ptp: igb: use helpers for converting ns to timespec.
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
blobe3b9b63ad01083cb987429f57c9ebef84d86f4db
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
23 #include "igb.h"
25 #define INCVALUE_MASK 0x7fffffff
26 #define ISGN 0x80000000
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not available. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits. As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
51 * SYSTIMH SYSTIML
52 * +--------------+ +---+---+------+
53 * 82576 | 32 | | 8 | 5 | 19 |
54 * +--------------+ +---+---+------+
55 * \________ 45 bits _______/ fract
57 * +----------+---+ +--------------+
58 * 82580 | 24 | 8 | | 32 |
59 * +----------+---+ +--------------+
60 * reserved \______ 40 bits _____/
63 * The 45 bit 82576 SYSTIM overflows every
64 * 2^45 * 10^-9 / 3600 = 9.77 hours.
66 * The 40 bit 82580 SYSTIM overflows every
67 * 2^40 * 10^-9 / 60 = 18.3 minutes.
70 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
72 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580 40
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 struct e1000_hw *hw = &igb->hw;
84 u64 val;
85 u32 lo, hi;
87 lo = rd32(E1000_SYSTIML);
88 hi = rd32(E1000_SYSTIMH);
90 val = ((u64) hi) << 32;
91 val |= lo;
93 return val;
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 struct e1000_hw *hw = &igb->hw;
101 u32 lo, hi;
102 u64 val;
104 /* The timestamp latches on lowest register read. For the 82580
105 * the lowest register is SYSTIMR instead of SYSTIML. However we only
106 * need to provide nanosecond resolution, so we just ignore it.
108 rd32(E1000_SYSTIMR);
109 lo = rd32(E1000_SYSTIML);
110 hi = rd32(E1000_SYSTIMH);
112 val = ((u64) hi) << 32;
113 val |= lo;
115 return val;
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter,
120 struct timespec64 *ts)
122 struct e1000_hw *hw = &adapter->hw;
123 u32 sec, nsec;
125 /* The timestamp latches on lowest register read. For I210/I211, the
126 * lowest register is SYSTIMR. Since we only need to provide nanosecond
127 * resolution, we can ignore it.
129 rd32(E1000_SYSTIMR);
130 nsec = rd32(E1000_SYSTIML);
131 sec = rd32(E1000_SYSTIMH);
133 ts->tv_sec = sec;
134 ts->tv_nsec = nsec;
137 static void igb_ptp_write_i210(struct igb_adapter *adapter,
138 const struct timespec64 *ts)
140 struct e1000_hw *hw = &adapter->hw;
142 /* Writing the SYSTIMR register is not necessary as it only provides
143 * sub-nanosecond resolution.
145 wr32(E1000_SYSTIML, ts->tv_nsec);
146 wr32(E1000_SYSTIMH, ts->tv_sec);
150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151 * @adapter: board private structure
152 * @hwtstamps: timestamp structure to update
153 * @systim: unsigned 64bit system time value.
155 * We need to convert the system time value stored in the RX/TXSTMP registers
156 * into a hwtstamp which can be used by the upper level timestamping functions.
158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
159 * system time value. This is needed because reading the 64 bit time
160 * value involves reading two (or three) 32 bit registers. The first
161 * read latches the value. Ditto for writing.
163 * In addition, here have extended the system time with an overflow
164 * counter in software.
