xhci: workaround for hosts missing CAS bit
[linux-2.6/btrfs-unstable.git] / fs / f2fs / file.c
blobc7865073cd26acc3c3aa697c2ec82f9d2edc3dc5
1 /*
2 * fs/f2fs/file.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24 #include <linux/file.h>
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
36 struct vm_fault *vmf)
38 struct page *page = vmf->page;
39 struct inode *inode = file_inode(vma->vm_file);
40 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 struct dnode_of_data dn;
42 int err;
44 sb_start_pagefault(inode->i_sb);
46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
48 /* block allocation */
49 f2fs_lock_op(sbi);
50 set_new_dnode(&dn, inode, NULL, NULL, 0);
51 err = f2fs_reserve_block(&dn, page->index);
52 if (err) {
53 f2fs_unlock_op(sbi);
54 goto out;
56 f2fs_put_dnode(&dn);
57 f2fs_unlock_op(sbi);
59 f2fs_balance_fs(sbi, dn.node_changed);
61 file_update_time(vma->vm_file);
62 lock_page(page);
63 if (unlikely(page->mapping != inode->i_mapping ||
64 page_offset(page) > i_size_read(inode) ||
65 !PageUptodate(page))) {
66 unlock_page(page);
67 err = -EFAULT;
68 goto out;
72 * check to see if the page is mapped already (no holes)
74 if (PageMappedToDisk(page))
75 goto mapped;
77 /* page is wholly or partially inside EOF */
78 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 i_size_read(inode)) {
80 unsigned offset;
81 offset = i_size_read(inode) & ~PAGE_MASK;
82 zero_user_segment(page, offset, PAGE_SIZE);
84 set_page_dirty(page);
85 if (!PageUptodate(page))
86 SetPageUptodate(page);
88 trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 /* fill the page */
91 f2fs_wait_on_page_writeback(page, DATA, false);
93 /* wait for GCed encrypted page writeback */
94 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
97 /* if gced page is attached, don't write to cold segment */
98 clear_cold_data(page);
99 out:
100 sb_end_pagefault(inode->i_sb);
101 f2fs_update_time(sbi, REQ_TIME);
102 return block_page_mkwrite_return(err);
105 static const struct vm_operations_struct f2fs_file_vm_ops = {
106 .fault = filemap_fault,
107 .map_pages = filemap_map_pages,
108 .page_mkwrite = f2fs_vm_page_mkwrite,
111 static int get_parent_ino(struct inode *inode, nid_t *pino)
113 struct dentry *dentry;
115 inode = igrab(inode);
116 dentry = d_find_any_alias(inode);
117 iput(inode);
118 if (!dentry)
119 return 0;
121 if (update_dent_inode(inode, inode, &dentry->d_name)) {
122 dput(dentry);
123 return 0;
126 *pino = parent_ino(dentry);
127 dput(dentry);
128 return 1;
131 static inline bool need_do_checkpoint(struct inode *inode)
133 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
134 bool need_cp = false;
136 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
137 need_cp = true;
138 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
139 need_cp = true;
140 else if (file_wrong_pino(inode))
141 need_cp = true;
142 else if (!space_for_roll_forward(sbi))
143 need_cp = true;
144 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
145 need_cp = true;
146 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
147 need_cp = true;
148 else if (test_opt(sbi, FASTBOOT))
149 need_cp = true;
150 else if (sbi->active_logs == 2)
151 need_cp = true;
153 return need_cp;
156 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
158 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
159 bool ret = false;
160 /* But we need to avoid that there are some inode updates */
161 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
162 ret = true;
163 f2fs_put_page(i, 0);
164 return ret;
167 static void try_to_fix_pino(struct inode *inode)
169 struct f2fs_inode_info *fi = F2FS_I(inode);
170 nid_t pino;
172 down_write(&fi->i_sem);
173 fi->xattr_ver = 0;
174 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
175 get_parent_ino(inode, &pino)) {
176 f2fs_i_pino_write(inode, pino);
177 file_got_pino(inode);
179 up_write(&fi->i_sem);
182 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
183 int datasync, bool atomic)
185 struct inode *inode = file->f_mapping->host;
186 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
187 nid_t ino = inode->i_ino;
188 int ret = 0;
189 bool need_cp = false;
190 struct writeback_control wbc = {
191 .sync_mode = WB_SYNC_ALL,
192 .nr_to_write = LONG_MAX,
193 .for_reclaim = 0,
196 if (unlikely(f2fs_readonly(inode->i_sb)))
197 return 0;
199 trace_f2fs_sync_file_enter(inode);
201 /* if fdatasync is triggered, let's do in-place-update */
202 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
203 set_inode_flag(inode, FI_NEED_IPU);
204 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
205 clear_inode_flag(inode, FI_NEED_IPU);
207 if (ret) {
208 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
209 return ret;
212 /* if the inode is dirty, let's recover all the time */
213 if (!datasync && !f2fs_skip_inode_update(inode)) {
214 f2fs_write_inode(inode, NULL);
215 goto go_write;
219 * if there is no written data, don't waste time to write recovery info.
221 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
222 !exist_written_data(sbi, ino, APPEND_INO)) {
224 /* it may call write_inode just prior to fsync */
225 if (need_inode_page_update(sbi, ino))
226 goto go_write;
228 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
229 exist_written_data(sbi, ino, UPDATE_INO))
230 goto flush_out;
231 goto out;
233 go_write:
235 * Both of fdatasync() and fsync() are able to be recovered from
236 * sudden-power-off.
238 down_read(&F2FS_I(inode)->i_sem);
239 need_cp = need_do_checkpoint(inode);
240 up_read(&F2FS_I(inode)->i_sem);
242 if (need_cp) {
243 /* all the dirty node pages should be flushed for POR */
244 ret = f2fs_sync_fs(inode->i_sb, 1);
247 * We've secured consistency through sync_fs. Following pino
248 * will be used only for fsynced inodes after checkpoint.
