sis900: remove unnecessary break after return
[linux-2.6/btrfs-unstable.git] / drivers / md / raid5.c
blob6234b2e84587cd75d37ac50bf5264094e474632a
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
67 static struct workqueue_struct *raid5_wq;
69 * Stripe cache
72 #define NR_STRIPES 256
73 #define STRIPE_SIZE PAGE_SIZE
74 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD 1
77 #define BYPASS_THRESHOLD 1
78 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH 8
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 return &conf->stripe_hashtbl[hash];
88 static inline int stripe_hash_locks_hash(sector_t sect)
90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
95 spin_lock_irq(conf->hash_locks + hash);
96 spin_lock(&conf->device_lock);
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
101 spin_unlock(&conf->device_lock);
102 spin_unlock_irq(conf->hash_locks + hash);
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
107 int i;
108 local_irq_disable();
109 spin_lock(conf->hash_locks);
110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 spin_lock(&conf->device_lock);
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
117 int i;
118 spin_unlock(&conf->device_lock);
119 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 spin_unlock(conf->hash_locks + i - 1);
121 local_irq_enable();
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125 * order without overlap. There may be several bio's per stripe+device, and
126 * a bio could span several devices.
127 * When walking this list for a particular stripe+device, we must never proceed
128 * beyond a bio that extends past this device, as the next bio might no longer
129 * be valid.
130 * This function is used to determine the 'next' bio in the list, given the sector
131 * of the current stripe+device
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
135 int sectors = bio_sectors(bio);
136 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137 return bio->bi_next;
138 else
139 return NULL;
143 * We maintain a biased count of active stripes in the bottom 16 bits of
144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 return (atomic_read(segments) >> 16) & 0xffff;
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 return atomic_sub_return(1, segments) & 0xffff;
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 atomic_inc(segments);
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 unsigned int cnt)
167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 int old, new;
170 do {
171 old = atomic_read(segments);
172 new = (old & 0xffff) | (cnt << 16);
173 } while (atomic_cmpxchg(segments, old, new) != old);
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 atomic_set(segments, cnt);
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
185 if (sh->ddf_layout)
186 /* ddf always start from first device */
187 return 0;
188 /* md starts just after Q block */
189 if (sh->qd_idx == sh->disks - 1)
190 return 0;
191 else
192 return sh->qd_idx + 1;
194 static inline int raid6_next_disk(int disk, int raid_disks)
196 disk++;
197 return (disk < raid_disks) ? disk : 0;
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201 * We need to map each disk to a 'slot', where the data disks are slot
202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203 * is raid_disks-1. This help does that mapping.
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 int *count, int syndrome_disks)
208 int slot = *count;
210 if (sh->ddf_layout)
211 (*count)++;
212 if (idx == sh->pd_idx)
213 return syndrome_disks;
214 if (idx == sh->qd_idx)
215 return syndrome_disks + 1;
216 if (!sh->ddf_layout)
217 (*count)++;
218 return slot;
221 static void return_io(struct bio *return_bi)
223 struct bio *bi = return_bi;
224 while (bi) {
226 return_bi = bi->bi_next;
227 bi->bi_next = NULL;
228 bi->bi_iter.bi_size = 0;
229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 bi, 0);
231 bio_endio(bi, 0);
232 bi = return_bi;
236 static void print_raid5_conf (struct r5conf *conf);
238 static int stripe_operations_active(struct stripe_head *sh)
240 return sh->check_state || sh->reconstruct_state ||
241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 struct r5conf *conf = sh->raid_conf;
248 struct r5worker_group *group;
249 int thread_cnt;
250 int i, cpu = sh->cpu;
252 if (!cpu_online(cpu)) {
253 cpu = cpumask_any(cpu_online_mask);
254 sh->cpu = cpu;
257 if (list_empty(&sh->lru)) {
258 struct r5worker_group *group;
259 group = conf->worker_groups + cpu_to_group(cpu);
260 list_add_tail(&sh->lru, &group->handle_list);
261 group->stripes_cnt++;
262 sh->group = group;
265 if (conf->worker_cnt_per_group == 0) {
266 md_wakeup_thread(conf->mddev->thread);
267 return;
270 group = conf->worker_groups + cpu_to_group(sh->cpu);
272 group->workers[0].working = true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 /* wakeup more workers */
278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 if (group->workers[i].working == false) {
280 group->workers[i].working = true;
281 queue_work_on(sh->cpu, raid5_wq,
282 &group->workers[i].work);
283 thread_cnt--;
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 struct list_head *temp_inactive_list)
291 BUG_ON(!list_empty(&sh->lru));
292 BUG_ON(atomic_read(&conf->active_stripes)==0);
293 if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
296 list_add_tail(&sh->lru, &conf->delayed_list);
297 if (atomic_read(&conf->preread_active_stripes)
298 < IO_THRESHOLD)
299 md_wakeup_thread(conf->mddev->thread);
300 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
301 sh->bm_seq - conf->seq_write > 0)
302 list_add_tail(&sh->lru, &conf->bitmap_list);
303 else {
304 clear_bit(STRIPE_DELAYED, &sh->state);
305 clear_bit(STRIPE_BIT_DELAY, &sh->state);
306 if (conf->worker_cnt_per_group == 0) {
307 list_add_tail(&sh->lru, &conf->handle_list);
308 } else {
309 raid5_wakeup_stripe_thread(sh);
310 return;
313 md_wakeup_thread(conf->mddev->thread);
314 } else {
315 BUG_ON(stripe_operations_active(sh));
316 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
317 if (atomic_dec_return(&conf->preread_active_stripes)
318 < IO_THRESHOLD)
319 md_wakeup_thread(conf->mddev->thread);
320 atomic_dec(&conf->active_stripes);
321 if (!test_bit(STRIPE_EXPANDING, &sh->state))
322 list_add_tail(&sh->lru, temp_inactive_list);
326 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
327 struct list_head *temp_inactive_list)
329 if (atomic_dec_and_test(&sh->count))
330 do_release_stripe(conf, sh, temp_inactive_list);
334 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
336 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
337 * given time. Adding stripes only takes device lock, while deleting stripes
338 * only takes hash lock.
340 static void release_inactive_stripe_list(struct r5conf *conf,
341 struct list_head *temp_inactive_list,
342 int hash)
344 int size;
345 bool do_wakeup = false;
346 unsigned long flags;
348 if (hash == NR_STRIPE_HASH_LOCKS) {
349 size = NR_STRIPE_HASH_LOCKS;
350 hash = NR_STRIPE_HASH_LOCKS - 1;
351 } else
352 size = 1;
353 while (size) {
354 struct list_head *list = &temp_inactive_list[size - 1];
357 * We don't hold any lock here yet, get_active_stripe() might
358 * remove stripes from the list
360 if (!list_empty_careful(list)) {
361 spin_lock_irqsave(conf->hash_locks + hash, flags);
362 if (list_empty(conf->inactive_list + hash) &&
363 !list_empty(list))
364 atomic_dec(&conf->empty_inactive_list_nr);
365 list_splice_tail_init(list, conf->inactive_list + hash);
366 do_wakeup = true;
367 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
369 size--;
370 hash--;
373 if (do_wakeup) {
374 wake_up(&conf->wait_for_stripe);
375 if (conf->retry_read_aligned)
376 md_wakeup_thread(conf->mddev->thread);
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 struct list_head *temp_inactive_list)
384 struct stripe_head *sh;
385 int count = 0;
386 struct llist_node *head;
388 head = llist_del_all(&conf->released_stripes);
389 head = llist_reverse_order(head);
390 while (head) {
391 int hash;
393 sh = llist_entry(head, struct stripe_head, release_list);
394 head = llist_next(head);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 smp_mb();
397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
403 hash = sh->hash_lock_index;
404 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405 count++;
408 return count;
411 static void release_stripe(struct stripe_head *sh)
413 struct r5conf *conf = sh->raid_conf;
414 unsigned long flags;
415 struct list_head list;
416 int hash;
417 bool wakeup;
419 /* Avoid release_list until the last reference.
