xhci: workaround for hosts missing CAS bit
[linux-2.6/btrfs-unstable.git] / fs / f2fs / data.c
blob9ae194fd2fdb81cbc54bfed9220da527d6b21a89
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
32 static void f2fs_read_end_io(struct bio *bio)
34 struct bio_vec *bvec;
35 int i;
37 #ifdef CONFIG_F2FS_FAULT_INJECTION
38 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
39 bio->bi_error = -EIO;
40 #endif
42 if (f2fs_bio_encrypted(bio)) {
43 if (bio->bi_error) {
44 fscrypt_release_ctx(bio->bi_private);
45 } else {
46 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
47 return;
51 bio_for_each_segment_all(bvec, bio, i) {
52 struct page *page = bvec->bv_page;
54 if (!bio->bi_error) {
55 if (!PageUptodate(page))
56 SetPageUptodate(page);
57 } else {
58 ClearPageUptodate(page);
59 SetPageError(page);
61 unlock_page(page);
63 bio_put(bio);
66 static void f2fs_write_end_io(struct bio *bio)
68 struct f2fs_sb_info *sbi = bio->bi_private;
69 struct bio_vec *bvec;
70 int i;
72 bio_for_each_segment_all(bvec, bio, i) {
73 struct page *page = bvec->bv_page;
75 fscrypt_pullback_bio_page(&page, true);
77 if (unlikely(bio->bi_error)) {
78 mapping_set_error(page->mapping, -EIO);
79 f2fs_stop_checkpoint(sbi, true);
81 end_page_writeback(page);
83 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
84 wq_has_sleeper(&sbi->cp_wait))
85 wake_up(&sbi->cp_wait);
87 bio_put(bio);
91 * Low-level block read/write IO operations.
93 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
94 int npages, bool is_read)
96 struct bio *bio;
98 bio = f2fs_bio_alloc(npages);
100 bio->bi_bdev = sbi->sb->s_bdev;
101 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
102 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
103 bio->bi_private = is_read ? NULL : sbi;
105 return bio;
108 static inline void __submit_bio(struct f2fs_sb_info *sbi,
109 struct bio *bio, enum page_type type)
111 if (!is_read_io(bio_op(bio))) {
112 atomic_inc(&sbi->nr_wb_bios);
113 if (f2fs_sb_mounted_hmsmr(sbi->sb) &&
114 current->plug && (type == DATA || type == NODE))
115 blk_finish_plug(current->plug);
117 submit_bio(bio);
120 static void __submit_merged_bio(struct f2fs_bio_info *io)
122 struct f2fs_io_info *fio = &io->fio;
124 if (!io->bio)
125 return;
127 if (is_read_io(fio->op))
128 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
129 else
130 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
132 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
134 __submit_bio(io->sbi, io->bio, fio->type);
135 io->bio = NULL;
138 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
139 struct page *page, nid_t ino)
141 struct bio_vec *bvec;
142 struct page *target;
143 int i;
145 if (!io->bio)
146 return false;
148 if (!inode && !page && !ino)
149 return true;
151 bio_for_each_segment_all(bvec, io->bio, i) {
153 if (bvec->bv_page->mapping)
154 target = bvec->bv_page;
155 else
156 target = fscrypt_control_page(bvec->bv_page);
158 if (inode && inode == target->mapping->host)
159 return true;
160 if (page && page == target)
161 return true;
162 if (ino && ino == ino_of_node(target))
163 return true;
166 return false;
169 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
170 struct page *page, nid_t ino,
171 enum page_type type)
173 enum page_type btype = PAGE_TYPE_OF_BIO(type);
174 struct f2fs_bio_info *io = &sbi->write_io[btype];
175 bool ret;
177 down_read(&io->io_rwsem);
178 ret = __has_merged_page(io, inode, page, ino);
179 up_read(&io->io_rwsem);
180 return ret;
183 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
184 struct inode *inode, struct page *page,
185 nid_t ino, enum page_type type, int rw)
187 enum page_type btype = PAGE_TYPE_OF_BIO(type);
188 struct f2fs_bio_info *io;
190 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
192 down_write(&io->io_rwsem);
194 if (!__has_merged_page(io, inode, page, ino))
195 goto out;
197 /* change META to META_FLUSH in the checkpoint procedure */
198 if (type >= META_FLUSH) {
199 io->fio.type = META_FLUSH;
200 io->fio.op = REQ_OP_WRITE;
201 if (test_opt(sbi, NOBARRIER))
202 io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO;
203 else
204 io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META |
205 REQ_PRIO;
207 __submit_merged_bio(io);
208 out:
209 up_write(&io->io_rwsem);
212 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
213 int rw)
215 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
218 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
219 struct inode *inode, struct page *page,
220 nid_t ino, enum page_type type, int rw)
222 if (has_merged_page(sbi, inode, page, ino, type))
223 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
226 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
228 f2fs_submit_merged_bio(sbi, DATA, WRITE);
229 f2fs_submit_merged_bio(sbi, NODE, WRITE);
230 f2fs_submit_merged_bio(sbi, META, WRITE);
234 * Fill the locked page with data located in the block address.
235 * Return unlocked page.
237 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
239 struct bio *bio;
240 struct page *page = fio->encrypted_page ?
