lan78xx: add ethtool set & get pause functions
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp_output.c
blob7d2c7a400456bf036ec6b7a32eaf2657eed94378
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 tcp_rearm_rto(sk);
84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 tcp_skb_pcount(skb));
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 const struct tcp_sock *tp = tcp_sk(sk);
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
118 static __u16 tcp_advertise_mss(struct sock *sk)
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
133 return (__u16)mss;
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 struct tcp_sock *tp = tcp_sk(sk);
142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 u32 cwnd = tp->snd_cwnd;
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
164 if (tcp_packets_in_flight(tp) == 0)
165 tcp_ca_event(sk, CA_EVENT_TX_START);
167 tp->lsndtime = now;
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 icsk->icsk_ack.pingpong = 1;
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 tcp_dec_quickack_mode(sk, pkts);
180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
184 u32 tcp_default_init_rwnd(u32 mss)
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
191 u32 init_rwnd = TCP_INIT_CWND * 2;
193 if (mss > 1460)
194 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 return init_rwnd;
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
205 void tcp_select_initial_window(int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
210 unsigned int space = (__space < 0 ? 0 : __space);
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (65535 << 14);
215 space = min(*window_clamp, space);
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = (space / mss) * mss;
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
229 if (sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = space;
234 (*rcv_wscale) = 0;
235 if (wscale_ok) {
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
239 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
240 space = min_t(u32, space, *window_clamp);
241 while (space > 65535 && (*rcv_wscale) < 14) {
242 space >>= 1;
243 (*rcv_wscale)++;
247 if (mss > (1 << *rcv_wscale)) {
248 if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 init_rcv_wnd = tcp_default_init_rwnd(mss);
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 EXPORT_SYMBOL(tcp_select_initial_window);
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
263 static u16 tcp_select_window(struct sock *sk)
265 struct tcp_sock *tp = tcp_sk(sk);
266 u32 old_win = tp->rcv_wnd;
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
277 * Relax Will Robinson.
279 if (new_win == 0)
280 NET_INC_STATS(sock_net(sk),
281 LINUX_MIB_TCPWANTZEROWINDOWADV);
282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 tp->rcv_wnd = new_win;
285 tp->rcv_wup = tp->rcv_nxt;
287 /* Make sure we do not exceed the maximum possible
288 * scaled window.
290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 new_win = min(new_win, MAX_TCP_WINDOW);
292 else
293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295 /* RFC1323 scaling applied */
296 new_win >>= tp->rx_opt.rcv_wscale;
298 /* If we advertise zero window, disable fast path. */
299 if (new_win == 0) {
300 tp->pred_flags = 0;
301 if (old_win)
302 NET_INC_STATS(sock_net(sk),
303 LINUX_MIB_TCPTOZEROWINDOWADV);
304 } else if (old_win == 0) {
305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
308 return new_win;
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 const struct tcp_sock *tp = tcp_sk(sk);
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 if (!(tp->ecn_flags & TCP_ECN_OK))
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 else if (tcp_ca_needs_ecn(sk))
320 INET_ECN_xmit(sk);
323 /* Packet ECN state for a SYN. */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 struct tcp_sock *tp = tcp_sk(sk);
327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 tcp_ca_needs_ecn(sk);
330 if (!use_ecn) {
331 const struct dst_entry *dst = __sk_dst_get(sk);
333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 use_ecn = true;
337 tp->ecn_flags = 0;
339 if (use_ecn) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk))
343 INET_ECN_xmit(sk);
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 if (inet_rsk(req)->ecn_ok)
360 th->ece = 1;
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 * be sent.
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 int tcp_header_len)
369 struct tcp_sock *tp = tcp_sk(sk);
371 if (tp->ecn_flags & TCP_ECN_OK) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb->len != tcp_header_len &&
374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 INET_ECN_xmit(sk);
376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 tcp_hdr(skb)->cwr = 1;
379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 } else if (!tcp_ca_needs_ecn(sk)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk);
385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 tcp_hdr(skb)->ece = 1;
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 skb->ip_summed = CHECKSUM_PARTIAL;
396 skb->csum = 0;
398 TCP_SKB_CB(skb)->tcp_flags = flags;
399 TCP_SKB_CB(skb)->sacked = 0;
401 tcp_skb_pcount_set(skb, 1);
403 TCP_SKB_CB(skb)->seq = seq;
404 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 seq++;
406 TCP_SKB_CB(skb)->end_seq = seq;
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 return tp->snd_una != tp->snd_up;
414 #define OPTION_SACK_ADVERTISE (1 << 0)
415 #define OPTION_TS (1 << 1)
416 #define OPTION_MD5 (1 << 2)
417 #define OPTION_WSCALE (1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
420 struct tcp_out_options {
421 u16 options; /* bit field of OPTION_* */
422 u16 mss; /* 0 to disable */
423 u8 ws; /* window scale, 0 to disable */
424 u8 num_sack_blocks; /* number of SACK blocks to include */
425 u8 hash_size; /* bytes in hash_location */
426 __u8 *hash_location; /* temporary pointer, overloaded */
427 __u32 tsval, tsecr; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
431 /* Write previously computed TCP options to the packet.
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
447 u16 options = opts->options; /* mungable copy */
449 if (unlikely(OPTION_MD5 & options)) {
450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 /* overload cookie hash location */
453 opts->hash_location = (__u8 *)ptr;
454 ptr += 4;
457 if (unlikely(opts->mss)) {
458 *ptr++ = htonl((TCPOPT_MSS << 24) |
459 (TCPOLEN_MSS << 16) |
460 opts->mss);
463 if (likely(OPTION_TS & options)) {
464 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 (TCPOLEN_SACK_PERM << 16) |
467 (TCPOPT_TIMESTAMP << 8) |
468 TCPOLEN_TIMESTAMP);
469 options &= ~OPTION_SACK_ADVERTISE;
470 } else {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_TIMESTAMP << 8) |
474 TCPOLEN_TIMESTAMP);
476 *ptr++ = htonl(opts->tsval);
477 *ptr++ = htonl(opts->tsecr);
480 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_SACK_PERM << 8) |
484 TCPOLEN_SACK_PERM);
487 if (unlikely(OPTION_WSCALE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_WINDOW << 16) |
490 (TCPOLEN_WINDOW << 8) |
491 opts->ws);
494 if (unlikely(opts->num_sack_blocks)) {
495 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 tp->duplicate_sack : tp->selective_acks;
497 int this_sack;
499 *ptr++ = htonl((TCPOPT_NOP << 24) |
500 (TCPOPT_NOP << 16) |
501 (TCPOPT_SACK << 8) |
502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 TCPOLEN_SACK_PERBLOCK)));
505 for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 ++this_sack) {
507 *ptr++ = htonl(sp[this_sack].start_seq);
508 *ptr++ = htonl(sp[this_sack].end_seq);
511 tp->rx_opt.dsack = 0;
514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 u8 *p = (u8 *)ptr;
517 u32 len; /* Fast Open option length */
519 if (foc->exp) {
520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 TCPOPT_FASTOPEN_MAGIC);
523 p += TCPOLEN_EXP_FASTOPEN_BASE;
524 } else {
525 len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 *p++ = TCPOPT_FASTOPEN;
527 *p++ = len;
530 memcpy(p, foc->val, foc->len);
531 if ((len & 3) == 2) {
532 p[foc->len] = TCPOPT_NOP;
533 p[foc->len + 1] = TCPOPT_NOP;
535 ptr += (len + 3) >> 2;
539 /* Compute TCP options for SYN packets. This is not the final
540 * network wire format yet.
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 struct tcp_out_options *opts,
544 struct tcp_md5sig_key **md5)
546 struct tcp_sock *tp = tcp_sk(sk);
547 unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550 #ifdef CONFIG_TCP_MD5SIG
551 *md5 = tp->af_specific->md5_lookup(sk, sk);
552 if (*md5) {
553 opts->options |= OPTION_MD5;
554 remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 #else
557 *md5 = NULL;
558 #endif
560 /* We always get an MSS option. The option bytes which will be seen in
561 * normal data packets should timestamps be used, must be in the MSS
562 * advertised. But we subtract them from tp->mss_cache so that
563 * calculations in tcp_sendmsg are simpler etc. So account for this
564 * fact here if necessary. If we don't do this correctly, as a
565 * receiver we won't recognize data packets as being full sized when we
566 * should, and thus we won't abide by the delayed ACK rules correctly.
567 * SACKs don't matter, we never delay an ACK when we have any of those
568 * going out. */
569 opts->mss = tcp_advertise_mss(sk);
570 remaining -= TCPOLEN_MSS_ALIGNED;
572 if (likely(sysctl_tcp_timestamps && !*md5)) {
573 opts->options |= OPTION_TS;
574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 opts->tsecr = tp->rx_opt.ts_recent;
576 remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 if (likely(sysctl_tcp_window_scaling)) {
579 opts->ws = tp->rx_opt.rcv_wscale;
580 opts->options |= OPTION_WSCALE;
581 remaining -= TCPOLEN_WSCALE_ALIGNED;
583 if (likely(sysctl_tcp_sack)) {
584 opts->options |= OPTION_SACK_ADVERTISE;
585 if (unlikely(!(OPTION_TS & opts->options)))
586 remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 if (fastopen && fastopen->cookie.len >= 0) {
590 u32 need = fastopen->cookie.len;
592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 TCPOLEN_FASTOPEN_BASE;
594 need = (need + 3) & ~3U; /* Align to 32 bits */
595 if (remaining >= need) {
596 opts->options |= OPTION_FAST_OPEN_COOKIE;
597 opts->fastopen_cookie = &fastopen->cookie;
598 remaining -= need;
599 tp->syn_fastopen = 1;
600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
604 return MAX_TCP_OPTION_SPACE - remaining;
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 unsigned int mss, struct sk_buff *skb,
610 struct tcp_out_options *opts,
611 const struct tcp_md5sig_key *md5,
612 struct tcp_fastopen_cookie *foc)
614 struct inet_request_sock *ireq = inet_rsk(req);
615 unsigned int remaining = MAX_TCP_OPTION_SPACE;
617 #ifdef CONFIG_TCP_MD5SIG
618 if (md5) {
619 opts->options |= OPTION_MD5;
620 remaining -= TCPOLEN_MD5SIG_ALIGNED;
622 /* We can't fit any SACK blocks in a packet with MD5 + TS
623 * options. There was discussion about disabling SACK
624 * rather than TS in order to fit in better with old,
625 * buggy kernels, but that was deemed to be unnecessary.
627 ireq->tstamp_ok &= !ireq->sack_ok;
629 #endif
631 /* We always send an MSS option. */
632 opts->mss = mss;
633 remaining -= TCPOLEN_MSS_ALIGNED;
635 if (likely(ireq->wscale_ok)) {
636 opts->ws = ireq->rcv_wscale;
637 opts->options |= OPTION_WSCALE;
638 remaining -= TCPOLEN_WSCALE_ALIGNED;
640 if (likely(ireq->tstamp_ok)) {
641 opts->options |= OPTION_TS;
642 opts->tsval = tcp_skb_timestamp(skb);
643 opts->tsecr = req->ts_recent;
644 remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 if (likely(ireq->sack_ok)) {
647 opts->options |= OPTION_SACK_ADVERTISE;
648 if (unlikely(!ireq->tstamp_ok))
649 remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 if (foc != NULL && foc->len >= 0) {
652 u32 need = foc->len;
654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 TCPOLEN_FASTOPEN_BASE;
656 need = (need + 3) & ~3U; /* Align to 32 bits */
657 if (remaining >= need) {
658 opts->options |= OPTION_FAST_OPEN_COOKIE;
659 opts->fastopen_cookie = foc;
660 remaining -= need;
664 return MAX_TCP_OPTION_SPACE - remaining;
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668 * final wire format yet.