421 if (atomic_add_unless(&sh->count, -1, 1))
422 return;
424 if (unlikely(!conf->mddev->thread) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 goto slow_path;
427 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 if (wakeup)
429 md_wakeup_thread(conf->mddev->thread);
430 return;
431 slow_path:
432 local_irq_save(flags);
433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 INIT_LIST_HEAD(&list);
436 hash = sh->hash_lock_index;
437 do_release_stripe(conf, sh, &list);
438 spin_unlock(&conf->device_lock);
439 release_inactive_stripe_list(conf, &list, hash);
441 local_irq_restore(flags);
444 static inline void remove_hash(struct stripe_head *sh)
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh->sector);
449 hlist_del_init(&sh->hash);
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
454 struct hlist_head *hp = stripe_hash(conf, sh->sector);
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh->sector);
459 hlist_add_head(&sh->hash, hp);
463 /* find an idle stripe, make sure it is unhashed, and return it. */
464 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 struct stripe_head *sh = NULL;
467 struct list_head *first;
469 if (list_empty(conf->inactive_list + hash))
470 goto out;
471 first = (conf->inactive_list + hash)->next;
472 sh = list_entry(first, struct stripe_head, lru);
473 list_del_init(first);
474 remove_hash(sh);
475 atomic_inc(&conf->active_stripes);
476 BUG_ON(hash != sh->hash_lock_index);
477 if (list_empty(conf->inactive_list + hash))
478 atomic_inc(&conf->empty_inactive_list_nr);
479 out:
480 return sh;
483 static void shrink_buffers(struct stripe_head *sh)
485 struct page *p;
486 int i;
487 int num = sh->raid_conf->pool_size;
489 for (i = 0; i < num ; i++) {
490 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
491 p = sh->dev[i].page;
492 if (!p)
493 continue;
494 sh->dev[i].page = NULL;
495 put_page(p);
499 static int grow_buffers(struct stripe_head *sh)
501 int i;
502 int num = sh->raid_conf->pool_size;
504 for (i = 0; i < num; i++) {
505 struct page *page;
507 if (!(page = alloc_page(GFP_KERNEL))) {
508 return 1;
510 sh->dev[i].page = page;
511 sh->dev[i].orig_page = page;
513 return 0;
516 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
517 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
518 struct stripe_head *sh);
520 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 struct r5conf *conf = sh->raid_conf;
523 int i, seq;
525 BUG_ON(atomic_read(&sh->count) != 0);
526 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
527 BUG_ON(stripe_operations_active(sh));
529 pr_debug("init_stripe called, stripe %llu\n",
530 (unsigned long long)sh->sector);
532 remove_hash(sh);
533 retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
535 sh->generation = conf->generation - previous;
536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 sh->sector = sector;
538 stripe_set_idx(sector, conf, previous, sh);
539 sh->state = 0;
542 for (i = sh->disks; i--; ) {
543 struct r5dev *dev = &sh->dev[i];
545 if (dev->toread || dev->read || dev->towrite || dev->written ||
546 test_bit(R5_LOCKED, &dev->flags)) {
547 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548 (unsigned long long)sh->sector, i, dev->toread,
549 dev->read, dev->towrite, dev->written,
550 test_bit(R5_LOCKED, &dev->flags));
551 WARN_ON(1);
553 dev->flags = 0;
554 raid5_build_block(sh, i, previous);
556 if (read_seqcount_retry(&conf->gen_lock, seq))
557 goto retry;
558 insert_hash(conf, sh);
559 sh->cpu = smp_processor_id();
562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
563 short generation)
565 struct stripe_head *sh;
567 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569 if (sh->sector == sector && sh->generation == generation)
570 return sh;
571 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
572 return NULL;
576 * Need to check if array has failed when deciding whether to:
577 * - start an array
578 * - remove non-faulty devices
579 * - add a spare
580 * - allow a reshape
581 * This determination is simple when no reshape is happening.
582 * However if there is a reshape, we need to carefully check
583 * both the before and after sections.
584 * This is because some failed devices may only affect one
585 * of the two sections, and some non-in_sync devices may
586 * be insync in the section most affected by failed devices.
588 static int calc_degraded(struct r5conf *conf)
590 int degraded, degraded2;
591 int i;
593 rcu_read_lock();
594 degraded = 0;
595 for (i = 0; i < conf->previous_raid_disks; i++) {
596 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597 if (rdev && test_bit(Faulty, &rdev->flags))
598 rdev = rcu_dereference(conf->disks[i].replacement);
599 if (!rdev || test_bit(Faulty, &rdev->flags))
600 degraded++;
601 else if (test_bit(In_sync, &rdev->flags))
603 else
604 /* not in-sync or faulty.
605 * If the reshape increases the number of devices,
606 * this is being recovered by the reshape, so
607 * this 'previous' section is not in_sync.
608 * If the number of devices is being reduced however,
609 * the device can only be part of the array if
610 * we are reverting a reshape, so this section will
611 * be in-sync.
613 if (conf->raid_disks >= conf->previous_raid_disks)
614 degraded++;
616 rcu_read_unlock();
617 if (conf->raid_disks == conf->previous_raid_disks)
618 return degraded;
619 rcu_read_lock();
620 degraded2 = 0;
621 for (i = 0; i < conf->raid_disks; i++) {
622 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623 if (rdev && test_bit(Faulty, &rdev->flags))
624 rdev = rcu_dereference(conf->disks[i].replacement);
625 if (!rdev || test_bit(Faulty, &rdev->flags))
626 degraded2++;
627 else if (test_bit(In_sync, &rdev->flags))
629 else
630 /* not in-sync or faulty.
631 * If reshape increases the number of devices, this
632 * section has already been recovered, else it
633 * almost certainly hasn't.
635 if (conf->raid_disks <= conf->previous_raid_disks)
636 degraded2++;
638 rcu_read_unlock();
639 if (degraded2 > degraded)
640 return degraded2;
641 return degraded;
644 static int has_failed(struct r5conf *conf)
646 int degraded;
648 if (conf->mddev->reshape_position == MaxSector)
649 return conf->mddev->degraded > conf->max_degraded;
651 degraded = calc_degraded(conf);
652 if (degraded > conf->max_degraded)
653 return 1;
654 return 0;
657 static struct stripe_head *
658 get_active_stripe(struct r5conf *conf, sector_t sector,
659 int previous, int noblock, int noquiesce)
661 struct stripe_head *sh;
662 int hash = stripe_hash_locks_hash(sector);
664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666 spin_lock_irq(conf->hash_locks + hash);
668 do {
669 wait_event_lock_irq(conf->wait_for_stripe,
670 conf->quiesce == 0 || noquiesce,
671 *(conf->hash_locks + hash));
672 sh = __find_stripe(conf, sector, conf->generation - previous);
673 if (!sh) {
674 if (!conf->inactive_blocked)
675 sh = get_free_stripe(conf, hash);
676 if (noblock && sh == NULL)
677 break;
678 if (!sh) {
679 conf->inactive_blocked = 1;
680 wait_event_lock_irq(
681 conf->wait_for_stripe,
682 !list_empty(conf->inactive_list + hash) &&
683 (atomic_read(&conf->active_stripes)
684 < (conf->max_nr_stripes * 3 / 4)
685 || !conf->inactive_blocked),
686 *(conf->hash_locks + hash));
687 conf->inactive_blocked = 0;
688 } else {
689 init_stripe(sh, sector, previous);
690 atomic_inc(&sh->count);
692 } else if (!atomic_inc_not_zero(&sh->count)) {
693 spin_lock(&conf->device_lock);
694 if (!atomic_read(&sh->count)) {
695 if (!test_bit(STRIPE_HANDLE, &sh->state))
696 atomic_inc(&conf->active_stripes);
697 BUG_ON(list_empty(&sh->lru) &&
698 !test_bit(STRIPE_EXPANDING, &sh->state));
699 list_del_init(&sh->lru);
700 if (sh->group) {
701 sh->group->stripes_cnt--;
702 sh->group = NULL;
705 atomic_inc(&sh->count);
706 spin_unlock(&conf->device_lock);
708 } while (sh == NULL);
710 spin_unlock_irq(conf->hash_locks + hash);
711 return sh;
714 /* Determine if 'data_offset' or 'new_data_offset' should be used
715 * in this stripe_head.