166 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167 struct skb_shared_hwtstamps *hwtstamps,
168 u64 systim)
170 unsigned long flags;
171 u64 ns;
173 switch (adapter->hw.mac.type) {
174 case e1000_82576:
175 case e1000_82580:
176 case e1000_i354:
177 case e1000_i350:
178 spin_lock_irqsave(&adapter->tmreg_lock, flags);
180 ns = timecounter_cyc2time(&adapter->tc, systim);
182 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
184 memset(hwtstamps, 0, sizeof(*hwtstamps));
185 hwtstamps->hwtstamp = ns_to_ktime(ns);
186 break;
187 case e1000_i210:
188 case e1000_i211:
189 memset(hwtstamps, 0, sizeof(*hwtstamps));
190 /* Upper 32 bits contain s, lower 32 bits contain ns. */
191 hwtstamps->hwtstamp = ktime_set(systim >> 32,
192 systim & 0xFFFFFFFF);
193 break;
194 default:
195 break;
199 /* PTP clock operations */
200 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
202 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203 ptp_caps);
204 struct e1000_hw *hw = &igb->hw;
205 int neg_adj = 0;
206 u64 rate;
207 u32 incvalue;
209 if (ppb < 0) {
210 neg_adj = 1;
211 ppb = -ppb;
213 rate = ppb;
214 rate <<= 14;
215 rate = div_u64(rate, 1953125);
217 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
219 if (neg_adj)
220 incvalue -= rate;
221 else
222 incvalue += rate;
224 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
226 return 0;
229 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
231 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232 ptp_caps);
233 struct e1000_hw *hw = &igb->hw;
234 int neg_adj = 0;
235 u64 rate;
236 u32 inca;
238 if (ppb < 0) {
239 neg_adj = 1;
240 ppb = -ppb;
242 rate = ppb;
243 rate <<= 26;
244 rate = div_u64(rate, 1953125);
246 inca = rate & INCVALUE_MASK;
247 if (neg_adj)
248 inca |= ISGN;
250 wr32(E1000_TIMINCA, inca);
252 return 0;
255 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
257 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258 ptp_caps);
259 unsigned long flags;
261 spin_lock_irqsave(&igb->tmreg_lock, flags);
262 timecounter_adjtime(&igb->tc, delta);
263 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
265 return 0;
268 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
270 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
271 ptp_caps);
272 unsigned long flags;
273 struct timespec64 now, then = ns_to_timespec64(delta);
275 spin_lock_irqsave(&igb->tmreg_lock, flags);
277 igb_ptp_read_i210(igb, &now);
278 now = timespec64_add(now, then);
279 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
281 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
283 return 0;
286 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287 struct timespec64 *ts)
289 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290 ptp_caps);
291 unsigned long flags;
292 u64 ns;
294 spin_lock_irqsave(&igb->tmreg_lock, flags);
296 ns = timecounter_read(&igb->tc);
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
300 *ts = ns_to_timespec64(ns);
302 return 0;
305 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306 struct timespec64 *ts)
308 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309 ptp_caps);
310 unsigned long flags;
312 spin_lock_irqsave(&igb->tmreg_lock, flags);
314 igb_ptp_read_i210(igb, ts);
316 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318 return 0;
321 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322 const struct timespec64 *ts)
324 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
325 ptp_caps);
326 unsigned long flags;
327 u64 ns;
329 ns = timespec64_to_ns(ts);
331 spin_lock_irqsave(&igb->tmreg_lock, flags);
333 timecounter_init(&igb->tc, &igb->cc, ns);
335 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
337 return 0;
340 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341 const struct timespec64 *ts)
343 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 ptp_caps);
345 unsigned long flags;
347 spin_lock_irqsave(&igb->tmreg_lock, flags);
349 igb_ptp_write_i210(igb, ts);
351 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353 return 0;
356 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
358 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359 static const u32 mask[IGB_N_SDP] = {
360 E1000_CTRL_SDP0_DIR,
361 E1000_CTRL_SDP1_DIR,
362 E1000_CTRL_EXT_SDP2_DIR,
363 E1000_CTRL_EXT_SDP3_DIR,
366 if (input)
367 *ptr &= ~mask[pin];
368 else
369 *ptr |= mask[pin];
372 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
374 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
377 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
380 static const u32 ts_sdp_en[IGB_N_SDP] = {
381 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
383 struct e1000_hw *hw = &igb->hw;
384 u32 ctrl, ctrl_ext, tssdp = 0;
386 ctrl = rd32(E1000_CTRL);
387 ctrl_ext = rd32(E1000_CTRL_EXT);
388 tssdp = rd32(E1000_TSSDP);
390 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
392 /* Make sure this pin is not enabled as an output. */
393 tssdp &= ~ts_sdp_en[pin];
395 if (chan == 1) {
396 tssdp &= ~AUX1_SEL_SDP3;
397 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