250 try_to_fix_pino(inode);
251 clear_inode_flag(inode, FI_APPEND_WRITE);
252 clear_inode_flag(inode, FI_UPDATE_WRITE);
253 goto out;
255 sync_nodes:
256 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
257 if (ret)
258 goto out;
260 /* if cp_error was enabled, we should avoid infinite loop */
261 if (unlikely(f2fs_cp_error(sbi))) {
262 ret = -EIO;
263 goto out;
266 if (need_inode_block_update(sbi, ino)) {
267 f2fs_mark_inode_dirty_sync(inode);
268 f2fs_write_inode(inode, NULL);
269 goto sync_nodes;
272 ret = wait_on_node_pages_writeback(sbi, ino);
273 if (ret)
274 goto out;
276 /* once recovery info is written, don't need to tack this */
277 remove_ino_entry(sbi, ino, APPEND_INO);
278 clear_inode_flag(inode, FI_APPEND_WRITE);
279 flush_out:
280 remove_ino_entry(sbi, ino, UPDATE_INO);
281 clear_inode_flag(inode, FI_UPDATE_WRITE);
282 ret = f2fs_issue_flush(sbi);
283 f2fs_update_time(sbi, REQ_TIME);
284 out:
285 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
286 f2fs_trace_ios(NULL, 1);
287 return ret;
290 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
292 return f2fs_do_sync_file(file, start, end, datasync, false);
295 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
296 pgoff_t pgofs, int whence)
298 struct pagevec pvec;
299 int nr_pages;
301 if (whence != SEEK_DATA)
302 return 0;
304 /* find first dirty page index */
305 pagevec_init(&pvec, 0);
306 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
307 PAGECACHE_TAG_DIRTY, 1);
308 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
309 pagevec_release(&pvec);
310 return pgofs;
313 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
314 int whence)
316 switch (whence) {
317 case SEEK_DATA:
318 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
319 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
320 return true;
321 break;
322 case SEEK_HOLE:
323 if (blkaddr == NULL_ADDR)
324 return true;
325 break;
327 return false;
330 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
332 struct inode *inode = file->f_mapping->host;
333 loff_t maxbytes = inode->i_sb->s_maxbytes;
334 struct dnode_of_data dn;
335 pgoff_t pgofs, end_offset, dirty;
336 loff_t data_ofs = offset;
337 loff_t isize;
338 int err = 0;
340 inode_lock(inode);
342 isize = i_size_read(inode);
343 if (offset >= isize)
344 goto fail;
346 /* handle inline data case */
347 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
348 if (whence == SEEK_HOLE)
349 data_ofs = isize;
350 goto found;
353 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
355 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
357 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
358 set_new_dnode(&dn, inode, NULL, NULL, 0);
359 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
360 if (err && err != -ENOENT) {
361 goto fail;
362 } else if (err == -ENOENT) {
363 /* direct node does not exists */
364 if (whence == SEEK_DATA) {
365 pgofs = get_next_page_offset(&dn, pgofs);
366 continue;
367 } else {
368 goto found;
372 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
374 /* find data/hole in dnode block */
375 for (; dn.ofs_in_node < end_offset;
376 dn.ofs_in_node++, pgofs++,
377 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
378 block_t blkaddr;
379 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
381 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
382 f2fs_put_dnode(&dn);
383 goto found;
386 f2fs_put_dnode(&dn);
389 if (whence == SEEK_DATA)
390 goto fail;
391 found:
392 if (whence == SEEK_HOLE && data_ofs > isize)
393 data_ofs = isize;
394 inode_unlock(inode);
395 return vfs_setpos(file, data_ofs, maxbytes);
396 fail:
397 inode_unlock(inode);
398 return -ENXIO;
401 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
403 struct inode *inode = file->f_mapping->host;
404 loff_t maxbytes = inode->i_sb->s_maxbytes;
406 switch (whence) {
407 case SEEK_SET:
408 case SEEK_CUR:
409 case SEEK_END:
410 return generic_file_llseek_size(file, offset, whence,
411 maxbytes, i_size_read(inode));
412 case SEEK_DATA:
413 case SEEK_HOLE:
414 if (offset < 0)
415 return -ENXIO;
416 return f2fs_seek_block(file, offset, whence);
419 return -EINVAL;
422 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
424 struct inode *inode = file_inode(file);
425 int err;
427 if (f2fs_encrypted_inode(inode)) {
428 err = fscrypt_get_encryption_info(inode);
429 if (err)
430 return 0;
431 if (!f2fs_encrypted_inode(inode))
432 return -ENOKEY;
435 /* we don't need to use inline_data strictly */
436 err = f2fs_convert_inline_inode(inode);
437 if (err)
438 return err;
440 file_accessed(file);
441 vma->vm_ops = &f2fs_file_vm_ops;
442 return 0;
445 static int f2fs_file_open(struct inode *inode, struct file *filp)
447 int ret = generic_file_open(inode, filp);
448 struct dentry *dir;
450 if (!ret && f2fs_encrypted_inode(inode)) {
451 ret = fscrypt_get_encryption_info(inode);
452 if (ret)
453 return -EACCES;
454 if (!fscrypt_has_encryption_key(inode))
455 return -ENOKEY;
457 dir = dget_parent(file_dentry(filp));
458 if (f2fs_encrypted_inode(d_inode(dir)) &&
459 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
460 dput(dir);
461 return -EPERM;
463 dput(dir);
464 return ret;
467 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
469 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
470 struct f2fs_node *raw_node;
471 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
472 __le32 *addr;
474 raw_node = F2FS_NODE(dn->node_page);
475 addr = blkaddr_in_node(raw_node) + ofs;
477 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
478 block_t blkaddr = le32_to_cpu(*addr);
479 if (blkaddr == NULL_ADDR)
480 continue;
482 dn->data_blkaddr = NULL_ADDR;
483 set_data_blkaddr(dn);
484 invalidate_blocks(sbi, blkaddr);
485 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
486 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
487 nr_free++;
490 if (nr_free) {
491 pgoff_t fofs;
493 * once we invalidate valid blkaddr in range [ofs, ofs + count],
494 * we will invalidate all blkaddr in the whole range.
496 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
497 dn->inode) + ofs;
498 f2fs_update_extent_cache_range(dn, fofs, 0, len);
499 dec_valid_block_count(sbi, dn->inode, nr_free);
501 dn->ofs_in_node = ofs;
503 f2fs_update_time(sbi, REQ_TIME);
504 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
505 dn->ofs_in_node, nr_free);
506 return nr_free;
509 void truncate_data_blocks(struct dnode_of_data *dn)
511 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
514 static int truncate_partial_data_page(struct inode *inode, u64 from,
515 bool cache_only)
517 unsigned offset = from & (PAGE_SIZE - 1);
518 pgoff_t index = from >> PAGE_SHIFT;
519 struct address_space *mapping = inode->i_mapping;
520 struct page *page;
522 if (!offset && !cache_only)
523 return 0;
525 if (cache_only) {
526 page = find_lock_page(mapping, index);
527 if (page && PageUptodate(page))
528 goto truncate_out;
529 f2fs_put_page(page, 1);
530 return 0;
533 page = get_lock_data_page(inode, index, true);
534 if (IS_ERR(page))
535 return 0;
536 truncate_out:
537 f2fs_wait_on_page_writeback(page, DATA, true);