241 fio->encrypted_page : fio->page;
243 trace_f2fs_submit_page_bio(page, fio);
244 f2fs_trace_ios(fio, 0);
246 /* Allocate a new bio */
247 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
249 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
250 bio_put(bio);
251 return -EFAULT;
253 bio_set_op_attrs(bio, fio->op, fio->op_flags);
255 __submit_bio(fio->sbi, bio, fio->type);
256 return 0;
259 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
261 struct f2fs_sb_info *sbi = fio->sbi;
262 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
263 struct f2fs_bio_info *io;
264 bool is_read = is_read_io(fio->op);
265 struct page *bio_page;
267 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
269 if (fio->old_blkaddr != NEW_ADDR)
270 verify_block_addr(sbi, fio->old_blkaddr);
271 verify_block_addr(sbi, fio->new_blkaddr);
273 down_write(&io->io_rwsem);
275 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
276 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags)))
277 __submit_merged_bio(io);
278 alloc_new:
279 if (io->bio == NULL) {
280 int bio_blocks = MAX_BIO_BLOCKS(sbi);
282 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
283 bio_blocks, is_read);
284 io->fio = *fio;
287 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
289 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
290 PAGE_SIZE) {
291 __submit_merged_bio(io);
292 goto alloc_new;
295 io->last_block_in_bio = fio->new_blkaddr;
296 f2fs_trace_ios(fio, 0);
298 up_write(&io->io_rwsem);
299 trace_f2fs_submit_page_mbio(fio->page, fio);
302 static void __set_data_blkaddr(struct dnode_of_data *dn)
304 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
305 __le32 *addr_array;
307 /* Get physical address of data block */
308 addr_array = blkaddr_in_node(rn);
309 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
313 * Lock ordering for the change of data block address:
314 * ->data_page
315 * ->node_page
316 * update block addresses in the node page
318 void set_data_blkaddr(struct dnode_of_data *dn)
320 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
321 __set_data_blkaddr(dn);
322 if (set_page_dirty(dn->node_page))
323 dn->node_changed = true;
326 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
328 dn->data_blkaddr = blkaddr;
329 set_data_blkaddr(dn);
330 f2fs_update_extent_cache(dn);
333 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
334 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
336 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
338 if (!count)
339 return 0;
341 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
342 return -EPERM;
343 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
344 return -ENOSPC;
346 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
347 dn->ofs_in_node, count);
349 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
351 for (; count > 0; dn->ofs_in_node++) {
352 block_t blkaddr =
353 datablock_addr(dn->node_page, dn->ofs_in_node);
354 if (blkaddr == NULL_ADDR) {
355 dn->data_blkaddr = NEW_ADDR;
356 __set_data_blkaddr(dn);
357 count--;
361 if (set_page_dirty(dn->node_page))
362 dn->node_changed = true;
363 return 0;
366 /* Should keep dn->ofs_in_node unchanged */
367 int reserve_new_block(struct dnode_of_data *dn)
369 unsigned int ofs_in_node = dn->ofs_in_node;
370 int ret;
372 ret = reserve_new_blocks(dn, 1);
373 dn->ofs_in_node = ofs_in_node;
374 return ret;
377 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
379 bool need_put = dn->inode_page ? false : true;
380 int err;
382 err = get_dnode_of_data(dn, index, ALLOC_NODE);
383 if (err)
384 return err;
386 if (dn->data_blkaddr == NULL_ADDR)
387 err = reserve_new_block(dn);
388 if (err || need_put)
389 f2fs_put_dnode(dn);
390 return err;
393 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
395 struct extent_info ei;
396 struct inode *inode = dn->inode;
398 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
399 dn->data_blkaddr = ei.blk + index - ei.fofs;
400 return 0;
403 return f2fs_reserve_block(dn, index);
406 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
407 int op_flags, bool for_write)
409 struct address_space *mapping = inode->i_mapping;
410 struct dnode_of_data dn;
411 struct page *page;
412 struct extent_info ei;
413 int err;
414 struct f2fs_io_info fio = {
415 .sbi = F2FS_I_SB(inode),
416 .type = DATA,
417 .op = REQ_OP_READ,
418 .op_flags = op_flags,
419 .encrypted_page = NULL,
422 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
423 return read_mapping_page(mapping, index, NULL);
425 page = f2fs_grab_cache_page(mapping, index, for_write);
426 if (!page)
427 return ERR_PTR(-ENOMEM);
429 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
430 dn.data_blkaddr = ei.blk + index - ei.fofs;
431 goto got_it;
434 set_new_dnode(&dn, inode, NULL, NULL, 0);
435 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
436 if (err)
437 goto put_err;
438 f2fs_put_dnode(&dn);
440 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
441 err = -ENOENT;
442 goto put_err;
444 got_it:
445 if (PageUptodate(page)) {
446 unlock_page(page);
447 return page;
451 * A new dentry page is allocated but not able to be written, since its
452 * new inode page couldn't be allocated due to -ENOSPC.
453 * In such the case, its blkaddr can be remained as NEW_ADDR.
454 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
456 if (dn.data_blkaddr == NEW_ADDR) {
457 zero_user_segment(page, 0, PAGE_SIZE);
458 if (!PageUptodate(page))
459 SetPageUptodate(page);
460 unlock_page(page);
461 return page;
464 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
465 fio.page = page;
466 err = f2fs_submit_page_bio(&fio);
467 if (err)
468 goto put_err;
469 return page;
471 put_err:
472 f2fs_put_page(page, 1);
473 return ERR_PTR(err);
476 struct page *find_data_page(struct inode *inode, pgoff_t index)
478 struct address_space *mapping = inode->i_mapping;
479 struct page *page;
481 page = find_get_page(mapping, index);
482 if (page && PageUptodate(page))
483 return page;
484 f2fs_put_page(page, 0);
486 page = get_read_data_page(inode, index, READ_SYNC, false);
487 if (IS_ERR(page))
488 return page;
490 if (PageUptodate(page))
491 return page;
493 wait_on_page_locked(page);
494 if (unlikely(!PageUptodate(page))) {
495 f2fs_put_page(page, 0);
496 return ERR_PTR(-EIO);
498 return page;
502 * If it tries to access a hole, return an error.
503 * Because, the callers, functions in dir.c and GC, should be able to know
504 * whether this page exists or not.
506 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
507 bool for_write)
509 struct address_space *mapping = inode->i_mapping;
510 struct page *page;
511 repeat:
512 page = get_read_data_page(inode, index, READ_SYNC, for_write);
513 if (IS_ERR(page))
514 return page;
516 /* wait for read completion */
517 lock_page(page);
518 if (unlikely(page->mapping != mapping)) {
519 f2fs_put_page(page, 1);
520 goto repeat;
522 if (unlikely(!PageUptodate(page))) {
523 f2fs_put_page(page, 1);
524 return ERR_PTR(-EIO);
526 return page;
530 * Caller ensures that this data page is never allocated.
531 * A new zero-filled data page is allocated in the page cache.
533 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
534 * f2fs_unlock_op().
535 * Note that, ipage is set only by make_empty_dir, and if any error occur,
536 * ipage should be released by this function.
538 struct page *get_new_data_page(struct inode *inode,
539 struct page *ipage, pgoff_t index, bool new_i_size)
541 struct address_space *mapping = inode->i_mapping;
542 struct page *page;
543 struct dnode_of_data dn;
544 int err;
546 page = f2fs_grab_cache_page(mapping, index, true);
547 if (!page) {
549 * before exiting, we should make sure ipage will be released
550 * if any error occur.