398 } else {
399 tssdp &= ~AUX0_SEL_SDP3;
400 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
403 wr32(E1000_TSSDP, tssdp);
404 wr32(E1000_CTRL, ctrl);
405 wr32(E1000_CTRL_EXT, ctrl_ext);
408 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin)
410 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
413 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
416 static const u32 ts_sdp_en[IGB_N_SDP] = {
417 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
419 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
421 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
423 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
425 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
427 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
428 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
429 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
431 struct e1000_hw *hw = &igb->hw;
432 u32 ctrl, ctrl_ext, tssdp = 0;
434 ctrl = rd32(E1000_CTRL);
435 ctrl_ext = rd32(E1000_CTRL_EXT);
436 tssdp = rd32(E1000_TSSDP);
438 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
440 /* Make sure this pin is not enabled as an input. */
441 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
442 tssdp &= ~AUX0_TS_SDP_EN;
444 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
445 tssdp &= ~AUX1_TS_SDP_EN;
447 tssdp &= ~ts_sdp_sel_clr[pin];
448 if (chan == 1)
449 tssdp |= ts_sdp_sel_tt1[pin];
450 else
451 tssdp |= ts_sdp_sel_tt0[pin];
453 tssdp |= ts_sdp_en[pin];
455 wr32(E1000_TSSDP, tssdp);
456 wr32(E1000_CTRL, ctrl);
457 wr32(E1000_CTRL_EXT, ctrl_ext);
460 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
461 struct ptp_clock_request *rq, int on)
463 struct igb_adapter *igb =
464 container_of(ptp, struct igb_adapter, ptp_caps);
465 struct e1000_hw *hw = &igb->hw;
466 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh;
467 unsigned long flags;
468 struct timespec ts;
469 int pin = -1;
470 s64 ns;
472 switch (rq->type) {
473 case PTP_CLK_REQ_EXTTS:
474 if (on) {
475 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
476 rq->extts.index);
477 if (pin < 0)
478 return -EBUSY;
480 if (rq->extts.index == 1) {
481 tsauxc_mask = TSAUXC_EN_TS1;
482 tsim_mask = TSINTR_AUTT1;
483 } else {
484 tsauxc_mask = TSAUXC_EN_TS0;
485 tsim_mask = TSINTR_AUTT0;
487 spin_lock_irqsave(&igb->tmreg_lock, flags);
488 tsauxc = rd32(E1000_TSAUXC);
489 tsim = rd32(E1000_TSIM);
490 if (on) {
491 igb_pin_extts(igb, rq->extts.index, pin);
492 tsauxc |= tsauxc_mask;
493 tsim |= tsim_mask;
494 } else {
495 tsauxc &= ~tsauxc_mask;
496 tsim &= ~tsim_mask;
498 wr32(E1000_TSAUXC, tsauxc);
499 wr32(E1000_TSIM, tsim);
500 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
501 return 0;
503 case PTP_CLK_REQ_PEROUT:
504 if (on) {
505 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
506 rq->perout.index);
507 if (pin < 0)
508 return -EBUSY;
510 ts.tv_sec = rq->perout.period.sec;
511 ts.tv_nsec = rq->perout.period.nsec;
512 ns = timespec_to_ns(&ts);
513 ns = ns >> 1;
514 if (on && ns < 500000LL) {
515 /* 2k interrupts per second is an awful lot. */
516 return -EINVAL;
518 ts = ns_to_timespec(ns);
519 if (rq->perout.index == 1) {
520 tsauxc_mask = TSAUXC_EN_TT1;
521 tsim_mask = TSINTR_TT1;
522 trgttiml = E1000_TRGTTIML1;
523 trgttimh = E1000_TRGTTIMH1;
524 } else {
525 tsauxc_mask = TSAUXC_EN_TT0;
526 tsim_mask = TSINTR_TT0;
527 trgttiml = E1000_TRGTTIML0;
528 trgttimh = E1000_TRGTTIMH0;
530 spin_lock_irqsave(&igb->tmreg_lock, flags);
531 tsauxc = rd32(E1000_TSAUXC);
532 tsim = rd32(E1000_TSIM);
533 if (on) {
534 int i = rq->perout.index;
536 igb_pin_perout(igb, i, pin);
537 igb->perout[i].start.tv_sec = rq->perout.start.sec;
538 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
539 igb->perout[i].period.tv_sec = ts.tv_sec;
540 igb->perout[i].period.tv_nsec = ts.tv_nsec;
541 wr32(trgttiml, rq->perout.start.sec);
542 wr32(trgttimh, rq->perout.start.nsec);
543 tsauxc |= tsauxc_mask;
544 tsim |= tsim_mask;
545 } else {
546 tsauxc &= ~tsauxc_mask;
547 tsim &= ~tsim_mask;
549 wr32(E1000_TSAUXC, tsauxc);
550 wr32(E1000_TSIM, tsim);
551 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
552 return 0;
554 case PTP_CLK_REQ_PPS:
555 spin_lock_irqsave(&igb->tmreg_lock, flags);
556 tsim = rd32(E1000_TSIM);
557 if (on)
558 tsim |= TSINTR_SYS_WRAP;
559 else
560 tsim &= ~TSINTR_SYS_WRAP;
561 wr32(E1000_TSIM, tsim);
562 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
563 return 0;
566 return -EOPNOTSUPP;
569 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
570 struct ptp_clock_request *rq, int on)
572 return -EOPNOTSUPP;
575 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
576 enum ptp_pin_function func, unsigned int chan)
578 switch (func) {
579 case PTP_PF_NONE:
580 case PTP_PF_EXTTS:
581 case PTP_PF_PEROUT:
582 break;
583 case PTP_PF_PHYSYNC:
584 return -1;
586 return 0;
590 * igb_ptp_tx_work
591 * @work: pointer to work struct
593 * This work function polls the TSYNCTXCTL valid bit to determine when a
594 * timestamp has been taken for the current stored skb.