538 zero_user(page, offset, PAGE_SIZE - offset);
539 if (!cache_only || !f2fs_encrypted_inode(inode) ||
540 !S_ISREG(inode->i_mode))
541 set_page_dirty(page);
542 f2fs_put_page(page, 1);
543 return 0;
546 int truncate_blocks(struct inode *inode, u64 from, bool lock)
548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
549 unsigned int blocksize = inode->i_sb->s_blocksize;
550 struct dnode_of_data dn;
551 pgoff_t free_from;
552 int count = 0, err = 0;
553 struct page *ipage;
554 bool truncate_page = false;
556 trace_f2fs_truncate_blocks_enter(inode, from);
558 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
560 if (free_from >= sbi->max_file_blocks)
561 goto free_partial;
563 if (lock)
564 f2fs_lock_op(sbi);
566 ipage = get_node_page(sbi, inode->i_ino);
567 if (IS_ERR(ipage)) {
568 err = PTR_ERR(ipage);
569 goto out;
572 if (f2fs_has_inline_data(inode)) {
573 if (truncate_inline_inode(ipage, from))
574 set_page_dirty(ipage);
575 f2fs_put_page(ipage, 1);
576 truncate_page = true;
577 goto out;
580 set_new_dnode(&dn, inode, ipage, NULL, 0);
581 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
582 if (err) {
583 if (err == -ENOENT)
584 goto free_next;
585 goto out;
588 count = ADDRS_PER_PAGE(dn.node_page, inode);
590 count -= dn.ofs_in_node;
591 f2fs_bug_on(sbi, count < 0);
593 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
594 truncate_data_blocks_range(&dn, count);
595 free_from += count;
598 f2fs_put_dnode(&dn);
599 free_next:
600 err = truncate_inode_blocks(inode, free_from);
601 out:
602 if (lock)
603 f2fs_unlock_op(sbi);
604 free_partial:
605 /* lastly zero out the first data page */
606 if (!err)
607 err = truncate_partial_data_page(inode, from, truncate_page);
609 trace_f2fs_truncate_blocks_exit(inode, err);
610 return err;
613 int f2fs_truncate(struct inode *inode)
615 int err;
617 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
618 S_ISLNK(inode->i_mode)))
619 return 0;
621 trace_f2fs_truncate(inode);
623 /* we should check inline_data size */
624 if (!f2fs_may_inline_data(inode)) {
625 err = f2fs_convert_inline_inode(inode);
626 if (err)
627 return err;
630 err = truncate_blocks(inode, i_size_read(inode), true);
631 if (err)
632 return err;
634 inode->i_mtime = inode->i_ctime = current_time(inode);
635 f2fs_mark_inode_dirty_sync(inode);
636 return 0;
639 int f2fs_getattr(struct vfsmount *mnt,
640 struct dentry *dentry, struct kstat *stat)
642 struct inode *inode = d_inode(dentry);
643 generic_fillattr(inode, stat);
644 stat->blocks <<= 3;
645 return 0;
648 #ifdef CONFIG_F2FS_FS_POSIX_ACL
649 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
651 unsigned int ia_valid = attr->ia_valid;
653 if (ia_valid & ATTR_UID)
654 inode->i_uid = attr->ia_uid;
655 if (ia_valid & ATTR_GID)
656 inode->i_gid = attr->ia_gid;
657 if (ia_valid & ATTR_ATIME)
658 inode->i_atime = timespec_trunc(attr->ia_atime,
659 inode->i_sb->s_time_gran);
660 if (ia_valid & ATTR_MTIME)
661 inode->i_mtime = timespec_trunc(attr->ia_mtime,
662 inode->i_sb->s_time_gran);
663 if (ia_valid & ATTR_CTIME)
664 inode->i_ctime = timespec_trunc(attr->ia_ctime,
665 inode->i_sb->s_time_gran);
666 if (ia_valid & ATTR_MODE) {
667 umode_t mode = attr->ia_mode;
669 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
670 mode &= ~S_ISGID;
671 set_acl_inode(inode, mode);
674 #else
675 #define __setattr_copy setattr_copy
676 #endif
678 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
680 struct inode *inode = d_inode(dentry);
681 int err;
683 err = setattr_prepare(dentry, attr);
684 if (err)
685 return err;
687 if (attr->ia_valid & ATTR_SIZE) {
688 if (f2fs_encrypted_inode(inode) &&
689 fscrypt_get_encryption_info(inode))
690 return -EACCES;
692 if (attr->ia_size <= i_size_read(inode)) {
693 truncate_setsize(inode, attr->ia_size);
694 err = f2fs_truncate(inode);
695 if (err)
696 return err;
697 f2fs_balance_fs(F2FS_I_SB(inode), true);
698 } else {
700 * do not trim all blocks after i_size if target size is
701 * larger than i_size.
703 truncate_setsize(inode, attr->ia_size);
705 /* should convert inline inode here */
706 if (!f2fs_may_inline_data(inode)) {
707 err = f2fs_convert_inline_inode(inode);
708 if (err)
709 return err;
711 inode->i_mtime = inode->i_ctime = current_time(inode);
715 __setattr_copy(inode, attr);
717 if (attr->ia_valid & ATTR_MODE) {
718 err = posix_acl_chmod(inode, get_inode_mode(inode));
719 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
720 inode->i_mode = F2FS_I(inode)->i_acl_mode;
721 clear_inode_flag(inode, FI_ACL_MODE);
725 f2fs_mark_inode_dirty_sync(inode);
726 return err;
729 const struct inode_operations f2fs_file_inode_operations = {
730 .getattr = f2fs_getattr,
731 .setattr = f2fs_setattr,
732 .get_acl = f2fs_get_acl,
733 .set_acl = f2fs_set_acl,
734 #ifdef CONFIG_F2FS_FS_XATTR
735 .listxattr = f2fs_listxattr,
736 #endif
737 .fiemap = f2fs_fiemap,
740 static int fill_zero(struct inode *inode, pgoff_t index,
741 loff_t start, loff_t len)
743 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
744 struct page *page;
746 if (!len)
747 return 0;
749 f2fs_balance_fs(sbi, true);
751 f2fs_lock_op(sbi);
752 page = get_new_data_page(inode, NULL, index, false);
753 f2fs_unlock_op(sbi);
755 if (IS_ERR(page))
756 return PTR_ERR(page);
758 f2fs_wait_on_page_writeback(page, DATA, true);
759 zero_user(page, start, len);
760 set_page_dirty(page);
761 f2fs_put_page(page, 1);
762 return 0;
765 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
767 int err;
769 while (pg_start < pg_end) {
770 struct dnode_of_data dn;
771 pgoff_t end_offset, count;
773 set_new_dnode(&dn, inode, NULL, NULL, 0);
774 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
775 if (err) {
776 if (err == -ENOENT) {
777 pg_start++;
778 continue;
780 return err;
783 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
784 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
786 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
788 truncate_data_blocks_range(&dn, count);
789 f2fs_put_dnode(&dn);
791 pg_start += count;
793 return 0;
796 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
798 pgoff_t pg_start, pg_end;
799 loff_t off_start, off_end;
800 int ret;
802 ret = f2fs_convert_inline_inode(inode);
803 if (ret)
804 return ret;
806 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
807 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
809 off_start = offset & (PAGE_SIZE - 1);
810 off_end = (offset + len) & (PAGE_SIZE - 1);
812 if (pg_start == pg_end) {
813 ret = fill_zero(inode, pg_start, off_start,
814 off_end - off_start);
815 if (ret)
816 return ret;
817 } else {
818 if (off_start) {
819 ret = fill_zero(inode, pg_start++, off_start,
820 PAGE_SIZE - off_start);
821 if (ret)
822 return ret;
824 if (off_end) {
825 ret = fill_zero(inode, pg_end, 0, off_end);
826 if (ret)
827 return ret;
830 if (pg_start < pg_end) {
831 struct address_space *mapping = inode->i_mapping;
832 loff_t blk_start, blk_end;
833 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
835 f2fs_balance_fs(sbi, true);
837 blk_start = (loff_t)pg_start << PAGE_SHIFT;
838 blk_end = (loff_t)pg_end << PAGE_SHIFT;