552 f2fs_put_page(ipage, 1);
553 return ERR_PTR(-ENOMEM);
556 set_new_dnode(&dn, inode, ipage, NULL, 0);
557 err = f2fs_reserve_block(&dn, index);
558 if (err) {
559 f2fs_put_page(page, 1);
560 return ERR_PTR(err);
562 if (!ipage)
563 f2fs_put_dnode(&dn);
565 if (PageUptodate(page))
566 goto got_it;
568 if (dn.data_blkaddr == NEW_ADDR) {
569 zero_user_segment(page, 0, PAGE_SIZE);
570 if (!PageUptodate(page))
571 SetPageUptodate(page);
572 } else {
573 f2fs_put_page(page, 1);
575 /* if ipage exists, blkaddr should be NEW_ADDR */
576 f2fs_bug_on(F2FS_I_SB(inode), ipage);
577 page = get_lock_data_page(inode, index, true);
578 if (IS_ERR(page))
579 return page;
581 got_it:
582 if (new_i_size && i_size_read(inode) <
583 ((loff_t)(index + 1) << PAGE_SHIFT))
584 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
585 return page;
588 static int __allocate_data_block(struct dnode_of_data *dn)
590 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
591 struct f2fs_summary sum;
592 struct node_info ni;
593 int seg = CURSEG_WARM_DATA;
594 pgoff_t fofs;
595 blkcnt_t count = 1;
597 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
598 return -EPERM;
600 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
601 if (dn->data_blkaddr == NEW_ADDR)
602 goto alloc;
604 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
605 return -ENOSPC;
607 alloc:
608 get_node_info(sbi, dn->nid, &ni);
609 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
611 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
612 seg = CURSEG_DIRECT_IO;
614 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
615 &sum, seg);
616 set_data_blkaddr(dn);
618 /* update i_size */
619 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
620 dn->ofs_in_node;
621 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
622 f2fs_i_size_write(dn->inode,
623 ((loff_t)(fofs + 1) << PAGE_SHIFT));
624 return 0;
627 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
629 struct inode *inode = file_inode(iocb->ki_filp);
630 struct f2fs_map_blocks map;
631 ssize_t ret = 0;
633 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
634 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
635 if (map.m_len > map.m_lblk)
636 map.m_len -= map.m_lblk;
637 else
638 map.m_len = 0;
640 map.m_next_pgofs = NULL;
642 if (iocb->ki_flags & IOCB_DIRECT) {
643 ret = f2fs_convert_inline_inode(inode);
644 if (ret)
645 return ret;
646 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
648 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
649 ret = f2fs_convert_inline_inode(inode);
650 if (ret)
651 return ret;
653 if (!f2fs_has_inline_data(inode))
654 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
655 return ret;
659 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
660 * f2fs_map_blocks structure.
661 * If original data blocks are allocated, then give them to blockdev.
662 * Otherwise,
663 * a. preallocate requested block addresses
664 * b. do not use extent cache for better performance
665 * c. give the block addresses to blockdev
667 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
668 int create, int flag)
670 unsigned int maxblocks = map->m_len;
671 struct dnode_of_data dn;
672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
674 pgoff_t pgofs, end_offset, end;
675 int err = 0, ofs = 1;
676 unsigned int ofs_in_node, last_ofs_in_node;
677 blkcnt_t prealloc;
678 struct extent_info ei;
679 bool allocated = false;
680 block_t blkaddr;
682 if (!maxblocks)
683 return 0;
685 map->m_len = 0;
686 map->m_flags = 0;
688 /* it only supports block size == page size */
689 pgofs = (pgoff_t)map->m_lblk;
690 end = pgofs + maxblocks;
692 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
693 map->m_pblk = ei.blk + pgofs - ei.fofs;
694 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
695 map->m_flags = F2FS_MAP_MAPPED;
696 goto out;
699 next_dnode:
700 if (create)
701 f2fs_lock_op(sbi);
703 /* When reading holes, we need its node page */
704 set_new_dnode(&dn, inode, NULL, NULL, 0);
705 err = get_dnode_of_data(&dn, pgofs, mode);
706 if (err) {
707 if (flag == F2FS_GET_BLOCK_BMAP)
708 map->m_pblk = 0;
709 if (err == -ENOENT) {
710 err = 0;
711 if (map->m_next_pgofs)
712 *map->m_next_pgofs =
713 get_next_page_offset(&dn, pgofs);
715 goto unlock_out;
718 prealloc = 0;
719 ofs_in_node = dn.ofs_in_node;
720 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
722 next_block:
723 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
725 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
726 if (create) {
727 if (unlikely(f2fs_cp_error(sbi))) {
728 err = -EIO;
729 goto sync_out;
731 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
732 if (blkaddr == NULL_ADDR) {
733 prealloc++;
734 last_ofs_in_node = dn.ofs_in_node;
736 } else {
737 err = __allocate_data_block(&dn);
738 if (!err) {
739 set_inode_flag(inode, FI_APPEND_WRITE);
740 allocated = true;
743 if (err)
744 goto sync_out;
745 map->m_flags = F2FS_MAP_NEW;
746 blkaddr = dn.data_blkaddr;
747 } else {
748 if (flag == F2FS_GET_BLOCK_BMAP) {
749 map->m_pblk = 0;
750 goto sync_out;
752 if (flag == F2FS_GET_BLOCK_FIEMAP &&
753 blkaddr == NULL_ADDR) {
754 if (map->m_next_pgofs)
755 *map->m_next_pgofs = pgofs + 1;
757 if (flag != F2FS_GET_BLOCK_FIEMAP ||
758 blkaddr != NEW_ADDR)
759 goto sync_out;
763 if (flag == F2FS_GET_BLOCK_PRE_AIO)
764 goto skip;
766 if (map->m_len == 0) {
767 /* preallocated unwritten block should be mapped for fiemap. */
768 if (blkaddr == NEW_ADDR)
769 map->m_flags |= F2FS_MAP_UNWRITTEN;
770 map->m_flags |= F2FS_MAP_MAPPED;
772 map->m_pblk = blkaddr;
773 map->m_len = 1;
774 } else if ((map->m_pblk != NEW_ADDR &&
775 blkaddr == (map->m_pblk + ofs)) ||