596 static void igb_ptp_tx_work(struct work_struct *work)
598 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
599 ptp_tx_work);
600 struct e1000_hw *hw = &adapter->hw;
601 u32 tsynctxctl;
603 if (!adapter->ptp_tx_skb)
604 return;
606 if (time_is_before_jiffies(adapter->ptp_tx_start +
607 IGB_PTP_TX_TIMEOUT)) {
608 dev_kfree_skb_any(adapter->ptp_tx_skb);
609 adapter->ptp_tx_skb = NULL;
610 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
611 adapter->tx_hwtstamp_timeouts++;
612 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
613 return;
616 tsynctxctl = rd32(E1000_TSYNCTXCTL);
617 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
618 igb_ptp_tx_hwtstamp(adapter);
619 else
620 /* reschedule to check later */
621 schedule_work(&adapter->ptp_tx_work);
624 static void igb_ptp_overflow_check(struct work_struct *work)
626 struct igb_adapter *igb =
627 container_of(work, struct igb_adapter, ptp_overflow_work.work);
628 struct timespec64 ts;
630 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
632 pr_debug("igb overflow check at %lld.%09lu\n",
633 (long long) ts.tv_sec, ts.tv_nsec);
635 schedule_delayed_work(&igb->ptp_overflow_work,
636 IGB_SYSTIM_OVERFLOW_PERIOD);
640 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
641 * @adapter: private network adapter structure
643 * This watchdog task is scheduled to detect error case where hardware has
644 * dropped an Rx packet that was timestamped when the ring is full. The
645 * particular error is rare but leaves the device in a state unable to timestamp
646 * any future packets.
648 void igb_ptp_rx_hang(struct igb_adapter *adapter)
650 struct e1000_hw *hw = &adapter->hw;
651 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
652 unsigned long rx_event;
654 if (hw->mac.type != e1000_82576)
655 return;
657 /* If we don't have a valid timestamp in the registers, just update the
658 * timeout counter and exit
660 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
661 adapter->last_rx_ptp_check = jiffies;
662 return;
665 /* Determine the most recent watchdog or rx_timestamp event */
666 rx_event = adapter->last_rx_ptp_check;
667 if (time_after(adapter->last_rx_timestamp, rx_event))
668 rx_event = adapter->last_rx_timestamp;
670 /* Only need to read the high RXSTMP register to clear the lock */
671 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
672 rd32(E1000_RXSTMPH);
673 adapter->last_rx_ptp_check = jiffies;
674 adapter->rx_hwtstamp_cleared++;
675 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
680 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
681 * @adapter: Board private structure.
683 * If we were asked to do hardware stamping and such a time stamp is
684 * available, then it must have been for this skb here because we only
685 * allow only one such packet into the queue.
687 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
689 struct e1000_hw *hw = &adapter->hw;
690 struct skb_shared_hwtstamps shhwtstamps;
691 u64 regval;
693 regval = rd32(E1000_TXSTMPL);
694 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
696 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
697 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
698 dev_kfree_skb_any(adapter->ptp_tx_skb);
699 adapter->ptp_tx_skb = NULL;
700 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
704 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
705 * @q_vector: Pointer to interrupt specific structure
706 * @va: Pointer to address containing Rx buffer
707 * @skb: Buffer containing timestamp and packet
709 * This function is meant to retrieve a timestamp from the first buffer of an
710 * incoming frame. The value is stored in little endian format starting on
711 * byte 8.
