lan78xx: add ethtool set & get pause functions
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp.c
blobf9faadb4248552430887a5214b6cdc420c8596fb
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 int sysctl_tcp_autocorking __read_mostly = 1;
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
304 * Current number of TCP sockets.
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
310 * TCP splice context
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
327 void tcp_enter_memory_pressure(struct sock *sk)
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 u8 res = 0;
341 if (seconds > 0) {
342 int period = timeout;
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
353 return res;
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 int period = 0;
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
370 return period;
373 /* Address-family independent initialization for a tcp_sock.
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
378 void tcp_init_sock(struct sock *sk)
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
383 __skb_queue_head_init(&tp->out_of_order_queue);
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 tp->rtt_min[0].rtt = ~0U;
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
397 tp->snd_cwnd = TCP_INIT_CWND;
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
411 tp->tsoffset = 0;
413 sk->sk_state = TCP_CLOSE;
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418 icsk->icsk_sync_mss = tcp_sync_mss;
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423 local_bh_disable();
424 if (mem_cgroup_sockets_enabled)
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
427 local_bh_enable();
429 EXPORT_SYMBOL(tcp_init_sock);
431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
433 if (sk->sk_tsflags) {
434 struct skb_shared_info *shinfo = skb_shinfo(skb);
436 sock_tx_timestamp(sk, &shinfo->tx_flags);
437 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
438 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
443 * Wait for a TCP event.
445 * Note that we don't need to lock the socket, as the upper poll layers
446 * take care of normal races (between the test and the event) and we don't
447 * go look at any of the socket buffers directly.
449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
451 unsigned int mask;
452 struct sock *sk = sock->sk;
453 const struct tcp_sock *tp = tcp_sk(sk);
454 int state;
456 sock_rps_record_flow(sk);
458 sock_poll_wait(file, sk_sleep(sk), wait);
460 state = sk_state_load(sk);
461 if (state == TCP_LISTEN)
462 return inet_csk_listen_poll(sk);
464 /* Socket is not locked. We are protected from async events
465 * by poll logic and correct handling of state changes
466 * made by other threads is impossible in any case.
469 mask = 0;
472 * POLLHUP is certainly not done right. But poll() doesn't
473 * have a notion of HUP in just one direction, and for a
474 * socket the read side is more interesting.
476 * Some poll() documentation says that POLLHUP is incompatible
477 * with the POLLOUT/POLLWR flags, so somebody should check this
478 * all. But careful, it tends to be safer to return too many
479 * bits than too few, and you can easily break real applications
480 * if you don't tell them that something has hung up!
482 * Check-me.
484 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
485 * our fs/select.c). It means that after we received EOF,
486 * poll always returns immediately, making impossible poll() on write()
487 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
488 * if and only if shutdown has been made in both directions.
489 * Actually, it is interesting to look how Solaris and DUX
490 * solve this dilemma. I would prefer, if POLLHUP were maskable,
491 * then we could set it on SND_SHUTDOWN. BTW examples given
492 * in Stevens' books assume exactly this behaviour, it explains
493 * why POLLHUP is incompatible with POLLOUT. --ANK
495 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
496 * blocking on fresh not-connected or disconnected socket. --ANK
498 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
499 mask |= POLLHUP;
500 if (sk->sk_shutdown & RCV_SHUTDOWN)
501 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
503 /* Connected or passive Fast Open socket? */
504 if (state != TCP_SYN_SENT &&
505 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
506 int target = sock_rcvlowat(sk, 0, INT_MAX);
508 if (tp->urg_seq == tp->copied_seq &&
509 !sock_flag(sk, SOCK_URGINLINE) &&
510 tp->urg_data)
511 target++;
513 if (tp->rcv_nxt - tp->copied_seq >= target)
514 mask |= POLLIN | POLLRDNORM;
516 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
517 if (sk_stream_is_writeable(sk)) {
518 mask |= POLLOUT | POLLWRNORM;
519 } else { /* send SIGIO later */
520 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
521 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
523 /* Race breaker. If space is freed after
524 * wspace test but before the flags are set,
525 * IO signal will be lost. Memory barrier
526 * pairs with the input side.
528 smp_mb__after_atomic();
529 if (sk_stream_is_writeable(sk))
530 mask |= POLLOUT | POLLWRNORM;
532 } else
533 mask |= POLLOUT | POLLWRNORM;
535 if (tp->urg_data & TCP_URG_VALID)
536 mask |= POLLPRI;
538 /* This barrier is coupled with smp_wmb() in tcp_reset() */
539 smp_rmb();
540 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 mask |= POLLERR;
543 return mask;
545 EXPORT_SYMBOL(tcp_poll);
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
549 struct tcp_sock *tp = tcp_sk(sk);
550 int answ;
551 bool slow;
553 switch (cmd) {
554 case SIOCINQ:
555 if (sk->sk_state == TCP_LISTEN)
556 return -EINVAL;
558 slow = lock_sock_fast(sk);
559 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
560 answ = 0;
561 else if (sock_flag(sk, SOCK_URGINLINE) ||
562 !tp->urg_data ||
563 before(tp->urg_seq, tp->copied_seq) ||
564 !before(tp->urg_seq, tp->rcv_nxt)) {
566 answ = tp->rcv_nxt - tp->copied_seq;
568 /* Subtract 1, if FIN was received */
569 if (answ && sock_flag(sk, SOCK_DONE))
570 answ--;
571 } else
572 answ = tp->urg_seq - tp->copied_seq;
573 unlock_sock_fast(sk, slow);
574 break;
575 case SIOCATMARK:
576 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
577 break;
578 case SIOCOUTQ:
579 if (sk->sk_state == TCP_LISTEN)
580 return -EINVAL;
582 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 answ = 0;
584 else
585 answ = tp->write_seq - tp->snd_una;
586 break;
587 case SIOCOUTQNSD:
588 if (sk->sk_state == TCP_LISTEN)
589 return -EINVAL;
591 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
592 answ = 0;
593 else
594 answ = tp->write_seq - tp->snd_nxt;
595 break;
596 default:
597 return -ENOIOCTLCMD;
600 return put_user(answ, (int __user *)arg);
602 EXPORT_SYMBOL(tcp_ioctl);
604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
606 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
607 tp->pushed_seq = tp->write_seq;
610 static inline bool forced_push(const struct tcp_sock *tp)
612 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
615 static void skb_entail(struct sock *sk, struct sk_buff *skb)
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
620 skb->csum = 0;
621 tcb->seq = tcb->end_seq = tp->write_seq;
622 tcb->tcp_flags = TCPHDR_ACK;
623 tcb->sacked = 0;
624 __skb_header_release(skb);
625 tcp_add_write_queue_tail(sk, skb);
626 sk->sk_wmem_queued += skb->truesize;
627 sk_mem_charge(sk, skb->truesize);
628 if (tp->nonagle & TCP_NAGLE_PUSH)
629 tp->nonagle &= ~TCP_NAGLE_PUSH;
631 tcp_slow_start_after_idle_check(sk);
634 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
636 if (flags & MSG_OOB)
637 tp->snd_up = tp->write_seq;
640 /* If a not yet filled skb is pushed, do not send it if
641 * we have data packets in Qdisc or NIC queues :
642 * Because TX completion will happen shortly, it gives a chance
643 * to coalesce future sendmsg() payload into this skb, without
644 * need for a timer, and with no latency trade off.
645 * As packets containing data payload have a bigger truesize
646 * than pure acks (dataless) packets, the last checks prevent
647 * autocorking if we only have an ACK in Qdisc/NIC queues,
648 * or if TX completion was delayed after we processed ACK packet.
650 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
651 int size_goal)
653 return skb->len < size_goal &&
654 sysctl_tcp_autocorking &&
655 skb != tcp_write_queue_head(sk) &&
656 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
659 static void tcp_push(struct sock *sk, int flags, int mss_now,
660 int nonagle, int size_goal)
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct sk_buff *skb;
665 if (!tcp_send_head(sk))
666 return;
668 skb = tcp_write_queue_tail(sk);
669 if (!(flags & MSG_MORE) || forced_push(tp))
670 tcp_mark_push(tp, skb);
672 tcp_mark_urg(tp, flags);
674 if (tcp_should_autocork(sk, skb, size_goal)) {
676 /* avoid atomic op if TSQ_THROTTLED bit is already set */
677 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
678 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
679 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
681 /* It is possible TX completion already happened
682 * before we set TSQ_THROTTLED.
684 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
685 return;
688 if (flags & MSG_MORE)
689 nonagle = TCP_NAGLE_CORK;
691 __tcp_push_pending_frames(sk, mss_now, nonagle);
694 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
695 unsigned int offset, size_t len)
697 struct tcp_splice_state *tss = rd_desc->arg.data;
698 int ret;
700 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
701 min(rd_desc->count, len), tss->flags,
702 skb_socket_splice);
703 if (ret > 0)
704 rd_desc->count -= ret;
705 return ret;
708 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
710 /* Store TCP splice context information in read_descriptor_t. */
711 read_descriptor_t rd_desc = {
712 .arg.data = tss,
713 .count = tss->len,
716 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
720 * tcp_splice_read - splice data from TCP socket to a pipe
721 * @sock: socket to splice from
722 * @ppos: position (not valid)
723 * @pipe: pipe to splice to
724 * @len: number of bytes to splice
725 * @flags: splice modifier flags
727 * Description:
728 * Will read pages from given socket and fill them into a pipe.