776 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
777 flag == F2FS_GET_BLOCK_PRE_DIO) {
778 ofs++;
779 map->m_len++;
780 } else {
781 goto sync_out;
784 skip:
785 dn.ofs_in_node++;
786 pgofs++;
788 /* preallocate blocks in batch for one dnode page */
789 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
790 (pgofs == end || dn.ofs_in_node == end_offset)) {
792 dn.ofs_in_node = ofs_in_node;
793 err = reserve_new_blocks(&dn, prealloc);
794 if (err)
795 goto sync_out;
796 allocated = dn.node_changed;
798 map->m_len += dn.ofs_in_node - ofs_in_node;
799 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
800 err = -ENOSPC;
801 goto sync_out;
803 dn.ofs_in_node = end_offset;
806 if (pgofs >= end)
807 goto sync_out;
808 else if (dn.ofs_in_node < end_offset)
809 goto next_block;
811 f2fs_put_dnode(&dn);
813 if (create) {
814 f2fs_unlock_op(sbi);
815 f2fs_balance_fs(sbi, allocated);
817 allocated = false;
818 goto next_dnode;
820 sync_out:
821 f2fs_put_dnode(&dn);
822 unlock_out:
823 if (create) {
824 f2fs_unlock_op(sbi);
825 f2fs_balance_fs(sbi, allocated);
827 out:
828 trace_f2fs_map_blocks(inode, map, err);
829 return err;
832 static int __get_data_block(struct inode *inode, sector_t iblock,
833 struct buffer_head *bh, int create, int flag,
834 pgoff_t *next_pgofs)
836 struct f2fs_map_blocks map;
837 int ret;
839 map.m_lblk = iblock;
840 map.m_len = bh->b_size >> inode->i_blkbits;
841 map.m_next_pgofs = next_pgofs;
843 ret = f2fs_map_blocks(inode, &map, create, flag);
844 if (!ret) {
845 map_bh(bh, inode->i_sb, map.m_pblk);
846 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
847 bh->b_size = map.m_len << inode->i_blkbits;
849 return ret;
852 static int get_data_block(struct inode *inode, sector_t iblock,
853 struct buffer_head *bh_result, int create, int flag,
854 pgoff_t *next_pgofs)
856 return __get_data_block(inode, iblock, bh_result, create,
857 flag, next_pgofs);
860 static int get_data_block_dio(struct inode *inode, sector_t iblock,
861 struct buffer_head *bh_result, int create)
863 return __get_data_block(inode, iblock, bh_result, create,
864 F2FS_GET_BLOCK_DIO, NULL);
867 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
868 struct buffer_head *bh_result, int create)
870 /* Block number less than F2FS MAX BLOCKS */
871 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
872 return -EFBIG;
874 return __get_data_block(inode, iblock, bh_result, create,
875 F2FS_GET_BLOCK_BMAP, NULL);
878 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
880 return (offset >> inode->i_blkbits);
883 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
885 return (blk << inode->i_blkbits);
888 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
889 u64 start, u64 len)
891 struct buffer_head map_bh;
892 sector_t start_blk, last_blk;
893 pgoff_t next_pgofs;
894 loff_t isize;
895 u64 logical = 0, phys = 0, size = 0;
896 u32 flags = 0;
897 int ret = 0;
899 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
900 if (ret)
901 return ret;
903 if (f2fs_has_inline_data(inode)) {
904 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
905 if (ret != -EAGAIN)
906 return ret;
909 inode_lock(inode);
911 isize = i_size_read(inode);
912 if (start >= isize)
913 goto out;
915 if (start + len > isize)
916 len = isize - start;
918 if (logical_to_blk(inode, len) == 0)
919 len = blk_to_logical(inode, 1);
921 start_blk = logical_to_blk(inode, start);
922 last_blk = logical_to_blk(inode, start + len - 1);
924 next:
925 memset(&map_bh, 0, sizeof(struct buffer_head));
926 map_bh.b_size = len;
928 ret = get_data_block(inode, start_blk, &map_bh, 0,
929 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
930 if (ret)
931 goto out;
933 /* HOLE */
934 if (!buffer_mapped(&map_bh)) {
935 start_blk = next_pgofs;
936 /* Go through holes util pass the EOF */
937 if (blk_to_logical(inode, start_blk) < isize)
938 goto prep_next;
939 /* Found a hole beyond isize means no more extents.
940 * Note that the premise is that filesystems don't
941 * punch holes beyond isize and keep size unchanged.
943 flags |= FIEMAP_EXTENT_LAST;
946 if (size) {
947 if (f2fs_encrypted_inode(inode))
948 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
950 ret = fiemap_fill_next_extent(fieinfo, logical,
951 phys, size, flags);
954 if (start_blk > last_blk || ret)
955 goto out;
957 logical = blk_to_logical(inode, start_blk);
958 phys = blk_to_logical(inode, map_bh.b_blocknr);
959 size = map_bh.b_size;
960 flags = 0;
961 if (buffer_unwritten(&map_bh))
962 flags = FIEMAP_EXTENT_UNWRITTEN;
964 start_blk += logical_to_blk(inode, size);
966 prep_next:
967 cond_resched();
968 if (fatal_signal_pending(current))
969 ret = -EINTR;
970 else
971 goto next;
972 out:
973 if (ret == 1)
974 ret = 0;
976 inode_unlock(inode);
977 return ret;
980 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
981 unsigned nr_pages)
983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
984 struct fscrypt_ctx *ctx = NULL;
985 struct block_device *bdev = sbi->sb->s_bdev;
986 struct bio *bio;
988 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
989 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
990 if (IS_ERR(ctx))
991 return ERR_CAST(ctx);
993 /* wait the page to be moved by cleaning */
994 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
997 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
998 if (!bio) {
999 if (ctx)
1000 fscrypt_release_ctx(ctx);
1001 return ERR_PTR(-ENOMEM);
1003 bio->bi_bdev = bdev;
1004 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr);
1005 bio->bi_end_io = f2fs_read_end_io;
1006 bio->bi_private = ctx;
1008 return bio;
1012 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1013 * Major change was from block_size == page_size in f2fs by default.
