3246 out_fail:
3247 return r;
3249 EXPORT_SYMBOL_GPL(kvm_init);
3251 void kvm_exit(void)
3253 kvm_exit_debug();
3254 misc_deregister(&kvm_dev);
3255 kmem_cache_destroy(kvm_vcpu_cache);
3256 kvm_async_pf_deinit();
3257 unregister_syscore_ops(&kvm_syscore_ops);
3258 unregister_reboot_notifier(&kvm_reboot_notifier);
3259 unregister_cpu_notifier(&kvm_cpu_notifier);
3260 on_each_cpu(hardware_disable_nolock, NULL, 1);
3261 kvm_arch_hardware_unsetup();
3262 kvm_arch_exit();
3263 kvm_irqfd_exit();
3264 free_cpumask_var(cpus_hardware_enabled);
3266 EXPORT_SYMBOL_GPL(kvm_exit);