731 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
732 struct pipe_inode_info *pipe, size_t len,
733 unsigned int flags)
735 struct sock *sk = sock->sk;
736 struct tcp_splice_state tss = {
737 .pipe = pipe,
738 .len = len,
739 .flags = flags,
741 long timeo;
742 ssize_t spliced;
743 int ret;
745 sock_rps_record_flow(sk);
747 * We can't seek on a socket input
749 if (unlikely(*ppos))
750 return -ESPIPE;
752 ret = spliced = 0;
754 lock_sock(sk);
756 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
757 while (tss.len) {
758 ret = __tcp_splice_read(sk, &tss);
759 if (ret < 0)
760 break;
761 else if (!ret) {
762 if (spliced)
763 break;
764 if (sock_flag(sk, SOCK_DONE))
765 break;
766 if (sk->sk_err) {
767 ret = sock_error(sk);
768 break;
770 if (sk->sk_shutdown & RCV_SHUTDOWN)
771 break;
772 if (sk->sk_state == TCP_CLOSE) {
774 * This occurs when user tries to read
775 * from never connected socket.
777 if (!sock_flag(sk, SOCK_DONE))
778 ret = -ENOTCONN;
779 break;
781 if (!timeo) {
782 ret = -EAGAIN;
783 break;
785 sk_wait_data(sk, &timeo, NULL);
786 if (signal_pending(current)) {
787 ret = sock_intr_errno(timeo);
788 break;
790 continue;
792 tss.len -= ret;
793 spliced += ret;
795 if (!timeo)
796 break;
797 release_sock(sk);
798 lock_sock(sk);
800 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
801 (sk->sk_shutdown & RCV_SHUTDOWN) ||
802 signal_pending(current))
803 break;
806 release_sock(sk);
808 if (spliced)
809 return spliced;
811 return ret;
813 EXPORT_SYMBOL(tcp_splice_read);
815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
816 bool force_schedule)
818 struct sk_buff *skb;
820 /* The TCP header must be at least 32-bit aligned. */
821 size = ALIGN(size, 4);
823 if (unlikely(tcp_under_memory_pressure(sk)))
824 sk_mem_reclaim_partial(sk);
826 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
827 if (likely(skb)) {
828 bool mem_scheduled;
830 if (force_schedule) {
831 mem_scheduled = true;
832 sk_forced_mem_schedule(sk, skb->truesize);
833 } else {
834 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
836 if (likely(mem_scheduled)) {
837 skb_reserve(skb, sk->sk_prot->max_header);
839 * Make sure that we have exactly size bytes
840 * available to the caller, no more, no less.
842 skb->reserved_tailroom = skb->end - skb->tail - size;
843 return skb;
845 __kfree_skb(skb);
846 } else {
847 sk->sk_prot->enter_memory_pressure(sk);
848 sk_stream_moderate_sndbuf(sk);
850 return NULL;
853 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
854 int large_allowed)
856 struct tcp_sock *tp = tcp_sk(sk);
857 u32 new_size_goal, size_goal;
859 if (!large_allowed || !sk_can_gso(sk))
860 return mss_now;
862 /* Note : tcp_tso_autosize() will eventually split this later */
863 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
864 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
866 /* We try hard to avoid divides here */
867 size_goal = tp->gso_segs * mss_now;
868 if (unlikely(new_size_goal < size_goal ||
869 new_size_goal >= size_goal + mss_now)) {
870 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
871 sk->sk_gso_max_segs);
872 size_goal = tp->gso_segs * mss_now;
875 return max(size_goal, mss_now);
878 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
880 int mss_now;
882 mss_now = tcp_current_mss(sk);
883 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
885 return mss_now;
888 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
889 size_t size, int flags)
891 struct tcp_sock *tp = tcp_sk(sk);
892 int mss_now, size_goal;
893 int err;
894 ssize_t copied;
895 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
897 /* Wait for a connection to finish. One exception is TCP Fast Open
898 * (passive side) where data is allowed to be sent before a connection
899 * is fully established.
901 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
902 !tcp_passive_fastopen(sk)) {
903 err = sk_stream_wait_connect(sk, &timeo);
904 if (err != 0)
905 goto out_err;
908 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
910 mss_now = tcp_send_mss(sk, &size_goal, flags);
911 copied = 0;
913 err = -EPIPE;
914 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
915 goto out_err;
917 while (size > 0) {
918 struct sk_buff *skb = tcp_write_queue_tail(sk);
919 int copy, i;
920 bool can_coalesce;
922 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
923 new_segment:
924 if (!sk_stream_memory_free(sk))
925 goto wait_for_sndbuf;
927 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
928 skb_queue_empty(&sk->sk_write_queue));
929 if (!skb)
930 goto wait_for_memory;
932 skb_entail(sk, skb);
933 copy = size_goal;
936 if (copy > size)
937 copy = size;
939 i = skb_shinfo(skb)->nr_frags;
940 can_coalesce = skb_can_coalesce(skb, i, page, offset);
941 if (!can_coalesce && i >= sysctl_max_skb_frags) {
942 tcp_mark_push(tp, skb);
943 goto new_segment;
945 if (!sk_wmem_schedule(sk, copy))
946 goto wait_for_memory;
948 if (can_coalesce) {
949 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
950 } else {
951 get_page(page);
952 skb_fill_page_desc(skb, i, page, offset, copy);
954 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
956 skb->len += copy;
957 skb->data_len += copy;
958 skb->truesize += copy;
959 sk->sk_wmem_queued += copy;
960 sk_mem_charge(sk, copy);
961 skb->ip_summed = CHECKSUM_PARTIAL;
962 tp->write_seq += copy;
963 TCP_SKB_CB(skb)->end_seq += copy;
964 tcp_skb_pcount_set(skb, 0);
966 if (!copied)
967 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
969 copied += copy;
970 offset += copy;
971 size -= copy;
972 if (!size) {
973 tcp_tx_timestamp(sk, skb);
974 goto out;
977 if (skb->len < size_goal || (flags & MSG_OOB))
978 continue;
980 if (forced_push(tp)) {
981 tcp_mark_push(tp, skb);
982 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
983 } else if (skb == tcp_send_head(sk))
984 tcp_push_one(sk, mss_now);
985 continue;
987 wait_for_sndbuf:
988 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
989 wait_for_memory:
990 tcp_push(sk, flags & ~MSG_MORE, mss_now,
991 TCP_NAGLE_PUSH, size_goal);
993 err = sk_stream_wait_memory(sk, &timeo);
994 if (err != 0)
995 goto do_error;
997 mss_now = tcp_send_mss(sk, &size_goal, flags);
1000 out:
1001 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1002 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1003 return copied;
1005 do_error:
1006 if (copied)
1007 goto out;
1008 out_err:
1009 /* make sure we wake any epoll edge trigger waiter */
1010 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1011 sk->sk_write_space(sk);
1012 return sk_stream_error(sk, flags, err);
1015 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1016 size_t size, int flags)
1018 ssize_t res;
1020 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1021 !sk_check_csum_caps(sk))
1022 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1023 flags);
1025 lock_sock(sk);
1026 res = do_tcp_sendpages(sk, page, offset, size, flags);
1027 release_sock(sk);
1028 return res;
1030 EXPORT_SYMBOL(tcp_sendpage);
1032 static inline int select_size(const struct sock *sk, bool sg)
1034 const struct tcp_sock *tp = tcp_sk(sk);
1035 int tmp = tp->mss_cache;
1037 if (sg) {
1038 if (sk_can_gso(sk)) {
1039 /* Small frames wont use a full page:
1040 * Payload will immediately follow tcp header.
1042 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1043 } else {
1044 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1046 if (tmp >= pgbreak &&
1047 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1048 tmp = pgbreak;
1052 return tmp;
1055 void tcp_free_fastopen_req(struct tcp_sock *tp)
1057 if (tp->fastopen_req) {
1058 kfree(tp->fastopen_req);
1059 tp->fastopen_req = NULL;
1063 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1064 int *copied, size_t size)
1066 struct tcp_sock *tp = tcp_sk(sk);
1067 int err, flags;
1069 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1070 return -EOPNOTSUPP;
1071 if (tp->fastopen_req)
1072 return -EALREADY; /* Another Fast Open is in progress */
1074 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1075 sk->sk_allocation);
1076 if (unlikely(!tp->fastopen_req))
1077 return -ENOBUFS;
1078 tp->fastopen_req->data = msg;
1079 tp->fastopen_req->size = size;
1081 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1082 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1083 msg->msg_namelen, flags);
1084 *copied = tp->fastopen_req->copied;
1085 tcp_free_fastopen_req(tp);
1086 return err;
1089 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1091 struct tcp_sock *tp = tcp_sk(sk);
1092 struct sk_buff *skb;
1093 int flags, err, copied = 0;
1094 int mss_now = 0, size_goal, copied_syn = 0;
1095 bool sg;
1096 long timeo;
1098 lock_sock(sk);
1100 flags = msg->msg_flags;
1101 if (flags & MSG_FASTOPEN) {
1102 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1103 if (err == -EINPROGRESS && copied_syn > 0)
1104 goto out;
1105 else if (err)
1106 goto out_err;
1109 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1111 /* Wait for a connection to finish. One exception is TCP Fast Open
1112 * (passive side) where data is allowed to be sent before a connection
1113 * is fully established.
1115 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1116 !tcp_passive_fastopen(sk)) {
1117 err = sk_stream_wait_connect(sk, &timeo);
1118 if (err != 0)
1119 goto do_error;
1122 if (unlikely(tp->repair)) {
1123 if (tp->repair_queue == TCP_RECV_QUEUE) {
1124 copied = tcp_send_rcvq(sk, msg, size);
1125 goto out_nopush;
1128 err = -EINVAL;
1129 if (tp->repair_queue == TCP_NO_QUEUE)
1130 goto out_err;
1132 /* 'common' sending to sendq */
1135 /* This should be in poll */
1136 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1138 mss_now = tcp_send_mss(sk, &size_goal, flags);
1140 /* Ok commence sending. */
1141 copied = 0;
1143 err = -EPIPE;
1144 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1145 goto out_err;
1147 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1149 while (msg_data_left(msg)) {
1150 int copy = 0;
1151 int max = size_goal;
1153 skb = tcp_write_queue_tail(sk);
1154 if (tcp_send_head(sk)) {
1155 if (skb->ip_summed == CHECKSUM_NONE)
1156 max = mss_now;
1157 copy = max - skb->len;
1160 if (copy <= 0) {
1161 new_segment:
1162 /* Allocate new segment. If the interface is SG,
1163 * allocate skb fitting to single page.