717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
719 sector_t progress = conf->reshape_progress;
720 /* Need a memory barrier to make sure we see the value
721 * of conf->generation, or ->data_offset that was set before
722 * reshape_progress was updated.
724 smp_rmb();
725 if (progress == MaxSector)
726 return 0;
727 if (sh->generation == conf->generation - 1)
728 return 0;
729 /* We are in a reshape, and this is a new-generation stripe,
730 * so use new_data_offset.
732 return 1;
735 static void
736 raid5_end_read_request(struct bio *bi, int error);
737 static void
738 raid5_end_write_request(struct bio *bi, int error);
740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
742 struct r5conf *conf = sh->raid_conf;
743 int i, disks = sh->disks;
745 might_sleep();
747 for (i = disks; i--; ) {
748 int rw;
749 int replace_only = 0;
750 struct bio *bi, *rbi;
751 struct md_rdev *rdev, *rrdev = NULL;
752 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
754 rw = WRITE_FUA;
755 else
756 rw = WRITE;
757 if (test_bit(R5_Discard, &sh->dev[i].flags))
758 rw |= REQ_DISCARD;
759 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
760 rw = READ;
761 else if (test_and_clear_bit(R5_WantReplace,
762 &sh->dev[i].flags)) {
763 rw = WRITE;
764 replace_only = 1;
765 } else
766 continue;
767 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
768 rw |= REQ_SYNC;
770 bi = &sh->dev[i].req;
771 rbi = &sh->dev[i].rreq; /* For writing to replacement */
773 rcu_read_lock();
774 rrdev = rcu_dereference(conf->disks[i].replacement);
775 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776 rdev = rcu_dereference(conf->disks[i].rdev);
777 if (!rdev) {
778 rdev = rrdev;
779 rrdev = NULL;
781 if (rw & WRITE) {
782 if (replace_only)
783 rdev = NULL;
784 if (rdev == rrdev)
785 /* We raced and saw duplicates */
786 rrdev = NULL;
787 } else {
788 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
789 rdev = rrdev;
790 rrdev = NULL;
793 if (rdev && test_bit(Faulty, &rdev->flags))
794 rdev = NULL;
795 if (rdev)
796 atomic_inc(&rdev->nr_pending);
797 if (rrdev && test_bit(Faulty, &rrdev->flags))
798 rrdev = NULL;
799 if (rrdev)
800 atomic_inc(&rrdev->nr_pending);
801 rcu_read_unlock();
803 /* We have already checked bad blocks for reads. Now
804 * need to check for writes. We never accept write errors
805 * on the replacement, so we don't to check rrdev.
807 while ((rw & WRITE) && rdev &&
808 test_bit(WriteErrorSeen, &rdev->flags)) {
809 sector_t first_bad;
810 int bad_sectors;
811 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812 &first_bad, &bad_sectors);
813 if (!bad)
814 break;
816 if (bad < 0) {
817 set_bit(BlockedBadBlocks, &rdev->flags);
818 if (!conf->mddev->external &&
819 conf->mddev->flags) {
820 /* It is very unlikely, but we might
821 * still need to write out the
822 * bad block log - better give it
823 * a chance*/
824 md_check_recovery(conf->mddev);
827 * Because md_wait_for_blocked_rdev
828 * will dec nr_pending, we must
829 * increment it first.
831 atomic_inc(&rdev->nr_pending);
832 md_wait_for_blocked_rdev(rdev, conf->mddev);
833 } else {
834 /* Acknowledged bad block - skip the write */
835 rdev_dec_pending(rdev, conf->mddev);
836 rdev = NULL;
840 if (rdev) {
841 if (s->syncing || s->expanding || s->expanded
842 || s->replacing)
843 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
845 set_bit(STRIPE_IO_STARTED, &sh->state);
847 bio_reset(bi);
848 bi->bi_bdev = rdev->bdev;
849 bi->bi_rw = rw;
850 bi->bi_end_io = (rw & WRITE)
851 ? raid5_end_write_request
852 : raid5_end_read_request;
853 bi->bi_private = sh;
855 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856 __func__, (unsigned long long)sh->sector,
857 bi->bi_rw, i);
858 atomic_inc(&sh->count);
859 if (use_new_offset(conf, sh))
860 bi->bi_iter.bi_sector = (sh->sector
861 + rdev->new_data_offset);
862 else
863 bi->bi_iter.bi_sector = (sh->sector
864 + rdev->data_offset);
865 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866 bi->bi_rw |= REQ_NOMERGE;
868 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870 sh->dev[i].vec.bv_page = sh->dev[i].page;
871 bi->bi_vcnt = 1;
872 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873 bi->bi_io_vec[0].bv_offset = 0;
874 bi->bi_iter.bi_size = STRIPE_SIZE;
876 * If this is discard request, set bi_vcnt 0. We don't
877 * want to confuse SCSI because SCSI will replace payload
879 if (rw & REQ_DISCARD)
880 bi->bi_vcnt = 0;
881 if (rrdev)
882 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
884 if (conf->mddev->gendisk)
885 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886 bi, disk_devt(conf->mddev->gendisk),
887 sh->dev[i].sector);
888 generic_make_request(bi);
890 if (rrdev) {
891 if (s->syncing || s->expanding || s->expanded
892 || s->replacing)
893 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
895 set_bit(STRIPE_IO_STARTED, &sh->state);
897 bio_reset(rbi);
898 rbi->bi_bdev = rrdev->bdev;
899 rbi->bi_rw = rw;
900 BUG_ON(!(rw & WRITE));
901 rbi->bi_end_io = raid5_end_write_request;
902 rbi->bi_private = sh;
904 pr_debug("%s: for %llu schedule op %ld on "
905 "replacement disc %d\n",
906 __func__, (unsigned long long)sh->sector,
907 rbi->bi_rw, i);
908 atomic_inc(&sh->count);
909 if (use_new_offset(conf, sh))
910 rbi->bi_iter.bi_sector = (sh->sector
911 + rrdev->new_data_offset);
912 else
913 rbi->bi_iter.bi_sector = (sh->sector
914 + rrdev->data_offset);
915 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917 sh->dev[i].rvec.bv_page = sh->dev[i].page;
918 rbi->bi_vcnt = 1;
919 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920 rbi->bi_io_vec[0].bv_offset = 0;
921 rbi->bi_iter.bi_size = STRIPE_SIZE;
923 * If this is discard request, set bi_vcnt 0. We don't
924 * want to confuse SCSI because SCSI will replace payload
926 if (rw & REQ_DISCARD)
927 rbi->bi_vcnt = 0;
928 if (conf->mddev->gendisk)
929 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930 rbi, disk_devt(conf->mddev->gendisk),
931 sh->dev[i].sector);
932 generic_make_request(rbi);
934 if (!rdev && !rrdev) {
935 if (rw & WRITE)
936 set_bit(STRIPE_DEGRADED, &sh->state);
937 pr_debug("skip op %ld on disc %d for sector %llu\n",
938 bi->bi_rw, i, (unsigned long long)sh->sector);
939 clear_bit(R5_LOCKED, &sh->dev[i].flags);
940 set_bit(STRIPE_HANDLE, &sh->state);
945 static struct dma_async_tx_descriptor *
946 async_copy_data(int frombio, struct bio *bio, struct page **page,
947 sector_t sector, struct dma_async_tx_descriptor *tx,
948 struct stripe_head *sh)
950 struct bio_vec bvl;
951 struct bvec_iter iter;
952 struct page *bio_page;
953 int page_offset;
954 struct async_submit_ctl submit;
955 enum async_tx_flags flags = 0;
957 if (bio->bi_iter.bi_sector >= sector)
958 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
959 else
960 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
962 if (frombio)
963 flags |= ASYNC_TX_FENCE;
964 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
966 bio_for_each_segment(bvl, bio, iter) {
967 int len = bvl.bv_len;
968 int clen;
969 int b_offset = 0;
971 if (page_offset < 0) {
972 b_offset = -page_offset;
973 page_offset += b_offset;
974 len -= b_offset;
977 if (len > 0 && page_offset + len > STRIPE_SIZE)
978 clen = STRIPE_SIZE - page_offset;
979 else
980 clen = len;
982 if (clen > 0) {
983 b_offset += bvl.bv_offset;
984 bio_page = bvl.bv_page;
985 if (frombio) {
986 if (sh->raid_conf->skip_copy &&
987 b_offset == 0 && page_offset == 0 &&
988 clen == STRIPE_SIZE)
989 *page = bio_page;
990 else
991 tx = async_memcpy(*page, bio_page, page_offset,
992 b_offset, clen, &submit);
993 } else
994 tx = async_memcpy(bio_page, *page, b_offset,
995 page_offset, clen, &submit);
997 /* chain the operations */
998 submit.depend_tx = tx;
1000 if (clen < len) /* hit end of page */
1001 break;
1002 page_offset += len;
1005 return tx;
1008 static void ops_complete_biofill(void *stripe_head_ref)
1010 struct stripe_head *sh = stripe_head_ref;
1011 struct bio *return_bi = NULL;
1012 int i;