1015 static int f2fs_mpage_readpages(struct address_space *mapping,
1016 struct list_head *pages, struct page *page,
1017 unsigned nr_pages)
1019 struct bio *bio = NULL;
1020 unsigned page_idx;
1021 sector_t last_block_in_bio = 0;
1022 struct inode *inode = mapping->host;
1023 const unsigned blkbits = inode->i_blkbits;
1024 const unsigned blocksize = 1 << blkbits;
1025 sector_t block_in_file;
1026 sector_t last_block;
1027 sector_t last_block_in_file;
1028 sector_t block_nr;
1029 struct f2fs_map_blocks map;
1031 map.m_pblk = 0;
1032 map.m_lblk = 0;
1033 map.m_len = 0;
1034 map.m_flags = 0;
1035 map.m_next_pgofs = NULL;
1037 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1039 prefetchw(&page->flags);
1040 if (pages) {
1041 page = list_entry(pages->prev, struct page, lru);
1042 list_del(&page->lru);
1043 if (add_to_page_cache_lru(page, mapping,
1044 page->index,
1045 readahead_gfp_mask(mapping)))
1046 goto next_page;
1049 block_in_file = (sector_t)page->index;
1050 last_block = block_in_file + nr_pages;
1051 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1052 blkbits;
1053 if (last_block > last_block_in_file)
1054 last_block = last_block_in_file;
1057 * Map blocks using the previous result first.
1059 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1060 block_in_file > map.m_lblk &&
1061 block_in_file < (map.m_lblk + map.m_len))
1062 goto got_it;
1065 * Then do more f2fs_map_blocks() calls until we are
1066 * done with this page.
1068 map.m_flags = 0;
1070 if (block_in_file < last_block) {
1071 map.m_lblk = block_in_file;
1072 map.m_len = last_block - block_in_file;
1074 if (f2fs_map_blocks(inode, &map, 0,
1075 F2FS_GET_BLOCK_READ))
1076 goto set_error_page;
1078 got_it:
1079 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1080 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1081 SetPageMappedToDisk(page);
1083 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1084 SetPageUptodate(page);
1085 goto confused;
1087 } else {
1088 zero_user_segment(page, 0, PAGE_SIZE);
1089 if (!PageUptodate(page))
1090 SetPageUptodate(page);
1091 unlock_page(page);
1092 goto next_page;
1096 * This page will go to BIO. Do we need to send this
1097 * BIO off first?
1099 if (bio && (last_block_in_bio != block_nr - 1)) {
1100 submit_and_realloc:
1101 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1102 bio = NULL;
1104 if (bio == NULL) {
1105 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1106 if (IS_ERR(bio)) {
1107 bio = NULL;
1108 goto set_error_page;
1110 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1113 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1114 goto submit_and_realloc;
1116 last_block_in_bio = block_nr;
1117 goto next_page;
1118 set_error_page:
1119 SetPageError(page);
1120 zero_user_segment(page, 0, PAGE_SIZE);
1121 unlock_page(page);
1122 goto next_page;
1123 confused:
1124 if (bio) {
1125 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1126 bio = NULL;
1128 unlock_page(page);
1129 next_page:
1130 if (pages)
1131 put_page(page);
1133 BUG_ON(pages && !list_empty(pages));
1134 if (bio)
1135 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1136 return 0;
1139 static int f2fs_read_data_page(struct file *file, struct page *page)
1141 struct inode *inode = page->mapping->host;
1142 int ret = -EAGAIN;
1144 trace_f2fs_readpage(page, DATA);
1146 /* If the file has inline data, try to read it directly */
1147 if (f2fs_has_inline_data(inode))
1148 ret = f2fs_read_inline_data(inode, page);
1149 if (ret == -EAGAIN)
1150 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1151 return ret;
1154 static int f2fs_read_data_pages(struct file *file,
1155 struct address_space *mapping,
1156 struct list_head *pages, unsigned nr_pages)
1158 struct inode *inode = file->f_mapping->host;
1159 struct page *page = list_entry(pages->prev, struct page, lru);
1161 trace_f2fs_readpages(inode, page, nr_pages);
1163 /* If the file has inline data, skip readpages */
1164 if (f2fs_has_inline_data(inode))
1165 return 0;
1167 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1170 int do_write_data_page(struct f2fs_io_info *fio)
1172 struct page *page = fio->page;
1173 struct inode *inode = page->mapping->host;
1174 struct dnode_of_data dn;
1175 int err = 0;
1177 set_new_dnode(&dn, inode, NULL, NULL, 0);
1178 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1179 if (err)
1180 return err;
1182 fio->old_blkaddr = dn.data_blkaddr;
1184 /* This page is already truncated */
1185 if (fio->old_blkaddr == NULL_ADDR) {
1186 ClearPageUptodate(page);
1187 goto out_writepage;
1190 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1191 gfp_t gfp_flags = GFP_NOFS;
1193 /* wait for GCed encrypted page writeback */
1194 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1195 fio->old_blkaddr);
1196 retry_encrypt:
1197 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1198 gfp_flags);
1199 if (IS_ERR(fio->encrypted_page)) {
1200 err = PTR_ERR(fio->encrypted_page);
1201 if (err == -ENOMEM) {
1202 /* flush pending ios and wait for a while */
1203 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1204 congestion_wait(BLK_RW_ASYNC, HZ/50);
1205 gfp_flags |= __GFP_NOFAIL;
1206 err = 0;
1207 goto retry_encrypt;
1209 goto out_writepage;
1213 set_page_writeback(page);
1216 * If current allocation needs SSR,
1217 * it had better in-place writes for updated data.
1219 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1220 !is_cold_data(page) &&
1221 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1222 need_inplace_update(inode))) {
1223 rewrite_data_page(fio);
1224 set_inode_flag(inode, FI_UPDATE_WRITE);
1225 trace_f2fs_do_write_data_page(page, IPU);
1226 } else {
1227 write_data_page(&dn, fio);
1228 trace_f2fs_do_write_data_page(page, OPU);
1229 set_inode_flag(inode, FI_APPEND_WRITE);
1230 if (page->index == 0)
1231 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1233 out_writepage:
1234 f2fs_put_dnode(&dn);
1235 return err;
1238 static int f2fs_write_data_page(struct page *page,
1239 struct writeback_control *wbc)
1241 struct inode *inode = page->mapping->host;
1242 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1243 loff_t i_size = i_size_read(inode);
1244 const pgoff_t end_index = ((unsigned long long) i_size)
1245 >> PAGE_SHIFT;
1246 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1247 unsigned offset = 0;
1248 bool need_balance_fs = false;
1249 int err = 0;
1250 struct f2fs_io_info fio = {
1251 .sbi = sbi,
1252 .type = DATA,
1253 .op = REQ_OP_WRITE,
1254 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1255 .page = page,
1256 .encrypted_page = NULL,
1259 trace_f2fs_writepage(page, DATA);
1261 if (page->index < end_index)
1262 goto write;
1265 * If the offset is out-of-range of file size,
1266 * this page does not have to be written to disk.