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 struct tcp_out_options *opts,
672 struct tcp_md5sig_key **md5)
674 struct tcp_sock *tp = tcp_sk(sk);
675 unsigned int size = 0;
676 unsigned int eff_sacks;
678 opts->options = 0;
680 #ifdef CONFIG_TCP_MD5SIG
681 *md5 = tp->af_specific->md5_lookup(sk, sk);
682 if (unlikely(*md5)) {
683 opts->options |= OPTION_MD5;
684 size += TCPOLEN_MD5SIG_ALIGNED;
686 #else
687 *md5 = NULL;
688 #endif
690 if (likely(tp->rx_opt.tstamp_ok)) {
691 opts->options |= OPTION_TS;
692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 opts->tsecr = tp->rx_opt.ts_recent;
694 size += TCPOLEN_TSTAMP_ALIGNED;
697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 if (unlikely(eff_sacks)) {
699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 opts->num_sack_blocks =
701 min_t(unsigned int, eff_sacks,
702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 TCPOLEN_SACK_PERBLOCK);
704 size += TCPOLEN_SACK_BASE_ALIGNED +
705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 return size;
712 /* TCP SMALL QUEUES (TSQ)
714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715 * to reduce RTT and bufferbloat.
716 * We do this using a special skb destructor (tcp_wfree).
718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719 * needs to be reallocated in a driver.
720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722 * Since transmit from skb destructor is forbidden, we use a tasklet
723 * to process all sockets that eventually need to send more skbs.
724 * We use one tasklet per cpu, with its own queue of sockets.
726 struct tsq_tasklet {
727 struct tasklet_struct tasklet;
728 struct list_head head; /* queue of tcp sockets */
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732 static void tcp_tsq_handler(struct sock *sk)
734 if ((1 << sk->sk_state) &
735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
737 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
738 0, GFP_ATOMIC);
741 * One tasklet per cpu tries to send more skbs.
742 * We run in tasklet context but need to disable irqs when
743 * transferring tsq->head because tcp_wfree() might
744 * interrupt us (non NAPI drivers)
746 static void tcp_tasklet_func(unsigned long data)
748 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
749 LIST_HEAD(list);
750 unsigned long flags;
751 struct list_head *q, *n;
752 struct tcp_sock *tp;
753 struct sock *sk;
755 local_irq_save(flags);
756 list_splice_init(&tsq->head, &list);
757 local_irq_restore(flags);
759 list_for_each_safe(q, n, &list) {
760 tp = list_entry(q, struct tcp_sock, tsq_node);
761 list_del(&tp->tsq_node);
763 sk = (struct sock *)tp;
764 bh_lock_sock(sk);
766 if (!sock_owned_by_user(sk)) {
767 tcp_tsq_handler(sk);
768 } else {
769 /* defer the work to tcp_release_cb() */
770 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
772 bh_unlock_sock(sk);
774 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
775 sk_free(sk);
779 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
780 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
781 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
782 (1UL << TCP_MTU_REDUCED_DEFERRED))
784 * tcp_release_cb - tcp release_sock() callback
785 * @sk: socket
787 * called from release_sock() to perform protocol dependent
788 * actions before socket release.
790 void tcp_release_cb(struct sock *sk)
792 struct tcp_sock *tp = tcp_sk(sk);
793 unsigned long flags, nflags;
795 /* perform an atomic operation only if at least one flag is set */
796 do {
797 flags = tp->tsq_flags;
798 if (!(flags & TCP_DEFERRED_ALL))
799 return;
800 nflags = flags & ~TCP_DEFERRED_ALL;
801 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
803 if (flags & (1UL << TCP_TSQ_DEFERRED))
804 tcp_tsq_handler(sk);
806 /* Here begins the tricky part :
807 * We are called from release_sock() with :
808 * 1) BH disabled
809 * 2) sk_lock.slock spinlock held
810 * 3) socket owned by us (sk->sk_lock.owned == 1)
812 * But following code is meant to be called from BH handlers,
813 * so we should keep BH disabled, but early release socket ownership
815 sock_release_ownership(sk);
817 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
818 tcp_write_timer_handler(sk);
819 __sock_put(sk);
821 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
822 tcp_delack_timer_handler(sk);
823 __sock_put(sk);
825 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
826 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
827 __sock_put(sk);
830 EXPORT_SYMBOL(tcp_release_cb);
832 void __init tcp_tasklet_init(void)
834 int i;
836 for_each_possible_cpu(i) {
837 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
839 INIT_LIST_HEAD(&tsq->head);
840 tasklet_init(&tsq->tasklet,
841 tcp_tasklet_func,
842 (unsigned long)tsq);
847 * Write buffer destructor automatically called from kfree_skb.
848 * We can't xmit new skbs from this context, as we might already
849 * hold qdisc lock.
851 void tcp_wfree(struct sk_buff *skb)
853 struct sock *sk = skb->sk;
854 struct tcp_sock *tp = tcp_sk(sk);
855 int wmem;
857 /* Keep one reference on sk_wmem_alloc.
858 * Will be released by sk_free() from here or tcp_tasklet_func()
860 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
862 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
863 * Wait until our queues (qdisc + devices) are drained.
864 * This gives :
865 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
866 * - chance for incoming ACK (processed by another cpu maybe)
867 * to migrate this flow (skb->ooo_okay will be eventually set)
869 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
870 goto out;
872 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
873 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
874 unsigned long flags;
875 struct tsq_tasklet *tsq;
877 /* queue this socket to tasklet queue */
878 local_irq_save(flags);
879 tsq = this_cpu_ptr(&tsq_tasklet);
880 list_add(&tp->tsq_node, &tsq->head);
881 tasklet_schedule(&tsq->tasklet);
882 local_irq_restore(flags);
883 return;
885 out:
886 sk_free(sk);
889 /* This routine actually transmits TCP packets queued in by
890 * tcp_do_sendmsg(). This is used by both the initial
891 * transmission and possible later retransmissions.
892 * All SKB's seen here are completely headerless. It is our
893 * job to build the TCP header, and pass the packet down to
894 * IP so it can do the same plus pass the packet off to the
895 * device.
897 * We are working here with either a clone of the original
898 * SKB, or a fresh unique copy made by the retransmit engine.
900 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
901 gfp_t gfp_mask)
903 const struct inet_connection_sock *icsk = inet_csk(sk);
904 struct inet_sock *inet;
905 struct tcp_sock *tp;
906 struct tcp_skb_cb *tcb;
907 struct tcp_out_options opts;
908 unsigned int tcp_options_size, tcp_header_size;
909 struct tcp_md5sig_key *md5;
910 struct tcphdr *th;
911 int err;
913 BUG_ON(!skb || !tcp_skb_pcount(skb));
915 if (clone_it) {
916 skb_mstamp_get(&skb->skb_mstamp);
918 if (unlikely(skb_cloned(skb)))
919 skb = pskb_copy(skb, gfp_mask);
920 else
921 skb = skb_clone(skb, gfp_mask);
922 if (unlikely(!skb))
923 return -ENOBUFS;
926 inet = inet_sk(sk);
927 tp = tcp_sk(sk);
928 tcb = TCP_SKB_CB(skb);
929 memset(&opts, 0, sizeof(opts));
931 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
932 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
933 else
934 tcp_options_size = tcp_established_options(sk, skb, &opts,
935 &md5);
936 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
938 /* if no packet is in qdisc/device queue, then allow XPS to select
939 * another queue. We can be called from tcp_tsq_handler()
940 * which holds one reference to sk_wmem_alloc.
942 * TODO: Ideally, in-flight pure ACK packets should not matter here.
943 * One way to get this would be to set skb->truesize = 2 on them.
945 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
947 skb_push(skb, tcp_header_size);
948 skb_reset_transport_header(skb);
950 skb_orphan(skb);
951 skb->sk = sk;
952 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
953 skb_set_hash_from_sk(skb, sk);
954 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
956 /* Build TCP header and checksum it. */
957 th = tcp_hdr(skb);
958 th->source = inet->inet_sport;
959 th->dest = inet->inet_dport;
960 th->seq = htonl(tcb->seq);
961 th->ack_seq = htonl(tp->rcv_nxt);
962 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
963 tcb->tcp_flags);
965 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
966 /* RFC1323: The window in SYN & SYN/ACK segments
967 * is never scaled.
969 th->window = htons(min(tp->rcv_wnd, 65535U));
970 } else {
971 th->window = htons(tcp_select_window(sk));
973 th->check = 0;
974 th->urg_ptr = 0;
976 /* The urg_mode check is necessary during a below snd_una win probe */
977 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
978 if (before(tp->snd_up, tcb->seq + 0x10000)) {
979 th->urg_ptr = htons(tp->snd_up - tcb->seq);
980 th->urg = 1;
981 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
982 th->urg_ptr = htons(0xFFFF);
983 th->urg = 1;
987 tcp_options_write((__be32 *)(th + 1), tp, &opts);
988 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
989 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
990 tcp_ecn_send(sk, skb, tcp_header_size);
992 #ifdef CONFIG_TCP_MD5SIG
993 /* Calculate the MD5 hash, as we have all we need now */
994 if (md5) {
995 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
996 tp->af_specific->calc_md5_hash(opts.hash_location,
997 md5, sk, skb);
999 #endif
1001 icsk->icsk_af_ops->send_check(sk, skb);
1003 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1004 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1006 if (skb->len != tcp_header_size)
1007 tcp_event_data_sent(tp, sk);
1009 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1010 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1011 tcp_skb_pcount(skb));
1013 tp->segs_out += tcp_skb_pcount(skb);
1014 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1015 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1016 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1018 /* Our usage of tstamp should remain private */
1019 skb->tstamp.tv64 = 0;
1021 /* Cleanup our debris for IP stacks */
1022 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1023 sizeof(struct inet6_skb_parm)));
1025 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1027 if (likely(err <= 0))
1028 return err;
1030 tcp_enter_cwr(sk);
1032 return net_xmit_eval(err);
1035 /* This routine just queues the buffer for sending.
1037 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1038 * otherwise socket can stall.
1040 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1042 struct tcp_sock *tp = tcp_sk(sk);
1044 /* Advance write_seq and place onto the write_queue. */
1045 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1046 __skb_header_release(skb);
1047 tcp_add_write_queue_tail(sk, skb);
1048 sk->sk_wmem_queued += skb->truesize;
1049 sk_mem_charge(sk, skb->truesize);
1052 /* Initialize TSO segments for a packet. */
1053 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1055 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1056 /* Avoid the costly divide in the normal
1057 * non-TSO case.
1059 tcp_skb_pcount_set(skb, 1);
1060 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1061 } else {
1062 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1063 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1067 /* When a modification to fackets out becomes necessary, we need to check
1068 * skb is counted to fackets_out or not.