713 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
714 unsigned char *va,
715 struct sk_buff *skb)
717 __le64 *regval = (__le64 *)va;
719 /* The timestamp is recorded in little endian format.
720 * DWORD: 0 1 2 3
721 * Field: Reserved Reserved SYSTIML SYSTIMH
723 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
724 le64_to_cpu(regval[1]));
728 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
729 * @q_vector: Pointer to interrupt specific structure
730 * @skb: Buffer containing timestamp and packet
732 * This function is meant to retrieve a timestamp from the internal registers
733 * of the adapter and store it in the skb.
735 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
736 struct sk_buff *skb)
738 struct igb_adapter *adapter = q_vector->adapter;
739 struct e1000_hw *hw = &adapter->hw;
740 u64 regval;
742 /* If this bit is set, then the RX registers contain the time stamp. No
743 * other packet will be time stamped until we read these registers, so
744 * read the registers to make them available again. Because only one
745 * packet can be time stamped at a time, we know that the register
746 * values must belong to this one here and therefore we don't need to
747 * compare any of the additional attributes stored for it.
749 * If nothing went wrong, then it should have a shared tx_flags that we
750 * can turn into a skb_shared_hwtstamps.
752 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
753 return;
755 regval = rd32(E1000_RXSTMPL);
756 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
758 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
760 /* Update the last_rx_timestamp timer in order to enable watchdog check
761 * for error case of latched timestamp on a dropped packet.
763 adapter->last_rx_timestamp = jiffies;
767 * igb_ptp_get_ts_config - get hardware time stamping config
768 * @netdev:
769 * @ifreq:
771 * Get the hwtstamp_config settings to return to the user. Rather than attempt
772 * to deconstruct the settings from the registers, just return a shadow copy
773 * of the last known settings.
775 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
777 struct igb_adapter *adapter = netdev_priv(netdev);
778 struct hwtstamp_config *config = &adapter->tstamp_config;
780 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
781 -EFAULT : 0;
785 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
786 * @adapter: networking device structure
787 * @config: hwtstamp configuration
789 * Outgoing time stamping can be enabled and disabled. Play nice and
790 * disable it when requested, although it shouldn't case any overhead
791 * when no packet needs it. At most one packet in the queue may be
792 * marked for time stamping, otherwise it would be impossible to tell
793 * for sure to which packet the hardware time stamp belongs.
795 * Incoming time stamping has to be configured via the hardware
796 * filters. Not all combinations are supported, in particular event
797 * type has to be specified. Matching the kind of event packet is
798 * not supported, with the exception of "all V2 events regardless of
799 * level 2 or 4".
801 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
802 struct hwtstamp_config *config)
804 struct e1000_hw *hw = &adapter->hw;
805 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
806 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
807 u32 tsync_rx_cfg = 0;
808 bool is_l4 = false;
809 bool is_l2 = false;
810 u32 regval;
812 /* reserved for future extensions */
813 if (config->flags)
814 return -EINVAL;
816 switch (config->tx_type) {
817 case HWTSTAMP_TX_OFF:
818 tsync_tx_ctl = 0;
819 case HWTSTAMP_TX_ON:
820 break;
821 default:
822 return -ERANGE;
825 switch (config->rx_filter) {
826 case HWTSTAMP_FILTER_NONE:
827 tsync_rx_ctl = 0;
828 break;
829 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
830 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
831 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
832 is_l4 = true;
833 break;
834 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
835 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
836 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
837 is_l4 = true;
838 break;
839 case HWTSTAMP_FILTER_PTP_V2_EVENT:
840 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
841 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
842 case HWTSTAMP_FILTER_PTP_V2_SYNC:
843 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
844 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
845 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
846 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
847 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
848 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
849 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
850 is_l2 = true;
851 is_l4 = true;
852 break;
853 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
854 case HWTSTAMP_FILTER_ALL:
855 /* 82576 cannot timestamp all packets, which it needs to do to
856 * support both V1 Sync and Delay_Req messages
858 if (hw->mac.type != e1000_82576) {
859 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
860 config->rx_filter = HWTSTAMP_FILTER_ALL;
861 break;
863 /* fall through */
864 default:
865 config->rx_filter = HWTSTAMP_FILTER_NONE;
866 return -ERANGE;
869 if (hw->mac.type == e1000_82575) {
870 if (tsync_rx_ctl | tsync_tx_ctl)
871 return -EINVAL;
872 return 0;
875 /* Per-packet timestamping only works if all packets are
876 * timestamped, so enable timestamping in all packets as
877 * long as one Rx filter was configured.