1014 pr_debug("%s: stripe %llu\n", __func__,
1015 (unsigned long long)sh->sector);
1017 /* clear completed biofills */
1018 for (i = sh->disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1021 /* acknowledge completion of a biofill operation */
1022 /* and check if we need to reply to a read request,
1023 * new R5_Wantfill requests are held off until
1024 * !STRIPE_BIOFILL_RUN
1026 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027 struct bio *rbi, *rbi2;
1029 BUG_ON(!dev->read);
1030 rbi = dev->read;
1031 dev->read = NULL;
1032 while (rbi && rbi->bi_iter.bi_sector <
1033 dev->sector + STRIPE_SECTORS) {
1034 rbi2 = r5_next_bio(rbi, dev->sector);
1035 if (!raid5_dec_bi_active_stripes(rbi)) {
1036 rbi->bi_next = return_bi;
1037 return_bi = rbi;
1039 rbi = rbi2;
1043 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1045 return_io(return_bi);
1047 set_bit(STRIPE_HANDLE, &sh->state);
1048 release_stripe(sh);
1051 static void ops_run_biofill(struct stripe_head *sh)
1053 struct dma_async_tx_descriptor *tx = NULL;
1054 struct async_submit_ctl submit;
1055 int i;
1057 pr_debug("%s: stripe %llu\n", __func__,
1058 (unsigned long long)sh->sector);
1060 for (i = sh->disks; i--; ) {
1061 struct r5dev *dev = &sh->dev[i];
1062 if (test_bit(R5_Wantfill, &dev->flags)) {
1063 struct bio *rbi;
1064 spin_lock_irq(&sh->stripe_lock);
1065 dev->read = rbi = dev->toread;
1066 dev->toread = NULL;
1067 spin_unlock_irq(&sh->stripe_lock);
1068 while (rbi && rbi->bi_iter.bi_sector <
1069 dev->sector + STRIPE_SECTORS) {
1070 tx = async_copy_data(0, rbi, &dev->page,
1071 dev->sector, tx, sh);
1072 rbi = r5_next_bio(rbi, dev->sector);
1077 atomic_inc(&sh->count);
1078 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079 async_trigger_callback(&submit);
1082 static void mark_target_uptodate(struct stripe_head *sh, int target)
1084 struct r5dev *tgt;
1086 if (target < 0)
1087 return;
1089 tgt = &sh->dev[target];
1090 set_bit(R5_UPTODATE, &tgt->flags);
1091 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092 clear_bit(R5_Wantcompute, &tgt->flags);
1095 static void ops_complete_compute(void *stripe_head_ref)
1097 struct stripe_head *sh = stripe_head_ref;
1099 pr_debug("%s: stripe %llu\n", __func__,
1100 (unsigned long long)sh->sector);
1102 /* mark the computed target(s) as uptodate */
1103 mark_target_uptodate(sh, sh->ops.target);
1104 mark_target_uptodate(sh, sh->ops.target2);
1106 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107 if (sh->check_state == check_state_compute_run)
1108 sh->check_state = check_state_compute_result;
1109 set_bit(STRIPE_HANDLE, &sh->state);
1110 release_stripe(sh);
1113 /* return a pointer to the address conversion region of the scribble buffer */
1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115 struct raid5_percpu *percpu)
1117 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1120 static struct dma_async_tx_descriptor *
1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1123 int disks = sh->disks;
1124 struct page **xor_srcs = percpu->scribble;
1125 int target = sh->ops.target;
1126 struct r5dev *tgt = &sh->dev[target];
1127 struct page *xor_dest = tgt->page;
1128 int count = 0;
1129 struct dma_async_tx_descriptor *tx;
1130 struct async_submit_ctl submit;
1131 int i;
1133 pr_debug("%s: stripe %llu block: %d\n",
1134 __func__, (unsigned long long)sh->sector, target);
1135 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1137 for (i = disks; i--; )
1138 if (i != target)
1139 xor_srcs[count++] = sh->dev[i].page;
1141 atomic_inc(&sh->count);
1143 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144 ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145 if (unlikely(count == 1))
1146 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147 else
1148 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1150 return tx;
1153 /* set_syndrome_sources - populate source buffers for gen_syndrome
1154 * @srcs - (struct page *) array of size sh->disks
1155 * @sh - stripe_head to parse
1157 * Populates srcs in proper layout order for the stripe and returns the
1158 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1159 * destination buffer is recorded in srcs[count] and the Q destination
1160 * is recorded in srcs[count+1]].
1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1164 int disks = sh->disks;
1165 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166 int d0_idx = raid6_d0(sh);
1167 int count;
1168 int i;
1170 for (i = 0; i < disks; i++)
1171 srcs[i] = NULL;
1173 count = 0;
1174 i = d0_idx;
1175 do {
1176 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1178 srcs[slot] = sh->dev[i].page;
1179 i = raid6_next_disk(i, disks);
1180 } while (i != d0_idx);
1182 return syndrome_disks;
1185 static struct dma_async_tx_descriptor *
1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1188 int disks = sh->disks;
1189 struct page **blocks = percpu->scribble;
1190 int target;
1191 int qd_idx = sh->qd_idx;
1192 struct dma_async_tx_descriptor *tx;
1193 struct async_submit_ctl submit;
1194 struct r5dev *tgt;
1195 struct page *dest;
1196 int i;
1197 int count;
1199 if (sh->ops.target < 0)
1200 target = sh->ops.target2;
1201 else if (sh->ops.target2 < 0)
1202 target = sh->ops.target;
1203 else
1204 /* we should only have one valid target */
1205 BUG();
1206 BUG_ON(target < 0);
1207 pr_debug("%s: stripe %llu block: %d\n",
1208 __func__, (unsigned long long)sh->sector, target);
1210 tgt = &sh->dev[target];
1211 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212 dest = tgt->page;
1214 atomic_inc(&sh->count);
1216 if (target == qd_idx) {
1217 count = set_syndrome_sources(blocks, sh);
1218 blocks[count] = NULL; /* regenerating p is not necessary */
1219 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221 ops_complete_compute, sh,
1222 to_addr_conv(sh, percpu));
1223 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224 } else {
1225 /* Compute any data- or p-drive using XOR */
1226 count = 0;
1227 for (i = disks; i-- ; ) {
1228 if (i == target || i == qd_idx)
1229 continue;
1230 blocks[count++] = sh->dev[i].page;
1233 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234 NULL, ops_complete_compute, sh,
1235 to_addr_conv(sh, percpu));
1236 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1239 return tx;
1242 static struct dma_async_tx_descriptor *
1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1245 int i, count, disks = sh->disks;
1246 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247 int d0_idx = raid6_d0(sh);
1248 int faila = -1, failb = -1;
1249 int target = sh->ops.target;
1250 int target2 = sh->ops.target2;
1251 struct r5dev *tgt = &sh->dev[target];
1252 struct r5dev *tgt2 = &sh->dev[target2];
1253 struct dma_async_tx_descriptor *tx;
1254 struct page **blocks = percpu->scribble;
1255 struct async_submit_ctl submit;
1257 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258 __func__, (unsigned long long)sh->sector, target, target2);
1259 BUG_ON(target < 0 || target2 < 0);
1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1263 /* we need to open-code set_syndrome_sources to handle the
1264 * slot number conversion for 'faila' and 'failb'
1266 for (i = 0; i < disks ; i++)
1267 blocks[i] = NULL;
1268 count = 0;
1269 i = d0_idx;
1270 do {
1271 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1273 blocks[slot] = sh->dev[i].page;
1275 if (i == target)
1276 faila = slot;
1277 if (i == target2)
1278 failb = slot;
1279 i = raid6_next_disk(i, disks);
1280 } while (i != d0_idx);
1282 BUG_ON(faila == failb);
1283 if (failb < faila)
1284 swap(faila, failb);
1285 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286 __func__, (unsigned long long)sh->sector, faila, failb);
1288 atomic_inc(&sh->count);
1290 if (failb == syndrome_disks+1) {
1291 /* Q disk is one of the missing disks */
1292 if (faila == syndrome_disks) {
1293 /* Missing P+Q, just recompute */
1294 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295 ops_complete_compute, sh,