1070 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1071 int decr)
1073 struct tcp_sock *tp = tcp_sk(sk);
1075 if (!tp->sacked_out || tcp_is_reno(tp))
1076 return;
1078 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1079 tp->fackets_out -= decr;
1082 /* Pcount in the middle of the write queue got changed, we need to do various
1083 * tweaks to fix counters
1085 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1087 struct tcp_sock *tp = tcp_sk(sk);
1089 tp->packets_out -= decr;
1091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1092 tp->sacked_out -= decr;
1093 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1094 tp->retrans_out -= decr;
1095 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1096 tp->lost_out -= decr;
1098 /* Reno case is special. Sigh... */
1099 if (tcp_is_reno(tp) && decr > 0)
1100 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1102 tcp_adjust_fackets_out(sk, skb, decr);
1104 if (tp->lost_skb_hint &&
1105 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1106 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1107 tp->lost_cnt_hint -= decr;
1109 tcp_verify_left_out(tp);
1112 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1114 struct skb_shared_info *shinfo = skb_shinfo(skb);
1116 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1117 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1118 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1119 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1121 shinfo->tx_flags &= ~tsflags;
1122 shinfo2->tx_flags |= tsflags;
1123 swap(shinfo->tskey, shinfo2->tskey);
1127 /* Function to create two new TCP segments. Shrinks the given segment
1128 * to the specified size and appends a new segment with the rest of the
1129 * packet to the list. This won't be called frequently, I hope.
1130 * Remember, these are still headerless SKBs at this point.
1132 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1133 unsigned int mss_now, gfp_t gfp)
1135 struct tcp_sock *tp = tcp_sk(sk);
1136 struct sk_buff *buff;
1137 int nsize, old_factor;
1138 int nlen;
1139 u8 flags;
1141 if (WARN_ON(len > skb->len))
1142 return -EINVAL;
1144 nsize = skb_headlen(skb) - len;
1145 if (nsize < 0)
1146 nsize = 0;
1148 if (skb_unclone(skb, gfp))
1149 return -ENOMEM;
1151 /* Get a new skb... force flag on. */
1152 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1153 if (!buff)
1154 return -ENOMEM; /* We'll just try again later. */
1156 sk->sk_wmem_queued += buff->truesize;
1157 sk_mem_charge(sk, buff->truesize);
1158 nlen = skb->len - len - nsize;
1159 buff->truesize += nlen;
1160 skb->truesize -= nlen;
1162 /* Correct the sequence numbers. */
1163 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1164 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1165 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1167 /* PSH and FIN should only be set in the second packet. */
1168 flags = TCP_SKB_CB(skb)->tcp_flags;
1169 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1170 TCP_SKB_CB(buff)->tcp_flags = flags;
1171 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1173 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1174 /* Copy and checksum data tail into the new buffer. */
1175 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1176 skb_put(buff, nsize),
1177 nsize, 0);
1179 skb_trim(skb, len);
1181 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1182 } else {
1183 skb->ip_summed = CHECKSUM_PARTIAL;
1184 skb_split(skb, buff, len);
1187 buff->ip_summed = skb->ip_summed;
1189 buff->tstamp = skb->tstamp;
1190 tcp_fragment_tstamp(skb, buff);
1192 old_factor = tcp_skb_pcount(skb);
1194 /* Fix up tso_factor for both original and new SKB. */
1195 tcp_set_skb_tso_segs(skb, mss_now);
1196 tcp_set_skb_tso_segs(buff, mss_now);
1198 /* If this packet has been sent out already, we must
1199 * adjust the various packet counters.
1201 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1202 int diff = old_factor - tcp_skb_pcount(skb) -
1203 tcp_skb_pcount(buff);
1205 if (diff)
1206 tcp_adjust_pcount(sk, skb, diff);
1209 /* Link BUFF into the send queue. */
1210 __skb_header_release(buff);
1211 tcp_insert_write_queue_after(skb, buff, sk);
1213 return 0;
1216 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1217 * eventually). The difference is that pulled data not copied, but
1218 * immediately discarded.
1220 static void __pskb_trim_head(struct sk_buff *skb, int len)
1222 struct skb_shared_info *shinfo;
1223 int i, k, eat;
1225 eat = min_t(int, len, skb_headlen(skb));
1226 if (eat) {
1227 __skb_pull(skb, eat);
1228 len -= eat;
1229 if (!len)
1230 return;
1232 eat = len;
1233 k = 0;
1234 shinfo = skb_shinfo(skb);
1235 for (i = 0; i < shinfo->nr_frags; i++) {
1236 int size = skb_frag_size(&shinfo->frags[i]);
1238 if (size <= eat) {
1239 skb_frag_unref(skb, i);
1240 eat -= size;
1241 } else {
1242 shinfo->frags[k] = shinfo->frags[i];
1243 if (eat) {
1244 shinfo->frags[k].page_offset += eat;
1245 skb_frag_size_sub(&shinfo->frags[k], eat);
1246 eat = 0;
1248 k++;
1251 shinfo->nr_frags = k;
1253 skb_reset_tail_pointer(skb);
1254 skb->data_len -= len;
1255 skb->len = skb->data_len;
1258 /* Remove acked data from a packet in the transmit queue. */
1259 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1261 if (skb_unclone(skb, GFP_ATOMIC))
1262 return -ENOMEM;
1264 __pskb_trim_head(skb, len);
1266 TCP_SKB_CB(skb)->seq += len;
1267 skb->ip_summed = CHECKSUM_PARTIAL;
1269 skb->truesize -= len;
1270 sk->sk_wmem_queued -= len;
1271 sk_mem_uncharge(sk, len);
1272 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1274 /* Any change of skb->len requires recalculation of tso factor. */
1275 if (tcp_skb_pcount(skb) > 1)
1276 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1278 return 0;
1281 /* Calculate MSS not accounting any TCP options. */
1282 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1284 const struct tcp_sock *tp = tcp_sk(sk);
1285 const struct inet_connection_sock *icsk = inet_csk(sk);
1286 int mss_now;
1288 /* Calculate base mss without TCP options:
1289 It is MMS_S - sizeof(tcphdr) of rfc1122
1291 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1293 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1294 if (icsk->icsk_af_ops->net_frag_header_len) {
1295 const struct dst_entry *dst = __sk_dst_get(sk);
1297 if (dst && dst_allfrag(dst))
1298 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1301 /* Clamp it (mss_clamp does not include tcp options) */
1302 if (mss_now > tp->rx_opt.mss_clamp)
1303 mss_now = tp->rx_opt.mss_clamp;
1305 /* Now subtract optional transport overhead */
1306 mss_now -= icsk->icsk_ext_hdr_len;
1308 /* Then reserve room for full set of TCP options and 8 bytes of data */
1309 if (mss_now < 48)
1310 mss_now = 48;
1311 return mss_now;
1314 /* Calculate MSS. Not accounting for SACKs here. */
1315 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1317 /* Subtract TCP options size, not including SACKs */
1318 return __tcp_mtu_to_mss(sk, pmtu) -
1319 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1322 /* Inverse of above */
1323 int tcp_mss_to_mtu(struct sock *sk, int mss)
1325 const struct tcp_sock *tp = tcp_sk(sk);
1326 const struct inet_connection_sock *icsk = inet_csk(sk);
1327 int mtu;
1329 mtu = mss +
1330 tp->tcp_header_len +
1331 icsk->icsk_ext_hdr_len +
1332 icsk->icsk_af_ops->net_header_len;
1334 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1335 if (icsk->icsk_af_ops->net_frag_header_len) {
1336 const struct dst_entry *dst = __sk_dst_get(sk);
1338 if (dst && dst_allfrag(dst))
1339 mtu += icsk->icsk_af_ops->net_frag_header_len;
1341 return mtu;
1344 /* MTU probing init per socket */
1345 void tcp_mtup_init(struct sock *sk)
1347 struct tcp_sock *tp = tcp_sk(sk);
1348 struct inet_connection_sock *icsk = inet_csk(sk);
1349 struct net *net = sock_net(sk);
1351 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1352 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1353 icsk->icsk_af_ops->net_header_len;
1354 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1355 icsk->icsk_mtup.probe_size = 0;
1356 if (icsk->icsk_mtup.enabled)
1357 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1359 EXPORT_SYMBOL(tcp_mtup_init);
1361 /* This function synchronize snd mss to current pmtu/exthdr set.
1363 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1364 for TCP options, but includes only bare TCP header.
1366 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1367 It is minimum of user_mss and mss received with SYN.
1368 It also does not include TCP options.
1370 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1372 tp->mss_cache is current effective sending mss, including
1373 all tcp options except for SACKs. It is evaluated,
1374 taking into account current pmtu, but never exceeds
1375 tp->rx_opt.mss_clamp.
1377 NOTE1. rfc1122 clearly states that advertised MSS
1378 DOES NOT include either tcp or ip options.
1380 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1381 are READ ONLY outside this function. --ANK (980731)
1383 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1385 struct tcp_sock *tp = tcp_sk(sk);
1386 struct inet_connection_sock *icsk = inet_csk(sk);
1387 int mss_now;
1389 if (icsk->icsk_mtup.search_high > pmtu)
1390 icsk->icsk_mtup.search_high = pmtu;
1392 mss_now = tcp_mtu_to_mss(sk, pmtu);
1393 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1395 /* And store cached results */
1396 icsk->icsk_pmtu_cookie = pmtu;
1397 if (icsk->icsk_mtup.enabled)
1398 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1399 tp->mss_cache = mss_now;
1401 return mss_now;
1403 EXPORT_SYMBOL(tcp_sync_mss);
1405 /* Compute the current effective MSS, taking SACKs and IP options,
1406 * and even PMTU discovery events into account.
1408 unsigned int tcp_current_mss(struct sock *sk)
1410 const struct tcp_sock *tp = tcp_sk(sk);
1411 const struct dst_entry *dst = __sk_dst_get(sk);
1412 u32 mss_now;
1413 unsigned int header_len;
1414 struct tcp_out_options opts;
1415 struct tcp_md5sig_key *md5;
1417 mss_now = tp->mss_cache;
1419 if (dst) {
1420 u32 mtu = dst_mtu(dst);
1421 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1422 mss_now = tcp_sync_mss(sk, mtu);
1425 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1426 sizeof(struct tcphdr);
1427 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1428 * some common options. If this is an odd packet (because we have SACK
1429 * blocks etc) then our calculated header_len will be different, and
1430 * we have to adjust mss_now correspondingly */
1431 if (header_len != tp->tcp_header_len) {
1432 int delta = (int) header_len - tp->tcp_header_len;
1433 mss_now -= delta;
1436 return mss_now;
1439 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1440 * As additional protections, we do not touch cwnd in retransmission phases,
1441 * and if application hit its sndbuf limit recently.
1443 static void tcp_cwnd_application_limited(struct sock *sk)
1445 struct tcp_sock *tp = tcp_sk(sk);
1447 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1448 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1449 /* Limited by application or receiver window. */
1450 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1451 u32 win_used = max(tp->snd_cwnd_used, init_win);
1452 if (win_used < tp->snd_cwnd) {
1453 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1454 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1456 tp->snd_cwnd_used = 0;
1458 tp->snd_cwnd_stamp = tcp_time_stamp;
1461 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1463 struct tcp_sock *tp = tcp_sk(sk);
1465 /* Track the maximum number of outstanding packets in each
1466 * window, and remember whether we were cwnd-limited then.