839 truncate_inode_pages_range(mapping, blk_start,
840 blk_end - 1);
842 f2fs_lock_op(sbi);
843 ret = truncate_hole(inode, pg_start, pg_end);
844 f2fs_unlock_op(sbi);
848 return ret;
851 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
852 int *do_replace, pgoff_t off, pgoff_t len)
854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855 struct dnode_of_data dn;
856 int ret, done, i;
858 next_dnode:
859 set_new_dnode(&dn, inode, NULL, NULL, 0);
860 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
861 if (ret && ret != -ENOENT) {
862 return ret;
863 } else if (ret == -ENOENT) {
864 if (dn.max_level == 0)
865 return -ENOENT;
866 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
867 blkaddr += done;
868 do_replace += done;
869 goto next;
872 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
873 dn.ofs_in_node, len);
874 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
875 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
876 if (!is_checkpointed_data(sbi, *blkaddr)) {
878 if (test_opt(sbi, LFS)) {
879 f2fs_put_dnode(&dn);
880 return -ENOTSUPP;
883 /* do not invalidate this block address */
884 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
885 *do_replace = 1;
888 f2fs_put_dnode(&dn);
889 next:
890 len -= done;
891 off += done;
892 if (len)
893 goto next_dnode;
894 return 0;
897 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
898 int *do_replace, pgoff_t off, int len)
900 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
901 struct dnode_of_data dn;
902 int ret, i;
904 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
905 if (*do_replace == 0)
906 continue;
908 set_new_dnode(&dn, inode, NULL, NULL, 0);
909 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
910 if (ret) {
911 dec_valid_block_count(sbi, inode, 1);
912 invalidate_blocks(sbi, *blkaddr);
913 } else {
914 f2fs_update_data_blkaddr(&dn, *blkaddr);
916 f2fs_put_dnode(&dn);
918 return 0;
921 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
922 block_t *blkaddr, int *do_replace,
923 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
925 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
926 pgoff_t i = 0;
927 int ret;
929 while (i < len) {
930 if (blkaddr[i] == NULL_ADDR && !full) {
931 i++;
932 continue;
935 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
936 struct dnode_of_data dn;
937 struct node_info ni;
938 size_t new_size;
939 pgoff_t ilen;
941 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
942 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
943 if (ret)
944 return ret;
946 get_node_info(sbi, dn.nid, &ni);
947 ilen = min((pgoff_t)
948 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
949 dn.ofs_in_node, len - i);
950 do {
951 dn.data_blkaddr = datablock_addr(dn.node_page,
952 dn.ofs_in_node);
953 truncate_data_blocks_range(&dn, 1);
955 if (do_replace[i]) {
956 f2fs_i_blocks_write(src_inode,
957 1, false);
958 f2fs_i_blocks_write(dst_inode,
959 1, true);
960 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
961 blkaddr[i], ni.version, true, false);
963 do_replace[i] = 0;
965 dn.ofs_in_node++;
966 i++;
967 new_size = (dst + i) << PAGE_SHIFT;
968 if (dst_inode->i_size < new_size)
969 f2fs_i_size_write(dst_inode, new_size);
970 } while ((do_replace[i] || blkaddr[i] == NULL_ADDR) && --ilen);
972 f2fs_put_dnode(&dn);
973 } else {
974 struct page *psrc, *pdst;
976 psrc = get_lock_data_page(src_inode, src + i, true);
977 if (IS_ERR(psrc))
978 return PTR_ERR(psrc);
979 pdst = get_new_data_page(dst_inode, NULL, dst + i,
980 true);
981 if (IS_ERR(pdst)) {
982 f2fs_put_page(psrc, 1);
983 return PTR_ERR(pdst);
985 f2fs_copy_page(psrc, pdst);
986 set_page_dirty(pdst);
987 f2fs_put_page(pdst, 1);
988 f2fs_put_page(psrc, 1);
990 ret = truncate_hole(src_inode, src + i, src + i + 1);
991 if (ret)
992 return ret;
993 i++;
996 return 0;
999 static int __exchange_data_block(struct inode *src_inode,
1000 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1001 pgoff_t len, bool full)
1003 block_t *src_blkaddr;
1004 int *do_replace;
1005 pgoff_t olen;
1006 int ret;
1008 while (len) {
1009 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1011 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1012 if (!src_blkaddr)
1013 return -ENOMEM;
1015 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1016 if (!do_replace) {
1017 kvfree(src_blkaddr);
1018 return -ENOMEM;
1021 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1022 do_replace, src, olen);
1023 if (ret)
1024 goto roll_back;
1026 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1027 do_replace, src, dst, olen, full);
1028 if (ret)
1029 goto roll_back;
1031 src += olen;
1032 dst += olen;
1033 len -= olen;
1035 kvfree(src_blkaddr);
1036 kvfree(do_replace);
1038 return 0;
1040 roll_back:
1041 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1042 kvfree(src_blkaddr);
1043 kvfree(do_replace);
1044 return ret;
1047 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1049 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1050 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1051 int ret;
1053 f2fs_balance_fs(sbi, true);
1054 f2fs_lock_op(sbi);
1056 f2fs_drop_extent_tree(inode);
1058 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1059 f2fs_unlock_op(sbi);
1060 return ret;
1063 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1065 pgoff_t pg_start, pg_end;
1066 loff_t new_size;
1067 int ret;
1069 if (offset + len >= i_size_read(inode))
1070 return -EINVAL;
1072 /* collapse range should be aligned to block size of f2fs. */
1073 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1074 return -EINVAL;
1076 ret = f2fs_convert_inline_inode(inode);
1077 if (ret)
1078 return ret;
1080 pg_start = offset >> PAGE_SHIFT;
1081 pg_end = (offset + len) >> PAGE_SHIFT;
1083 /* write out all dirty pages from offset */
1084 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1085 if (ret)
1086 return ret;
1088 truncate_pagecache(inode, offset);
1090 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1091 if (ret)
1092 return ret;
1094 /* write out all moved pages, if possible */
1095 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1096 truncate_pagecache(inode, offset);
1098 new_size = i_size_read(inode) - len;
1099 truncate_pagecache(inode, new_size);
1101 ret = truncate_blocks(inode, new_size, true);
1102 if (!ret)
1103 f2fs_i_size_write(inode, new_size);
1105 return ret;
1108 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1109 pgoff_t end)
1111 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1112 pgoff_t index = start;
1113 unsigned int ofs_in_node = dn->ofs_in_node;
1114 blkcnt_t count = 0;
1115 int ret;
1117 for (; index < end; index++, dn->ofs_in_node++) {
1118 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1119 count++;
1122 dn->ofs_in_node = ofs_in_node;
1123 ret = reserve_new_blocks(dn, count);
1124 if (ret)
1125 return ret;
1127 dn->ofs_in_node = ofs_in_node;
1128 for (index = start; index < end; index++, dn->ofs_in_node++) {
1129 dn->data_blkaddr =
1130 datablock_addr(dn->node_page, dn->ofs_in_node);
1132 * reserve_new_blocks will not guarantee entire block
1133 * allocation.
