ASoC: topology: Move v4 manifest header data structures to uapi
[linux-2.6/btrfs-unstable.git] / mm / sparse.c
blob62eef264a7bd38313aa6855f90b4fa7fd52b0b76
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
21 * Permanent SPARSEMEM data:
23 * 1) mem_section - memory sections, mem_map's for valid memory
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
45 int page_to_nid(const struct page *page)
47 return section_to_node_table[page_to_section(page)];
49 EXPORT_SYMBOL(page_to_nid);
51 static void set_section_nid(unsigned long section_nr, int nid)
53 section_to_node_table[section_nr] = nid;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
59 #endif
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
68 if (slab_is_available())
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 else
71 section = memblock_virt_alloc_node(array_size, nid);
73 return section;
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
81 if (mem_section[root])
82 return -EEXIST;
84 section = sparse_index_alloc(nid);
85 if (!section)
86 return -ENOMEM;
88 mem_section[root] = section;
90 return 0;
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
95 return 0;
97 #endif
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
102 unsigned long root_nr;
103 struct mem_section *root = NULL;
105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 if (!root)
108 continue;
110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 break;
114 VM_BUG_ON(!root);
116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
118 #else
119 int __section_nr(struct mem_section* ms)
121 return (int)(ms - mem_section[0]);
123 #endif
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
131 static inline unsigned long sparse_encode_early_nid(int nid)
133 return (nid << SECTION_NID_SHIFT);
136 static inline int sparse_early_nid(struct mem_section *section)
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each. But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
179 int section_nr = __section_nr(ms);
181 if (section_nr > __highest_present_section_nr)
182 __highest_present_section_nr = section_nr;
184 ms->section_mem_map |= SECTION_MARKED_PRESENT;
187 static inline int next_present_section_nr(int section_nr)
189 do {
190 section_nr++;
191 if (present_section_nr(section_nr))
192 return section_nr;
193 } while ((section_nr < NR_MEM_SECTIONS) &&
194 (section_nr <= __highest_present_section_nr));
196 return -1;
198 #define for_each_present_section_nr(start, section_nr) \
199 for (section_nr = next_present_section_nr(start-1); \
200 ((section_nr >= 0) && \
201 (section_nr < NR_MEM_SECTIONS) && \
202 (section_nr <= __highest_present_section_nr)); \
203 section_nr = next_present_section_nr(section_nr))
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
208 unsigned long pfn;
210 #ifdef CONFIG_SPARSEMEM_EXTREME
211 if (unlikely(!mem_section)) {
212 unsigned long size, align;
214 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215 align = 1 << (INTERNODE_CACHE_SHIFT);
216 mem_section = memblock_virt_alloc(size, align);
218 #endif
220 start &= PAGE_SECTION_MASK;
221 mminit_validate_memmodel_limits(&start, &end);
222 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223 unsigned long section = pfn_to_section_nr(pfn);
224 struct mem_section *ms;
226 sparse_index_init(section, nid);
227 set_section_nid(section, nid);
229 ms = __nr_to_section(section);
230 if (!ms->section_mem_map) {
231 ms->section_mem_map = sparse_encode_early_nid(nid) |
232 SECTION_IS_ONLINE;
233 section_mark_present(ms);
239 * Subtle, we encode the real pfn into the mem_map such that
240 * the identity pfn - section_mem_map will return the actual
241 * physical page frame number.
243 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
245 unsigned long coded_mem_map =
246 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
247 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
248 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
249 return coded_mem_map;
253 * Decode mem_map from the coded memmap
255 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
257 /* mask off the extra low bits of information */
258 coded_mem_map &= SECTION_MAP_MASK;
259 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
262 static int __meminit sparse_init_one_section(struct mem_section *ms,
263 unsigned long pnum, struct page *mem_map,
264 unsigned long *pageblock_bitmap)
266 if (!present_section(ms))
267 return -EINVAL;
269 ms->section_mem_map &= ~SECTION_MAP_MASK;
270 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
271 SECTION_HAS_MEM_MAP;
272 ms->pageblock_flags = pageblock_bitmap;
274 return 1;
277 unsigned long usemap_size(void)
279 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
282 #ifdef CONFIG_MEMORY_HOTPLUG
283 static unsigned long *__kmalloc_section_usemap(void)
285 return kmalloc(usemap_size(), GFP_KERNEL);
287 #endif /* CONFIG_MEMORY_HOTPLUG */
289 #ifdef CONFIG_MEMORY_HOTREMOVE
290 static unsigned long * __init
291 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
292 unsigned long size)
294 unsigned long goal, limit;
295 unsigned long *p;
296 int nid;
298 * A page may contain usemaps for other sections preventing the
299 * page being freed and making a section unremovable while
300 * other sections referencing the usemap remain active. Similarly,
301 * a pgdat can prevent a section being removed. If section A
302 * contains a pgdat and section B contains the usemap, both
303 * sections become inter-dependent. This allocates usemaps
304 * from the same section as the pgdat where possible to avoid
305 * this problem.