1468 if (!before(tp->snd_una, tp->max_packets_seq) ||
1469 tp->packets_out > tp->max_packets_out) {
1470 tp->max_packets_out = tp->packets_out;
1471 tp->max_packets_seq = tp->snd_nxt;
1472 tp->is_cwnd_limited = is_cwnd_limited;
1475 if (tcp_is_cwnd_limited(sk)) {
1476 /* Network is feed fully. */
1477 tp->snd_cwnd_used = 0;
1478 tp->snd_cwnd_stamp = tcp_time_stamp;
1479 } else {
1480 /* Network starves. */
1481 if (tp->packets_out > tp->snd_cwnd_used)
1482 tp->snd_cwnd_used = tp->packets_out;
1484 if (sysctl_tcp_slow_start_after_idle &&
1485 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1486 tcp_cwnd_application_limited(sk);
1490 /* Minshall's variant of the Nagle send check. */
1491 static bool tcp_minshall_check(const struct tcp_sock *tp)
1493 return after(tp->snd_sml, tp->snd_una) &&
1494 !after(tp->snd_sml, tp->snd_nxt);
1497 /* Update snd_sml if this skb is under mss
1498 * Note that a TSO packet might end with a sub-mss segment
1499 * The test is really :
1500 * if ((skb->len % mss) != 0)
1501 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1502 * But we can avoid doing the divide again given we already have
1503 * skb_pcount = skb->len / mss_now
1505 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1506 const struct sk_buff *skb)
1508 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1509 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1512 /* Return false, if packet can be sent now without violation Nagle's rules:
1513 * 1. It is full sized. (provided by caller in %partial bool)
1514 * 2. Or it contains FIN. (already checked by caller)
1515 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1516 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1517 * With Minshall's modification: all sent small packets are ACKed.
1519 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1520 int nonagle)
1522 return partial &&
1523 ((nonagle & TCP_NAGLE_CORK) ||
1524 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1527 /* Return how many segs we'd like on a TSO packet,
1528 * to send one TSO packet per ms
1530 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1532 u32 bytes, segs;
1534 bytes = min(sk->sk_pacing_rate >> 10,
1535 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1537 /* Goal is to send at least one packet per ms,
1538 * not one big TSO packet every 100 ms.
1539 * This preserves ACK clocking and is consistent
1540 * with tcp_tso_should_defer() heuristic.
1542 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1544 return min_t(u32, segs, sk->sk_gso_max_segs);
1547 /* Returns the portion of skb which can be sent right away */
1548 static unsigned int tcp_mss_split_point(const struct sock *sk,
1549 const struct sk_buff *skb,
1550 unsigned int mss_now,
1551 unsigned int max_segs,
1552 int nonagle)
1554 const struct tcp_sock *tp = tcp_sk(sk);
1555 u32 partial, needed, window, max_len;
1557 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1558 max_len = mss_now * max_segs;
1560 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1561 return max_len;
1563 needed = min(skb->len, window);
1565 if (max_len <= needed)
1566 return max_len;
1568 partial = needed % mss_now;
1569 /* If last segment is not a full MSS, check if Nagle rules allow us
1570 * to include this last segment in this skb.
1571 * Otherwise, we'll split the skb at last MSS boundary
1573 if (tcp_nagle_check(partial != 0, tp, nonagle))
1574 return needed - partial;
1576 return needed;
1579 /* Can at least one segment of SKB be sent right now, according to the
1580 * congestion window rules? If so, return how many segments are allowed.
1582 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1583 const struct sk_buff *skb)
1585 u32 in_flight, cwnd, halfcwnd;
1587 /* Don't be strict about the congestion window for the final FIN. */
1588 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1589 tcp_skb_pcount(skb) == 1)
1590 return 1;
1592 in_flight = tcp_packets_in_flight(tp);
1593 cwnd = tp->snd_cwnd;
1594 if (in_flight >= cwnd)
1595 return 0;
1597 /* For better scheduling, ensure we have at least
1598 * 2 GSO packets in flight.
1600 halfcwnd = max(cwnd >> 1, 1U);
1601 return min(halfcwnd, cwnd - in_flight);
1604 /* Initialize TSO state of a skb.
1605 * This must be invoked the first time we consider transmitting
1606 * SKB onto the wire.
1608 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1610 int tso_segs = tcp_skb_pcount(skb);
1612 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1613 tcp_set_skb_tso_segs(skb, mss_now);
1614 tso_segs = tcp_skb_pcount(skb);
1616 return tso_segs;
1620 /* Return true if the Nagle test allows this packet to be
1621 * sent now.
1623 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1624 unsigned int cur_mss, int nonagle)
1626 /* Nagle rule does not apply to frames, which sit in the middle of the
1627 * write_queue (they have no chances to get new data).
1629 * This is implemented in the callers, where they modify the 'nonagle'
1630 * argument based upon the location of SKB in the send queue.
1632 if (nonagle & TCP_NAGLE_PUSH)
1633 return true;
1635 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1636 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1637 return true;
1639 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1640 return true;
1642 return false;
1645 /* Does at least the first segment of SKB fit into the send window? */
1646 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1647 const struct sk_buff *skb,
1648 unsigned int cur_mss)
1650 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1652 if (skb->len > cur_mss)
1653 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1655 return !after(end_seq, tcp_wnd_end(tp));
1658 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1659 * should be put on the wire right now. If so, it returns the number of
1660 * packets allowed by the congestion window.
1662 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1663 unsigned int cur_mss, int nonagle)
1665 const struct tcp_sock *tp = tcp_sk(sk);
1666 unsigned int cwnd_quota;
1668 tcp_init_tso_segs(skb, cur_mss);
1670 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1671 return 0;
1673 cwnd_quota = tcp_cwnd_test(tp, skb);
1674 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1675 cwnd_quota = 0;
1677 return cwnd_quota;
1680 /* Test if sending is allowed right now. */
1681 bool tcp_may_send_now(struct sock *sk)
1683 const struct tcp_sock *tp = tcp_sk(sk);
1684 struct sk_buff *skb = tcp_send_head(sk);
1686 return skb &&
1687 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1688 (tcp_skb_is_last(sk, skb) ?
1689 tp->nonagle : TCP_NAGLE_PUSH));
1692 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1693 * which is put after SKB on the list. It is very much like
1694 * tcp_fragment() except that it may make several kinds of assumptions
1695 * in order to speed up the splitting operation. In particular, we
1696 * know that all the data is in scatter-gather pages, and that the
1697 * packet has never been sent out before (and thus is not cloned).
1699 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1700 unsigned int mss_now, gfp_t gfp)
1702 struct sk_buff *buff;
1703 int nlen = skb->len - len;
1704 u8 flags;
1706 /* All of a TSO frame must be composed of paged data. */
1707 if (skb->len != skb->data_len)
1708 return tcp_fragment(sk, skb, len, mss_now, gfp);
1710 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1711 if (unlikely(!buff))
1712 return -ENOMEM;
1714 sk->sk_wmem_queued += buff->truesize;
1715 sk_mem_charge(sk, buff->truesize);
1716 buff->truesize += nlen;
1717 skb->truesize -= nlen;
1719 /* Correct the sequence numbers. */
1720 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1721 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1722 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1724 /* PSH and FIN should only be set in the second packet. */
1725 flags = TCP_SKB_CB(skb)->tcp_flags;
1726 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1727 TCP_SKB_CB(buff)->tcp_flags = flags;
1729 /* This packet was never sent out yet, so no SACK bits. */
1730 TCP_SKB_CB(buff)->sacked = 0;
1732 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1733 skb_split(skb, buff, len);
1734 tcp_fragment_tstamp(skb, buff);
1736 /* Fix up tso_factor for both original and new SKB. */
1737 tcp_set_skb_tso_segs(skb, mss_now);
1738 tcp_set_skb_tso_segs(buff, mss_now);
1740 /* Link BUFF into the send queue. */
1741 __skb_header_release(buff);
1742 tcp_insert_write_queue_after(skb, buff, sk);
1744 return 0;
1747 /* Try to defer sending, if possible, in order to minimize the amount
1748 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1750 * This algorithm is from John Heffner.
1752 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1753 bool *is_cwnd_limited, u32 max_segs)
1755 const struct inet_connection_sock *icsk = inet_csk(sk);
1756 u32 age, send_win, cong_win, limit, in_flight;
1757 struct tcp_sock *tp = tcp_sk(sk);
1758 struct skb_mstamp now;
1759 struct sk_buff *head;
1760 int win_divisor;
1762 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1763 goto send_now;
1765 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1766 goto send_now;
1768 /* Avoid bursty behavior by allowing defer
1769 * only if the last write was recent.
1771 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1772 goto send_now;
1774 in_flight = tcp_packets_in_flight(tp);
1776 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1778 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1780 /* From in_flight test above, we know that cwnd > in_flight. */
1781 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1783 limit = min(send_win, cong_win);
1785 /* If a full-sized TSO skb can be sent, do it. */
1786 if (limit >= max_segs * tp->mss_cache)
1787 goto send_now;
1789 /* Middle in queue won't get any more data, full sendable already? */
1790 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1791 goto send_now;
1793 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1794 if (win_divisor) {
1795 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1797 /* If at least some fraction of a window is available,
1798 * just use it.
1800 chunk /= win_divisor;
1801 if (limit >= chunk)
1802 goto send_now;
1803 } else {
1804 /* Different approach, try not to defer past a single
1805 * ACK. Receiver should ACK every other full sized
1806 * frame, so if we have space for more than 3 frames
1807 * then send now.
1809 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1810 goto send_now;
1813 head = tcp_write_queue_head(sk);
1814 skb_mstamp_get(&now);
1815 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1816 /* If next ACK is likely to come too late (half srtt), do not defer */
1817 if (age < (tp->srtt_us >> 4))
1818 goto send_now;
1820 /* Ok, it looks like it is advisable to defer. */
1822 if (cong_win < send_win && cong_win <= skb->len)
1823 *is_cwnd_limited = true;
1825 return true;
1827 send_now:
1828 return false;
1831 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1833 struct inet_connection_sock *icsk = inet_csk(sk);
1834 struct tcp_sock *tp = tcp_sk(sk);
1835 struct net *net = sock_net(sk);
1836 u32 interval;
1837 s32 delta;
1839 interval = net->ipv4.sysctl_tcp_probe_interval;
1840 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1841 if (unlikely(delta >= interval * HZ)) {
1842 int mss = tcp_current_mss(sk);
1844 /* Update current search range */
1845 icsk->icsk_mtup.probe_size = 0;
1846 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1847 sizeof(struct tcphdr) +
1848 icsk->icsk_af_ops->net_header_len;
1849 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1851 /* Update probe time stamp */
1852 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1856 /* Create a new MTU probe if we are ready.
1857 * MTU probe is regularly attempting to increase the path MTU by
1858 * deliberately sending larger packets. This discovers routing
1859 * changes resulting in larger path MTUs.
1861 * Returns 0 if we should wait to probe (no cwnd available),
1862 * 1 if a probe was sent,
1863 * -1 otherwise
1865 static int tcp_mtu_probe(struct sock *sk)
1867 struct tcp_sock *tp = tcp_sk(sk);
1868 struct inet_connection_sock *icsk = inet_csk(sk);
1869 struct sk_buff *skb, *nskb, *next;
1870 struct net *net = sock_net(sk);
1871 int len;
1872 int probe_size;
1873 int size_needed;
1874 int copy;
1875 int mss_now;
1876 int interval;
1878 /* Not currently probing/verifying,
1879 * not in recovery,
1880 * have enough cwnd, and
1881 * not SACKing (the variable headers throw things off) */
1882 if (!icsk->icsk_mtup.enabled ||
1883 icsk->icsk_mtup.probe_size ||
1884 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1885 tp->snd_cwnd < 11 ||
1886 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1887 return -1;
1889 /* Use binary search for probe_size between tcp_mss_base,
1890 * and current mss_clamp. if (search_high - search_low)
1891 * smaller than a threshold, backoff from probing.
1893 mss_now = tcp_current_mss(sk);
1894 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1895 icsk->icsk_mtup.search_low) >> 1);
1896 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1897 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1898 /* When misfortune happens, we are reprobing actively,
1899 * and then reprobe timer has expired. We stick with current
1900 * probing process by not resetting search range to its orignal.
1902 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1903 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1904 /* Check whether enough time has elaplased for
1905 * another round of probing.