1135 if (dn->data_blkaddr == NULL_ADDR) {
1136 ret = -ENOSPC;
1137 break;
1139 if (dn->data_blkaddr != NEW_ADDR) {
1140 invalidate_blocks(sbi, dn->data_blkaddr);
1141 dn->data_blkaddr = NEW_ADDR;
1142 set_data_blkaddr(dn);
1146 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1148 return ret;
1151 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1152 int mode)
1154 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1155 struct address_space *mapping = inode->i_mapping;
1156 pgoff_t index, pg_start, pg_end;
1157 loff_t new_size = i_size_read(inode);
1158 loff_t off_start, off_end;
1159 int ret = 0;
1161 ret = inode_newsize_ok(inode, (len + offset));
1162 if (ret)
1163 return ret;
1165 ret = f2fs_convert_inline_inode(inode);
1166 if (ret)
1167 return ret;
1169 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1170 if (ret)
1171 return ret;
1173 truncate_pagecache_range(inode, offset, offset + len - 1);
1175 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1176 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1178 off_start = offset & (PAGE_SIZE - 1);
1179 off_end = (offset + len) & (PAGE_SIZE - 1);
1181 if (pg_start == pg_end) {
1182 ret = fill_zero(inode, pg_start, off_start,
1183 off_end - off_start);
1184 if (ret)
1185 return ret;
1187 if (offset + len > new_size)
1188 new_size = offset + len;
1189 new_size = max_t(loff_t, new_size, offset + len);
1190 } else {
1191 if (off_start) {
1192 ret = fill_zero(inode, pg_start++, off_start,
1193 PAGE_SIZE - off_start);
1194 if (ret)
1195 return ret;
1197 new_size = max_t(loff_t, new_size,
1198 (loff_t)pg_start << PAGE_SHIFT);
1201 for (index = pg_start; index < pg_end;) {
1202 struct dnode_of_data dn;
1203 unsigned int end_offset;
1204 pgoff_t end;
1206 f2fs_lock_op(sbi);
1208 set_new_dnode(&dn, inode, NULL, NULL, 0);
1209 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1210 if (ret) {
1211 f2fs_unlock_op(sbi);
1212 goto out;
1215 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1216 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1218 ret = f2fs_do_zero_range(&dn, index, end);
1219 f2fs_put_dnode(&dn);
1220 f2fs_unlock_op(sbi);
1221 if (ret)
1222 goto out;
1224 index = end;
1225 new_size = max_t(loff_t, new_size,
1226 (loff_t)index << PAGE_SHIFT);
1229 if (off_end) {
1230 ret = fill_zero(inode, pg_end, 0, off_end);
1231 if (ret)
1232 goto out;
1234 new_size = max_t(loff_t, new_size, offset + len);
1238 out:
1239 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1240 f2fs_i_size_write(inode, new_size);
1242 return ret;
1245 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1247 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1248 pgoff_t nr, pg_start, pg_end, delta, idx;
1249 loff_t new_size;
1250 int ret = 0;
1252 new_size = i_size_read(inode) + len;
1253 if (new_size > inode->i_sb->s_maxbytes)
1254 return -EFBIG;
1256 if (offset >= i_size_read(inode))
1257 return -EINVAL;
1259 /* insert range should be aligned to block size of f2fs. */
1260 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1261 return -EINVAL;
1263 ret = f2fs_convert_inline_inode(inode);
1264 if (ret)
1265 return ret;
1267 f2fs_balance_fs(sbi, true);
1269 ret = truncate_blocks(inode, i_size_read(inode), true);
1270 if (ret)
1271 return ret;
1273 /* write out all dirty pages from offset */
1274 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1275 if (ret)
1276 return ret;
1278 truncate_pagecache(inode, offset);
1280 pg_start = offset >> PAGE_SHIFT;
1281 pg_end = (offset + len) >> PAGE_SHIFT;
1282 delta = pg_end - pg_start;
1283 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1285 while (!ret && idx > pg_start) {
1286 nr = idx - pg_start;
1287 if (nr > delta)
1288 nr = delta;
1289 idx -= nr;
1291 f2fs_lock_op(sbi);
1292 f2fs_drop_extent_tree(inode);
1294 ret = __exchange_data_block(inode, inode, idx,
1295 idx + delta, nr, false);
1296 f2fs_unlock_op(sbi);
1299 /* write out all moved pages, if possible */
1300 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1301 truncate_pagecache(inode, offset);
1303 if (!ret)
1304 f2fs_i_size_write(inode, new_size);
1305 return ret;
1308 static int expand_inode_data(struct inode *inode, loff_t offset,
1309 loff_t len, int mode)
1311 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1312 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1313 pgoff_t pg_end;
1314 loff_t new_size = i_size_read(inode);
1315 loff_t off_end;
1316 int ret;
1318 ret = inode_newsize_ok(inode, (len + offset));
1319 if (ret)
1320 return ret;
1322 ret = f2fs_convert_inline_inode(inode);
1323 if (ret)
1324 return ret;
1326 f2fs_balance_fs(sbi, true);
1328 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1329 off_end = (offset + len) & (PAGE_SIZE - 1);
1331 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1332 map.m_len = pg_end - map.m_lblk;
1333 if (off_end)
1334 map.m_len++;
1336 ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1337 if (ret) {
1338 pgoff_t last_off;
1340 if (!map.m_len)
1341 return ret;
1343 last_off = map.m_lblk + map.m_len - 1;
1345 /* update new size to the failed position */
1346 new_size = (last_off == pg_end) ? offset + len:
1347 (loff_t)(last_off + 1) << PAGE_SHIFT;
1348 } else {
1349 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1352 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1353 f2fs_i_size_write(inode, new_size);
1355 return ret;
1358 static long f2fs_fallocate(struct file *file, int mode,
1359 loff_t offset, loff_t len)
1361 struct inode *inode = file_inode(file);
1362 long ret = 0;
1364 /* f2fs only support ->fallocate for regular file */
1365 if (!S_ISREG(inode->i_mode))
1366 return -EINVAL;
1368 if (f2fs_encrypted_inode(inode) &&
1369 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1370 return -EOPNOTSUPP;
1372 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1373 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1374 FALLOC_FL_INSERT_RANGE))
1375 return -EOPNOTSUPP;
1377 inode_lock(inode);
1379 if (mode & FALLOC_FL_PUNCH_HOLE) {
1380 if (offset >= inode->i_size)
1381 goto out;
1383 ret = punch_hole(inode, offset, len);
1384 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1385 ret = f2fs_collapse_range(inode, offset, len);
1386 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1387 ret = f2fs_zero_range(inode, offset, len, mode);
1388 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1389 ret = f2fs_insert_range(inode, offset, len);
1390 } else {
1391 ret = expand_inode_data(inode, offset, len, mode);
1394 if (!ret) {
1395 inode->i_mtime = inode->i_ctime = current_time(inode);
1396 f2fs_mark_inode_dirty_sync(inode);
1397 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1400 out:
1401 inode_unlock(inode);
1403 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1404 return ret;
1407 static int f2fs_release_file(struct inode *inode, struct file *filp)
1410 * f2fs_relase_file is called at every close calls. So we should
1411 * not drop any inmemory pages by close called by other process.
