lan78xx: add ethtool set & get pause functions
[linux-2.6/btrfs-unstable.git] / net / ipv4 / syncookies.c
blobba0dcffada3b74cdaf8a4c1bf422704541f6d69f
1 /*
2 * Syncookies implementation for the Linux kernel
4 * Copyright (C) 1997 Andi Kleen
5 * Based on ideas by D.J.Bernstein and Eric Schenk.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/cryptohash.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <net/tcp.h>
20 #include <net/route.h>
22 static u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS] __read_mostly;
24 #define COOKIEBITS 24 /* Upper bits store count */
25 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
27 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
28 * stores TCP options:
30 * MSB LSB
31 * | 31 ... 6 | 5 | 4 | 3 2 1 0 |
32 * | Timestamp | ECN | SACK | WScale |
34 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
35 * any) to figure out which TCP options we should use for the rebuilt
36 * connection.
38 * A WScale setting of '0xf' (which is an invalid scaling value)
39 * means that original syn did not include the TCP window scaling option.
41 #define TS_OPT_WSCALE_MASK 0xf
42 #define TS_OPT_SACK BIT(4)
43 #define TS_OPT_ECN BIT(5)
44 /* There is no TS_OPT_TIMESTAMP:
45 * if ACK contains timestamp option, we already know it was
46 * requested/supported by the syn/synack exchange.
48 #define TSBITS 6
49 #define TSMASK (((__u32)1 << TSBITS) - 1)
51 static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS],
52 ipv4_cookie_scratch);
54 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
55 u32 count, int c)
57 __u32 *tmp;
59 net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
61 tmp = this_cpu_ptr(ipv4_cookie_scratch);
62 memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
63 tmp[0] = (__force u32)saddr;
64 tmp[1] = (__force u32)daddr;
65 tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
66 tmp[3] = count;
67 sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
69 return tmp[17];
74 * when syncookies are in effect and tcp timestamps are enabled we encode
75 * tcp options in the lower bits of the timestamp value that will be
76 * sent in the syn-ack.
77 * Since subsequent timestamps use the normal tcp_time_stamp value, we
78 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
80 __u32 cookie_init_timestamp(struct request_sock *req)
82 struct inet_request_sock *ireq;
83 u32 ts, ts_now = tcp_time_stamp;
84 u32 options = 0;
86 ireq = inet_rsk(req);
88 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
89 if (ireq->sack_ok)
90 options |= TS_OPT_SACK;
91 if (ireq->ecn_ok)
92 options |= TS_OPT_ECN;
94 ts = ts_now & ~TSMASK;
95 ts |= options;
96 if (ts > ts_now) {
97 ts >>= TSBITS;
98 ts--;
99 ts <<= TSBITS;
100 ts |= options;
102 return ts;
106 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
107 __be16 dport, __u32 sseq, __u32 data)
110 * Compute the secure sequence number.
111 * The output should be:
112 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
113 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
114 * Where sseq is their sequence number and count increases every
115 * minute by 1.
116 * As an extra hack, we add a small "data" value that encodes the
117 * MSS into the second hash value.
119 u32 count = tcp_cookie_time();
120 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
121 sseq + (count << COOKIEBITS) +
122 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
123 & COOKIEMASK));
127 * This retrieves the small "data" value from the syncookie.
128 * If the syncookie is bad, the data returned will be out of
129 * range. This must be checked by the caller.
131 * The count value used to generate the cookie must be less than
132 * MAX_SYNCOOKIE_AGE minutes in the past.
133 * The return value (__u32)-1 if this test fails.
135 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
136 __be16 sport, __be16 dport, __u32 sseq)
138 u32 diff, count = tcp_cookie_time();
140 /* Strip away the layers from the cookie */
141 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
143 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
144 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
145 if (diff >= MAX_SYNCOOKIE_AGE)
146 return (__u32)-1;
148 return (cookie -
149 cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
150 & COOKIEMASK; /* Leaving the data behind */
154 * MSS Values are chosen based on the 2011 paper
155 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
156 * Values ..
157 * .. lower than 536 are rare (< 0.2%)
158 * .. between 537 and 1299 account for less than < 1.5% of observed values
159 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values
160 * .. exceeding 1460 are very rare (< 0.04%)
162 * 1460 is the single most frequently announced mss value (30 to 46% depending
163 * on monitor location). Table must be sorted.
165 static __u16 const msstab[] = {
166 536,
167 1300,
168 1440, /* 1440, 1452: PPPoE */
169 1460,
173 * Generate a syncookie. mssp points to the mss, which is returned
174 * rounded down to the value encoded in the cookie.
176 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
177 u16 *mssp)
179 int mssind;
180 const __u16 mss = *mssp;
182 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
183 if (mss >= msstab[mssind])
184 break;
185 *mssp = msstab[mssind];
187 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
188 th->source, th->dest, ntohl(th->seq),
189 mssind);
191 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
193 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
195 const struct iphdr *iph = ip_hdr(skb);
196 const struct tcphdr *th = tcp_hdr(skb);
198 return __cookie_v4_init_sequence(iph, th, mssp);
202 * Check if a ack sequence number is a valid syncookie.
203 * Return the decoded mss if it is, or 0 if not.