1907 tcp_mtu_check_reprobe(sk);
1908 return -1;
1911 /* Have enough data in the send queue to probe? */
1912 if (tp->write_seq - tp->snd_nxt < size_needed)
1913 return -1;
1915 if (tp->snd_wnd < size_needed)
1916 return -1;
1917 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1918 return 0;
1920 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1921 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1922 if (!tcp_packets_in_flight(tp))
1923 return -1;
1924 else
1925 return 0;
1928 /* We're allowed to probe. Build it now. */
1929 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1930 if (!nskb)
1931 return -1;
1932 sk->sk_wmem_queued += nskb->truesize;
1933 sk_mem_charge(sk, nskb->truesize);
1935 skb = tcp_send_head(sk);
1937 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1938 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1939 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1940 TCP_SKB_CB(nskb)->sacked = 0;
1941 nskb->csum = 0;
1942 nskb->ip_summed = skb->ip_summed;
1944 tcp_insert_write_queue_before(nskb, skb, sk);
1946 len = 0;
1947 tcp_for_write_queue_from_safe(skb, next, sk) {
1948 copy = min_t(int, skb->len, probe_size - len);
1949 if (nskb->ip_summed)
1950 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1951 else
1952 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1953 skb_put(nskb, copy),
1954 copy, nskb->csum);
1956 if (skb->len <= copy) {
1957 /* We've eaten all the data from this skb.
1958 * Throw it away. */
1959 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1960 tcp_unlink_write_queue(skb, sk);
1961 sk_wmem_free_skb(sk, skb);
1962 } else {
1963 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1964 ~(TCPHDR_FIN|TCPHDR_PSH);
1965 if (!skb_shinfo(skb)->nr_frags) {
1966 skb_pull(skb, copy);
1967 if (skb->ip_summed != CHECKSUM_PARTIAL)
1968 skb->csum = csum_partial(skb->data,
1969 skb->len, 0);
1970 } else {
1971 __pskb_trim_head(skb, copy);
1972 tcp_set_skb_tso_segs(skb, mss_now);
1974 TCP_SKB_CB(skb)->seq += copy;
1977 len += copy;
1979 if (len >= probe_size)
1980 break;
1982 tcp_init_tso_segs(nskb, nskb->len);
1984 /* We're ready to send. If this fails, the probe will
1985 * be resegmented into mss-sized pieces by tcp_write_xmit().
1987 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1988 /* Decrement cwnd here because we are sending
1989 * effectively two packets. */
1990 tp->snd_cwnd--;
1991 tcp_event_new_data_sent(sk, nskb);
1993 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1994 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1995 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1997 return 1;
2000 return -1;
2003 /* This routine writes packets to the network. It advances the
2004 * send_head. This happens as incoming acks open up the remote
2005 * window for us.
2007 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2008 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2009 * account rare use of URG, this is not a big flaw.
2011 * Send at most one packet when push_one > 0. Temporarily ignore
2012 * cwnd limit to force at most one packet out when push_one == 2.
2014 * Returns true, if no segments are in flight and we have queued segments,
2015 * but cannot send anything now because of SWS or another problem.
2017 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2018 int push_one, gfp_t gfp)
2020 struct tcp_sock *tp = tcp_sk(sk);
2021 struct sk_buff *skb;
2022 unsigned int tso_segs, sent_pkts;
2023 int cwnd_quota;
2024 int result;
2025 bool is_cwnd_limited = false;
2026 u32 max_segs;
2028 sent_pkts = 0;
2030 if (!push_one) {
2031 /* Do MTU probing. */
2032 result = tcp_mtu_probe(sk);
2033 if (!result) {
2034 return false;
2035 } else if (result > 0) {
2036 sent_pkts = 1;
2040 max_segs = tcp_tso_autosize(sk, mss_now);
2041 while ((skb = tcp_send_head(sk))) {
2042 unsigned int limit;
2044 tso_segs = tcp_init_tso_segs(skb, mss_now);
2045 BUG_ON(!tso_segs);
2047 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2048 /* "skb_mstamp" is used as a start point for the retransmit timer */
2049 skb_mstamp_get(&skb->skb_mstamp);
2050 goto repair; /* Skip network transmission */
2053 cwnd_quota = tcp_cwnd_test(tp, skb);
2054 if (!cwnd_quota) {
2055 if (push_one == 2)
2056 /* Force out a loss probe pkt. */
2057 cwnd_quota = 1;
2058 else
2059 break;
2062 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2063 break;
2065 if (tso_segs == 1) {
2066 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2067 (tcp_skb_is_last(sk, skb) ?
2068 nonagle : TCP_NAGLE_PUSH))))
2069 break;
2070 } else {
2071 if (!push_one &&
2072 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2073 max_segs))
2074 break;
2077 limit = mss_now;
2078 if (tso_segs > 1 && !tcp_urg_mode(tp))
2079 limit = tcp_mss_split_point(sk, skb, mss_now,
2080 min_t(unsigned int,
2081 cwnd_quota,
2082 max_segs),
2083 nonagle);
2085 if (skb->len > limit &&
2086 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2087 break;
2089 /* TCP Small Queues :
2090 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2091 * This allows for :
2092 * - better RTT estimation and ACK scheduling
2093 * - faster recovery
2094 * - high rates
2095 * Alas, some drivers / subsystems require a fair amount
2096 * of queued bytes to ensure line rate.
2097 * One example is wifi aggregation (802.11 AMPDU)
2099 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2100 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2102 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2103 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2104 /* It is possible TX completion already happened
2105 * before we set TSQ_THROTTLED, so we must
2106 * test again the condition.
2108 smp_mb__after_atomic();
2109 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2110 break;
2113 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2114 break;
2116 repair:
2117 /* Advance the send_head. This one is sent out.
2118 * This call will increment packets_out.
2120 tcp_event_new_data_sent(sk, skb);
2122 tcp_minshall_update(tp, mss_now, skb);
2123 sent_pkts += tcp_skb_pcount(skb);
2125 if (push_one)
2126 break;
2129 if (likely(sent_pkts)) {
2130 if (tcp_in_cwnd_reduction(sk))
2131 tp->prr_out += sent_pkts;
2133 /* Send one loss probe per tail loss episode. */
2134 if (push_one != 2)
2135 tcp_schedule_loss_probe(sk);
2136 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2137 tcp_cwnd_validate(sk, is_cwnd_limited);
2138 return false;
2140 return !tp->packets_out && tcp_send_head(sk);
2143 bool tcp_schedule_loss_probe(struct sock *sk)
2145 struct inet_connection_sock *icsk = inet_csk(sk);
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 u32 timeout, tlp_time_stamp, rto_time_stamp;
2148 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2150 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2151 return false;
2152 /* No consecutive loss probes. */
2153 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2154 tcp_rearm_rto(sk);
2155 return false;
2157 /* Don't do any loss probe on a Fast Open connection before 3WHS
2158 * finishes.
2160 if (tp->fastopen_rsk)
2161 return false;
2163 /* TLP is only scheduled when next timer event is RTO. */
2164 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2165 return false;
2167 /* Schedule a loss probe in 2*RTT for SACK capable connections
2168 * in Open state, that are either limited by cwnd or application.
2170 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2171 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2172 return false;
2174 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2175 tcp_send_head(sk))
2176 return false;
2178 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2179 * for delayed ack when there's one outstanding packet. If no RTT
2180 * sample is available then probe after TCP_TIMEOUT_INIT.
2182 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2183 if (tp->packets_out == 1)
2184 timeout = max_t(u32, timeout,
2185 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2186 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2188 /* If RTO is shorter, just schedule TLP in its place. */
2189 tlp_time_stamp = tcp_time_stamp + timeout;
2190 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2191 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2192 s32 delta = rto_time_stamp - tcp_time_stamp;
2193 if (delta > 0)
2194 timeout = delta;
2197 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2198 TCP_RTO_MAX);
2199 return true;
2202 /* Thanks to skb fast clones, we can detect if a prior transmit of
2203 * a packet is still in a qdisc or driver queue.
2204 * In this case, there is very little point doing a retransmit !
2205 * Note: This is called from BH context only.
2207 static bool skb_still_in_host_queue(const struct sock *sk,
2208 const struct sk_buff *skb)
2210 if (unlikely(skb_fclone_busy(sk, skb))) {
2211 NET_INC_STATS_BH(sock_net(sk),
2212 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2213 return true;
2215 return false;
2218 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2219 * retransmit the last segment.
2221 void tcp_send_loss_probe(struct sock *sk)
2223 struct tcp_sock *tp = tcp_sk(sk);
2224 struct sk_buff *skb;
2225 int pcount;
2226 int mss = tcp_current_mss(sk);
2228 skb = tcp_send_head(sk);
2229 if (skb) {
2230 if (tcp_snd_wnd_test(tp, skb, mss)) {
2231 pcount = tp->packets_out;
2232 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2233 if (tp->packets_out > pcount)
2234 goto probe_sent;
2235 goto rearm_timer;
2237 skb = tcp_write_queue_prev(sk, skb);
2238 } else {
2239 skb = tcp_write_queue_tail(sk);
2242 /* At most one outstanding TLP retransmission. */
2243 if (tp->tlp_high_seq)
2244 goto rearm_timer;
2246 /* Retransmit last segment. */
2247 if (WARN_ON(!skb))
2248 goto rearm_timer;
2250 if (skb_still_in_host_queue(sk, skb))
2251 goto rearm_timer;
2253 pcount = tcp_skb_pcount(skb);
2254 if (WARN_ON(!pcount))
2255 goto rearm_timer;
2257 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2258 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2259 GFP_ATOMIC)))
2260 goto rearm_timer;
2261 skb = tcp_write_queue_next(sk, skb);
2264 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2265 goto rearm_timer;
2267 if (__tcp_retransmit_skb(sk, skb))
2268 goto rearm_timer;
2270 /* Record snd_nxt for loss detection. */
2271 tp->tlp_high_seq = tp->snd_nxt;
2273 probe_sent:
2274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2275 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2276 inet_csk(sk)->icsk_pending = 0;
2277 rearm_timer:
2278 tcp_rearm_rto(sk);
2281 /* Push out any pending frames which were held back due to
2282 * TCP_CORK or attempt at coalescing tiny packets.
2283 * The socket must be locked by the caller.
2285 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2286 int nonagle)
2288 /* If we are closed, the bytes will have to remain here.
2289 * In time closedown will finish, we empty the write queue and
2290 * all will be happy.
2292 if (unlikely(sk->sk_state == TCP_CLOSE))
2293 return;
2295 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2296 sk_gfp_mask(sk, GFP_ATOMIC)))
2297 tcp_check_probe_timer(sk);
2300 /* Send _single_ skb sitting at the send head. This function requires
2301 * true push pending frames to setup probe timer etc.
2303 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2305 struct sk_buff *skb = tcp_send_head(sk);
2307 BUG_ON(!skb || skb->len < mss_now);
2309 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2312 /* This function returns the amount that we can raise the
2313 * usable window based on the following constraints
2315 * 1. The window can never be shrunk once it is offered (RFC 793)
2316 * 2. We limit memory per socket
2318 * RFC 1122:
2319 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2320 * RECV.NEXT + RCV.WIN fixed until:
2321 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2323 * i.e. don't raise the right edge of the window until you can raise
2324 * it at least MSS bytes.
2326 * Unfortunately, the recommended algorithm breaks header prediction,
2327 * since header prediction assumes th->window stays fixed.
2329 * Strictly speaking, keeping th->window fixed violates the receiver
2330 * side SWS prevention criteria. The problem is that under this rule
2331 * a stream of single byte packets will cause the right side of the
2332 * window to always advance by a single byte.