1413 if (!(filp->f_mode & FMODE_WRITE) ||
1414 atomic_read(&inode->i_writecount) != 1)
1415 return 0;
1417 /* some remained atomic pages should discarded */
1418 if (f2fs_is_atomic_file(inode))
1419 drop_inmem_pages(inode);
1420 if (f2fs_is_volatile_file(inode)) {
1421 clear_inode_flag(inode, FI_VOLATILE_FILE);
1422 set_inode_flag(inode, FI_DROP_CACHE);
1423 filemap_fdatawrite(inode->i_mapping);
1424 clear_inode_flag(inode, FI_DROP_CACHE);
1426 return 0;
1429 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1430 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1432 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1434 if (S_ISDIR(mode))
1435 return flags;
1436 else if (S_ISREG(mode))
1437 return flags & F2FS_REG_FLMASK;
1438 else
1439 return flags & F2FS_OTHER_FLMASK;
1442 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1444 struct inode *inode = file_inode(filp);
1445 struct f2fs_inode_info *fi = F2FS_I(inode);
1446 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1447 return put_user(flags, (int __user *)arg);
1450 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1452 struct inode *inode = file_inode(filp);
1453 struct f2fs_inode_info *fi = F2FS_I(inode);
1454 unsigned int flags;
1455 unsigned int oldflags;
1456 int ret;
1458 if (!inode_owner_or_capable(inode))
1459 return -EACCES;
1461 if (get_user(flags, (int __user *)arg))
1462 return -EFAULT;
1464 ret = mnt_want_write_file(filp);
1465 if (ret)
1466 return ret;
1468 flags = f2fs_mask_flags(inode->i_mode, flags);
1470 inode_lock(inode);
1472 oldflags = fi->i_flags;
1474 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1475 if (!capable(CAP_LINUX_IMMUTABLE)) {
1476 inode_unlock(inode);
1477 ret = -EPERM;
1478 goto out;
1482 flags = flags & FS_FL_USER_MODIFIABLE;
1483 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1484 fi->i_flags = flags;
1485 inode_unlock(inode);
1487 inode->i_ctime = current_time(inode);
1488 f2fs_set_inode_flags(inode);
1489 out:
1490 mnt_drop_write_file(filp);
1491 return ret;
1494 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1496 struct inode *inode = file_inode(filp);
1498 return put_user(inode->i_generation, (int __user *)arg);
1501 static int f2fs_ioc_start_atomic_write(struct file *filp)
1503 struct inode *inode = file_inode(filp);
1504 int ret;
1506 if (!inode_owner_or_capable(inode))
1507 return -EACCES;
1509 ret = mnt_want_write_file(filp);
1510 if (ret)
1511 return ret;
1513 inode_lock(inode);
1515 if (f2fs_is_atomic_file(inode))
1516 goto out;
1518 ret = f2fs_convert_inline_inode(inode);
1519 if (ret)
1520 goto out;
1522 set_inode_flag(inode, FI_ATOMIC_FILE);
1523 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1525 if (!get_dirty_pages(inode))
1526 goto out;
1528 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1529 "Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1530 inode->i_ino, get_dirty_pages(inode));
1531 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1532 if (ret)
1533 clear_inode_flag(inode, FI_ATOMIC_FILE);
1534 out:
1535 inode_unlock(inode);
1536 mnt_drop_write_file(filp);
1537 return ret;
1540 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1542 struct inode *inode = file_inode(filp);
1543 int ret;
1545 if (!inode_owner_or_capable(inode))
1546 return -EACCES;
1548 ret = mnt_want_write_file(filp);
1549 if (ret)
1550 return ret;
1552 inode_lock(inode);
1554 if (f2fs_is_volatile_file(inode))
1555 goto err_out;
1557 if (f2fs_is_atomic_file(inode)) {
1558 clear_inode_flag(inode, FI_ATOMIC_FILE);
1559 ret = commit_inmem_pages(inode);
1560 if (ret) {
1561 set_inode_flag(inode, FI_ATOMIC_FILE);
1562 goto err_out;
1566 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1567 err_out:
1568 inode_unlock(inode);
1569 mnt_drop_write_file(filp);
1570 return ret;
1573 static int f2fs_ioc_start_volatile_write(struct file *filp)
1575 struct inode *inode = file_inode(filp);
1576 int ret;
1578 if (!inode_owner_or_capable(inode))
1579 return -EACCES;
1581 ret = mnt_want_write_file(filp);
1582 if (ret)
1583 return ret;
1585 inode_lock(inode);
1587 if (f2fs_is_volatile_file(inode))
1588 goto out;
1590 ret = f2fs_convert_inline_inode(inode);
1591 if (ret)
1592 goto out;
1594 set_inode_flag(inode, FI_VOLATILE_FILE);
1595 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1596 out:
1597 inode_unlock(inode);
1598 mnt_drop_write_file(filp);
1599 return ret;
1602 static int f2fs_ioc_release_volatile_write(struct file *filp)
1604 struct inode *inode = file_inode(filp);
1605 int ret;
1607 if (!inode_owner_or_capable(inode))
1608 return -EACCES;
1610 ret = mnt_want_write_file(filp);
1611 if (ret)
1612 return ret;
1614 inode_lock(inode);
1616 if (!f2fs_is_volatile_file(inode))
1617 goto out;
1619 if (!f2fs_is_first_block_written(inode)) {
1620 ret = truncate_partial_data_page(inode, 0, true);
1621 goto out;
1624 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1625 out:
1626 inode_unlock(inode);
1627 mnt_drop_write_file(filp);
1628 return ret;
1631 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1633 struct inode *inode = file_inode(filp);
1634 int ret;
1636 if (!inode_owner_or_capable(inode))
1637 return -EACCES;
1639 ret = mnt_want_write_file(filp);
1640 if (ret)
1641 return ret;
1643 inode_lock(inode);
1645 if (f2fs_is_atomic_file(inode))
1646 drop_inmem_pages(inode);
1647 if (f2fs_is_volatile_file(inode)) {
1648 clear_inode_flag(inode, FI_VOLATILE_FILE);
1649 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1652 inode_unlock(inode);
1654 mnt_drop_write_file(filp);
1655 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1656 return ret;
1659 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1661 struct inode *inode = file_inode(filp);
1662 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1663 struct super_block *sb = sbi->sb;
1664 __u32 in;
1665 int ret;
1667 if (!capable(CAP_SYS_ADMIN))
1668 return -EPERM;
1670 if (get_user(in, (__u32 __user *)arg))
1671 return -EFAULT;
1673 ret = mnt_want_write_file(filp);
1674 if (ret)
1675 return ret;
1677 switch (in) {
1678 case F2FS_GOING_DOWN_FULLSYNC:
1679 sb = freeze_bdev(sb->s_bdev);
1680 if (sb && !IS_ERR(sb)) {
1681 f2fs_stop_checkpoint(sbi, false);
1682 thaw_bdev(sb->s_bdev, sb);
1684 break;
1685 case F2FS_GOING_DOWN_METASYNC:
1686 /* do checkpoint only */
1687 f2fs_sync_fs(sb, 1);
1688 f2fs_stop_checkpoint(sbi, false);
1689 break;
1690 case F2FS_GOING_DOWN_NOSYNC:
1691 f2fs_stop_checkpoint(sbi, false);
1692 break;
1693 case F2FS_GOING_DOWN_METAFLUSH:
1694 sync_meta_pages(sbi, META, LONG_MAX);
1695 f2fs_stop_checkpoint(sbi, false);
1696 break;
1697 default:
1698 ret = -EINVAL;
1699 goto out;
1701 f2fs_update_time(sbi, REQ_TIME);
1702 out:
1703 mnt_drop_write_file(filp);
1704 return ret;
1707 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1709 struct inode *inode = file_inode(filp);
1710 struct super_block *sb = inode->i_sb;
1711 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1712 struct fstrim_range range;
1713 int ret;
1715 if (!capable(CAP_SYS_ADMIN))
1716 return -EPERM;
1718 if (!blk_queue_discard(q))
1719 return -EOPNOTSUPP;
1721 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1722 sizeof(range)))
1723 return -EFAULT;
1725 ret = mnt_want_write_file(filp);
1726 if (ret)
1727 return ret;
1729 range.minlen = max((unsigned int)range.minlen,