307 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
308 limit = goal + (1UL << PA_SECTION_SHIFT);
309 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
310 again:
311 p = memblock_virt_alloc_try_nid_nopanic(size,
312 SMP_CACHE_BYTES, goal, limit,
313 nid);
314 if (!p && limit) {
315 limit = 0;
316 goto again;
318 return p;
321 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
323 unsigned long usemap_snr, pgdat_snr;
324 static unsigned long old_usemap_snr;
325 static unsigned long old_pgdat_snr;
326 struct pglist_data *pgdat = NODE_DATA(nid);
327 int usemap_nid;
329 /* First call */
330 if (!old_usemap_snr) {
331 old_usemap_snr = NR_MEM_SECTIONS;
332 old_pgdat_snr = NR_MEM_SECTIONS;
335 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
336 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
337 if (usemap_snr == pgdat_snr)
338 return;
340 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
341 /* skip redundant message */
342 return;
344 old_usemap_snr = usemap_snr;
345 old_pgdat_snr = pgdat_snr;
347 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
348 if (usemap_nid != nid) {
349 pr_info("node %d must be removed before remove section %ld\n",
350 nid, usemap_snr);
351 return;
354 * There is a circular dependency.
355 * Some platforms allow un-removable section because they will just
356 * gather other removable sections for dynamic partitioning.
357 * Just notify un-removable section's number here.
359 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
360 usemap_snr, pgdat_snr, nid);
362 #else
363 static unsigned long * __init
364 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
365 unsigned long size)
367 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
370 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
373 #endif /* CONFIG_MEMORY_HOTREMOVE */
375 static void __init sparse_early_usemaps_alloc_node(void *data,
376 unsigned long pnum_begin,
377 unsigned long pnum_end,
378 unsigned long usemap_count, int nodeid)
380 void *usemap;
381 unsigned long pnum;
382 unsigned long **usemap_map = (unsigned long **)data;
383 int size = usemap_size();
385 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
386 size * usemap_count);
387 if (!usemap) {
388 pr_warn("%s: allocation failed\n", __func__);
389 return;
392 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
393 if (!present_section_nr(pnum))
394 continue;
395 usemap_map[pnum] = usemap;
396 usemap += size;
397 check_usemap_section_nr(nodeid, usemap_map[pnum]);
401 #ifndef CONFIG_SPARSEMEM_VMEMMAP
402 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
403 struct vmem_altmap *altmap)
405 struct page *map;
406 unsigned long size;
408 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
409 map = memblock_virt_alloc_try_nid(size,
410 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
411 BOOTMEM_ALLOC_ACCESSIBLE, nid);
412 return map;
414 void __init sparse_mem_maps_populate_node(struct page **map_map,
415 unsigned long pnum_begin,
416 unsigned long pnum_end,
417 unsigned long map_count, int nodeid)
419 void *map;
420 unsigned long pnum;
421 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
423 size = PAGE_ALIGN(size);
424 map = memblock_virt_alloc_try_nid_raw(size * map_count,
425 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
426 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
427 if (map) {
428 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
429 if (!present_section_nr(pnum))
430 continue;
431 map_map[pnum] = map;
432 map += size;
434 return;
437 /* fallback */
438 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
439 struct mem_section *ms;
441 if (!present_section_nr(pnum))
442 continue;
443 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
444 if (map_map[pnum])
445 continue;
446 ms = __nr_to_section(pnum);
447 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
448 __func__);
449 ms->section_mem_map = 0;
452 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
454 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
455 static void __init sparse_early_mem_maps_alloc_node(void *data,
456 unsigned long pnum_begin,
457 unsigned long pnum_end,
458 unsigned long map_count, int nodeid)
460 struct page **map_map = (struct page **)data;
461 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
462 map_count, nodeid);
464 #else
465 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
467 struct page *map;
468 struct mem_section *ms = __nr_to_section(pnum);
469 int nid = sparse_early_nid(ms);
471 map = sparse_mem_map_populate(pnum, nid, NULL);
472 if (map)
473 return map;
475 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
476 __func__);
477 ms->section_mem_map = 0;
478 return NULL;
480 #endif
482 void __weak __meminit vmemmap_populate_print_last(void)
487 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
488 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
490 static void __init alloc_usemap_and_memmap(void (*alloc_func)
491 (void *, unsigned long, unsigned long,
492 unsigned long, int), void *data)
494 unsigned long pnum;
495 unsigned long map_count;
496 int nodeid_begin = 0;
497 unsigned long pnum_begin = 0;
499 for_each_present_section_nr(0, pnum) {
500 struct mem_section *ms;
502 ms = __nr_to_section(pnum);
503 nodeid_begin = sparse_early_nid(ms);
504 pnum_begin = pnum;
505 break;
507 map_count = 1;
508 for_each_present_section_nr(pnum_begin + 1, pnum) {
509 struct mem_section *ms;
510 int nodeid;
512 ms = __nr_to_section(pnum);
513 nodeid = sparse_early_nid(ms);
514 if (nodeid == nodeid_begin) {
515 map_count++;
516 continue;
518 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
519 alloc_func(data, pnum_begin, pnum,
520 map_count, nodeid_begin);
521 /* new start, update count etc*/
522 nodeid_begin = nodeid;
523 pnum_begin = pnum;
524 map_count = 1;
526 /* ok, last chunk */
527 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
528 map_count, nodeid_begin);
532 * Allocate the accumulated non-linear sections, allocate a mem_map
533 * for each and record the physical to section mapping.