2334 * Of course, if the sender implements sender side SWS prevention
2335 * then this will not be a problem.
2337 * BSD seems to make the following compromise:
2339 * If the free space is less than the 1/4 of the maximum
2340 * space available and the free space is less than 1/2 mss,
2341 * then set the window to 0.
2342 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2343 * Otherwise, just prevent the window from shrinking
2344 * and from being larger than the largest representable value.
2346 * This prevents incremental opening of the window in the regime
2347 * where TCP is limited by the speed of the reader side taking
2348 * data out of the TCP receive queue. It does nothing about
2349 * those cases where the window is constrained on the sender side
2350 * because the pipeline is full.
2352 * BSD also seems to "accidentally" limit itself to windows that are a
2353 * multiple of MSS, at least until the free space gets quite small.
2354 * This would appear to be a side effect of the mbuf implementation.
2355 * Combining these two algorithms results in the observed behavior
2356 * of having a fixed window size at almost all times.
2358 * Below we obtain similar behavior by forcing the offered window to
2359 * a multiple of the mss when it is feasible to do so.
2361 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2362 * Regular options like TIMESTAMP are taken into account.
2364 u32 __tcp_select_window(struct sock *sk)
2366 struct inet_connection_sock *icsk = inet_csk(sk);
2367 struct tcp_sock *tp = tcp_sk(sk);
2368 /* MSS for the peer's data. Previous versions used mss_clamp
2369 * here. I don't know if the value based on our guesses
2370 * of peer's MSS is better for the performance. It's more correct
2371 * but may be worse for the performance because of rcv_mss
2372 * fluctuations. --SAW 1998/11/1
2374 int mss = icsk->icsk_ack.rcv_mss;
2375 int free_space = tcp_space(sk);
2376 int allowed_space = tcp_full_space(sk);
2377 int full_space = min_t(int, tp->window_clamp, allowed_space);
2378 int window;
2380 if (mss > full_space)
2381 mss = full_space;
2383 if (free_space < (full_space >> 1)) {
2384 icsk->icsk_ack.quick = 0;
2386 if (tcp_under_memory_pressure(sk))
2387 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2388 4U * tp->advmss);
2390 /* free_space might become our new window, make sure we don't
2391 * increase it due to wscale.
2393 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2395 /* if free space is less than mss estimate, or is below 1/16th
2396 * of the maximum allowed, try to move to zero-window, else
2397 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2398 * new incoming data is dropped due to memory limits.
2399 * With large window, mss test triggers way too late in order
2400 * to announce zero window in time before rmem limit kicks in.
2402 if (free_space < (allowed_space >> 4) || free_space < mss)
2403 return 0;
2406 if (free_space > tp->rcv_ssthresh)
2407 free_space = tp->rcv_ssthresh;
2409 /* Don't do rounding if we are using window scaling, since the
2410 * scaled window will not line up with the MSS boundary anyway.
2412 window = tp->rcv_wnd;
2413 if (tp->rx_opt.rcv_wscale) {
2414 window = free_space;
2416 /* Advertise enough space so that it won't get scaled away.
2417 * Import case: prevent zero window announcement if
2418 * 1<<rcv_wscale > mss.
2420 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2421 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2422 << tp->rx_opt.rcv_wscale);
2423 } else {
2424 /* Get the largest window that is a nice multiple of mss.
2425 * Window clamp already applied above.
2426 * If our current window offering is within 1 mss of the
2427 * free space we just keep it. This prevents the divide
2428 * and multiply from happening most of the time.
2429 * We also don't do any window rounding when the free space
2430 * is too small.
2432 if (window <= free_space - mss || window > free_space)
2433 window = (free_space / mss) * mss;
2434 else if (mss == full_space &&
2435 free_space > window + (full_space >> 1))
2436 window = free_space;
2439 return window;
2442 /* Collapses two adjacent SKB's during retransmission. */
2443 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2445 struct tcp_sock *tp = tcp_sk(sk);
2446 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2447 int skb_size, next_skb_size;
2449 skb_size = skb->len;
2450 next_skb_size = next_skb->len;
2452 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2454 tcp_highest_sack_combine(sk, next_skb, skb);
2456 tcp_unlink_write_queue(next_skb, sk);
2458 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2459 next_skb_size);
2461 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2462 skb->ip_summed = CHECKSUM_PARTIAL;
2464 if (skb->ip_summed != CHECKSUM_PARTIAL)
2465 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2467 /* Update sequence range on original skb. */
2468 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2470 /* Merge over control information. This moves PSH/FIN etc. over */
2471 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2473 /* All done, get rid of second SKB and account for it so
2474 * packet counting does not break.
2476 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2478 /* changed transmit queue under us so clear hints */
2479 tcp_clear_retrans_hints_partial(tp);
2480 if (next_skb == tp->retransmit_skb_hint)
2481 tp->retransmit_skb_hint = skb;
2483 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2485 sk_wmem_free_skb(sk, next_skb);
2488 /* Check if coalescing SKBs is legal. */
2489 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2491 if (tcp_skb_pcount(skb) > 1)
2492 return false;
2493 /* TODO: SACK collapsing could be used to remove this condition */
2494 if (skb_shinfo(skb)->nr_frags != 0)
2495 return false;
2496 if (skb_cloned(skb))
2497 return false;
2498 if (skb == tcp_send_head(sk))
2499 return false;
2500 /* Some heurestics for collapsing over SACK'd could be invented */
2501 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2502 return false;
2504 return true;
2507 /* Collapse packets in the retransmit queue to make to create
2508 * less packets on the wire. This is only done on retransmission.
2510 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2511 int space)
2513 struct tcp_sock *tp = tcp_sk(sk);
2514 struct sk_buff *skb = to, *tmp;
2515 bool first = true;
2517 if (!sysctl_tcp_retrans_collapse)
2518 return;
2519 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2520 return;
2522 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2523 if (!tcp_can_collapse(sk, skb))
2524 break;
2526 space -= skb->len;
2528 if (first) {
2529 first = false;
2530 continue;
2533 if (space < 0)
2534 break;
2535 /* Punt if not enough space exists in the first SKB for
2536 * the data in the second
2538 if (skb->len > skb_availroom(to))
2539 break;
2541 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2542 break;
2544 tcp_collapse_retrans(sk, to);
2548 /* This retransmits one SKB. Policy decisions and retransmit queue
2549 * state updates are done by the caller. Returns non-zero if an
2550 * error occurred which prevented the send.
2552 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2554 struct tcp_sock *tp = tcp_sk(sk);
2555 struct inet_connection_sock *icsk = inet_csk(sk);
2556 unsigned int cur_mss;
2557 int err;
2559 /* Inconslusive MTU probe */
2560 if (icsk->icsk_mtup.probe_size) {
2561 icsk->icsk_mtup.probe_size = 0;
2564 /* Do not sent more than we queued. 1/4 is reserved for possible
2565 * copying overhead: fragmentation, tunneling, mangling etc.
2567 if (atomic_read(&sk->sk_wmem_alloc) >
2568 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2569 return -EAGAIN;
2571 if (skb_still_in_host_queue(sk, skb))
2572 return -EBUSY;
2574 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2575 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2576 BUG();
2577 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2578 return -ENOMEM;
2581 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2582 return -EHOSTUNREACH; /* Routing failure or similar. */
2584 cur_mss = tcp_current_mss(sk);
2586 /* If receiver has shrunk his window, and skb is out of
2587 * new window, do not retransmit it. The exception is the
2588 * case, when window is shrunk to zero. In this case
2589 * our retransmit serves as a zero window probe.
2591 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2592 TCP_SKB_CB(skb)->seq != tp->snd_una)
2593 return -EAGAIN;
2595 if (skb->len > cur_mss) {
2596 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2597 return -ENOMEM; /* We'll try again later. */
2598 } else {
2599 int oldpcount = tcp_skb_pcount(skb);
2601 if (unlikely(oldpcount > 1)) {
2602 if (skb_unclone(skb, GFP_ATOMIC))
2603 return -ENOMEM;
2604 tcp_init_tso_segs(skb, cur_mss);
2605 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2609 /* RFC3168, section 6.1.1.1. ECN fallback */
2610 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2611 tcp_ecn_clear_syn(sk, skb);
2613 tcp_retrans_try_collapse(sk, skb, cur_mss);
2615 /* Make a copy, if the first transmission SKB clone we made
2616 * is still in somebody's hands, else make a clone.
2619 /* make sure skb->data is aligned on arches that require it
2620 * and check if ack-trimming & collapsing extended the headroom
2621 * beyond what csum_start can cover.
2623 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2624 skb_headroom(skb) >= 0xFFFF)) {
2625 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2626 GFP_ATOMIC);
2627 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2628 -ENOBUFS;
2629 } else {
2630 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2633 if (likely(!err)) {
2634 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2635 /* Update global TCP statistics. */
2636 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2637 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2638 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2639 tp->total_retrans++;
2641 return err;
2644 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2646 struct tcp_sock *tp = tcp_sk(sk);
2647 int err = __tcp_retransmit_skb(sk, skb);
2649 if (err == 0) {
2650 #if FASTRETRANS_DEBUG > 0
2651 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2652 net_dbg_ratelimited("retrans_out leaked\n");
2654 #endif
2655 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2656 tp->retrans_out += tcp_skb_pcount(skb);
2658 /* Save stamp of the first retransmit. */
2659 if (!tp->retrans_stamp)
2660 tp->retrans_stamp = tcp_skb_timestamp(skb);
2662 } else if (err != -EBUSY) {
2663 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2666 if (tp->undo_retrans < 0)
2667 tp->undo_retrans = 0;
2668 tp->undo_retrans += tcp_skb_pcount(skb);
2669 return err;
2672 /* Check if we forward retransmits are possible in the current
2673 * window/congestion state.
2675 static bool tcp_can_forward_retransmit(struct sock *sk)
2677 const struct inet_connection_sock *icsk = inet_csk(sk);
2678 const struct tcp_sock *tp = tcp_sk(sk);
2680 /* Forward retransmissions are possible only during Recovery. */
2681 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2682 return false;
2684 /* No forward retransmissions in Reno are possible. */
2685 if (tcp_is_reno(tp))
2686 return false;
2688 /* Yeah, we have to make difficult choice between forward transmission
2689 * and retransmission... Both ways have their merits...
2691 * For now we do not retransmit anything, while we have some new
2692 * segments to send. In the other cases, follow rule 3 for
2693 * NextSeg() specified in RFC3517.
2696 if (tcp_may_send_now(sk))
2697 return false;
2699 return true;
2702 /* This gets called after a retransmit timeout, and the initially
2703 * retransmitted data is acknowledged. It tries to continue
2704 * resending the rest of the retransmit queue, until either
2705 * we've sent it all or the congestion window limit is reached.
2706 * If doing SACK, the first ACK which comes back for a timeout
2707 * based retransmit packet might feed us FACK information again.
2708 * If so, we use it to avoid unnecessarily retransmissions.