1268 offset = i_size & (PAGE_SIZE - 1);
1269 if ((page->index >= end_index + 1) || !offset)
1270 goto out;
1272 zero_user_segment(page, offset, PAGE_SIZE);
1273 write:
1274 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1275 goto redirty_out;
1276 if (f2fs_is_drop_cache(inode))
1277 goto out;
1278 /* we should not write 0'th page having journal header */
1279 if (f2fs_is_volatile_file(inode) && (!page->index ||
1280 (!wbc->for_reclaim &&
1281 available_free_memory(sbi, BASE_CHECK))))
1282 goto redirty_out;
1284 /* we should bypass data pages to proceed the kworkder jobs */
1285 if (unlikely(f2fs_cp_error(sbi))) {
1286 mapping_set_error(page->mapping, -EIO);
1287 goto out;
1290 /* Dentry blocks are controlled by checkpoint */
1291 if (S_ISDIR(inode->i_mode)) {
1292 err = do_write_data_page(&fio);
1293 goto done;
1296 if (!wbc->for_reclaim)
1297 need_balance_fs = true;
1298 else if (has_not_enough_free_secs(sbi, 0, 0))
1299 goto redirty_out;
1301 err = -EAGAIN;
1302 f2fs_lock_op(sbi);
1303 if (f2fs_has_inline_data(inode))
1304 err = f2fs_write_inline_data(inode, page);
1305 if (err == -EAGAIN)
1306 err = do_write_data_page(&fio);
1307 if (F2FS_I(inode)->last_disk_size < psize)
1308 F2FS_I(inode)->last_disk_size = psize;
1309 f2fs_unlock_op(sbi);
1310 done:
1311 if (err && err != -ENOENT)
1312 goto redirty_out;
1314 clear_cold_data(page);
1315 out:
1316 inode_dec_dirty_pages(inode);
1317 if (err)
1318 ClearPageUptodate(page);
1320 if (wbc->for_reclaim) {
1321 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1322 remove_dirty_inode(inode);
1325 unlock_page(page);
1326 f2fs_balance_fs(sbi, need_balance_fs);
1328 if (unlikely(f2fs_cp_error(sbi)))
1329 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1331 return 0;
1333 redirty_out:
1334 redirty_page_for_writepage(wbc, page);
1335 unlock_page(page);
1336 return err;
1340 * This function was copied from write_cche_pages from mm/page-writeback.c.
1341 * The major change is making write step of cold data page separately from
1342 * warm/hot data page.
1344 static int f2fs_write_cache_pages(struct address_space *mapping,
1345 struct writeback_control *wbc)
1347 int ret = 0;
1348 int done = 0;
1349 struct pagevec pvec;
1350 int nr_pages;
1351 pgoff_t uninitialized_var(writeback_index);
1352 pgoff_t index;
1353 pgoff_t end; /* Inclusive */
1354 pgoff_t done_index;
1355 int cycled;
1356 int range_whole = 0;
1357 int tag;
1358 int nwritten = 0;
1360 pagevec_init(&pvec, 0);
1362 if (wbc->range_cyclic) {
1363 writeback_index = mapping->writeback_index; /* prev offset */
1364 index = writeback_index;
1365 if (index == 0)
1366 cycled = 1;
1367 else
1368 cycled = 0;
1369 end = -1;
1370 } else {
1371 index = wbc->range_start >> PAGE_SHIFT;
1372 end = wbc->range_end >> PAGE_SHIFT;
1373 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1374 range_whole = 1;
1375 cycled = 1; /* ignore range_cyclic tests */
1377 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1378 tag = PAGECACHE_TAG_TOWRITE;
1379 else
1380 tag = PAGECACHE_TAG_DIRTY;
1381 retry:
1382 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1383 tag_pages_for_writeback(mapping, index, end);
1384 done_index = index;
1385 while (!done && (index <= end)) {
1386 int i;
1388 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1389 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1390 if (nr_pages == 0)
1391 break;
1393 for (i = 0; i < nr_pages; i++) {
1394 struct page *page = pvec.pages[i];
1396 if (page->index > end) {
1397 done = 1;
1398 break;
1401 done_index = page->index;
1403 lock_page(page);
1405 if (unlikely(page->mapping != mapping)) {
1406 continue_unlock:
1407 unlock_page(page);
1408 continue;
1411 if (!PageDirty(page)) {
1412 /* someone wrote it for us */
1413 goto continue_unlock;
1416 if (PageWriteback(page)) {
1417 if (wbc->sync_mode != WB_SYNC_NONE)
1418 f2fs_wait_on_page_writeback(page,
1419 DATA, true);
1420 else
1421 goto continue_unlock;
1424 BUG_ON(PageWriteback(page));
1425 if (!clear_page_dirty_for_io(page))
1426 goto continue_unlock;
1428 ret = mapping->a_ops->writepage(page, wbc);
1429 if (unlikely(ret)) {
1430 done_index = page->index + 1;
1431 done = 1;
1432 break;
1433 } else {
1434 nwritten++;
1437 if (--wbc->nr_to_write <= 0 &&
1438 wbc->sync_mode == WB_SYNC_NONE) {
1439 done = 1;
1440 break;
1443 pagevec_release(&pvec);
1444 cond_resched();
1447 if (!cycled && !done) {
1448 cycled = 1;
1449 index = 0;
1450 end = writeback_index - 1;
1451 goto retry;
1453 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1454 mapping->writeback_index = done_index;
1456 if (nwritten)
1457 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1458 NULL, 0, DATA, WRITE);
1460 return ret;
1463 static int f2fs_write_data_pages(struct address_space *mapping,
1464 struct writeback_control *wbc)
1466 struct inode *inode = mapping->host;
1467 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1468 struct blk_plug plug;
1469 int ret;
1471 /* deal with chardevs and other special file */
1472 if (!mapping->a_ops->writepage)
1473 return 0;
1475 /* skip writing if there is no dirty page in this inode */
1476 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1477 return 0;
1479 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1480 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1481 available_free_memory(sbi, DIRTY_DENTS))
1482 goto skip_write;
1484 /* skip writing during file defragment */
1485 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1486 goto skip_write;
1488 /* during POR, we don't need to trigger writepage at all. */
1489 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1490 goto skip_write;
1492 trace_f2fs_writepages(mapping->host, wbc, DATA);
1494 blk_start_plug(&plug);
1495 ret = f2fs_write_cache_pages(mapping, wbc);
1496 blk_finish_plug(&plug);
1498 * if some pages were truncated, we cannot guarantee its mapping->host
1499 * to detect pending bios.