1296 to_addr_conv(sh, percpu));
1297 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298 STRIPE_SIZE, &submit);
1299 } else {
1300 struct page *dest;
1301 int data_target;
1302 int qd_idx = sh->qd_idx;
1304 /* Missing D+Q: recompute D from P, then recompute Q */
1305 if (target == qd_idx)
1306 data_target = target2;
1307 else
1308 data_target = target;
1310 count = 0;
1311 for (i = disks; i-- ; ) {
1312 if (i == data_target || i == qd_idx)
1313 continue;
1314 blocks[count++] = sh->dev[i].page;
1316 dest = sh->dev[data_target].page;
1317 init_async_submit(&submit,
1318 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319 NULL, NULL, NULL,
1320 to_addr_conv(sh, percpu));
1321 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322 &submit);
1324 count = set_syndrome_sources(blocks, sh);
1325 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326 ops_complete_compute, sh,
1327 to_addr_conv(sh, percpu));
1328 return async_gen_syndrome(blocks, 0, count+2,
1329 STRIPE_SIZE, &submit);
1331 } else {
1332 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333 ops_complete_compute, sh,
1334 to_addr_conv(sh, percpu));
1335 if (failb == syndrome_disks) {
1336 /* We're missing D+P. */
1337 return async_raid6_datap_recov(syndrome_disks+2,
1338 STRIPE_SIZE, faila,
1339 blocks, &submit);
1340 } else {
1341 /* We're missing D+D. */
1342 return async_raid6_2data_recov(syndrome_disks+2,
1343 STRIPE_SIZE, faila, failb,
1344 blocks, &submit);
1350 static void ops_complete_prexor(void *stripe_head_ref)
1352 struct stripe_head *sh = stripe_head_ref;
1354 pr_debug("%s: stripe %llu\n", __func__,
1355 (unsigned long long)sh->sector);
1358 static struct dma_async_tx_descriptor *
1359 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1360 struct dma_async_tx_descriptor *tx)
1362 int disks = sh->disks;
1363 struct page **xor_srcs = percpu->scribble;
1364 int count = 0, pd_idx = sh->pd_idx, i;
1365 struct async_submit_ctl submit;
1367 /* existing parity data subtracted */
1368 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1370 pr_debug("%s: stripe %llu\n", __func__,
1371 (unsigned long long)sh->sector);
1373 for (i = disks; i--; ) {
1374 struct r5dev *dev = &sh->dev[i];
1375 /* Only process blocks that are known to be uptodate */
1376 if (test_bit(R5_Wantdrain, &dev->flags))
1377 xor_srcs[count++] = dev->page;
1380 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1381 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1382 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1384 return tx;
1387 static struct dma_async_tx_descriptor *
1388 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1390 int disks = sh->disks;
1391 int i;
1393 pr_debug("%s: stripe %llu\n", __func__,
1394 (unsigned long long)sh->sector);
1396 for (i = disks; i--; ) {
1397 struct r5dev *dev = &sh->dev[i];
1398 struct bio *chosen;
1400 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1401 struct bio *wbi;
1403 spin_lock_irq(&sh->stripe_lock);
1404 chosen = dev->towrite;
1405 dev->towrite = NULL;
1406 BUG_ON(dev->written);
1407 wbi = dev->written = chosen;
1408 spin_unlock_irq(&sh->stripe_lock);
1409 WARN_ON(dev->page != dev->orig_page);
1411 while (wbi && wbi->bi_iter.bi_sector <
1412 dev->sector + STRIPE_SECTORS) {
1413 if (wbi->bi_rw & REQ_FUA)
1414 set_bit(R5_WantFUA, &dev->flags);
1415 if (wbi->bi_rw & REQ_SYNC)
1416 set_bit(R5_SyncIO, &dev->flags);
1417 if (wbi->bi_rw & REQ_DISCARD)
1418 set_bit(R5_Discard, &dev->flags);
1419 else {
1420 tx = async_copy_data(1, wbi, &dev->page,
1421 dev->sector, tx, sh);
1422 if (dev->page != dev->orig_page) {
1423 set_bit(R5_SkipCopy, &dev->flags);
1424 clear_bit(R5_UPTODATE, &dev->flags);
1425 clear_bit(R5_OVERWRITE, &dev->flags);
1428 wbi = r5_next_bio(wbi, dev->sector);
1433 return tx;
1436 static void ops_complete_reconstruct(void *stripe_head_ref)
1438 struct stripe_head *sh = stripe_head_ref;
1439 int disks = sh->disks;
1440 int pd_idx = sh->pd_idx;
1441 int qd_idx = sh->qd_idx;
1442 int i;
1443 bool fua = false, sync = false, discard = false;
1445 pr_debug("%s: stripe %llu\n", __func__,
1446 (unsigned long long)sh->sector);
1448 for (i = disks; i--; ) {
1449 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1450 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1451 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1454 for (i = disks; i--; ) {
1455 struct r5dev *dev = &sh->dev[i];
1457 if (dev->written || i == pd_idx || i == qd_idx) {
1458 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1459 set_bit(R5_UPTODATE, &dev->flags);
1460 if (fua)
1461 set_bit(R5_WantFUA, &dev->flags);
1462 if (sync)
1463 set_bit(R5_SyncIO, &dev->flags);
1467 if (sh->reconstruct_state == reconstruct_state_drain_run)
1468 sh->reconstruct_state = reconstruct_state_drain_result;
1469 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1470 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1471 else {
1472 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1473 sh->reconstruct_state = reconstruct_state_result;
1476 set_bit(STRIPE_HANDLE, &sh->state);
1477 release_stripe(sh);
1480 static void
1481 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1482 struct dma_async_tx_descriptor *tx)
1484 int disks = sh->disks;
1485 struct page **xor_srcs = percpu->scribble;
1486 struct async_submit_ctl submit;
1487 int count = 0, pd_idx = sh->pd_idx, i;
1488 struct page *xor_dest;
1489 int prexor = 0;
1490 unsigned long flags;
1492 pr_debug("%s: stripe %llu\n", __func__,
1493 (unsigned long long)sh->sector);
1495 for (i = 0; i < sh->disks; i++) {
1496 if (pd_idx == i)
1497 continue;
1498 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1499 break;
1501 if (i >= sh->disks) {
1502 atomic_inc(&sh->count);
1503 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1504 ops_complete_reconstruct(sh);
1505 return;
1507 /* check if prexor is active which means only process blocks
1508 * that are part of a read-modify-write (written)
1510 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1511 prexor = 1;
1512 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1513 for (i = disks; i--; ) {
1514 struct r5dev *dev = &sh->dev[i];
1515 if (dev->written)
1516 xor_srcs[count++] = dev->page;
1518 } else {
1519 xor_dest = sh->dev[pd_idx].page;
1520 for (i = disks; i--; ) {
1521 struct r5dev *dev = &sh->dev[i];
1522 if (i != pd_idx)
1523 xor_srcs[count++] = dev->page;
1527 /* 1/ if we prexor'd then the dest is reused as a source
1528 * 2/ if we did not prexor then we are redoing the parity
1529 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1530 * for the synchronous xor case
1532 flags = ASYNC_TX_ACK |
1533 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1535 atomic_inc(&sh->count);
1537 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1538 to_addr_conv(sh, percpu));
1539 if (unlikely(count == 1))
1540 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1541 else
1542 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1545 static void
1546 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1547 struct dma_async_tx_descriptor *tx)
1549 struct async_submit_ctl submit;
1550 struct page **blocks = percpu->scribble;
1551 int count, i;
1553 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1555 for (i = 0; i < sh->disks; i++) {
1556 if (sh->pd_idx == i || sh->qd_idx == i)
1557 continue;
1558 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1559 break;
1561 if (i >= sh->disks) {
1562 atomic_inc(&sh->count);
1563 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1564 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1565 ops_complete_reconstruct(sh);
1566 return;
1569 count = set_syndrome_sources(blocks, sh);
1571 atomic_inc(&sh->count);
1573 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1574 sh, to_addr_conv(sh, percpu));
1575 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1578 static void ops_complete_check(void *stripe_head_ref)
1580 struct stripe_head *sh = stripe_head_ref;