2710 void tcp_xmit_retransmit_queue(struct sock *sk)
2712 const struct inet_connection_sock *icsk = inet_csk(sk);
2713 struct tcp_sock *tp = tcp_sk(sk);
2714 struct sk_buff *skb;
2715 struct sk_buff *hole = NULL;
2716 u32 last_lost;
2717 int mib_idx;
2718 int fwd_rexmitting = 0;
2720 if (!tp->packets_out)
2721 return;
2723 if (!tp->lost_out)
2724 tp->retransmit_high = tp->snd_una;
2726 if (tp->retransmit_skb_hint) {
2727 skb = tp->retransmit_skb_hint;
2728 last_lost = TCP_SKB_CB(skb)->end_seq;
2729 if (after(last_lost, tp->retransmit_high))
2730 last_lost = tp->retransmit_high;
2731 } else {
2732 skb = tcp_write_queue_head(sk);
2733 last_lost = tp->snd_una;
2736 tcp_for_write_queue_from(skb, sk) {
2737 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2739 if (skb == tcp_send_head(sk))
2740 break;
2741 /* we could do better than to assign each time */
2742 if (!hole)
2743 tp->retransmit_skb_hint = skb;
2745 /* Assume this retransmit will generate
2746 * only one packet for congestion window
2747 * calculation purposes. This works because
2748 * tcp_retransmit_skb() will chop up the
2749 * packet to be MSS sized and all the
2750 * packet counting works out.
2752 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2753 return;
2755 if (fwd_rexmitting) {
2756 begin_fwd:
2757 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2758 break;
2759 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2761 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2762 tp->retransmit_high = last_lost;
2763 if (!tcp_can_forward_retransmit(sk))
2764 break;
2765 /* Backtrack if necessary to non-L'ed skb */
2766 if (hole) {
2767 skb = hole;
2768 hole = NULL;
2770 fwd_rexmitting = 1;
2771 goto begin_fwd;
2773 } else if (!(sacked & TCPCB_LOST)) {
2774 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2775 hole = skb;
2776 continue;
2778 } else {
2779 last_lost = TCP_SKB_CB(skb)->end_seq;
2780 if (icsk->icsk_ca_state != TCP_CA_Loss)
2781 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2782 else
2783 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2786 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2787 continue;
2789 if (tcp_retransmit_skb(sk, skb))
2790 return;
2792 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2794 if (tcp_in_cwnd_reduction(sk))
2795 tp->prr_out += tcp_skb_pcount(skb);
2797 if (skb == tcp_write_queue_head(sk))
2798 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2799 inet_csk(sk)->icsk_rto,
2800 TCP_RTO_MAX);
2804 /* We allow to exceed memory limits for FIN packets to expedite
2805 * connection tear down and (memory) recovery.
2806 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2807 * or even be forced to close flow without any FIN.
2808 * In general, we want to allow one skb per socket to avoid hangs
2809 * with edge trigger epoll()
2811 void sk_forced_mem_schedule(struct sock *sk, int size)
2813 int amt;
2815 if (size <= sk->sk_forward_alloc)
2816 return;
2817 amt = sk_mem_pages(size);
2818 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2819 sk_memory_allocated_add(sk, amt);
2821 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2822 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2825 /* Send a FIN. The caller locks the socket for us.
2826 * We should try to send a FIN packet really hard, but eventually give up.
2828 void tcp_send_fin(struct sock *sk)
2830 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2831 struct tcp_sock *tp = tcp_sk(sk);
2833 /* Optimization, tack on the FIN if we have one skb in write queue and
2834 * this skb was not yet sent, or we are under memory pressure.
2835 * Note: in the latter case, FIN packet will be sent after a timeout,
2836 * as TCP stack thinks it has already been transmitted.
2838 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2839 coalesce:
2840 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2841 TCP_SKB_CB(tskb)->end_seq++;
2842 tp->write_seq++;
2843 if (!tcp_send_head(sk)) {
2844 /* This means tskb was already sent.
2845 * Pretend we included the FIN on previous transmit.
2846 * We need to set tp->snd_nxt to the value it would have
2847 * if FIN had been sent. This is because retransmit path
2848 * does not change tp->snd_nxt.
2850 tp->snd_nxt++;
2851 return;
2853 } else {
2854 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2855 if (unlikely(!skb)) {
2856 if (tskb)
2857 goto coalesce;
2858 return;
2860 skb_reserve(skb, MAX_TCP_HEADER);
2861 sk_forced_mem_schedule(sk, skb->truesize);
2862 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2863 tcp_init_nondata_skb(skb, tp->write_seq,
2864 TCPHDR_ACK | TCPHDR_FIN);
2865 tcp_queue_skb(sk, skb);
2867 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2870 /* We get here when a process closes a file descriptor (either due to
2871 * an explicit close() or as a byproduct of exit()'ing) and there
2872 * was unread data in the receive queue. This behavior is recommended
2873 * by RFC 2525, section 2.17. -DaveM
2875 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2877 struct sk_buff *skb;
2879 /* NOTE: No TCP options attached and we never retransmit this. */
2880 skb = alloc_skb(MAX_TCP_HEADER, priority);
2881 if (!skb) {
2882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2883 return;
2886 /* Reserve space for headers and prepare control bits. */
2887 skb_reserve(skb, MAX_TCP_HEADER);
2888 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2889 TCPHDR_ACK | TCPHDR_RST);
2890 skb_mstamp_get(&skb->skb_mstamp);
2891 /* Send it off. */
2892 if (tcp_transmit_skb(sk, skb, 0, priority))
2893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2895 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2898 /* Send a crossed SYN-ACK during socket establishment.
2899 * WARNING: This routine must only be called when we have already sent
2900 * a SYN packet that crossed the incoming SYN that caused this routine
2901 * to get called. If this assumption fails then the initial rcv_wnd
2902 * and rcv_wscale values will not be correct.
2904 int tcp_send_synack(struct sock *sk)
2906 struct sk_buff *skb;
2908 skb = tcp_write_queue_head(sk);
2909 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2910 pr_debug("%s: wrong queue state\n", __func__);
2911 return -EFAULT;
2913 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2914 if (skb_cloned(skb)) {
2915 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2916 if (!nskb)
2917 return -ENOMEM;
2918 tcp_unlink_write_queue(skb, sk);
2919 __skb_header_release(nskb);
2920 __tcp_add_write_queue_head(sk, nskb);
2921 sk_wmem_free_skb(sk, skb);
2922 sk->sk_wmem_queued += nskb->truesize;
2923 sk_mem_charge(sk, nskb->truesize);
2924 skb = nskb;
2927 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2928 tcp_ecn_send_synack(sk, skb);
2930 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2934 * tcp_make_synack - Prepare a SYN-ACK.
2935 * sk: listener socket
2936 * dst: dst entry attached to the SYNACK
2937 * req: request_sock pointer
2939 * Allocate one skb and build a SYNACK packet.
2940 * @dst is consumed : Caller should not use it again.
2942 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2943 struct request_sock *req,
2944 struct tcp_fastopen_cookie *foc,
2945 bool attach_req)
2947 struct inet_request_sock *ireq = inet_rsk(req);
2948 const struct tcp_sock *tp = tcp_sk(sk);
2949 struct tcp_md5sig_key *md5 = NULL;
2950 struct tcp_out_options opts;
2951 struct sk_buff *skb;
2952 int tcp_header_size;
2953 struct tcphdr *th;
2954 u16 user_mss;
2955 int mss;
2957 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2958 if (unlikely(!skb)) {
2959 dst_release(dst);
2960 return NULL;
2962 /* Reserve space for headers. */
2963 skb_reserve(skb, MAX_TCP_HEADER);
2965 if (attach_req) {
2966 skb_set_owner_w(skb, req_to_sk(req));
2967 } else {
2968 /* sk is a const pointer, because we want to express multiple
2969 * cpu might call us concurrently.
2970 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2972 skb_set_owner_w(skb, (struct sock *)sk);
2974 skb_dst_set(skb, dst);
2976 mss = dst_metric_advmss(dst);
2977 user_mss = READ_ONCE(tp->rx_opt.user_mss);
2978 if (user_mss && user_mss < mss)
2979 mss = user_mss;
2981 memset(&opts, 0, sizeof(opts));
2982 #ifdef CONFIG_SYN_COOKIES
2983 if (unlikely(req->cookie_ts))
2984 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2985 else
2986 #endif
2987 skb_mstamp_get(&skb->skb_mstamp);
2989 #ifdef CONFIG_TCP_MD5SIG
2990 rcu_read_lock();
2991 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
2992 #endif
2993 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
2994 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
2995 sizeof(*th);
2997 skb_push(skb, tcp_header_size);
2998 skb_reset_transport_header(skb);
3000 th = tcp_hdr(skb);
3001 memset(th, 0, sizeof(struct tcphdr));
3002 th->syn = 1;
3003 th->ack = 1;
3004 tcp_ecn_make_synack(req, th);
3005 th->source = htons(ireq->ir_num);
3006 th->dest = ireq->ir_rmt_port;
3007 /* Setting of flags are superfluous here for callers (and ECE is
3008 * not even correctly set)
3010 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3011 TCPHDR_SYN | TCPHDR_ACK);
3013 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3014 /* XXX data is queued and acked as is. No buffer/window check */
3015 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3017 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3018 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3019 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3020 th->doff = (tcp_header_size >> 2);
3021 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3023 #ifdef CONFIG_TCP_MD5SIG
3024 /* Okay, we have all we need - do the md5 hash if needed */
3025 if (md5)
3026 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3027 md5, req_to_sk(req), skb);
3028 rcu_read_unlock();
3029 #endif
3031 /* Do not fool tcpdump (if any), clean our debris */
3032 skb->tstamp.tv64 = 0;
3033 return skb;
3035 EXPORT_SYMBOL(tcp_make_synack);
3037 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3039 struct inet_connection_sock *icsk = inet_csk(sk);
3040 const struct tcp_congestion_ops *ca;
3041 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3043 if (ca_key == TCP_CA_UNSPEC)
3044 return;
3046 rcu_read_lock();
3047 ca = tcp_ca_find_key(ca_key);
3048 if (likely(ca && try_module_get(ca->owner))) {
3049 module_put(icsk->icsk_ca_ops->owner);
3050 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3051 icsk->icsk_ca_ops = ca;
3053 rcu_read_unlock();
3056 /* Do all connect socket setups that can be done AF independent. */
3057 static void tcp_connect_init(struct sock *sk)
3059 const struct dst_entry *dst = __sk_dst_get(sk);
3060 struct tcp_sock *tp = tcp_sk(sk);
3061 __u8 rcv_wscale;
3063 /* We'll fix this up when we get a response from the other end.
3064 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3066 tp->tcp_header_len = sizeof(struct tcphdr) +
3067 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3069 #ifdef CONFIG_TCP_MD5SIG
3070 if (tp->af_specific->md5_lookup(sk, sk))
3071 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3072 #endif
3074 /* If user gave his TCP_MAXSEG, record it to clamp */
3075 if (tp->rx_opt.user_mss)
3076 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3077 tp->max_window = 0;
3078 tcp_mtup_init(sk);
3079 tcp_sync_mss(sk, dst_mtu(dst));
3081 tcp_ca_dst_init(sk, dst);
3083 if (!tp->window_clamp)
3084 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3085 tp->advmss = dst_metric_advmss(dst);
3086 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3087 tp->advmss = tp->rx_opt.user_mss;
3089 tcp_initialize_rcv_mss(sk);
3091 /* limit the window selection if the user enforce a smaller rx buffer */
3092 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3093 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3094 tp->window_clamp = tcp_full_space(sk);
3096 tcp_select_initial_window(tcp_full_space(sk),
3097 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3098 &tp->rcv_wnd,
3099 &tp->window_clamp,
3100 sysctl_tcp_window_scaling,
3101 &rcv_wscale,
3102 dst_metric(dst, RTAX_INITRWND));
3104 tp->rx_opt.rcv_wscale = rcv_wscale;
3105 tp->rcv_ssthresh = tp->rcv_wnd;
3107 sk->sk_err = 0;
3108 sock_reset_flag(sk, SOCK_DONE);
3109 tp->snd_wnd = 0;
3110 tcp_init_wl(tp, 0);
3111 tp->snd_una = tp->write_seq;
3112 tp->snd_sml = tp->write_seq;
3113 tp->snd_up = tp->write_seq;
3114 tp->snd_nxt = tp->write_seq;
3116 if (likely(!tp->repair))
3117 tp->rcv_nxt = 0;
3118 else
3119 tp->rcv_tstamp = tcp_time_stamp;
3120 tp->rcv_wup = tp->rcv_nxt;
3121 tp->copied_seq = tp->rcv_nxt;
3123 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3124 inet_csk(sk)->icsk_retransmits = 0;
3125 tcp_clear_retrans(tp);
3128 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3130 struct tcp_sock *tp = tcp_sk(sk);
3131 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3133 tcb->end_seq += skb->len;
3134 __skb_header_release(skb);
3135 __tcp_add_write_queue_tail(sk, skb);
3136 sk->sk_wmem_queued += skb->truesize;
3137 sk_mem_charge(sk, skb->truesize);
3138 tp->write_seq = tcb->end_seq;
3139 tp->packets_out += tcp_skb_pcount(skb);
3142 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3143 * queue a data-only packet after the regular SYN, such that regular SYNs
3144 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3145 * only the SYN sequence, the data are retransmitted in the first ACK.