1502 remove_dirty_inode(inode);
1503 return ret;
1505 skip_write:
1506 wbc->pages_skipped += get_dirty_pages(inode);
1507 trace_f2fs_writepages(mapping->host, wbc, DATA);
1508 return 0;
1511 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1513 struct inode *inode = mapping->host;
1514 loff_t i_size = i_size_read(inode);
1516 if (to > i_size) {
1517 truncate_pagecache(inode, i_size);
1518 truncate_blocks(inode, i_size, true);
1522 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1523 struct page *page, loff_t pos, unsigned len,
1524 block_t *blk_addr, bool *node_changed)
1526 struct inode *inode = page->mapping->host;
1527 pgoff_t index = page->index;
1528 struct dnode_of_data dn;
1529 struct page *ipage;
1530 bool locked = false;
1531 struct extent_info ei;
1532 int err = 0;
1535 * we already allocated all the blocks, so we don't need to get
1536 * the block addresses when there is no need to fill the page.
1538 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1539 return 0;
1541 if (f2fs_has_inline_data(inode) ||
1542 (pos & PAGE_MASK) >= i_size_read(inode)) {
1543 f2fs_lock_op(sbi);
1544 locked = true;
1546 restart:
1547 /* check inline_data */
1548 ipage = get_node_page(sbi, inode->i_ino);
1549 if (IS_ERR(ipage)) {
1550 err = PTR_ERR(ipage);
1551 goto unlock_out;
1554 set_new_dnode(&dn, inode, ipage, ipage, 0);
1556 if (f2fs_has_inline_data(inode)) {
1557 if (pos + len <= MAX_INLINE_DATA) {
1558 read_inline_data(page, ipage);
1559 set_inode_flag(inode, FI_DATA_EXIST);
1560 if (inode->i_nlink)
1561 set_inline_node(ipage);
1562 } else {
1563 err = f2fs_convert_inline_page(&dn, page);
1564 if (err)
1565 goto out;
1566 if (dn.data_blkaddr == NULL_ADDR)
1567 err = f2fs_get_block(&dn, index);
1569 } else if (locked) {
1570 err = f2fs_get_block(&dn, index);
1571 } else {
1572 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1573 dn.data_blkaddr = ei.blk + index - ei.fofs;
1574 } else {
1575 /* hole case */
1576 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1577 if (err || dn.data_blkaddr == NULL_ADDR) {
1578 f2fs_put_dnode(&dn);
1579 f2fs_lock_op(sbi);
1580 locked = true;
1581 goto restart;
1586 /* convert_inline_page can make node_changed */
1587 *blk_addr = dn.data_blkaddr;
1588 *node_changed = dn.node_changed;
1589 out:
1590 f2fs_put_dnode(&dn);
1591 unlock_out:
1592 if (locked)
1593 f2fs_unlock_op(sbi);
1594 return err;
1597 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1598 loff_t pos, unsigned len, unsigned flags,
1599 struct page **pagep, void **fsdata)
1601 struct inode *inode = mapping->host;
1602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1603 struct page *page = NULL;
1604 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1605 bool need_balance = false;
1606 block_t blkaddr = NULL_ADDR;
1607 int err = 0;
1609 trace_f2fs_write_begin(inode, pos, len, flags);
1612 * We should check this at this moment to avoid deadlock on inode page
1613 * and #0 page. The locking rule for inline_data conversion should be:
1614 * lock_page(page #0) -> lock_page(inode_page)
1616 if (index != 0) {
1617 err = f2fs_convert_inline_inode(inode);
1618 if (err)
1619 goto fail;
1621 repeat:
1622 page = grab_cache_page_write_begin(mapping, index, flags);
1623 if (!page) {
1624 err = -ENOMEM;
1625 goto fail;
1628 *pagep = page;
1630 err = prepare_write_begin(sbi, page, pos, len,
1631 &blkaddr, &need_balance);
1632 if (err)
1633 goto fail;
1635 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1636 unlock_page(page);
1637 f2fs_balance_fs(sbi, true);
1638 lock_page(page);
1639 if (page->mapping != mapping) {
1640 /* The page got truncated from under us */
1641 f2fs_put_page(page, 1);
1642 goto repeat;
1646 f2fs_wait_on_page_writeback(page, DATA, false);
1648 /* wait for GCed encrypted page writeback */
1649 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1650 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1652 if (len == PAGE_SIZE || PageUptodate(page))
1653 return 0;
1655 if (blkaddr == NEW_ADDR) {
1656 zero_user_segment(page, 0, PAGE_SIZE);
1657 SetPageUptodate(page);
1658 } else {
1659 struct bio *bio;
1661 bio = f2fs_grab_bio(inode, blkaddr, 1);
1662 if (IS_ERR(bio)) {
1663 err = PTR_ERR(bio);
1664 goto fail;
1666 bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC);
1667 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1668 bio_put(bio);
1669 err = -EFAULT;
1670 goto fail;
1673 __submit_bio(sbi, bio, DATA);
1675 lock_page(page);
1676 if (unlikely(page->mapping != mapping)) {
1677 f2fs_put_page(page, 1);
1678 goto repeat;
1680 if (unlikely(!PageUptodate(page))) {
1681 err = -EIO;
1682 goto fail;
1685 return 0;
1687 fail:
1688 f2fs_put_page(page, 1);
1689 f2fs_write_failed(mapping, pos + len);
1690 return err;
1693 static int f2fs_write_end(struct file *file,
1694 struct address_space *mapping,
1695 loff_t pos, unsigned len, unsigned copied,
1696 struct page *page, void *fsdata)
1698 struct inode *inode = page->mapping->host;
1700 trace_f2fs_write_end(inode, pos, len, copied);
1703 * This should be come from len == PAGE_SIZE, and we expect copied
1704 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1705 * let generic_perform_write() try to copy data again through copied=0.