1582 pr_debug("%s: stripe %llu\n", __func__,
1583 (unsigned long long)sh->sector);
1585 sh->check_state = check_state_check_result;
1586 set_bit(STRIPE_HANDLE, &sh->state);
1587 release_stripe(sh);
1590 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1592 int disks = sh->disks;
1593 int pd_idx = sh->pd_idx;
1594 int qd_idx = sh->qd_idx;
1595 struct page *xor_dest;
1596 struct page **xor_srcs = percpu->scribble;
1597 struct dma_async_tx_descriptor *tx;
1598 struct async_submit_ctl submit;
1599 int count;
1600 int i;
1602 pr_debug("%s: stripe %llu\n", __func__,
1603 (unsigned long long)sh->sector);
1605 count = 0;
1606 xor_dest = sh->dev[pd_idx].page;
1607 xor_srcs[count++] = xor_dest;
1608 for (i = disks; i--; ) {
1609 if (i == pd_idx || i == qd_idx)
1610 continue;
1611 xor_srcs[count++] = sh->dev[i].page;
1614 init_async_submit(&submit, 0, NULL, NULL, NULL,
1615 to_addr_conv(sh, percpu));
1616 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1617 &sh->ops.zero_sum_result, &submit);
1619 atomic_inc(&sh->count);
1620 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1621 tx = async_trigger_callback(&submit);
1624 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1626 struct page **srcs = percpu->scribble;
1627 struct async_submit_ctl submit;
1628 int count;
1630 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1631 (unsigned long long)sh->sector, checkp);
1633 count = set_syndrome_sources(srcs, sh);
1634 if (!checkp)
1635 srcs[count] = NULL;
1637 atomic_inc(&sh->count);
1638 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1639 sh, to_addr_conv(sh, percpu));
1640 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1641 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1644 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1646 int overlap_clear = 0, i, disks = sh->disks;
1647 struct dma_async_tx_descriptor *tx = NULL;
1648 struct r5conf *conf = sh->raid_conf;
1649 int level = conf->level;
1650 struct raid5_percpu *percpu;
1651 unsigned long cpu;
1653 cpu = get_cpu();
1654 percpu = per_cpu_ptr(conf->percpu, cpu);
1655 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1656 ops_run_biofill(sh);
1657 overlap_clear++;
1660 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1661 if (level < 6)
1662 tx = ops_run_compute5(sh, percpu);
1663 else {
1664 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1665 tx = ops_run_compute6_1(sh, percpu);
1666 else
1667 tx = ops_run_compute6_2(sh, percpu);
1669 /* terminate the chain if reconstruct is not set to be run */
1670 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1671 async_tx_ack(tx);
1674 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1675 tx = ops_run_prexor(sh, percpu, tx);
1677 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1678 tx = ops_run_biodrain(sh, tx);
1679 overlap_clear++;
1682 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1683 if (level < 6)
1684 ops_run_reconstruct5(sh, percpu, tx);
1685 else
1686 ops_run_reconstruct6(sh, percpu, tx);
1689 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1690 if (sh->check_state == check_state_run)
1691 ops_run_check_p(sh, percpu);
1692 else if (sh->check_state == check_state_run_q)
1693 ops_run_check_pq(sh, percpu, 0);
1694 else if (sh->check_state == check_state_run_pq)
1695 ops_run_check_pq(sh, percpu, 1);
1696 else
1697 BUG();
1700 if (overlap_clear)
1701 for (i = disks; i--; ) {
1702 struct r5dev *dev = &sh->dev[i];
1703 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1704 wake_up(&sh->raid_conf->wait_for_overlap);
1706 put_cpu();
1709 static int grow_one_stripe(struct r5conf *conf, int hash)
1711 struct stripe_head *sh;
1712 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1713 if (!sh)
1714 return 0;
1716 sh->raid_conf = conf;
1718 spin_lock_init(&sh->stripe_lock);
1720 if (grow_buffers(sh)) {
1721 shrink_buffers(sh);
1722 kmem_cache_free(conf->slab_cache, sh);
1723 return 0;
1725 sh->hash_lock_index = hash;
1726 /* we just created an active stripe so... */
1727 atomic_set(&sh->count, 1);
1728 atomic_inc(&conf->active_stripes);
1729 INIT_LIST_HEAD(&sh->lru);
1730 release_stripe(sh);
1731 return 1;
1734 static int grow_stripes(struct r5conf *conf, int num)
1736 struct kmem_cache *sc;
1737 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1738 int hash;
1740 if (conf->mddev->gendisk)
1741 sprintf(conf->cache_name[0],
1742 "raid%d-%s", conf->level, mdname(conf->mddev));
1743 else
1744 sprintf(conf->cache_name[0],
1745 "raid%d-%p", conf->level, conf->mddev);
1746 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1748 conf->active_name = 0;
1749 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1750 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1751 0, 0, NULL);
1752 if (!sc)
1753 return 1;
1754 conf->slab_cache = sc;
1755 conf->pool_size = devs;
1756 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1757 while (num--) {
1758 if (!grow_one_stripe(conf, hash))
1759 return 1;
1760 conf->max_nr_stripes++;
1761 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1763 return 0;
1767 * scribble_len - return the required size of the scribble region
1768 * @num - total number of disks in the array
1770 * The size must be enough to contain:
1771 * 1/ a struct page pointer for each device in the array +2
1772 * 2/ room to convert each entry in (1) to its corresponding dma
1773 * (dma_map_page()) or page (page_address()) address.
1775 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1776 * calculate over all devices (not just the data blocks), using zeros in place
1777 * of the P and Q blocks.
1779 static size_t scribble_len(int num)
1781 size_t len;
1783 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1785 return len;
1788 static int resize_stripes(struct r5conf *conf, int newsize)
1790 /* Make all the stripes able to hold 'newsize' devices.
1791 * New slots in each stripe get 'page' set to a new page.
1793 * This happens in stages:
1794 * 1/ create a new kmem_cache and allocate the required number of
1795 * stripe_heads.
1796 * 2/ gather all the old stripe_heads and transfer the pages across
1797 * to the new stripe_heads. This will have the side effect of
1798 * freezing the array as once all stripe_heads have been collected,
1799 * no IO will be possible. Old stripe heads are freed once their
1800 * pages have been transferred over, and the old kmem_cache is
1801 * freed when all stripes are done.
1802 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1803 * we simple return a failre status - no need to clean anything up.
1804 * 4/ allocate new pages for the new slots in the new stripe_heads.
1805 * If this fails, we don't bother trying the shrink the
1806 * stripe_heads down again, we just leave them as they are.
1807 * As each stripe_head is processed the new one is released into
1808 * active service.
1810 * Once step2 is started, we cannot afford to wait for a write,
1811 * so we use GFP_NOIO allocations.
1813 struct stripe_head *osh, *nsh;
1814 LIST_HEAD(newstripes);
1815 struct disk_info *ndisks;
1816 unsigned long cpu;
1817 int err;
1818 struct kmem_cache *sc;
1819 int i;
1820 int hash, cnt;
1822 if (newsize <= conf->pool_size)
1823 return 0; /* never bother to shrink */
1825 err = md_allow_write(conf->mddev);
1826 if (err)
1827 return err;
1829 /* Step 1 */
1830 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1831 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1832 0, 0, NULL);
1833 if (!sc)
1834 return -ENOMEM;
1836 for (i = conf->max_nr_stripes; i; i--) {
1837 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1838 if (!nsh)
1839 break;
1841 nsh->raid_conf = conf;
1842 spin_lock_init(&nsh->stripe_lock);
1844 list_add(&nsh->lru, &newstripes);
1846 if (i) {
1847 /* didn't get enough, give up */
1848 while (!list_empty(&newstripes)) {
1849 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1850 list_del(&nsh->lru);
1851 kmem_cache_free(sc, nsh);
1853 kmem_cache_destroy(sc);
1854 return -ENOMEM;
1856 /* Step 2 - Must use GFP_NOIO now.