1165 if (!sk_stream_memory_free(sk))
1166 goto wait_for_sndbuf;
1168 skb = sk_stream_alloc_skb(sk,
1169 select_size(sk, sg),
1170 sk->sk_allocation,
1171 skb_queue_empty(&sk->sk_write_queue));
1172 if (!skb)
1173 goto wait_for_memory;
1176 * Check whether we can use HW checksum.
1178 if (sk_check_csum_caps(sk))
1179 skb->ip_summed = CHECKSUM_PARTIAL;
1181 skb_entail(sk, skb);
1182 copy = size_goal;
1183 max = size_goal;
1185 /* All packets are restored as if they have
1186 * already been sent. skb_mstamp isn't set to
1187 * avoid wrong rtt estimation.
1189 if (tp->repair)
1190 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1193 /* Try to append data to the end of skb. */
1194 if (copy > msg_data_left(msg))
1195 copy = msg_data_left(msg);
1197 /* Where to copy to? */
1198 if (skb_availroom(skb) > 0) {
1199 /* We have some space in skb head. Superb! */
1200 copy = min_t(int, copy, skb_availroom(skb));
1201 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1202 if (err)
1203 goto do_fault;
1204 } else {
1205 bool merge = true;
1206 int i = skb_shinfo(skb)->nr_frags;
1207 struct page_frag *pfrag = sk_page_frag(sk);
1209 if (!sk_page_frag_refill(sk, pfrag))
1210 goto wait_for_memory;
1212 if (!skb_can_coalesce(skb, i, pfrag->page,
1213 pfrag->offset)) {
1214 if (i == sysctl_max_skb_frags || !sg) {
1215 tcp_mark_push(tp, skb);
1216 goto new_segment;
1218 merge = false;
1221 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1223 if (!sk_wmem_schedule(sk, copy))
1224 goto wait_for_memory;
1226 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1227 pfrag->page,
1228 pfrag->offset,
1229 copy);
1230 if (err)
1231 goto do_error;
1233 /* Update the skb. */
1234 if (merge) {
1235 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1236 } else {
1237 skb_fill_page_desc(skb, i, pfrag->page,
1238 pfrag->offset, copy);
1239 get_page(pfrag->page);
1241 pfrag->offset += copy;
1244 if (!copied)
1245 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1247 tp->write_seq += copy;
1248 TCP_SKB_CB(skb)->end_seq += copy;
1249 tcp_skb_pcount_set(skb, 0);
1251 copied += copy;
1252 if (!msg_data_left(msg)) {
1253 tcp_tx_timestamp(sk, skb);
1254 goto out;
1257 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1258 continue;
1260 if (forced_push(tp)) {
1261 tcp_mark_push(tp, skb);
1262 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1263 } else if (skb == tcp_send_head(sk))
1264 tcp_push_one(sk, mss_now);
1265 continue;
1267 wait_for_sndbuf:
1268 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1269 wait_for_memory:
1270 if (copied)
1271 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1272 TCP_NAGLE_PUSH, size_goal);
1274 err = sk_stream_wait_memory(sk, &timeo);
1275 if (err != 0)
1276 goto do_error;
1278 mss_now = tcp_send_mss(sk, &size_goal, flags);
1281 out:
1282 if (copied)
1283 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1284 out_nopush:
1285 release_sock(sk);
1286 return copied + copied_syn;
1288 do_fault:
1289 if (!skb->len) {
1290 tcp_unlink_write_queue(skb, sk);
1291 /* It is the one place in all of TCP, except connection
1292 * reset, where we can be unlinking the send_head.
1294 tcp_check_send_head(sk, skb);
1295 sk_wmem_free_skb(sk, skb);
1298 do_error:
1299 if (copied + copied_syn)
1300 goto out;
1301 out_err:
1302 err = sk_stream_error(sk, flags, err);
1303 /* make sure we wake any epoll edge trigger waiter */
1304 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1305 sk->sk_write_space(sk);
1306 release_sock(sk);
1307 return err;
1309 EXPORT_SYMBOL(tcp_sendmsg);
1312 * Handle reading urgent data. BSD has very simple semantics for
1313 * this, no blocking and very strange errors 8)
1316 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1318 struct tcp_sock *tp = tcp_sk(sk);
1320 /* No URG data to read. */
1321 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1322 tp->urg_data == TCP_URG_READ)
1323 return -EINVAL; /* Yes this is right ! */
1325 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1326 return -ENOTCONN;
1328 if (tp->urg_data & TCP_URG_VALID) {
1329 int err = 0;
1330 char c = tp->urg_data;
1332 if (!(flags & MSG_PEEK))
1333 tp->urg_data = TCP_URG_READ;
1335 /* Read urgent data. */
1336 msg->msg_flags |= MSG_OOB;
1338 if (len > 0) {
1339 if (!(flags & MSG_TRUNC))
1340 err = memcpy_to_msg(msg, &c, 1);
1341 len = 1;
1342 } else
1343 msg->msg_flags |= MSG_TRUNC;
1345 return err ? -EFAULT : len;
1348 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1349 return 0;
1351 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1352 * the available implementations agree in this case:
1353 * this call should never block, independent of the
1354 * blocking state of the socket.
1355 * Mike <pall@rz.uni-karlsruhe.de>
1357 return -EAGAIN;
1360 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1362 struct sk_buff *skb;
1363 int copied = 0, err = 0;
1365 /* XXX -- need to support SO_PEEK_OFF */
1367 skb_queue_walk(&sk->sk_write_queue, skb) {
1368 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1369 if (err)
1370 break;
1372 copied += skb->len;
1375 return err ?: copied;
1378 /* Clean up the receive buffer for full frames taken by the user,
1379 * then send an ACK if necessary. COPIED is the number of bytes
1380 * tcp_recvmsg has given to the user so far, it speeds up the
1381 * calculation of whether or not we must ACK for the sake of
1382 * a window update.
1384 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1386 struct tcp_sock *tp = tcp_sk(sk);
1387 bool time_to_ack = false;
1389 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1391 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1392 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1393 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1395 if (inet_csk_ack_scheduled(sk)) {
1396 const struct inet_connection_sock *icsk = inet_csk(sk);
1397 /* Delayed ACKs frequently hit locked sockets during bulk
1398 * receive. */
1399 if (icsk->icsk_ack.blocked ||
1400 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1401 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1403 * If this read emptied read buffer, we send ACK, if
1404 * connection is not bidirectional, user drained
1405 * receive buffer and there was a small segment
1406 * in queue.
1408 (copied > 0 &&
1409 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1410 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1411 !icsk->icsk_ack.pingpong)) &&
1412 !atomic_read(&sk->sk_rmem_alloc)))
1413 time_to_ack = true;
1416 /* We send an ACK if we can now advertise a non-zero window
1417 * which has been raised "significantly".
1419 * Even if window raised up to infinity, do not send window open ACK
1420 * in states, where we will not receive more. It is useless.
1422 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1423 __u32 rcv_window_now = tcp_receive_window(tp);
1425 /* Optimize, __tcp_select_window() is not cheap. */
1426 if (2*rcv_window_now <= tp->window_clamp) {
1427 __u32 new_window = __tcp_select_window(sk);
1429 /* Send ACK now, if this read freed lots of space
1430 * in our buffer. Certainly, new_window is new window.
1431 * We can advertise it now, if it is not less than current one.
1432 * "Lots" means "at least twice" here.
1434 if (new_window && new_window >= 2 * rcv_window_now)
1435 time_to_ack = true;
1438 if (time_to_ack)
1439 tcp_send_ack(sk);
1442 static void tcp_prequeue_process(struct sock *sk)
1444 struct sk_buff *skb;
1445 struct tcp_sock *tp = tcp_sk(sk);
1447 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1449 /* RX process wants to run with disabled BHs, though it is not
1450 * necessary */
1451 local_bh_disable();
1452 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1453 sk_backlog_rcv(sk, skb);
1454 local_bh_enable();
1456 /* Clear memory counter. */
1457 tp->ucopy.memory = 0;
1460 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1462 struct sk_buff *skb;
1463 u32 offset;
1465 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1466 offset = seq - TCP_SKB_CB(skb)->seq;
1467 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1468 pr_err_once("%s: found a SYN, please report !\n", __func__);
1469 offset--;
1471 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1472 *off = offset;
1473 return skb;
1475 /* This looks weird, but this can happen if TCP collapsing
1476 * splitted a fat GRO packet, while we released socket lock
1477 * in skb_splice_bits()
1479 sk_eat_skb(sk, skb);
1481 return NULL;
1485 * This routine provides an alternative to tcp_recvmsg() for routines
1486 * that would like to handle copying from skbuffs directly in 'sendfile'
1487 * fashion.
1488 * Note:
1489 * - It is assumed that the socket was locked by the caller.
1490 * - The routine does not block.
1491 * - At present, there is no support for reading OOB data
1492 * or for 'peeking' the socket using this routine
1493 * (although both would be easy to implement).
1495 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1496 sk_read_actor_t recv_actor)
1498 struct sk_buff *skb;
1499 struct tcp_sock *tp = tcp_sk(sk);
1500 u32 seq = tp->copied_seq;
1501 u32 offset;
1502 int copied = 0;
1504 if (sk->sk_state == TCP_LISTEN)
1505 return -ENOTCONN;
1506 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1507 if (offset < skb->len) {
1508 int used;
1509 size_t len;
1511 len = skb->len - offset;
1512 /* Stop reading if we hit a patch of urgent data */
1513 if (tp->urg_data) {
1514 u32 urg_offset = tp->urg_seq - seq;
1515 if (urg_offset < len)
1516 len = urg_offset;
1517 if (!len)
1518 break;
1520 used = recv_actor(desc, skb, offset, len);
1521 if (used <= 0) {
1522 if (!copied)
1523 copied = used;
1524 break;
1525 } else if (used <= len) {
1526 seq += used;
1527 copied += used;
1528 offset += used;
1530 /* If recv_actor drops the lock (e.g. TCP splice
1531 * receive) the skb pointer might be invalid when
1532 * getting here: tcp_collapse might have deleted it
1533 * while aggregating skbs from the socket queue.