879 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
880 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
881 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
882 config->rx_filter = HWTSTAMP_FILTER_ALL;
883 is_l2 = true;
884 is_l4 = true;
886 if ((hw->mac.type == e1000_i210) ||
887 (hw->mac.type == e1000_i211)) {
888 regval = rd32(E1000_RXPBS);
889 regval |= E1000_RXPBS_CFG_TS_EN;
890 wr32(E1000_RXPBS, regval);
894 /* enable/disable TX */
895 regval = rd32(E1000_TSYNCTXCTL);
896 regval &= ~E1000_TSYNCTXCTL_ENABLED;
897 regval |= tsync_tx_ctl;
898 wr32(E1000_TSYNCTXCTL, regval);
900 /* enable/disable RX */
901 regval = rd32(E1000_TSYNCRXCTL);
902 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
903 regval |= tsync_rx_ctl;
904 wr32(E1000_TSYNCRXCTL, regval);
906 /* define which PTP packets are time stamped */
907 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
909 /* define ethertype filter for timestamped packets */
910 if (is_l2)
911 wr32(E1000_ETQF(3),
912 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
913 E1000_ETQF_1588 | /* enable timestamping */
914 ETH_P_1588)); /* 1588 eth protocol type */
915 else
916 wr32(E1000_ETQF(3), 0);
918 /* L4 Queue Filter[3]: filter by destination port and protocol */
919 if (is_l4) {
920 u32 ftqf = (IPPROTO_UDP /* UDP */
921 | E1000_FTQF_VF_BP /* VF not compared */
922 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
923 | E1000_FTQF_MASK); /* mask all inputs */
924 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
926 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
927 wr32(E1000_IMIREXT(3),
928 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
929 if (hw->mac.type == e1000_82576) {
930 /* enable source port check */
931 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
932 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
934 wr32(E1000_FTQF(3), ftqf);
935 } else {
936 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
938 wrfl();
940 /* clear TX/RX time stamp registers, just to be sure */
941 regval = rd32(E1000_TXSTMPL);
942 regval = rd32(E1000_TXSTMPH);
943 regval = rd32(E1000_RXSTMPL);
944 regval = rd32(E1000_RXSTMPH);
946 return 0;
950 * igb_ptp_set_ts_config - set hardware time stamping config
951 * @netdev:
952 * @ifreq:
955 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
957 struct igb_adapter *adapter = netdev_priv(netdev);
958 struct hwtstamp_config config;
959 int err;
961 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
962 return -EFAULT;
964 err = igb_ptp_set_timestamp_mode(adapter, &config);
965 if (err)
966 return err;
968 /* save these settings for future reference */
969 memcpy(&adapter->tstamp_config, &config,
970 sizeof(adapter->tstamp_config));
972 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
973 -EFAULT : 0;
976 void igb_ptp_init(struct igb_adapter *adapter)
978 struct e1000_hw *hw = &adapter->hw;
979 struct net_device *netdev = adapter->netdev;
980 int i;
982 switch (hw->mac.type) {
983 case e1000_82576:
984 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
985 adapter->ptp_caps.owner = THIS_MODULE;
986 adapter->ptp_caps.max_adj = 999999881;
987 adapter->ptp_caps.n_ext_ts = 0;
988 adapter->ptp_caps.pps = 0;
989 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
990 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
991 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
992 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
993 adapter->ptp_caps.enable = igb_ptp_feature_enable;
994 adapter->cc.read = igb_ptp_read_82576;
995 adapter->cc.mask = CYCLECOUNTER_MASK(64);
996 adapter->cc.mult = 1;
997 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
998 /* Dial the nominal frequency. */
999 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1000 break;
1001 case e1000_82580:
1002 case e1000_i354:
1003 case e1000_i350:
1004 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1005 adapter->ptp_caps.owner = THIS_MODULE;
1006 adapter->ptp_caps.max_adj = 62499999;
1007 adapter->ptp_caps.n_ext_ts = 0;
1008 adapter->ptp_caps.pps = 0;
1009 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1010 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1011 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1012 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1013 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1014 adapter->cc.read = igb_ptp_read_82580;
1015 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1016 adapter->cc.mult = 1;
1017 adapter->cc.shift = 0;
1018 /* Enable the timer functions by clearing bit 31. */
1019 wr32(E1000_TSAUXC, 0x0);
1020 break;
1021 case e1000_i210:
1022 case e1000_i211:
1023 for (i = 0; i < IGB_N_SDP; i++) {