1857 * OK, we have enough stripes, start collecting inactive
1858 * stripes and copying them over
1860 hash = 0;
1861 cnt = 0;
1862 list_for_each_entry(nsh, &newstripes, lru) {
1863 lock_device_hash_lock(conf, hash);
1864 wait_event_cmd(conf->wait_for_stripe,
1865 !list_empty(conf->inactive_list + hash),
1866 unlock_device_hash_lock(conf, hash),
1867 lock_device_hash_lock(conf, hash));
1868 osh = get_free_stripe(conf, hash);
1869 unlock_device_hash_lock(conf, hash);
1870 atomic_set(&nsh->count, 1);
1871 for(i=0; i<conf->pool_size; i++) {
1872 nsh->dev[i].page = osh->dev[i].page;
1873 nsh->dev[i].orig_page = osh->dev[i].page;
1875 for( ; i<newsize; i++)
1876 nsh->dev[i].page = NULL;
1877 nsh->hash_lock_index = hash;
1878 kmem_cache_free(conf->slab_cache, osh);
1879 cnt++;
1880 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1881 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1882 hash++;
1883 cnt = 0;
1886 kmem_cache_destroy(conf->slab_cache);
1888 /* Step 3.
1889 * At this point, we are holding all the stripes so the array
1890 * is completely stalled, so now is a good time to resize
1891 * conf->disks and the scribble region
1893 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1894 if (ndisks) {
1895 for (i=0; i<conf->raid_disks; i++)
1896 ndisks[i] = conf->disks[i];
1897 kfree(conf->disks);
1898 conf->disks = ndisks;
1899 } else
1900 err = -ENOMEM;
1902 get_online_cpus();
1903 conf->scribble_len = scribble_len(newsize);
1904 for_each_present_cpu(cpu) {
1905 struct raid5_percpu *percpu;
1906 void *scribble;
1908 percpu = per_cpu_ptr(conf->percpu, cpu);
1909 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1911 if (scribble) {
1912 kfree(percpu->scribble);
1913 percpu->scribble = scribble;
1914 } else {
1915 err = -ENOMEM;
1916 break;
1919 put_online_cpus();
1921 /* Step 4, return new stripes to service */
1922 while(!list_empty(&newstripes)) {
1923 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1924 list_del_init(&nsh->lru);
1926 for (i=conf->raid_disks; i < newsize; i++)
1927 if (nsh->dev[i].page == NULL) {
1928 struct page *p = alloc_page(GFP_NOIO);
1929 nsh->dev[i].page = p;
1930 nsh->dev[i].orig_page = p;
1931 if (!p)
1932 err = -ENOMEM;
1934 release_stripe(nsh);
1936 /* critical section pass, GFP_NOIO no longer needed */
1938 conf->slab_cache = sc;
1939 conf->active_name = 1-conf->active_name;
1940 conf->pool_size = newsize;
1941 return err;
1944 static int drop_one_stripe(struct r5conf *conf, int hash)
1946 struct stripe_head *sh;
1948 spin_lock_irq(conf->hash_locks + hash);
1949 sh = get_free_stripe(conf, hash);
1950 spin_unlock_irq(conf->hash_locks + hash);
1951 if (!sh)
1952 return 0;
1953 BUG_ON(atomic_read(&sh->count));
1954 shrink_buffers(sh);
1955 kmem_cache_free(conf->slab_cache, sh);
1956 atomic_dec(&conf->active_stripes);
1957 return 1;
1960 static void shrink_stripes(struct r5conf *conf)
1962 int hash;
1963 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1964 while (drop_one_stripe(conf, hash))
1967 if (conf->slab_cache)
1968 kmem_cache_destroy(conf->slab_cache);
1969 conf->slab_cache = NULL;
1972 static void raid5_end_read_request(struct bio * bi, int error)
1974 struct stripe_head *sh = bi->bi_private;
1975 struct r5conf *conf = sh->raid_conf;
1976 int disks = sh->disks, i;
1977 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1978 char b[BDEVNAME_SIZE];
1979 struct md_rdev *rdev = NULL;
1980 sector_t s;
1982 for (i=0 ; i<disks; i++)
1983 if (bi == &sh->dev[i].req)
1984 break;
1986 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1987 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1988 uptodate);
1989 if (i == disks) {
1990 BUG();
1991 return;
1993 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1994 /* If replacement finished while this request was outstanding,
1995 * 'replacement' might be NULL already.
1996 * In that case it moved down to 'rdev'.
1997 * rdev is not removed until all requests are finished.
1999 rdev = conf->disks[i].replacement;
2000 if (!rdev)
2001 rdev = conf->disks[i].rdev;
2003 if (use_new_offset(conf, sh))
2004 s = sh->sector + rdev->new_data_offset;
2005 else
2006 s = sh->sector + rdev->data_offset;
2007 if (uptodate) {
2008 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2009 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2010 /* Note that this cannot happen on a
2011 * replacement device. We just fail those on
2012 * any error
2014 printk_ratelimited(
2015 KERN_INFO
2016 "md/raid:%s: read error corrected"
2017 " (%lu sectors at %llu on %s)\n",
2018 mdname(conf->mddev), STRIPE_SECTORS,
2019 (unsigned long long)s,
2020 bdevname(rdev->bdev, b));
2021 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2022 clear_bit(R5_ReadError, &sh->dev[i].flags);
2023 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2024 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2025 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2027 if (atomic_read(&rdev->read_errors))
2028 atomic_set(&rdev->read_errors, 0);
2029 } else {
2030 const char *bdn = bdevname(rdev->bdev, b);
2031 int retry = 0;
2032 int set_bad = 0;
2034 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2035 atomic_inc(&rdev->read_errors);
2036 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2037 printk_ratelimited(
2038 KERN_WARNING
2039 "md/raid:%s: read error on replacement device "
2040 "(sector %llu on %s).\n",
2041 mdname(conf->mddev),
2042 (unsigned long long)s,
2043 bdn);
2044 else if (conf->mddev->degraded >= conf->max_degraded) {
2045 set_bad = 1;
2046 printk_ratelimited(
2047 KERN_WARNING
2048 "md/raid:%s: read error not correctable "
2049 "(sector %llu on %s).\n",
2050 mdname(conf->mddev),
2051 (unsigned long long)s,
2052 bdn);
2053 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2054 /* Oh, no!!! */
2055 set_bad = 1;
2056 printk_ratelimited(
2057 KERN_WARNING
2058 "md/raid:%s: read error NOT corrected!! "
2059 "(sector %llu on %s).\n",
2060 mdname(conf->mddev),
2061 (unsigned long long)s,
2062 bdn);
2063 } else if (atomic_read(&rdev->read_errors)
2064 > conf->max_nr_stripes)
2065 printk(KERN_WARNING
2066 "md/raid:%s: Too many read errors, failing device %s.\n",
2067 mdname(conf->mddev), bdn);
2068 else
2069 retry = 1;
2070 if (set_bad && test_bit(In_sync, &rdev->flags)
2071 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2072 retry = 1;
2073 if (retry)
2074 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2075 set_bit(R5_ReadError, &sh->dev[i].flags);
2076 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2077 } else
2078 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2079 else {
2080 clear_bit(R5_ReadError, &sh->dev[i].flags);
2081 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2082 if (!(set_bad
2083 && test_bit(In_sync, &rdev->flags)
2084 && rdev_set_badblocks(
2085 rdev, sh->sector, STRIPE_SECTORS, 0)))
2086 md_error(conf->mddev, rdev);
2089 rdev_dec_pending(rdev, conf->mddev);
2090 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2091 set_bit(STRIPE_HANDLE, &sh->state);
2092 release_stripe(sh);
2095 static void raid5_end_write_request(struct bio *bi, int error)
2097 struct stripe_head *sh = bi->bi_private;
2098 struct r5conf *conf = sh->raid_conf;
2099 int disks = sh->disks, i;
2100 struct md_rdev *uninitialized_var(rdev);
2101 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2102 sector_t first_bad;
2103 int bad_sectors;
2104 int replacement = 0;
2106 for (i = 0 ; i < disks; i++) {
2107 if (bi == &sh->dev[i].req) {
2108 rdev = conf->disks[i].rdev;
2109 break;
2111 if (bi == &sh->dev[i].rreq) {
2112 rdev = conf->disks[i].replacement;
2113 if (rdev)
2114 replacement = 1;
2115 else
2116 /* rdev was removed and 'replacement'
2117 * replaced it. rdev is not removed
2118 * until all requests are finished.