535 void __init sparse_init(void)
537 unsigned long pnum;
538 struct page *map;
539 unsigned long *usemap;
540 unsigned long **usemap_map;
541 int size;
542 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
543 int size2;
544 struct page **map_map;
545 #endif
547 /* see include/linux/mmzone.h 'struct mem_section' definition */
548 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
550 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
551 set_pageblock_order();
554 * map is using big page (aka 2M in x86 64 bit)
555 * usemap is less one page (aka 24 bytes)
556 * so alloc 2M (with 2M align) and 24 bytes in turn will
557 * make next 2M slip to one more 2M later.
558 * then in big system, the memory will have a lot of holes...
559 * here try to allocate 2M pages continuously.
561 * powerpc need to call sparse_init_one_section right after each
562 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
564 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
565 usemap_map = memblock_virt_alloc(size, 0);
566 if (!usemap_map)
567 panic("can not allocate usemap_map\n");
568 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
569 (void *)usemap_map);
571 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
573 map_map = memblock_virt_alloc(size2, 0);
574 if (!map_map)
575 panic("can not allocate map_map\n");
576 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
577 (void *)map_map);
578 #endif
580 for_each_present_section_nr(0, pnum) {
581 usemap = usemap_map[pnum];
582 if (!usemap)
583 continue;
585 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586 map = map_map[pnum];
587 #else
588 map = sparse_early_mem_map_alloc(pnum);
589 #endif
590 if (!map)
591 continue;
593 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
594 usemap);
597 vmemmap_populate_print_last();
599 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
600 memblock_free_early(__pa(map_map), size2);
601 #endif
602 memblock_free_early(__pa(usemap_map), size);
605 #ifdef CONFIG_MEMORY_HOTPLUG
607 /* Mark all memory sections within the pfn range as online */
608 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610 unsigned long pfn;
612 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
613 unsigned long section_nr = pfn_to_section_nr(pfn);
614 struct mem_section *ms;
616 /* onlining code should never touch invalid ranges */
617 if (WARN_ON(!valid_section_nr(section_nr)))
618 continue;
620 ms = __nr_to_section(section_nr);
621 ms->section_mem_map |= SECTION_IS_ONLINE;
625 #ifdef CONFIG_MEMORY_HOTREMOVE
626 /* Mark all memory sections within the pfn range as online */
627 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629 unsigned long pfn;
631 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
632 unsigned long section_nr = pfn_to_section_nr(start_pfn);
633 struct mem_section *ms;
636 * TODO this needs some double checking. Offlining code makes
637 * sure to check pfn_valid but those checks might be just bogus
639 if (WARN_ON(!valid_section_nr(section_nr)))
640 continue;
642 ms = __nr_to_section(section_nr);
643 ms->section_mem_map &= ~SECTION_IS_ONLINE;
646 #endif
648 #ifdef CONFIG_SPARSEMEM_VMEMMAP
649 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
650 struct vmem_altmap *altmap)
652 /* This will make the necessary allocations eventually. */
653 return sparse_mem_map_populate(pnum, nid, altmap);
655 static void __kfree_section_memmap(struct page *memmap,
656 struct vmem_altmap *altmap)
658 unsigned long start = (unsigned long)memmap;
659 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
661 vmemmap_free(start, end, altmap);
663 #ifdef CONFIG_MEMORY_HOTREMOVE
664 static void free_map_bootmem(struct page *memmap)
666 unsigned long start = (unsigned long)memmap;
667 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
669 vmemmap_free(start, end, NULL);
671 #endif /* CONFIG_MEMORY_HOTREMOVE */
672 #else
673 static struct page *__kmalloc_section_memmap(void)
675 struct page *page, *ret;
676 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
678 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679 if (page)
680 goto got_map_page;
682 ret = vmalloc(memmap_size);
683 if (ret)
684 goto got_map_ptr;
686 return NULL;
687 got_map_page:
688 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689 got_map_ptr:
691 return ret;
694 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
695 struct vmem_altmap *altmap)
697 return __kmalloc_section_memmap();
700 static void __kfree_section_memmap(struct page *memmap,
701 struct vmem_altmap *altmap)
703 if (is_vmalloc_addr(memmap))
704 vfree(memmap);
705 else
706 free_pages((unsigned long)memmap,
707 get_order(sizeof(struct page) * PAGES_PER_SECTION));
710 #ifdef CONFIG_MEMORY_HOTREMOVE
711 static void free_map_bootmem(struct page *memmap)
713 unsigned long maps_section_nr, removing_section_nr, i;
714 unsigned long magic, nr_pages;
715 struct page *page = virt_to_page(memmap);
717 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
718 >> PAGE_SHIFT;
720 for (i = 0; i < nr_pages; i++, page++) {
721 magic = (unsigned long) page->freelist;
723 BUG_ON(magic == NODE_INFO);
725 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
726 removing_section_nr = page_private(page);
729 * When this function is called, the removing section is
730 * logical offlined state. This means all pages are isolated
731 * from page allocator. If removing section's memmap is placed
732 * on the same section, it must not be freed.