1535 skb = tcp_recv_skb(sk, seq - 1, &offset);
1536 if (!skb)
1537 break;
1538 /* TCP coalescing might have appended data to the skb.
1539 * Try to splice more frags
1541 if (offset + 1 != skb->len)
1542 continue;
1544 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1545 sk_eat_skb(sk, skb);
1546 ++seq;
1547 break;
1549 sk_eat_skb(sk, skb);
1550 if (!desc->count)
1551 break;
1552 tp->copied_seq = seq;
1554 tp->copied_seq = seq;
1556 tcp_rcv_space_adjust(sk);
1558 /* Clean up data we have read: This will do ACK frames. */
1559 if (copied > 0) {
1560 tcp_recv_skb(sk, seq, &offset);
1561 tcp_cleanup_rbuf(sk, copied);
1563 return copied;
1565 EXPORT_SYMBOL(tcp_read_sock);
1568 * This routine copies from a sock struct into the user buffer.
1570 * Technical note: in 2.3 we work on _locked_ socket, so that
1571 * tricks with *seq access order and skb->users are not required.
1572 * Probably, code can be easily improved even more.
1575 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1576 int flags, int *addr_len)
1578 struct tcp_sock *tp = tcp_sk(sk);
1579 int copied = 0;
1580 u32 peek_seq;
1581 u32 *seq;
1582 unsigned long used;
1583 int err;
1584 int target; /* Read at least this many bytes */
1585 long timeo;
1586 struct task_struct *user_recv = NULL;
1587 struct sk_buff *skb, *last;
1588 u32 urg_hole = 0;
1590 if (unlikely(flags & MSG_ERRQUEUE))
1591 return inet_recv_error(sk, msg, len, addr_len);
1593 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1594 (sk->sk_state == TCP_ESTABLISHED))
1595 sk_busy_loop(sk, nonblock);
1597 lock_sock(sk);
1599 err = -ENOTCONN;
1600 if (sk->sk_state == TCP_LISTEN)
1601 goto out;
1603 timeo = sock_rcvtimeo(sk, nonblock);
1605 /* Urgent data needs to be handled specially. */
1606 if (flags & MSG_OOB)
1607 goto recv_urg;
1609 if (unlikely(tp->repair)) {
1610 err = -EPERM;
1611 if (!(flags & MSG_PEEK))
1612 goto out;
1614 if (tp->repair_queue == TCP_SEND_QUEUE)
1615 goto recv_sndq;
1617 err = -EINVAL;
1618 if (tp->repair_queue == TCP_NO_QUEUE)
1619 goto out;
1621 /* 'common' recv queue MSG_PEEK-ing */
1624 seq = &tp->copied_seq;
1625 if (flags & MSG_PEEK) {
1626 peek_seq = tp->copied_seq;
1627 seq = &peek_seq;
1630 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1632 do {
1633 u32 offset;
1635 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1636 if (tp->urg_data && tp->urg_seq == *seq) {
1637 if (copied)
1638 break;
1639 if (signal_pending(current)) {
1640 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1641 break;
1645 /* Next get a buffer. */
1647 last = skb_peek_tail(&sk->sk_receive_queue);
1648 skb_queue_walk(&sk->sk_receive_queue, skb) {
1649 last = skb;
1650 /* Now that we have two receive queues this
1651 * shouldn't happen.
1653 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1654 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1655 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1656 flags))
1657 break;
1659 offset = *seq - TCP_SKB_CB(skb)->seq;
1660 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1661 pr_err_once("%s: found a SYN, please report !\n", __func__);
1662 offset--;
1664 if (offset < skb->len)
1665 goto found_ok_skb;
1666 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1667 goto found_fin_ok;
1668 WARN(!(flags & MSG_PEEK),
1669 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1670 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1673 /* Well, if we have backlog, try to process it now yet. */
1675 if (copied >= target && !sk->sk_backlog.tail)
1676 break;
1678 if (copied) {
1679 if (sk->sk_err ||
1680 sk->sk_state == TCP_CLOSE ||
1681 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1682 !timeo ||
1683 signal_pending(current))
1684 break;
1685 } else {
1686 if (sock_flag(sk, SOCK_DONE))
1687 break;
1689 if (sk->sk_err) {
1690 copied = sock_error(sk);
1691 break;
1694 if (sk->sk_shutdown & RCV_SHUTDOWN)
1695 break;
1697 if (sk->sk_state == TCP_CLOSE) {
1698 if (!sock_flag(sk, SOCK_DONE)) {
1699 /* This occurs when user tries to read
1700 * from never connected socket.
1702 copied = -ENOTCONN;
1703 break;
1705 break;
1708 if (!timeo) {
1709 copied = -EAGAIN;
1710 break;
1713 if (signal_pending(current)) {
1714 copied = sock_intr_errno(timeo);
1715 break;
1719 tcp_cleanup_rbuf(sk, copied);
1721 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1722 /* Install new reader */
1723 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1724 user_recv = current;
1725 tp->ucopy.task = user_recv;
1726 tp->ucopy.msg = msg;
1729 tp->ucopy.len = len;
1731 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1732 !(flags & (MSG_PEEK | MSG_TRUNC)));
1734 /* Ugly... If prequeue is not empty, we have to
1735 * process it before releasing socket, otherwise
1736 * order will be broken at second iteration.
1737 * More elegant solution is required!!!
1739 * Look: we have the following (pseudo)queues:
1741 * 1. packets in flight
1742 * 2. backlog
1743 * 3. prequeue
1744 * 4. receive_queue
1746 * Each queue can be processed only if the next ones
1747 * are empty. At this point we have empty receive_queue.
1748 * But prequeue _can_ be not empty after 2nd iteration,
1749 * when we jumped to start of loop because backlog
1750 * processing added something to receive_queue.
1751 * We cannot release_sock(), because backlog contains
1752 * packets arrived _after_ prequeued ones.
1754 * Shortly, algorithm is clear --- to process all
1755 * the queues in order. We could make it more directly,
1756 * requeueing packets from backlog to prequeue, if
1757 * is not empty. It is more elegant, but eats cycles,
1758 * unfortunately.
1760 if (!skb_queue_empty(&tp->ucopy.prequeue))
1761 goto do_prequeue;
1763 /* __ Set realtime policy in scheduler __ */
1766 if (copied >= target) {
1767 /* Do not sleep, just process backlog. */
1768 release_sock(sk);
1769 lock_sock(sk);
1770 } else {
1771 sk_wait_data(sk, &timeo, last);
1774 if (user_recv) {
1775 int chunk;
1777 /* __ Restore normal policy in scheduler __ */
1779 chunk = len - tp->ucopy.len;
1780 if (chunk != 0) {
1781 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1782 len -= chunk;
1783 copied += chunk;
1786 if (tp->rcv_nxt == tp->copied_seq &&
1787 !skb_queue_empty(&tp->ucopy.prequeue)) {
1788 do_prequeue:
1789 tcp_prequeue_process(sk);
1791 chunk = len - tp->ucopy.len;
1792 if (chunk != 0) {
1793 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1794 len -= chunk;
1795 copied += chunk;
1799 if ((flags & MSG_PEEK) &&
1800 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1801 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1802 current->comm,
1803 task_pid_nr(current));
1804 peek_seq = tp->copied_seq;
1806 continue;
1808 found_ok_skb:
1809 /* Ok so how much can we use? */
1810 used = skb->len - offset;
1811 if (len < used)
1812 used = len;
1814 /* Do we have urgent data here? */
1815 if (tp->urg_data) {
1816 u32 urg_offset = tp->urg_seq - *seq;
1817 if (urg_offset < used) {
1818 if (!urg_offset) {
1819 if (!sock_flag(sk, SOCK_URGINLINE)) {
1820 ++*seq;
1821 urg_hole++;
1822 offset++;
1823 used--;
1824 if (!used)
1825 goto skip_copy;
1827 } else
1828 used = urg_offset;
1832 if (!(flags & MSG_TRUNC)) {
1833 err = skb_copy_datagram_msg(skb, offset, msg, used);
1834 if (err) {
1835 /* Exception. Bailout! */
1836 if (!copied)
1837 copied = -EFAULT;
1838 break;
1842 *seq += used;
1843 copied += used;
1844 len -= used;
1846 tcp_rcv_space_adjust(sk);
1848 skip_copy:
1849 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1850 tp->urg_data = 0;
1851 tcp_fast_path_check(sk);
1853 if (used + offset < skb->len)
1854 continue;
1856 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1857 goto found_fin_ok;
1858 if (!(flags & MSG_PEEK))
1859 sk_eat_skb(sk, skb);
1860 continue;
1862 found_fin_ok:
1863 /* Process the FIN. */
1864 ++*seq;
1865 if (!(flags & MSG_PEEK))
1866 sk_eat_skb(sk, skb);
1867 break;
1868 } while (len > 0);
1870 if (user_recv) {
1871 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1872 int chunk;
1874 tp->ucopy.len = copied > 0 ? len : 0;
1876 tcp_prequeue_process(sk);
1878 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1879 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1880 len -= chunk;
1881 copied += chunk;
1885 tp->ucopy.task = NULL;
1886 tp->ucopy.len = 0;
1889 /* According to UNIX98, msg_name/msg_namelen are ignored
1890 * on connected socket. I was just happy when found this 8) --ANK
1893 /* Clean up data we have read: This will do ACK frames. */
1894 tcp_cleanup_rbuf(sk, copied);
1896 release_sock(sk);
1897 return copied;
1899 out:
1900 release_sock(sk);
1901 return err;
1903 recv_urg:
1904 err = tcp_recv_urg(sk, msg, len, flags);
1905 goto out;
1907 recv_sndq:
1908 err = tcp_peek_sndq(sk, msg, len);
1909 goto out;
1911 EXPORT_SYMBOL(tcp_recvmsg);
1913 void tcp_set_state(struct sock *sk, int state)
1915 int oldstate = sk->sk_state;
1917 switch (state) {
1918 case TCP_ESTABLISHED:
1919 if (oldstate != TCP_ESTABLISHED)
1920 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1921 break;
1923 case TCP_CLOSE:
1924 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1925 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1927 sk->sk_prot->unhash(sk);
1928 if (inet_csk(sk)->icsk_bind_hash &&
1929 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1930 inet_put_port(sk);
1931 /* fall through */
1932 default:
1933 if (oldstate == TCP_ESTABLISHED)
1934 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1937 /* Change state AFTER socket is unhashed to avoid closed
1938 * socket sitting in hash tables.