3146 * If cookie is not cached or other error occurs, falls back to send a
3147 * regular SYN with Fast Open cookie request option.
3149 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3151 struct tcp_sock *tp = tcp_sk(sk);
3152 struct tcp_fastopen_request *fo = tp->fastopen_req;
3153 int syn_loss = 0, space, err = 0;
3154 unsigned long last_syn_loss = 0;
3155 struct sk_buff *syn_data;
3157 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3158 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3159 &syn_loss, &last_syn_loss);
3160 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3161 if (syn_loss > 1 &&
3162 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3163 fo->cookie.len = -1;
3164 goto fallback;
3167 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3168 fo->cookie.len = -1;
3169 else if (fo->cookie.len <= 0)
3170 goto fallback;
3172 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3173 * user-MSS. Reserve maximum option space for middleboxes that add
3174 * private TCP options. The cost is reduced data space in SYN :(
3176 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3177 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3178 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3179 MAX_TCP_OPTION_SPACE;
3181 space = min_t(size_t, space, fo->size);
3183 /* limit to order-0 allocations */
3184 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3186 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3187 if (!syn_data)
3188 goto fallback;
3189 syn_data->ip_summed = CHECKSUM_PARTIAL;
3190 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3191 if (space) {
3192 int copied = copy_from_iter(skb_put(syn_data, space), space,
3193 &fo->data->msg_iter);
3194 if (unlikely(!copied)) {
3195 kfree_skb(syn_data);
3196 goto fallback;
3198 if (copied != space) {
3199 skb_trim(syn_data, copied);
3200 space = copied;
3203 /* No more data pending in inet_wait_for_connect() */
3204 if (space == fo->size)
3205 fo->data = NULL;
3206 fo->copied = space;
3208 tcp_connect_queue_skb(sk, syn_data);
3210 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3212 syn->skb_mstamp = syn_data->skb_mstamp;
3214 /* Now full SYN+DATA was cloned and sent (or not),
3215 * remove the SYN from the original skb (syn_data)
3216 * we keep in write queue in case of a retransmit, as we
3217 * also have the SYN packet (with no data) in the same queue.
3219 TCP_SKB_CB(syn_data)->seq++;
3220 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3221 if (!err) {
3222 tp->syn_data = (fo->copied > 0);
3223 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3224 goto done;
3227 fallback:
3228 /* Send a regular SYN with Fast Open cookie request option */
3229 if (fo->cookie.len > 0)
3230 fo->cookie.len = 0;
3231 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3232 if (err)
3233 tp->syn_fastopen = 0;
3234 done:
3235 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3236 return err;
3239 /* Build a SYN and send it off. */
3240 int tcp_connect(struct sock *sk)
3242 struct tcp_sock *tp = tcp_sk(sk);
3243 struct sk_buff *buff;
3244 int err;
3246 tcp_connect_init(sk);
3248 if (unlikely(tp->repair)) {
3249 tcp_finish_connect(sk, NULL);
3250 return 0;
3253 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3254 if (unlikely(!buff))
3255 return -ENOBUFS;
3257 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3258 tp->retrans_stamp = tcp_time_stamp;
3259 tcp_connect_queue_skb(sk, buff);
3260 tcp_ecn_send_syn(sk, buff);
3262 /* Send off SYN; include data in Fast Open. */
3263 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3264 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3265 if (err == -ECONNREFUSED)
3266 return err;
3268 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3269 * in order to make this packet get counted in tcpOutSegs.
3271 tp->snd_nxt = tp->write_seq;
3272 tp->pushed_seq = tp->write_seq;
3273 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3275 /* Timer for repeating the SYN until an answer. */
3276 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3277 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3278 return 0;
3280 EXPORT_SYMBOL(tcp_connect);
3282 /* Send out a delayed ack, the caller does the policy checking
3283 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3284 * for details.
3286 void tcp_send_delayed_ack(struct sock *sk)
3288 struct inet_connection_sock *icsk = inet_csk(sk);
3289 int ato = icsk->icsk_ack.ato;
3290 unsigned long timeout;
3292 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3294 if (ato > TCP_DELACK_MIN) {
3295 const struct tcp_sock *tp = tcp_sk(sk);
3296 int max_ato = HZ / 2;
3298 if (icsk->icsk_ack.pingpong ||
3299 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3300 max_ato = TCP_DELACK_MAX;
3302 /* Slow path, intersegment interval is "high". */
3304 /* If some rtt estimate is known, use it to bound delayed ack.
3305 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3306 * directly.
3308 if (tp->srtt_us) {
3309 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3310 TCP_DELACK_MIN);
3312 if (rtt < max_ato)
3313 max_ato = rtt;
3316 ato = min(ato, max_ato);
3319 /* Stay within the limit we were given */
3320 timeout = jiffies + ato;
3322 /* Use new timeout only if there wasn't a older one earlier. */
3323 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3324 /* If delack timer was blocked or is about to expire,
3325 * send ACK now.
3327 if (icsk->icsk_ack.blocked ||
3328 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3329 tcp_send_ack(sk);
3330 return;
3333 if (!time_before(timeout, icsk->icsk_ack.timeout))
3334 timeout = icsk->icsk_ack.timeout;
3336 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3337 icsk->icsk_ack.timeout = timeout;
3338 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3341 /* This routine sends an ack and also updates the window. */
3342 void tcp_send_ack(struct sock *sk)
3344 struct sk_buff *buff;
3346 /* If we have been reset, we may not send again. */
3347 if (sk->sk_state == TCP_CLOSE)
3348 return;
3350 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3352 /* We are not putting this on the write queue, so
3353 * tcp_transmit_skb() will set the ownership to this
3354 * sock.
3356 buff = alloc_skb(MAX_TCP_HEADER,
3357 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3358 if (unlikely(!buff)) {
3359 inet_csk_schedule_ack(sk);
3360 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3361 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3362 TCP_DELACK_MAX, TCP_RTO_MAX);
3363 return;
3366 /* Reserve space for headers and prepare control bits. */
3367 skb_reserve(buff, MAX_TCP_HEADER);
3368 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3370 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3371 * too much.
3372 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3373 * We also avoid tcp_wfree() overhead (cache line miss accessing
3374 * tp->tsq_flags) by using regular sock_wfree()
3376 skb_set_tcp_pure_ack(buff);
3378 /* Send it off, this clears delayed acks for us. */
3379 skb_mstamp_get(&buff->skb_mstamp);
3380 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3382 EXPORT_SYMBOL_GPL(tcp_send_ack);
3384 /* This routine sends a packet with an out of date sequence
3385 * number. It assumes the other end will try to ack it.
3387 * Question: what should we make while urgent mode?
3388 * 4.4BSD forces sending single byte of data. We cannot send
3389 * out of window data, because we have SND.NXT==SND.MAX...
3391 * Current solution: to send TWO zero-length segments in urgent mode:
3392 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3393 * out-of-date with SND.UNA-1 to probe window.
3395 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3397 struct tcp_sock *tp = tcp_sk(sk);
3398 struct sk_buff *skb;
3400 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3401 skb = alloc_skb(MAX_TCP_HEADER,
3402 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3403 if (!skb)
3404 return -1;
3406 /* Reserve space for headers and set control bits. */
3407 skb_reserve(skb, MAX_TCP_HEADER);
3408 /* Use a previous sequence. This should cause the other
3409 * end to send an ack. Don't queue or clone SKB, just
3410 * send it.
3412 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3413 skb_mstamp_get(&skb->skb_mstamp);
3414 NET_INC_STATS(sock_net(sk), mib);
3415 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3418 void tcp_send_window_probe(struct sock *sk)
3420 if (sk->sk_state == TCP_ESTABLISHED) {
3421 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3422 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3426 /* Initiate keepalive or window probe from timer. */
3427 int tcp_write_wakeup(struct sock *sk, int mib)
3429 struct tcp_sock *tp = tcp_sk(sk);
3430 struct sk_buff *skb;
3432 if (sk->sk_state == TCP_CLOSE)
3433 return -1;
3435 skb = tcp_send_head(sk);
3436 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3437 int err;
3438 unsigned int mss = tcp_current_mss(sk);
3439 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3441 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3442 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3444 /* We are probing the opening of a window
3445 * but the window size is != 0
3446 * must have been a result SWS avoidance ( sender )
3448 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3449 skb->len > mss) {
3450 seg_size = min(seg_size, mss);
3451 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3452 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3453 return -1;
3454 } else if (!tcp_skb_pcount(skb))
3455 tcp_set_skb_tso_segs(skb, mss);
3457 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3458 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3459 if (!err)
3460 tcp_event_new_data_sent(sk, skb);
3461 return err;
3462 } else {
3463 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3464 tcp_xmit_probe_skb(sk, 1, mib);
3465 return tcp_xmit_probe_skb(sk, 0, mib);
3469 /* A window probe timeout has occurred. If window is not closed send
3470 * a partial packet else a zero probe.
3472 void tcp_send_probe0(struct sock *sk)
3474 struct inet_connection_sock *icsk = inet_csk(sk);
3475 struct tcp_sock *tp = tcp_sk(sk);
3476 struct net *net = sock_net(sk);
3477 unsigned long probe_max;
3478 int err;
3480 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3482 if (tp->packets_out || !tcp_send_head(sk)) {
3483 /* Cancel probe timer, if it is not required. */
3484 icsk->icsk_probes_out = 0;
3485 icsk->icsk_backoff = 0;
3486 return;
3489 if (err <= 0) {
3490 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3491 icsk->icsk_backoff++;
3492 icsk->icsk_probes_out++;
3493 probe_max = TCP_RTO_MAX;
3494 } else {
3495 /* If packet was not sent due to local congestion,
3496 * do not backoff and do not remember icsk_probes_out.
3497 * Let local senders to fight for local resources.
3499 * Use accumulated backoff yet.
3501 if (!icsk->icsk_probes_out)
3502 icsk->icsk_probes_out = 1;
3503 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3505 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3506 tcp_probe0_when(sk, probe_max),
3507 TCP_RTO_MAX);
3510 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3512 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3513 struct flowi fl;
3514 int res;
3516 tcp_rsk(req)->txhash = net_tx_rndhash();
3517 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
3518 if (!res) {
3519 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3520 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3522 return res;
3524 EXPORT_SYMBOL(tcp_rtx_synack);