733 * If it is freed, page allocator may allocate it which will
734 * be removed physically soon.
736 if (maps_section_nr != removing_section_nr)
737 put_page_bootmem(page);
740 #endif /* CONFIG_MEMORY_HOTREMOVE */
741 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
744 * returns the number of sections whose mem_maps were properly
745 * set. If this is <=0, then that means that the passed-in
746 * map was not consumed and must be freed.
748 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
749 unsigned long start_pfn, struct vmem_altmap *altmap)
751 unsigned long section_nr = pfn_to_section_nr(start_pfn);
752 struct mem_section *ms;
753 struct page *memmap;
754 unsigned long *usemap;
755 unsigned long flags;
756 int ret;
759 * no locking for this, because it does its own
760 * plus, it does a kmalloc
762 ret = sparse_index_init(section_nr, pgdat->node_id);
763 if (ret < 0 && ret != -EEXIST)
764 return ret;
765 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
766 if (!memmap)
767 return -ENOMEM;
768 usemap = __kmalloc_section_usemap();
769 if (!usemap) {
770 __kfree_section_memmap(memmap, altmap);
771 return -ENOMEM;
774 pgdat_resize_lock(pgdat, &flags);
776 ms = __pfn_to_section(start_pfn);
777 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
778 ret = -EEXIST;
779 goto out;
782 #ifdef CONFIG_DEBUG_VM
784 * Poison uninitialized struct pages in order to catch invalid flags
785 * combinations.
787 memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
788 #endif
790 section_mark_present(ms);
792 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
794 out:
795 pgdat_resize_unlock(pgdat, &flags);
796 if (ret <= 0) {
797 kfree(usemap);
798 __kfree_section_memmap(memmap, altmap);
800 return ret;
803 #ifdef CONFIG_MEMORY_HOTREMOVE
804 #ifdef CONFIG_MEMORY_FAILURE
805 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
807 int i;
809 if (!memmap)
810 return;
812 for (i = 0; i < nr_pages; i++) {
813 if (PageHWPoison(&memmap[i])) {
814 atomic_long_sub(1, &num_poisoned_pages);
815 ClearPageHWPoison(&memmap[i]);
819 #else
820 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
823 #endif
825 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
826 struct vmem_altmap *altmap)
828 struct page *usemap_page;
830 if (!usemap)
831 return;
833 usemap_page = virt_to_page(usemap);
835 * Check to see if allocation came from hot-plug-add
837 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
838 kfree(usemap);
839 if (memmap)
840 __kfree_section_memmap(memmap, altmap);
841 return;
845 * The usemap came from bootmem. This is packed with other usemaps
846 * on the section which has pgdat at boot time. Just keep it as is now.
849 if (memmap)
850 free_map_bootmem(memmap);
853 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
854 unsigned long map_offset, struct vmem_altmap *altmap)
856 struct page *memmap = NULL;
857 unsigned long *usemap = NULL, flags;
858 struct pglist_data *pgdat = zone->zone_pgdat;
860 pgdat_resize_lock(pgdat, &flags);
861 if (ms->section_mem_map) {
862 usemap = ms->pageblock_flags;
863 memmap = sparse_decode_mem_map(ms->section_mem_map,
864 __section_nr(ms));
865 ms->section_mem_map = 0;
866 ms->pageblock_flags = NULL;
868 pgdat_resize_unlock(pgdat, &flags);
870 clear_hwpoisoned_pages(memmap + map_offset,
871 PAGES_PER_SECTION - map_offset);
872 free_section_usemap(memmap, usemap, altmap);
874 #endif /* CONFIG_MEMORY_HOTREMOVE */
875 #endif /* CONFIG_MEMORY_HOTPLUG */