1940 sk_state_store(sk, state);
1942 #ifdef STATE_TRACE
1943 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1944 #endif
1946 EXPORT_SYMBOL_GPL(tcp_set_state);
1949 * State processing on a close. This implements the state shift for
1950 * sending our FIN frame. Note that we only send a FIN for some
1951 * states. A shutdown() may have already sent the FIN, or we may be
1952 * closed.
1955 static const unsigned char new_state[16] = {
1956 /* current state: new state: action: */
1957 [0 /* (Invalid) */] = TCP_CLOSE,
1958 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1959 [TCP_SYN_SENT] = TCP_CLOSE,
1960 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1961 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1962 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1963 [TCP_TIME_WAIT] = TCP_CLOSE,
1964 [TCP_CLOSE] = TCP_CLOSE,
1965 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1966 [TCP_LAST_ACK] = TCP_LAST_ACK,
1967 [TCP_LISTEN] = TCP_CLOSE,
1968 [TCP_CLOSING] = TCP_CLOSING,
1969 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1972 static int tcp_close_state(struct sock *sk)
1974 int next = (int)new_state[sk->sk_state];
1975 int ns = next & TCP_STATE_MASK;
1977 tcp_set_state(sk, ns);
1979 return next & TCP_ACTION_FIN;
1983 * Shutdown the sending side of a connection. Much like close except
1984 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1987 void tcp_shutdown(struct sock *sk, int how)
1989 /* We need to grab some memory, and put together a FIN,
1990 * and then put it into the queue to be sent.
1991 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1993 if (!(how & SEND_SHUTDOWN))
1994 return;
1996 /* If we've already sent a FIN, or it's a closed state, skip this. */
1997 if ((1 << sk->sk_state) &
1998 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1999 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2000 /* Clear out any half completed packets. FIN if needed. */
2001 if (tcp_close_state(sk))
2002 tcp_send_fin(sk);
2005 EXPORT_SYMBOL(tcp_shutdown);
2007 bool tcp_check_oom(struct sock *sk, int shift)
2009 bool too_many_orphans, out_of_socket_memory;
2011 too_many_orphans = tcp_too_many_orphans(sk, shift);
2012 out_of_socket_memory = tcp_out_of_memory(sk);
2014 if (too_many_orphans)
2015 net_info_ratelimited("too many orphaned sockets\n");
2016 if (out_of_socket_memory)
2017 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2018 return too_many_orphans || out_of_socket_memory;
2021 void tcp_close(struct sock *sk, long timeout)
2023 struct sk_buff *skb;
2024 int data_was_unread = 0;
2025 int state;
2027 lock_sock(sk);
2028 sk->sk_shutdown = SHUTDOWN_MASK;
2030 if (sk->sk_state == TCP_LISTEN) {
2031 tcp_set_state(sk, TCP_CLOSE);
2033 /* Special case. */
2034 inet_csk_listen_stop(sk);
2036 goto adjudge_to_death;
2039 /* We need to flush the recv. buffs. We do this only on the
2040 * descriptor close, not protocol-sourced closes, because the
2041 * reader process may not have drained the data yet!
2043 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2044 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2046 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2047 len--;
2048 data_was_unread += len;
2049 __kfree_skb(skb);
2052 sk_mem_reclaim(sk);
2054 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2055 if (sk->sk_state == TCP_CLOSE)
2056 goto adjudge_to_death;
2058 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2059 * data was lost. To witness the awful effects of the old behavior of
2060 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2061 * GET in an FTP client, suspend the process, wait for the client to
2062 * advertise a zero window, then kill -9 the FTP client, wheee...
2063 * Note: timeout is always zero in such a case.
2065 if (unlikely(tcp_sk(sk)->repair)) {
2066 sk->sk_prot->disconnect(sk, 0);
2067 } else if (data_was_unread) {
2068 /* Unread data was tossed, zap the connection. */
2069 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2070 tcp_set_state(sk, TCP_CLOSE);
2071 tcp_send_active_reset(sk, sk->sk_allocation);
2072 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2073 /* Check zero linger _after_ checking for unread data. */
2074 sk->sk_prot->disconnect(sk, 0);
2075 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2076 } else if (tcp_close_state(sk)) {
2077 /* We FIN if the application ate all the data before
2078 * zapping the connection.
2081 /* RED-PEN. Formally speaking, we have broken TCP state
2082 * machine. State transitions:
2084 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2085 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2086 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2088 * are legal only when FIN has been sent (i.e. in window),
2089 * rather than queued out of window. Purists blame.
2091 * F.e. "RFC state" is ESTABLISHED,
2092 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2094 * The visible declinations are that sometimes
2095 * we enter time-wait state, when it is not required really
2096 * (harmless), do not send active resets, when they are
2097 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2098 * they look as CLOSING or LAST_ACK for Linux)
2099 * Probably, I missed some more holelets.
2100 * --ANK
2101 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2102 * in a single packet! (May consider it later but will
2103 * probably need API support or TCP_CORK SYN-ACK until
2104 * data is written and socket is closed.)
2106 tcp_send_fin(sk);
2109 sk_stream_wait_close(sk, timeout);
2111 adjudge_to_death:
2112 state = sk->sk_state;
2113 sock_hold(sk);
2114 sock_orphan(sk);
2116 /* It is the last release_sock in its life. It will remove backlog. */
2117 release_sock(sk);
2120 /* Now socket is owned by kernel and we acquire BH lock
2121 to finish close. No need to check for user refs.
2123 local_bh_disable();
2124 bh_lock_sock(sk);
2125 WARN_ON(sock_owned_by_user(sk));
2127 percpu_counter_inc(sk->sk_prot->orphan_count);
2129 /* Have we already been destroyed by a softirq or backlog? */
2130 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2131 goto out;
2133 /* This is a (useful) BSD violating of the RFC. There is a
2134 * problem with TCP as specified in that the other end could
2135 * keep a socket open forever with no application left this end.
2136 * We use a 1 minute timeout (about the same as BSD) then kill
2137 * our end. If they send after that then tough - BUT: long enough
2138 * that we won't make the old 4*rto = almost no time - whoops
2139 * reset mistake.
2141 * Nope, it was not mistake. It is really desired behaviour
2142 * f.e. on http servers, when such sockets are useless, but
2143 * consume significant resources. Let's do it with special
2144 * linger2 option. --ANK
2147 if (sk->sk_state == TCP_FIN_WAIT2) {
2148 struct tcp_sock *tp = tcp_sk(sk);
2149 if (tp->linger2 < 0) {
2150 tcp_set_state(sk, TCP_CLOSE);
2151 tcp_send_active_reset(sk, GFP_ATOMIC);
2152 NET_INC_STATS_BH(sock_net(sk),
2153 LINUX_MIB_TCPABORTONLINGER);
2154 } else {
2155 const int tmo = tcp_fin_time(sk);
2157 if (tmo > TCP_TIMEWAIT_LEN) {
2158 inet_csk_reset_keepalive_timer(sk,
2159 tmo - TCP_TIMEWAIT_LEN);
2160 } else {
2161 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2162 goto out;
2166 if (sk->sk_state != TCP_CLOSE) {
2167 sk_mem_reclaim(sk);
2168 if (tcp_check_oom(sk, 0)) {
2169 tcp_set_state(sk, TCP_CLOSE);
2170 tcp_send_active_reset(sk, GFP_ATOMIC);
2171 NET_INC_STATS_BH(sock_net(sk),
2172 LINUX_MIB_TCPABORTONMEMORY);
2176 if (sk->sk_state == TCP_CLOSE) {
2177 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2178 /* We could get here with a non-NULL req if the socket is
2179 * aborted (e.g., closed with unread data) before 3WHS
2180 * finishes.