1024 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1026 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1027 ppd->index = i;
1028 ppd->func = PTP_PF_NONE;
1030 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1031 adapter->ptp_caps.owner = THIS_MODULE;
1032 adapter->ptp_caps.max_adj = 62499999;
1033 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1034 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1035 adapter->ptp_caps.n_pins = IGB_N_SDP;
1036 adapter->ptp_caps.pps = 1;
1037 adapter->ptp_caps.pin_config = adapter->sdp_config;
1038 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1039 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1040 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1041 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1042 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1043 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1044 /* Enable the timer functions by clearing bit 31. */
1045 wr32(E1000_TSAUXC, 0x0);
1046 break;
1047 default:
1048 adapter->ptp_clock = NULL;
1049 return;
1052 wrfl();
1054 spin_lock_init(&adapter->tmreg_lock);
1055 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1057 /* Initialize the clock and overflow work for devices that need it. */
1058 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1059 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1061 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1062 } else {
1063 timecounter_init(&adapter->tc, &adapter->cc,
1064 ktime_to_ns(ktime_get_real()));
1066 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1067 igb_ptp_overflow_check);
1069 schedule_delayed_work(&adapter->ptp_overflow_work,
1070 IGB_SYSTIM_OVERFLOW_PERIOD);
1073 /* Initialize the time sync interrupts for devices that support it. */
1074 if (hw->mac.type >= e1000_82580) {
1075 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1076 wr32(E1000_IMS, E1000_IMS_TS);
1079 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1080 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1082 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1083 &adapter->pdev->dev);
1084 if (IS_ERR(adapter->ptp_clock)) {
1085 adapter->ptp_clock = NULL;
1086 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1087 } else {
1088 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1089 adapter->netdev->name);
1090 adapter->flags |= IGB_FLAG_PTP;
1095 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1096 * @adapter: Board private structure.
1098 * This function stops the PTP support and cancels the delayed work.
1100 void igb_ptp_stop(struct igb_adapter *adapter)
1102 switch (adapter->hw.mac.type) {
1103 case e1000_82576:
1104 case e1000_82580:
1105 case e1000_i354:
1106 case e1000_i350:
1107 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1108 break;
1109 case e1000_i210:
1110 case e1000_i211:
1111 /* No delayed work to cancel. */
1112 break;
1113 default:
1114 return;
1117 cancel_work_sync(&adapter->ptp_tx_work);
1118 if (adapter->ptp_tx_skb) {
1119 dev_kfree_skb_any(adapter->ptp_tx_skb);
1120 adapter->ptp_tx_skb = NULL;
1121 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1124 if (adapter->ptp_clock) {
1125 ptp_clock_unregister(adapter->ptp_clock);
1126 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1127 adapter->netdev->name);
1128 adapter->flags &= ~IGB_FLAG_PTP;
1133 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1134 * @adapter: Board private structure.
1136 * This function handles the reset work required to re-enable the PTP device.
1138 void igb_ptp_reset(struct igb_adapter *adapter)
1140 struct e1000_hw *hw = &adapter->hw;
1141 unsigned long flags;
1143 if (!(adapter->flags & IGB_FLAG_PTP))
1144 return;
1146 /* reset the tstamp_config */
1147 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1149 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1151 switch (adapter->hw.mac.type) {
1152 case e1000_82576:
1153 /* Dial the nominal frequency. */
1154 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1155 break;
1156 case e1000_82580:
1157 case e1000_i354:
1158 case e1000_i350:
1159 case e1000_i210:
1160 case e1000_i211:
1161 wr32(E1000_TSAUXC, 0x0);
1162 wr32(E1000_TSSDP, 0x0);
1163 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1164 wr32(E1000_IMS, E1000_IMS_TS);
1165 break;
1166 default:
1167 /* No work to do. */
1168 goto out;
1171 /* Re-initialize the timer. */
1172 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1173 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1175 igb_ptp_write_i210(adapter, &ts);
1176 } else {
1177 timecounter_init(&adapter->tc, &adapter->cc,
1178 ktime_to_ns(ktime_get_real()));
1180 out:
1181 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);