1707 if (!PageUptodate(page)) {
1708 if (unlikely(copied != PAGE_SIZE))
1709 copied = 0;
1710 else
1711 SetPageUptodate(page);
1713 if (!copied)
1714 goto unlock_out;
1716 set_page_dirty(page);
1717 clear_cold_data(page);
1719 if (pos + copied > i_size_read(inode))
1720 f2fs_i_size_write(inode, pos + copied);
1721 unlock_out:
1722 f2fs_put_page(page, 1);
1723 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1724 return copied;
1727 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1728 loff_t offset)
1730 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1732 if (offset & blocksize_mask)
1733 return -EINVAL;
1735 if (iov_iter_alignment(iter) & blocksize_mask)
1736 return -EINVAL;
1738 return 0;
1741 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1743 struct address_space *mapping = iocb->ki_filp->f_mapping;
1744 struct inode *inode = mapping->host;
1745 size_t count = iov_iter_count(iter);
1746 loff_t offset = iocb->ki_pos;
1747 int rw = iov_iter_rw(iter);
1748 int err;
1750 err = check_direct_IO(inode, iter, offset);
1751 if (err)
1752 return err;
1754 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1755 return 0;
1756 if (test_opt(F2FS_I_SB(inode), LFS))
1757 return 0;
1759 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1761 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1762 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1763 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1765 if (rw == WRITE) {
1766 if (err > 0)
1767 set_inode_flag(inode, FI_UPDATE_WRITE);
1768 else if (err < 0)
1769 f2fs_write_failed(mapping, offset + count);
1772 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1774 return err;
1777 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1778 unsigned int length)
1780 struct inode *inode = page->mapping->host;
1781 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1783 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1784 (offset % PAGE_SIZE || length != PAGE_SIZE))
1785 return;
1787 if (PageDirty(page)) {
1788 if (inode->i_ino == F2FS_META_INO(sbi))
1789 dec_page_count(sbi, F2FS_DIRTY_META);
1790 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1791 dec_page_count(sbi, F2FS_DIRTY_NODES);
1792 else
1793 inode_dec_dirty_pages(inode);
1796 /* This is atomic written page, keep Private */
1797 if (IS_ATOMIC_WRITTEN_PAGE(page))
1798 return;
1800 set_page_private(page, 0);
1801 ClearPagePrivate(page);
1804 int f2fs_release_page(struct page *page, gfp_t wait)
1806 /* If this is dirty page, keep PagePrivate */
1807 if (PageDirty(page))
1808 return 0;
1810 /* This is atomic written page, keep Private */
1811 if (IS_ATOMIC_WRITTEN_PAGE(page))
1812 return 0;
1814 set_page_private(page, 0);
1815 ClearPagePrivate(page);
1816 return 1;
1820 * This was copied from __set_page_dirty_buffers which gives higher performance
1821 * in very high speed storages. (e.g., pmem)
1823 void f2fs_set_page_dirty_nobuffers(struct page *page)
1825 struct address_space *mapping = page->mapping;
1826 unsigned long flags;
1828 if (unlikely(!mapping))
1829 return;
1831 spin_lock(&mapping->private_lock);
1832 lock_page_memcg(page);
1833 SetPageDirty(page);
1834 spin_unlock(&mapping->private_lock);
1836 spin_lock_irqsave(&mapping->tree_lock, flags);
1837 WARN_ON_ONCE(!PageUptodate(page));
1838 account_page_dirtied(page, mapping);
1839 radix_tree_tag_set(&mapping->page_tree,
1840 page_index(page), PAGECACHE_TAG_DIRTY);
1841 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1842 unlock_page_memcg(page);
1844 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1845 return;
1848 static int f2fs_set_data_page_dirty(struct page *page)
1850 struct address_space *mapping = page->mapping;
1851 struct inode *inode = mapping->host;
1853 trace_f2fs_set_page_dirty(page, DATA);
1855 if (!PageUptodate(page))
1856 SetPageUptodate(page);
1858 if (f2fs_is_atomic_file(inode)) {
1859 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1860 register_inmem_page(inode, page);
1861 return 1;
1864 * Previously, this page has been registered, we just
1865 * return here.
1867 return 0;
1870 if (!PageDirty(page)) {
1871 f2fs_set_page_dirty_nobuffers(page);
1872 update_dirty_page(inode, page);
1873 return 1;
1875 return 0;
1878 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1880 struct inode *inode = mapping->host;
1882 if (f2fs_has_inline_data(inode))
1883 return 0;
1885 /* make sure allocating whole blocks */
1886 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1887 filemap_write_and_wait(mapping);
1889 return generic_block_bmap(mapping, block, get_data_block_bmap);
1892 #ifdef CONFIG_MIGRATION
1893 #include <linux/migrate.h>
1895 int f2fs_migrate_page(struct address_space *mapping,
1896 struct page *newpage, struct page *page, enum migrate_mode mode)
1898 int rc, extra_count;
1899 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1900 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1902 BUG_ON(PageWriteback(page));
1904 /* migrating an atomic written page is safe with the inmem_lock hold */
1905 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1906 return -EAGAIN;
1909 * A reference is expected if PagePrivate set when move mapping,
1910 * however F2FS breaks this for maintaining dirty page counts when
1911 * truncating pages. So here adjusting the 'extra_count' make it work.
1913 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1914 rc = migrate_page_move_mapping(mapping, newpage,
1915 page, NULL, mode, extra_count);
1916 if (rc != MIGRATEPAGE_SUCCESS) {
1917 if (atomic_written)
1918 mutex_unlock(&fi->inmem_lock);
1919 return rc;
1922 if (atomic_written) {
1923 struct inmem_pages *cur;
1924 list_for_each_entry(cur, &fi->inmem_pages, list)
1925 if (cur->page == page) {
1926 cur->page = newpage;
1927 break;
1929 mutex_unlock(&fi->inmem_lock);
1930 put_page(page);
1931 get_page(newpage);
1934 if (PagePrivate(page))
1935 SetPagePrivate(newpage);
1936 set_page_private(newpage, page_private(page));
1938 migrate_page_copy(newpage, page);
1940 return MIGRATEPAGE_SUCCESS;
1942 #endif
1944 const struct address_space_operations f2fs_dblock_aops = {
1945 .readpage = f2fs_read_data_page,
1946 .readpages = f2fs_read_data_pages,
1947 .writepage = f2fs_write_data_page,
1948 .writepages = f2fs_write_data_pages,
1949 .write_begin = f2fs_write_begin,
1950 .write_end = f2fs_write_end,
1951 .set_page_dirty = f2fs_set_data_page_dirty,
1952 .invalidatepage = f2fs_invalidate_page,
1953 .releasepage = f2fs_release_page,
1954 .direct_IO = f2fs_direct_IO,
1955 .bmap = f2fs_bmap,
1956 #ifdef CONFIG_MIGRATION
1957 .migratepage = f2fs_migrate_page,
1958 #endif