2182 if (req)
2183 reqsk_fastopen_remove(sk, req, false);
2184 inet_csk_destroy_sock(sk);
2186 /* Otherwise, socket is reprieved until protocol close. */
2188 out:
2189 bh_unlock_sock(sk);
2190 local_bh_enable();
2191 sock_put(sk);
2193 EXPORT_SYMBOL(tcp_close);
2195 /* These states need RST on ABORT according to RFC793 */
2197 static inline bool tcp_need_reset(int state)
2199 return (1 << state) &
2200 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2201 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2204 int tcp_disconnect(struct sock *sk, int flags)
2206 struct inet_sock *inet = inet_sk(sk);
2207 struct inet_connection_sock *icsk = inet_csk(sk);
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 int err = 0;
2210 int old_state = sk->sk_state;
2212 if (old_state != TCP_CLOSE)
2213 tcp_set_state(sk, TCP_CLOSE);
2215 /* ABORT function of RFC793 */
2216 if (old_state == TCP_LISTEN) {
2217 inet_csk_listen_stop(sk);
2218 } else if (unlikely(tp->repair)) {
2219 sk->sk_err = ECONNABORTED;
2220 } else if (tcp_need_reset(old_state) ||
2221 (tp->snd_nxt != tp->write_seq &&
2222 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2223 /* The last check adjusts for discrepancy of Linux wrt. RFC
2224 * states
2226 tcp_send_active_reset(sk, gfp_any());
2227 sk->sk_err = ECONNRESET;
2228 } else if (old_state == TCP_SYN_SENT)
2229 sk->sk_err = ECONNRESET;
2231 tcp_clear_xmit_timers(sk);
2232 __skb_queue_purge(&sk->sk_receive_queue);
2233 tcp_write_queue_purge(sk);
2234 __skb_queue_purge(&tp->out_of_order_queue);
2236 inet->inet_dport = 0;
2238 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2239 inet_reset_saddr(sk);
2241 sk->sk_shutdown = 0;
2242 sock_reset_flag(sk, SOCK_DONE);
2243 tp->srtt_us = 0;
2244 tp->write_seq += tp->max_window + 2;
2245 if (tp->write_seq == 0)
2246 tp->write_seq = 1;
2247 icsk->icsk_backoff = 0;
2248 tp->snd_cwnd = 2;
2249 icsk->icsk_probes_out = 0;
2250 tp->packets_out = 0;
2251 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2252 tp->snd_cwnd_cnt = 0;
2253 tp->window_clamp = 0;
2254 tcp_set_ca_state(sk, TCP_CA_Open);
2255 tcp_clear_retrans(tp);
2256 inet_csk_delack_init(sk);
2257 tcp_init_send_head(sk);
2258 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2259 __sk_dst_reset(sk);
2261 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2263 sk->sk_error_report(sk);
2264 return err;
2266 EXPORT_SYMBOL(tcp_disconnect);
2268 static inline bool tcp_can_repair_sock(const struct sock *sk)
2270 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2271 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2274 static int tcp_repair_options_est(struct tcp_sock *tp,
2275 struct tcp_repair_opt __user *optbuf, unsigned int len)
2277 struct tcp_repair_opt opt;
2279 while (len >= sizeof(opt)) {
2280 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2281 return -EFAULT;
2283 optbuf++;
2284 len -= sizeof(opt);
2286 switch (opt.opt_code) {
2287 case TCPOPT_MSS:
2288 tp->rx_opt.mss_clamp = opt.opt_val;
2289 break;
2290 case TCPOPT_WINDOW:
2292 u16 snd_wscale = opt.opt_val & 0xFFFF;
2293 u16 rcv_wscale = opt.opt_val >> 16;
2295 if (snd_wscale > 14 || rcv_wscale > 14)
2296 return -EFBIG;
2298 tp->rx_opt.snd_wscale = snd_wscale;
2299 tp->rx_opt.rcv_wscale = rcv_wscale;
2300 tp->rx_opt.wscale_ok = 1;
2302 break;
2303 case TCPOPT_SACK_PERM:
2304 if (opt.opt_val != 0)
2305 return -EINVAL;
2307 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2308 if (sysctl_tcp_fack)
2309 tcp_enable_fack(tp);
2310 break;
2311 case TCPOPT_TIMESTAMP:
2312 if (opt.opt_val != 0)
2313 return -EINVAL;
2315 tp->rx_opt.tstamp_ok = 1;
2316 break;
2320 return 0;
2324 * Socket option code for TCP.
2326 static int do_tcp_setsockopt(struct sock *sk, int level,
2327 int optname, char __user *optval, unsigned int optlen)
2329 struct tcp_sock *tp = tcp_sk(sk);
2330 struct inet_connection_sock *icsk = inet_csk(sk);
2331 struct net *net = sock_net(sk);
2332 int val;
2333 int err = 0;
2335 /* These are data/string values, all the others are ints */
2336 switch (optname) {
2337 case TCP_CONGESTION: {
2338 char name[TCP_CA_NAME_MAX];
2340 if (optlen < 1)
2341 return -EINVAL;
2343 val = strncpy_from_user(name, optval,
2344 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2345 if (val < 0)
2346 return -EFAULT;
2347 name[val] = 0;
2349 lock_sock(sk);
2350 err = tcp_set_congestion_control(sk, name);
2351 release_sock(sk);
2352 return err;
2354 default:
2355 /* fallthru */
2356 break;
2359 if (optlen < sizeof(int))
2360 return -EINVAL;
2362 if (get_user(val, (int __user *)optval))
2363 return -EFAULT;
2365 lock_sock(sk);
2367 switch (optname) {
2368 case TCP_MAXSEG:
2369 /* Values greater than interface MTU won't take effect. However
2370 * at the point when this call is done we typically don't yet
2371 * know which interface is going to be used */
2372 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2373 err = -EINVAL;
2374 break;
2376 tp->rx_opt.user_mss = val;
2377 break;
2379 case TCP_NODELAY:
2380 if (val) {
2381 /* TCP_NODELAY is weaker than TCP_CORK, so that
2382 * this option on corked socket is remembered, but
2383 * it is not activated until cork is cleared.
2385 * However, when TCP_NODELAY is set we make
2386 * an explicit push, which overrides even TCP_CORK
2387 * for currently queued segments.
2389 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2390 tcp_push_pending_frames(sk);
2391 } else {
2392 tp->nonagle &= ~TCP_NAGLE_OFF;
2394 break;
2396 case TCP_THIN_LINEAR_TIMEOUTS:
2397 if (val < 0 || val > 1)
2398 err = -EINVAL;
2399 else
2400 tp->thin_lto = val;
2401 break;
2403 case TCP_THIN_DUPACK:
2404 if (val < 0 || val > 1)
2405 err = -EINVAL;
2406 else {
2407 tp->thin_dupack = val;
2408 if (tp->thin_dupack)
2409 tcp_disable_early_retrans(tp);
2411 break;
2413 case TCP_REPAIR:
2414 if (!tcp_can_repair_sock(sk))
2415 err = -EPERM;
2416 else if (val == 1) {
2417 tp->repair = 1;
2418 sk->sk_reuse = SK_FORCE_REUSE;
2419 tp->repair_queue = TCP_NO_QUEUE;
2420 } else if (val == 0) {
2421 tp->repair = 0;
2422 sk->sk_reuse = SK_NO_REUSE;
2423 tcp_send_window_probe(sk);
2424 } else
2425 err = -EINVAL;
2427 break;
2429 case TCP_REPAIR_QUEUE:
2430 if (!tp->repair)
2431 err = -EPERM;
2432 else if (val < TCP_QUEUES_NR)
2433 tp->repair_queue = val;
2434 else
2435 err = -EINVAL;
2436 break;
2438 case TCP_QUEUE_SEQ:
2439 if (sk->sk_state != TCP_CLOSE)
2440 err = -EPERM;
2441 else if (tp->repair_queue == TCP_SEND_QUEUE)
2442 tp->write_seq = val;
2443 else if (tp->repair_queue == TCP_RECV_QUEUE)
2444 tp->rcv_nxt = val;
2445 else
2446 err = -EINVAL;
2447 break;
2449 case TCP_REPAIR_OPTIONS:
2450 if (!tp->repair)
2451 err = -EINVAL;
2452 else if (sk->sk_state == TCP_ESTABLISHED)
2453 err = tcp_repair_options_est(tp,
2454 (struct tcp_repair_opt __user *)optval,
2455 optlen);
2456 else
2457 err = -EPERM;
2458 break;
2460 case TCP_CORK:
2461 /* When set indicates to always queue non-full frames.
2462 * Later the user clears this option and we transmit
2463 * any pending partial frames in the queue. This is
2464 * meant to be used alongside sendfile() to get properly
2465 * filled frames when the user (for example) must write
2466 * out headers with a write() call first and then use
2467 * sendfile to send out the data parts.
2469 * TCP_CORK can be set together with TCP_NODELAY and it is
2470 * stronger than TCP_NODELAY.
2472 if (val) {
2473 tp->nonagle |= TCP_NAGLE_CORK;
2474 } else {
2475 tp->nonagle &= ~TCP_NAGLE_CORK;
2476 if (tp->nonagle&TCP_NAGLE_OFF)
2477 tp->nonagle |= TCP_NAGLE_PUSH;
2478 tcp_push_pending_frames(sk);
2480 break;
2482 case TCP_KEEPIDLE:
2483 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2484 err = -EINVAL;
2485 else {
2486 tp->keepalive_time = val * HZ;
2487 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2488 !((1 << sk->sk_state) &
2489 (TCPF_CLOSE | TCPF_LISTEN))) {
2490 u32 elapsed = keepalive_time_elapsed(tp);
2491 if (tp->keepalive_time > elapsed)
2492 elapsed = tp->keepalive_time - elapsed;
2493 else
2494 elapsed = 0;
2495 inet_csk_reset_keepalive_timer(sk, elapsed);
2498 break;
2499 case TCP_KEEPINTVL:
2500 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2501 err = -EINVAL;
2502 else
2503 tp->keepalive_intvl = val * HZ;
2504 break;
2505 case TCP_KEEPCNT:
2506 if (val < 1 || val > MAX_TCP_KEEPCNT)
2507 err = -EINVAL;
2508 else
2509 tp->keepalive_probes = val;
2510 break;
2511 case TCP_SYNCNT:
2512 if (val < 1 || val > MAX_TCP_SYNCNT)
2513 err = -EINVAL;
2514 else
2515 icsk->icsk_syn_retries = val;
2516 break;
2518 case TCP_SAVE_SYN:
2519 if (val < 0 || val > 1)
2520 err = -EINVAL;
2521 else
2522 tp->save_syn = val;
2523 break;
2525 case TCP_LINGER2:
2526 if (val < 0)
2527 tp->linger2 = -1;
2528 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2529 tp->linger2 = 0;
2530 else
2531 tp->linger2 = val * HZ;
2532 break;
2534 case TCP_DEFER_ACCEPT:
2535 /* Translate value in seconds to number of retransmits */
2536 icsk->icsk_accept_queue.rskq_defer_accept =
2537 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2538 TCP_RTO_MAX / HZ);
2539 break;
2541 case TCP_WINDOW_CLAMP:
2542 if (!val) {
2543 if (sk->sk_state != TCP_CLOSE) {
2544 err = -EINVAL;
2545 break;
2547 tp->window_clamp = 0;
2548 } else
2549 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2550 SOCK_MIN_RCVBUF / 2 : val;
2551 break;
2553 case TCP_QUICKACK:
2554 if (!val) {
2555 icsk->icsk_ack.pingpong = 1;
2556 } else {
2557 icsk->icsk_ack.pingpong = 0;
2558 if ((1 << sk->sk_state) &
2559 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2560 inet_csk_ack_scheduled(sk)) {
2561 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2562 tcp_cleanup_rbuf(sk, 1);
2563 if (!(val & 1))
2564 icsk->icsk_ack.pingpong = 1;
2567 break;
2569 #ifdef CONFIG_TCP_MD5SIG
2570 case TCP_MD5SIG:
2571 /* Read the IP->Key mappings from userspace */
2572 err = tp->af_specific->md5_parse(sk, optval, optlen);
2573 break;
2574 #endif
2575 case TCP_USER_TIMEOUT:
2576 /* Cap the max time in ms TCP will retry or probe the window
2577 * before giving up and aborting (ETIMEDOUT) a connection.