1730 q->limits.discard_granularity);
1731 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1732 mnt_drop_write_file(filp);
1733 if (ret < 0)
1734 return ret;
1736 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1737 sizeof(range)))
1738 return -EFAULT;
1739 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1740 return 0;
1743 static bool uuid_is_nonzero(__u8 u[16])
1745 int i;
1747 for (i = 0; i < 16; i++)
1748 if (u[i])
1749 return true;
1750 return false;
1753 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1755 struct fscrypt_policy policy;
1756 struct inode *inode = file_inode(filp);
1758 if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1759 sizeof(policy)))
1760 return -EFAULT;
1762 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1764 return fscrypt_process_policy(filp, &policy);
1767 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1769 struct fscrypt_policy policy;
1770 struct inode *inode = file_inode(filp);
1771 int err;
1773 err = fscrypt_get_policy(inode, &policy);
1774 if (err)
1775 return err;
1777 if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1778 return -EFAULT;
1779 return 0;
1782 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1784 struct inode *inode = file_inode(filp);
1785 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1786 int err;
1788 if (!f2fs_sb_has_crypto(inode->i_sb))
1789 return -EOPNOTSUPP;
1791 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1792 goto got_it;
1794 err = mnt_want_write_file(filp);
1795 if (err)
1796 return err;
1798 /* update superblock with uuid */
1799 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1801 err = f2fs_commit_super(sbi, false);
1802 if (err) {
1803 /* undo new data */
1804 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1805 mnt_drop_write_file(filp);
1806 return err;
1808 mnt_drop_write_file(filp);
1809 got_it:
1810 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1811 16))
1812 return -EFAULT;
1813 return 0;
1816 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1818 struct inode *inode = file_inode(filp);
1819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1820 __u32 sync;
1821 int ret;
1823 if (!capable(CAP_SYS_ADMIN))
1824 return -EPERM;
1826 if (get_user(sync, (__u32 __user *)arg))
1827 return -EFAULT;
1829 if (f2fs_readonly(sbi->sb))
1830 return -EROFS;
1832 ret = mnt_want_write_file(filp);
1833 if (ret)
1834 return ret;
1836 if (!sync) {
1837 if (!mutex_trylock(&sbi->gc_mutex)) {
1838 ret = -EBUSY;
1839 goto out;
1841 } else {
1842 mutex_lock(&sbi->gc_mutex);
1845 ret = f2fs_gc(sbi, sync);
1846 out:
1847 mnt_drop_write_file(filp);
1848 return ret;
1851 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1853 struct inode *inode = file_inode(filp);
1854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1855 int ret;
1857 if (!capable(CAP_SYS_ADMIN))
1858 return -EPERM;
1860 if (f2fs_readonly(sbi->sb))
1861 return -EROFS;
1863 ret = mnt_want_write_file(filp);
1864 if (ret)
1865 return ret;
1867 ret = f2fs_sync_fs(sbi->sb, 1);
1869 mnt_drop_write_file(filp);
1870 return ret;
1873 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1874 struct file *filp,
1875 struct f2fs_defragment *range)
1877 struct inode *inode = file_inode(filp);
1878 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1879 struct extent_info ei;
1880 pgoff_t pg_start, pg_end;
1881 unsigned int blk_per_seg = sbi->blocks_per_seg;
1882 unsigned int total = 0, sec_num;
1883 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1884 block_t blk_end = 0;
1885 bool fragmented = false;
1886 int err;
1888 /* if in-place-update policy is enabled, don't waste time here */
1889 if (need_inplace_update(inode))
1890 return -EINVAL;
1892 pg_start = range->start >> PAGE_SHIFT;
1893 pg_end = (range->start + range->len) >> PAGE_SHIFT;
1895 f2fs_balance_fs(sbi, true);
1897 inode_lock(inode);
1899 /* writeback all dirty pages in the range */
1900 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1901 range->start + range->len - 1);
1902 if (err)
1903 goto out;
1906 * lookup mapping info in extent cache, skip defragmenting if physical
1907 * block addresses are continuous.
1909 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1910 if (ei.fofs + ei.len >= pg_end)
1911 goto out;
1914 map.m_lblk = pg_start;
1917 * lookup mapping info in dnode page cache, skip defragmenting if all
1918 * physical block addresses are continuous even if there are hole(s)
1919 * in logical blocks.
1921 while (map.m_lblk < pg_end) {
1922 map.m_len = pg_end - map.m_lblk;
1923 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1924 if (err)
1925 goto out;
1927 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1928 map.m_lblk++;
1929 continue;
1932 if (blk_end && blk_end != map.m_pblk) {
1933 fragmented = true;
1934 break;
1936 blk_end = map.m_pblk + map.m_len;
1938 map.m_lblk += map.m_len;
1941 if (!fragmented)
1942 goto out;
1944 map.m_lblk = pg_start;
1945 map.m_len = pg_end - pg_start;
1947 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1950 * make sure there are enough free section for LFS allocation, this can
1951 * avoid defragment running in SSR mode when free section are allocated
1952 * intensively
1954 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
1955 err = -EAGAIN;
1956 goto out;
1959 while (map.m_lblk < pg_end) {
1960 pgoff_t idx;
1961 int cnt = 0;
1963 do_map:
1964 map.m_len = pg_end - map.m_lblk;
1965 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1966 if (err)
1967 goto clear_out;
1969 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1970 map.m_lblk++;
1971 continue;
1974 set_inode_flag(inode, FI_DO_DEFRAG);
1976 idx = map.m_lblk;
1977 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1978 struct page *page;
1980 page = get_lock_data_page(inode, idx, true);
1981 if (IS_ERR(page)) {
1982 err = PTR_ERR(page);
1983 goto clear_out;
1986 set_page_dirty(page);
1987 f2fs_put_page(page, 1);
1989 idx++;
1990 cnt++;
1991 total++;
1994 map.m_lblk = idx;
1996 if (idx < pg_end && cnt < blk_per_seg)
1997 goto do_map;
1999 clear_inode_flag(inode, FI_DO_DEFRAG);
2001 err = filemap_fdatawrite(inode->i_mapping);
2002 if (err)
2003 goto out;
2005 clear_out:
2006 clear_inode_flag(inode, FI_DO_DEFRAG);
2007 out:
2008 inode_unlock(inode);
2009 if (!err)
2010 range->len = (u64)total << PAGE_SHIFT;
2011 return err;
2014 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2016 struct inode *inode = file_inode(filp);
2017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2018 struct f2fs_defragment range;
2019 int err;
2021 if (!capable(CAP_SYS_ADMIN))
2022 return -EPERM;
2024 if (!S_ISREG(inode->i_mode))
2025 return -EINVAL;
2027 err = mnt_want_write_file(filp);
2028 if (err)
2029 return err;
2031 if (f2fs_readonly(sbi->sb)) {
2032 err = -EROFS;
2033 goto out;
2036 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2037 sizeof(range))) {
2038 err = -EFAULT;
2039 goto out;
2042 /* verify alignment of offset & size */
2043 if (range.start & (F2FS_BLKSIZE - 1) ||
2044 range.len & (F2FS_BLKSIZE - 1)) {
2045 err = -EINVAL;
2046 goto out;
2049 err = f2fs_defragment_range(sbi, filp, &range);
2050 f2fs_update_time(sbi, REQ_TIME);
2051 if (err < 0)
2052 goto out;
2054 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2055 sizeof(range)))
2056 err = -EFAULT;
2057 out:
2058 mnt_drop_write_file(filp);
2059 return err;
2062 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2063 struct file *file_out, loff_t pos_out, size_t len)
2065 struct inode *src = file_inode(file_in);
2066 struct inode *dst = file_inode(file_out);
2067 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2068 size_t olen = len, dst_max_i_size = 0;
2069 size_t dst_osize;
2070 int ret;
2072 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2073 src->i_sb != dst->i_sb)
2074 return -EXDEV;
2076 if (unlikely(f2fs_readonly(src->i_sb)))
2077 return -EROFS;
2079 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2080 return -EINVAL;
2082 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2083 return -EOPNOTSUPP;
2085 if (src == dst) {
2086 if (pos_in == pos_out)
2087 return 0;
2088 if (pos_out > pos_in && pos_out < pos_in + len)
2089 return -EINVAL;
2092 inode_lock(src);
2093 if (src != dst) {
2094 if (!inode_trylock(dst)) {
2095 ret = -EBUSY;
2096 goto out;
2100 ret = -EINVAL;
2101 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2102 goto out_unlock;
2103 if (len == 0)
2104 olen = len = src->i_size - pos_in;
2105 if (pos_in + len == src->i_size)
2106 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2107 if (len == 0) {
2108 ret = 0;
2109 goto out_unlock;
2112 dst_osize = dst->i_size;
2113 if (pos_out + olen > dst->i_size)
2114 dst_max_i_size = pos_out + olen;
2116 /* verify the end result is block aligned */
2117 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2118 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2119 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2120 goto out_unlock;
2122 ret = f2fs_convert_inline_inode(src);
2123 if (ret)
2124 goto out_unlock;
2126 ret = f2fs_convert_inline_inode(dst);
2127 if (ret)
2128 goto out_unlock;
2130 /* write out all dirty pages from offset */
2131 ret = filemap_write_and_wait_range(src->i_mapping,
2132 pos_in, pos_in + len);
2133 if (ret)
2134 goto out_unlock;
2136 ret = filemap_write_and_wait_range(dst->i_mapping,
2137 pos_out, pos_out + len);
2138 if (ret)
2139 goto out_unlock;
2141 f2fs_balance_fs(sbi, true);
2142 f2fs_lock_op(sbi);
2143 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2144 pos_out >> F2FS_BLKSIZE_BITS,
2145 len >> F2FS_BLKSIZE_BITS, false);
2147 if (!ret) {
2148 if (dst_max_i_size)
2149 f2fs_i_size_write(dst, dst_max_i_size);
2150 else if (dst_osize != dst->i_size)
2151 f2fs_i_size_write(dst, dst_osize);
2153 f2fs_unlock_op(sbi);
2154 out_unlock:
2155 if (src != dst)
2156 inode_unlock(dst);
2157 out:
2158 inode_unlock(src);
2159 return ret;
2162 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2164 struct f2fs_move_range range;
2165 struct fd dst;
2166 int err;
2168 if (!(filp->f_mode & FMODE_READ) ||
2169 !(filp->f_mode & FMODE_WRITE))
2170 return -EBADF;
2172 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2173 sizeof(range)))
2174 return -EFAULT;
2176 dst = fdget(range.dst_fd);
2177 if (!dst.file)
2178 return -EBADF;
2180 if (!(dst.file->f_mode & FMODE_WRITE)) {
2181 err = -EBADF;
2182 goto err_out;
2185 err = mnt_want_write_file(filp);
2186 if (err)
2187 goto err_out;
2189 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2190 range.pos_out, range.len);
2192 mnt_drop_write_file(filp);
2194 if (copy_to_user((struct f2fs_move_range __user *)arg,
2195 &range, sizeof(range)))
2196 err = -EFAULT;
2197 err_out:
2198 fdput(dst);
2199 return err;
2202 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2204 switch (cmd) {
2205 case F2FS_IOC_GETFLAGS:
2206 return f2fs_ioc_getflags(filp, arg);
2207 case F2FS_IOC_SETFLAGS:
2208 return f2fs_ioc_setflags(filp, arg);
2209 case F2FS_IOC_GETVERSION:
2210 return f2fs_ioc_getversion(filp, arg);
2211 case F2FS_IOC_START_ATOMIC_WRITE:
2212 return f2fs_ioc_start_atomic_write(filp);
2213 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2214 return f2fs_ioc_commit_atomic_write(filp);
2215 case F2FS_IOC_START_VOLATILE_WRITE:
2216 return f2fs_ioc_start_volatile_write(filp);
2217 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2218 return f2fs_ioc_release_volatile_write(filp);
2219 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2220 return f2fs_ioc_abort_volatile_write(filp);
2221 case F2FS_IOC_SHUTDOWN:
2222 return f2fs_ioc_shutdown(filp, arg);
2223 case FITRIM:
2224 return f2fs_ioc_fitrim(filp, arg);
2225 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2226 return f2fs_ioc_set_encryption_policy(filp, arg);
2227 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2228 return f2fs_ioc_get_encryption_policy(filp, arg);
2229 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2230 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2231 case F2FS_IOC_GARBAGE_COLLECT:
2232 return f2fs_ioc_gc(filp, arg);
2233 case F2FS_IOC_WRITE_CHECKPOINT:
2234 return f2fs_ioc_write_checkpoint(filp, arg);
2235 case F2FS_IOC_DEFRAGMENT:
2236 return f2fs_ioc_defragment(filp, arg);
2237 case F2FS_IOC_MOVE_RANGE:
2238 return f2fs_ioc_move_range(filp, arg);
2239 default:
2240 return -ENOTTY;
2244 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2246 struct file *file = iocb->ki_filp;
2247 struct inode *inode = file_inode(file);
2248 struct blk_plug plug;
2249 ssize_t ret;
2251 if (f2fs_encrypted_inode(inode) &&
2252 !fscrypt_has_encryption_key(inode) &&
2253 fscrypt_get_encryption_info(inode))
2254 return -EACCES;
2256 inode_lock(inode);
2257 ret = generic_write_checks(iocb, from);
2258 if (ret > 0) {
2259 ret = f2fs_preallocate_blocks(iocb, from);
2260 if (!ret) {
2261 blk_start_plug(&plug);
2262 ret = __generic_file_write_iter(iocb, from);
2263 blk_finish_plug(&plug);
2266 inode_unlock(inode);
2268 if (ret > 0)
2269 ret = generic_write_sync(iocb, ret);
2270 return ret;
2273 #ifdef CONFIG_COMPAT
2274 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2276 switch (cmd) {
2277 case F2FS_IOC32_GETFLAGS:
2278 cmd = F2FS_IOC_GETFLAGS;
2279 break;
2280 case F2FS_IOC32_SETFLAGS:
2281 cmd = F2FS_IOC_SETFLAGS;
2282 break;
2283 case F2FS_IOC32_GETVERSION:
2284 cmd = F2FS_IOC_GETVERSION;
2285 break;
2286 case F2FS_IOC_START_ATOMIC_WRITE:
2287 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2288 case F2FS_IOC_START_VOLATILE_WRITE:
2289 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2290 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2291 case F2FS_IOC_SHUTDOWN:
2292 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2293 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2294 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2295 case F2FS_IOC_GARBAGE_COLLECT:
2296 case F2FS_IOC_WRITE_CHECKPOINT:
2297 case F2FS_IOC_DEFRAGMENT:
2298 break;
2299 case F2FS_IOC_MOVE_RANGE:
2300 break;
2301 default:
2302 return -ENOIOCTLCMD;
2304 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2306 #endif
2308 const struct file_operations f2fs_file_operations = {
2309 .llseek = f2fs_llseek,
2310 .read_iter = generic_file_read_iter,
2311 .write_iter = f2fs_file_write_iter,
2312 .open = f2fs_file_open,
2313 .release = f2fs_release_file,
2314 .mmap = f2fs_file_mmap,
2315 .fsync = f2fs_sync_file,
2316 .fallocate = f2fs_fallocate,
2317 .unlocked_ioctl = f2fs_ioctl,
2318 #ifdef CONFIG_COMPAT
2319 .compat_ioctl = f2fs_compat_ioctl,
2320 #endif
2321 .splice_read = generic_file_splice_read,
2322 .splice_write = iter_file_splice_write,