205 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
206 u32 cookie)
208 __u32 seq = ntohl(th->seq) - 1;
209 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
210 th->source, th->dest, seq);
212 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
214 EXPORT_SYMBOL_GPL(__cookie_v4_check);
216 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
217 struct request_sock *req,
218 struct dst_entry *dst)
220 struct inet_connection_sock *icsk = inet_csk(sk);
221 struct sock *child;
222 bool own_req;
224 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
225 NULL, &own_req);
226 if (child) {
227 atomic_set(&req->rsk_refcnt, 1);
228 sock_rps_save_rxhash(child, skb);
229 inet_csk_reqsk_queue_add(sk, req, child);
230 } else {
231 reqsk_free(req);
233 return child;
235 EXPORT_SYMBOL(tcp_get_cookie_sock);
238 * when syncookies are in effect and tcp timestamps are enabled we stored
239 * additional tcp options in the timestamp.
240 * This extracts these options from the timestamp echo.
242 * return false if we decode a tcp option that is disabled
243 * on the host.
245 bool cookie_timestamp_decode(struct tcp_options_received *tcp_opt)
247 /* echoed timestamp, lowest bits contain options */
248 u32 options = tcp_opt->rcv_tsecr;
250 if (!tcp_opt->saw_tstamp) {
251 tcp_clear_options(tcp_opt);
252 return true;
255 if (!sysctl_tcp_timestamps)
256 return false;
258 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
260 if (tcp_opt->sack_ok && !sysctl_tcp_sack)
261 return false;
263 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
264 return true; /* no window scaling */
266 tcp_opt->wscale_ok = 1;
267 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
269 return sysctl_tcp_window_scaling != 0;
271 EXPORT_SYMBOL(cookie_timestamp_decode);
273 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
274 const struct net *net, const struct dst_entry *dst)
276 bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
278 if (!ecn_ok)
279 return false;
281 if (net->ipv4.sysctl_tcp_ecn)
282 return true;
284 return dst_feature(dst, RTAX_FEATURE_ECN);
286 EXPORT_SYMBOL(cookie_ecn_ok);
288 /* On input, sk is a listener.
289 * Output is listener if incoming packet would not create a child
290 * NULL if memory could not be allocated.
292 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
294 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
295 struct tcp_options_received tcp_opt;
296 struct inet_request_sock *ireq;
297 struct tcp_request_sock *treq;
298 struct tcp_sock *tp = tcp_sk(sk);
299 const struct tcphdr *th = tcp_hdr(skb);
300 __u32 cookie = ntohl(th->ack_seq) - 1;
301 struct sock *ret = sk;
302 struct request_sock *req;
303 int mss;
304 struct rtable *rt;
305 __u8 rcv_wscale;
306 struct flowi4 fl4;
308 if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
309 goto out;
311 if (tcp_synq_no_recent_overflow(sk))
312 goto out;
314 mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
315 if (mss == 0) {
316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
317 goto out;
320 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
322 /* check for timestamp cookie support */
323 memset(&tcp_opt, 0, sizeof(tcp_opt));
324 tcp_parse_options(skb, &tcp_opt, 0, NULL);
326 if (!cookie_timestamp_decode(&tcp_opt))
327 goto out;
329 ret = NULL;
330 req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
331 if (!req)
332 goto out;
334 ireq = inet_rsk(req);
335 treq = tcp_rsk(req);
336 treq->rcv_isn = ntohl(th->seq) - 1;
337 treq->snt_isn = cookie;
338 req->mss = mss;
339 ireq->ir_num = ntohs(th->dest);
340 ireq->ir_rmt_port = th->source;
341 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
342 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
343 ireq->ir_mark = inet_request_mark(sk, skb);
344 ireq->snd_wscale = tcp_opt.snd_wscale;
345 ireq->sack_ok = tcp_opt.sack_ok;
346 ireq->wscale_ok = tcp_opt.wscale_ok;
347 ireq->tstamp_ok = tcp_opt.saw_tstamp;
348 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
349 treq->snt_synack.v64 = 0;
350 treq->tfo_listener = false;
352 ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
354 /* We throwed the options of the initial SYN away, so we hope
355 * the ACK carries the same options again (see RFC1122 4.2.3.8)
357 ireq->opt = tcp_v4_save_options(skb);
359 if (security_inet_conn_request(sk, skb, req)) {
360 reqsk_free(req);
361 goto out;
364 req->num_retrans = 0;
367 * We need to lookup the route here to get at the correct
368 * window size. We should better make sure that the window size
369 * hasn't changed since we received the original syn, but I see
370 * no easy way to do this.
372 flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
373 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
374 inet_sk_flowi_flags(sk),
375 opt->srr ? opt->faddr : ireq->ir_rmt_addr,
376 ireq->ir_loc_addr, th->source, th->dest);
377 security_req_classify_flow(req, flowi4_to_flowi(&fl4));
378 rt = ip_route_output_key(sock_net(sk), &fl4);
379 if (IS_ERR(rt)) {
380 reqsk_free(req);
381 goto out;
384 /* Try to redo what tcp_v4_send_synack did. */
385 req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
387 tcp_select_initial_window(tcp_full_space(sk), req->mss,
388 &req->rsk_rcv_wnd, &req->rsk_window_clamp,
389 ireq->wscale_ok, &rcv_wscale,
390 dst_metric(&rt->dst, RTAX_INITRWND));
392 ireq->rcv_wscale = rcv_wscale;
393 ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
395 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
396 /* ip_queue_xmit() depends on our flow being setup
397 * Normal sockets get it right from inet_csk_route_child_sock()
399 if (ret)
400 inet_sk(ret)->cork.fl.u.ip4 = fl4;
401 out: return ret;