2579 if (val < 0)
2580 err = -EINVAL;
2581 else
2582 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2583 break;
2585 case TCP_FASTOPEN:
2586 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2587 TCPF_LISTEN))) {
2588 tcp_fastopen_init_key_once(true);
2590 fastopen_queue_tune(sk, val);
2591 } else {
2592 err = -EINVAL;
2594 break;
2595 case TCP_TIMESTAMP:
2596 if (!tp->repair)
2597 err = -EPERM;
2598 else
2599 tp->tsoffset = val - tcp_time_stamp;
2600 break;
2601 case TCP_NOTSENT_LOWAT:
2602 tp->notsent_lowat = val;
2603 sk->sk_write_space(sk);
2604 break;
2605 default:
2606 err = -ENOPROTOOPT;
2607 break;
2610 release_sock(sk);
2611 return err;
2614 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2615 unsigned int optlen)
2617 const struct inet_connection_sock *icsk = inet_csk(sk);
2619 if (level != SOL_TCP)
2620 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2621 optval, optlen);
2622 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2624 EXPORT_SYMBOL(tcp_setsockopt);
2626 #ifdef CONFIG_COMPAT
2627 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2628 char __user *optval, unsigned int optlen)
2630 if (level != SOL_TCP)
2631 return inet_csk_compat_setsockopt(sk, level, optname,
2632 optval, optlen);
2633 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2635 EXPORT_SYMBOL(compat_tcp_setsockopt);
2636 #endif
2638 /* Return information about state of tcp endpoint in API format. */
2639 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2641 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2642 const struct inet_connection_sock *icsk = inet_csk(sk);
2643 u32 now = tcp_time_stamp;
2644 unsigned int start;
2645 int notsent_bytes;
2646 u64 rate64;
2647 u32 rate;
2649 memset(info, 0, sizeof(*info));
2650 if (sk->sk_type != SOCK_STREAM)
2651 return;
2653 info->tcpi_state = sk_state_load(sk);
2655 info->tcpi_ca_state = icsk->icsk_ca_state;
2656 info->tcpi_retransmits = icsk->icsk_retransmits;
2657 info->tcpi_probes = icsk->icsk_probes_out;
2658 info->tcpi_backoff = icsk->icsk_backoff;
2660 if (tp->rx_opt.tstamp_ok)
2661 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2662 if (tcp_is_sack(tp))
2663 info->tcpi_options |= TCPI_OPT_SACK;
2664 if (tp->rx_opt.wscale_ok) {
2665 info->tcpi_options |= TCPI_OPT_WSCALE;
2666 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2667 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2670 if (tp->ecn_flags & TCP_ECN_OK)
2671 info->tcpi_options |= TCPI_OPT_ECN;
2672 if (tp->ecn_flags & TCP_ECN_SEEN)
2673 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2674 if (tp->syn_data_acked)
2675 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2677 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2678 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2679 info->tcpi_snd_mss = tp->mss_cache;
2680 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2682 if (info->tcpi_state == TCP_LISTEN) {
2683 info->tcpi_unacked = sk->sk_ack_backlog;
2684 info->tcpi_sacked = sk->sk_max_ack_backlog;
2685 } else {
2686 info->tcpi_unacked = tp->packets_out;
2687 info->tcpi_sacked = tp->sacked_out;
2689 info->tcpi_lost = tp->lost_out;
2690 info->tcpi_retrans = tp->retrans_out;
2691 info->tcpi_fackets = tp->fackets_out;
2693 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2694 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2695 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2697 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2698 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2699 info->tcpi_rtt = tp->srtt_us >> 3;
2700 info->tcpi_rttvar = tp->mdev_us >> 2;
2701 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2702 info->tcpi_snd_cwnd = tp->snd_cwnd;
2703 info->tcpi_advmss = tp->advmss;
2704 info->tcpi_reordering = tp->reordering;
2706 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2707 info->tcpi_rcv_space = tp->rcvq_space.space;
2709 info->tcpi_total_retrans = tp->total_retrans;
2711 rate = READ_ONCE(sk->sk_pacing_rate);
2712 rate64 = rate != ~0U ? rate : ~0ULL;
2713 put_unaligned(rate64, &info->tcpi_pacing_rate);
2715 rate = READ_ONCE(sk->sk_max_pacing_rate);
2716 rate64 = rate != ~0U ? rate : ~0ULL;
2717 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2719 do {
2720 start = u64_stats_fetch_begin_irq(&tp->syncp);
2721 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2722 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2723 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2724 info->tcpi_segs_out = tp->segs_out;
2725 info->tcpi_segs_in = tp->segs_in;
2727 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2728 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2730 info->tcpi_min_rtt = tcp_min_rtt(tp);
2732 EXPORT_SYMBOL_GPL(tcp_get_info);
2734 static int do_tcp_getsockopt(struct sock *sk, int level,
2735 int optname, char __user *optval, int __user *optlen)
2737 struct inet_connection_sock *icsk = inet_csk(sk);
2738 struct tcp_sock *tp = tcp_sk(sk);
2739 struct net *net = sock_net(sk);
2740 int val, len;
2742 if (get_user(len, optlen))
2743 return -EFAULT;
2745 len = min_t(unsigned int, len, sizeof(int));
2747 if (len < 0)
2748 return -EINVAL;
2750 switch (optname) {
2751 case TCP_MAXSEG:
2752 val = tp->mss_cache;
2753 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2754 val = tp->rx_opt.user_mss;
2755 if (tp->repair)
2756 val = tp->rx_opt.mss_clamp;
2757 break;
2758 case TCP_NODELAY:
2759 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2760 break;
2761 case TCP_CORK:
2762 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2763 break;
2764 case TCP_KEEPIDLE:
2765 val = keepalive_time_when(tp) / HZ;
2766 break;
2767 case TCP_KEEPINTVL:
2768 val = keepalive_intvl_when(tp) / HZ;
2769 break;
2770 case TCP_KEEPCNT:
2771 val = keepalive_probes(tp);
2772 break;
2773 case TCP_SYNCNT:
2774 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2775 break;
2776 case TCP_LINGER2:
2777 val = tp->linger2;
2778 if (val >= 0)
2779 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2780 break;
2781 case TCP_DEFER_ACCEPT:
2782 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2783 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2784 break;
2785 case TCP_WINDOW_CLAMP:
2786 val = tp->window_clamp;
2787 break;
2788 case TCP_INFO: {
2789 struct tcp_info info;
2791 if (get_user(len, optlen))
2792 return -EFAULT;
2794 tcp_get_info(sk, &info);
2796 len = min_t(unsigned int, len, sizeof(info));
2797 if (put_user(len, optlen))
2798 return -EFAULT;
2799 if (copy_to_user(optval, &info, len))
2800 return -EFAULT;
2801 return 0;
2803 case TCP_CC_INFO: {
2804 const struct tcp_congestion_ops *ca_ops;
2805 union tcp_cc_info info;
2806 size_t sz = 0;
2807 int attr;
2809 if (get_user(len, optlen))
2810 return -EFAULT;
2812 ca_ops = icsk->icsk_ca_ops;
2813 if (ca_ops && ca_ops->get_info)
2814 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2816 len = min_t(unsigned int, len, sz);
2817 if (put_user(len, optlen))
2818 return -EFAULT;
2819 if (copy_to_user(optval, &info, len))
2820 return -EFAULT;
2821 return 0;
2823 case TCP_QUICKACK:
2824 val = !icsk->icsk_ack.pingpong;
2825 break;
2827 case TCP_CONGESTION:
2828 if (get_user(len, optlen))
2829 return -EFAULT;
2830 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2831 if (put_user(len, optlen))
2832 return -EFAULT;
2833 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2834 return -EFAULT;
2835 return 0;
2837 case TCP_THIN_LINEAR_TIMEOUTS:
2838 val = tp->thin_lto;
2839 break;
2840 case TCP_THIN_DUPACK:
2841 val = tp->thin_dupack;
2842 break;
2844 case TCP_REPAIR:
2845 val = tp->repair;
2846 break;
2848 case TCP_REPAIR_QUEUE:
2849 if (tp->repair)
2850 val = tp->repair_queue;
2851 else
2852 return -EINVAL;
2853 break;
2855 case TCP_QUEUE_SEQ:
2856 if (tp->repair_queue == TCP_SEND_QUEUE)
2857 val = tp->write_seq;
2858 else if (tp->repair_queue == TCP_RECV_QUEUE)
2859 val = tp->rcv_nxt;
2860 else
2861 return -EINVAL;
2862 break;
2864 case TCP_USER_TIMEOUT:
2865 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2866 break;
2868 case TCP_FASTOPEN:
2869 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2870 break;
2872 case TCP_TIMESTAMP:
2873 val = tcp_time_stamp + tp->tsoffset;
2874 break;
2875 case TCP_NOTSENT_LOWAT:
2876 val = tp->notsent_lowat;
2877 break;
2878 case TCP_SAVE_SYN:
2879 val = tp->save_syn;
2880 break;
2881 case TCP_SAVED_SYN: {
2882 if (get_user(len, optlen))
2883 return -EFAULT;
2885 lock_sock(sk);
2886 if (tp->saved_syn) {
2887 if (len < tp->saved_syn[0]) {
2888 if (put_user(tp->saved_syn[0], optlen)) {
2889 release_sock(sk);
2890 return -EFAULT;
2892 release_sock(sk);
2893 return -EINVAL;
2895 len = tp->saved_syn[0];
2896 if (put_user(len, optlen)) {
2897 release_sock(sk);
2898 return -EFAULT;
2900 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2901 release_sock(sk);
2902 return -EFAULT;
2904 tcp_saved_syn_free(tp);
2905 release_sock(sk);
2906 } else {
2907 release_sock(sk);
2908 len = 0;
2909 if (put_user(len, optlen))
2910 return -EFAULT;
2912 return 0;
2914 default:
2915 return -ENOPROTOOPT;
2918 if (put_user(len, optlen))
2919 return -EFAULT;
2920 if (copy_to_user(optval, &val, len))
2921 return -EFAULT;
2922 return 0;
2925 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2926 int __user *optlen)
2928 struct inet_connection_sock *icsk = inet_csk(sk);
2930 if (level != SOL_TCP)
2931 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2932 optval, optlen);
2933 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2935 EXPORT_SYMBOL(tcp_getsockopt);
2937 #ifdef CONFIG_COMPAT
2938 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2939 char __user *optval, int __user *optlen)
2941 if (level != SOL_TCP)
2942 return inet_csk_compat_getsockopt(sk, level, optname,
2943 optval, optlen);
2944 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2946 EXPORT_SYMBOL(compat_tcp_getsockopt);
2947 #endif
2949 #ifdef CONFIG_TCP_MD5SIG
2950 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2951 static DEFINE_MUTEX(tcp_md5sig_mutex);
2952 static bool tcp_md5sig_pool_populated = false;
2954 static void __tcp_alloc_md5sig_pool(void)
2956 int cpu;
2958 for_each_possible_cpu(cpu) {
2959 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2960 struct crypto_hash *hash;
2962 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2963 if (IS_ERR(hash))
2964 return;
2965 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2968 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2969 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2971 smp_wmb();
2972 tcp_md5sig_pool_populated = true;
2975 bool tcp_alloc_md5sig_pool(void)
2977 if (unlikely(!tcp_md5sig_pool_populated)) {
2978 mutex_lock(&tcp_md5sig_mutex);
2980 if (!tcp_md5sig_pool_populated)
2981 __tcp_alloc_md5sig_pool();
2983 mutex_unlock(&tcp_md5sig_mutex);
2985 return tcp_md5sig_pool_populated;
2987 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2991 * tcp_get_md5sig_pool - get md5sig_pool for this user
2993 * We use percpu structure, so if we succeed, we exit with preemption
2994 * and BH disabled, to make sure another thread or softirq handling
2995 * wont try to get same context.
2997 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2999 local_bh_disable();
3001 if (tcp_md5sig_pool_populated) {
3002 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3003 smp_rmb();
3004 return this_cpu_ptr(&tcp_md5sig_pool);
3006 local_bh_enable();
3007 return NULL;
3009 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3011 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3012 const struct tcphdr *th)
3014 struct scatterlist sg;
3015 struct tcphdr hdr;
3016 int err;
3018 /* We are not allowed to change tcphdr, make a local copy */
3019 memcpy(&hdr, th, sizeof(hdr));
3020 hdr.check = 0;
3022 /* options aren't included in the hash */
3023 sg_init_one(&sg, &hdr, sizeof(hdr));
3024 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3025 return err;
3027 EXPORT_SYMBOL(tcp_md5_hash_header);
3029 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3030 const struct sk_buff *skb, unsigned int header_len)
3032 struct scatterlist sg;
3033 const struct tcphdr *tp = tcp_hdr(skb);
3034 struct hash_desc *desc = &hp->md5_desc;
3035 unsigned int i;
3036 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3037 skb_headlen(skb) - header_len : 0;
3038 const struct skb_shared_info *shi = skb_shinfo(skb);
3039 struct sk_buff *frag_iter;
3041 sg_init_table(&sg, 1);
3043 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3044 if (crypto_hash_update(desc, &sg, head_data_len))
3045 return 1;
3047 for (i = 0; i < shi->nr_frags; ++i) {
3048 const struct skb_frag_struct *f = &shi->frags[i];
3049 unsigned int offset = f->page_offset;
3050 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3052 sg_set_page(&sg, page, skb_frag_size(f),
3053 offset_in_page(offset));
3054 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3055 return 1;
3058 skb_walk_frags(skb, frag_iter)
3059 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3060 return 1;
3062 return 0;
3064 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3066 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3068 struct scatterlist sg;
3070 sg_init_one(&sg, key->key, key->keylen);
3071 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3073 EXPORT_SYMBOL(tcp_md5_hash_key);
3075 #endif
3077 void tcp_done(struct sock *sk)
3079 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3081 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3082 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3084 tcp_set_state(sk, TCP_CLOSE);
3085 tcp_clear_xmit_timers(sk);
3086 if (req)
3087 reqsk_fastopen_remove(sk, req, false);
3089 sk->sk_shutdown = SHUTDOWN_MASK;
3091 if (!sock_flag(sk, SOCK_DEAD))
3092 sk->sk_state_change(sk);
3093 else
3094 inet_csk_destroy_sock(sk);
3096 EXPORT_SYMBOL_GPL(tcp_done);
3098 int tcp_abort(struct sock *sk, int err)
3100 if (!sk_fullsock(sk)) {
3101 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3102 struct request_sock *req = inet_reqsk(sk);
3104 local_bh_disable();
3105 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3106 req);
3107 local_bh_enable();
3108 return 0;
3110 sock_gen_put(sk);
3111 return -EOPNOTSUPP;
3114 /* Don't race with userspace socket closes such as tcp_close. */
3115 lock_sock(sk);
3117 if (sk->sk_state == TCP_LISTEN) {
3118 tcp_set_state(sk, TCP_CLOSE);
3119 inet_csk_listen_stop(sk);
3122 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3123 local_bh_disable();
3124 bh_lock_sock(sk);
3126 if (!sock_flag(sk, SOCK_DEAD)) {
3127 sk->sk_err = err;
3128 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3129 smp_wmb();
3130 sk->sk_error_report(sk);
3131 if (tcp_need_reset(sk->sk_state))
3132 tcp_send_active_reset(sk, GFP_ATOMIC);
3133 tcp_done(sk);
3136 bh_unlock_sock(sk);
3137 local_bh_enable();
3138 release_sock(sk);
3139 sock_put(sk);
3140 return 0;
3142 EXPORT_SYMBOL_GPL(tcp_abort);
3144 extern struct tcp_congestion_ops tcp_reno;
3146 static __initdata unsigned long thash_entries;
3147 static int __init set_thash_entries(char *str)
3149 ssize_t ret;
3151 if (!str)
3152 return 0;
3154 ret = kstrtoul(str, 0, &thash_entries);
3155 if (ret)
3156 return 0;
3158 return 1;
3160 __setup("thash_entries=", set_thash_entries);
3162 static void __init tcp_init_mem(void)
3164 unsigned long limit = nr_free_buffer_pages() / 16;
3166 limit = max(limit, 128UL);
3167 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3168 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3169 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3172 void __init tcp_init(void)
3174 unsigned long limit;
3175 int max_rshare, max_wshare, cnt;
3176 unsigned int i;
3178 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3180 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3181 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3182 tcp_hashinfo.bind_bucket_cachep =
3183 kmem_cache_create("tcp_bind_bucket",
3184 sizeof(struct inet_bind_bucket), 0,
3185 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3187 /* Size and allocate the main established and bind bucket
3188 * hash tables.
3190 * The methodology is similar to that of the buffer cache.
3192 tcp_hashinfo.ehash =
3193 alloc_large_system_hash("TCP established",
3194 sizeof(struct inet_ehash_bucket),
3195 thash_entries,
3196 17, /* one slot per 128 KB of memory */
3198 NULL,
3199 &tcp_hashinfo.ehash_mask,
3201 thash_entries ? 0 : 512 * 1024);
3202 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3203 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3205 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3206 panic("TCP: failed to alloc ehash_locks");
3207 tcp_hashinfo.bhash =
3208 alloc_large_system_hash("TCP bind",
3209 sizeof(struct inet_bind_hashbucket),
3210 tcp_hashinfo.ehash_mask + 1,
3211 17, /* one slot per 128 KB of memory */
3213 &tcp_hashinfo.bhash_size,
3214 NULL,
3216 64 * 1024);
3217 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3218 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3219 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3220 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3224 cnt = tcp_hashinfo.ehash_mask + 1;
3226 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3227 sysctl_tcp_max_orphans = cnt / 2;
3228 sysctl_max_syn_backlog = max(128, cnt / 256);
3230 tcp_init_mem();
3231 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3232 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3233 max_wshare = min(4UL*1024*1024, limit);
3234 max_rshare = min(6UL*1024*1024, limit);
3236 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3237 sysctl_tcp_wmem[1] = 16*1024;
3238 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3240 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3241 sysctl_tcp_rmem[1] = 87380;
3242 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3244 pr_info("Hash tables configured (established %u bind %u)\n",
3245 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3247 tcp_metrics_init();
3248 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3249 tcp_tasklet_init();