2120 rdev = conf->disks[i].rdev;
2121 break;
2124 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2125 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2126 uptodate);
2127 if (i == disks) {
2128 BUG();
2129 return;
2132 if (replacement) {
2133 if (!uptodate)
2134 md_error(conf->mddev, rdev);
2135 else if (is_badblock(rdev, sh->sector,
2136 STRIPE_SECTORS,
2137 &first_bad, &bad_sectors))
2138 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2139 } else {
2140 if (!uptodate) {
2141 set_bit(STRIPE_DEGRADED, &sh->state);
2142 set_bit(WriteErrorSeen, &rdev->flags);
2143 set_bit(R5_WriteError, &sh->dev[i].flags);
2144 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2145 set_bit(MD_RECOVERY_NEEDED,
2146 &rdev->mddev->recovery);
2147 } else if (is_badblock(rdev, sh->sector,
2148 STRIPE_SECTORS,
2149 &first_bad, &bad_sectors)) {
2150 set_bit(R5_MadeGood, &sh->dev[i].flags);
2151 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2152 /* That was a successful write so make
2153 * sure it looks like we already did
2154 * a re-write.
2156 set_bit(R5_ReWrite, &sh->dev[i].flags);
2159 rdev_dec_pending(rdev, conf->mddev);
2161 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2162 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2163 set_bit(STRIPE_HANDLE, &sh->state);
2164 release_stripe(sh);
2167 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2169 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2171 struct r5dev *dev = &sh->dev[i];
2173 bio_init(&dev->req);
2174 dev->req.bi_io_vec = &dev->vec;
2175 dev->req.bi_max_vecs = 1;
2176 dev->req.bi_private = sh;
2178 bio_init(&dev->rreq);
2179 dev->rreq.bi_io_vec = &dev->rvec;
2180 dev->rreq.bi_max_vecs = 1;
2181 dev->rreq.bi_private = sh;
2183 dev->flags = 0;
2184 dev->sector = compute_blocknr(sh, i, previous);
2187 static void error(struct mddev *mddev, struct md_rdev *rdev)
2189 char b[BDEVNAME_SIZE];
2190 struct r5conf *conf = mddev->private;
2191 unsigned long flags;
2192 pr_debug("raid456: error called\n");
2194 spin_lock_irqsave(&conf->device_lock, flags);
2195 clear_bit(In_sync, &rdev->flags);
2196 mddev->degraded = calc_degraded(conf);
2197 spin_unlock_irqrestore(&conf->device_lock, flags);
2198 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2200 set_bit(Blocked, &rdev->flags);
2201 set_bit(Faulty, &rdev->flags);
2202 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2203 printk(KERN_ALERT
2204 "md/raid:%s: Disk failure on %s, disabling device.\n"
2205 "md/raid:%s: Operation continuing on %d devices.\n",
2206 mdname(mddev),
2207 bdevname(rdev->bdev, b),
2208 mdname(mddev),
2209 conf->raid_disks - mddev->degraded);
2213 * Input: a 'big' sector number,
2214 * Output: index of the data and parity disk, and the sector # in them.
2216 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2217 int previous, int *dd_idx,
2218 struct stripe_head *sh)
2220 sector_t stripe, stripe2;
2221 sector_t chunk_number;
2222 unsigned int chunk_offset;
2223 int pd_idx, qd_idx;
2224 int ddf_layout = 0;
2225 sector_t new_sector;
2226 int algorithm = previous ? conf->prev_algo
2227 : conf->algorithm;
2228 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2229 : conf->chunk_sectors;
2230 int raid_disks = previous ? conf->previous_raid_disks
2231 : conf->raid_disks;
2232 int data_disks = raid_disks - conf->max_degraded;
2234 /* First compute the information on this sector */
2237 * Compute the chunk number and the sector offset inside the chunk
2239 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2240 chunk_number = r_sector;
2243 * Compute the stripe number
2245 stripe = chunk_number;
2246 *dd_idx = sector_div(stripe, data_disks);
2247 stripe2 = stripe;
2249 * Select the parity disk based on the user selected algorithm.
2251 pd_idx = qd_idx = -1;
2252 switch(conf->level) {
2253 case 4:
2254 pd_idx = data_disks;
2255 break;
2256 case 5:
2257 switch (algorithm) {
2258 case ALGORITHM_LEFT_ASYMMETRIC:
2259 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2260 if (*dd_idx >= pd_idx)
2261 (*dd_idx)++;
2262 break;
2263 case ALGORITHM_RIGHT_ASYMMETRIC:
2264 pd_idx = sector_div(stripe2, raid_disks);
2265 if (*dd_idx >= pd_idx)
2266 (*dd_idx)++;
2267 break;
2268 case ALGORITHM_LEFT_SYMMETRIC:
2269 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2270 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271 break;
2272 case ALGORITHM_RIGHT_SYMMETRIC:
2273 pd_idx = sector_div(stripe2, raid_disks);
2274 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2275 break;
2276 case ALGORITHM_PARITY_0:
2277 pd_idx = 0;
2278 (*dd_idx)++;
2279 break;
2280 case ALGORITHM_PARITY_N:
2281 pd_idx = data_disks;
2282 break;
2283 default:
2284 BUG();
2286 break;
2287 case 6:
2289 switch (algorithm) {
2290 case ALGORITHM_LEFT_ASYMMETRIC:
2291 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2292 qd_idx = pd_idx + 1;
2293 if (pd_idx == raid_disks-1) {
2294 (*dd_idx)++; /* Q D D D P */
2295 qd_idx = 0;
2296 } else if (*dd_idx >= pd_idx)
2297 (*dd_idx) += 2; /* D D P Q D */
2298 break;
2299 case ALGORITHM_RIGHT_ASYMMETRIC:
2300 pd_idx = sector_div(stripe2, raid_disks);
2301 qd_idx = pd_idx + 1;
2302 if (pd_idx == raid_disks-1) {
2303 (*dd_idx)++; /* Q D D D P */
2304 qd_idx = 0;
2305 } else if (*dd_idx >= pd_idx)
2306 (*dd_idx) += 2; /* D D P Q D */
2307 break;
2308 case ALGORITHM_LEFT_SYMMETRIC:
2309 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2310 qd_idx = (pd_idx + 1) % raid_disks;
2311 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2312 break;
2313 case ALGORITHM_RIGHT_SYMMETRIC:
2314 pd_idx = sector_div(stripe2, raid_disks);
2315 qd_idx = (pd_idx + 1) % raid_disks;
2316 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2317 break;
2319 case ALGORITHM_PARITY_0:
2320 pd_idx = 0;
2321 qd_idx = 1;
2322 (*dd_idx) += 2;
2323 break;
2324 case ALGORITHM_PARITY_N:
2325 pd_idx = data_disks;
2326 qd_idx = data_disks + 1;
2327 break;
2329 case ALGORITHM_ROTATING_ZERO_RESTART:
2330 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2331 * of blocks for computing Q is different.
2333 pd_idx = sector_div(stripe2, raid_disks);
2334 qd_idx = pd_idx + 1;
2335 if (pd_idx == raid_disks-1) {
2336 (*dd_idx)++; /* Q D D D P */
2337 qd_idx = 0;
2338 } else if (*dd_idx >= pd_idx)
2339 (*dd_idx) += 2; /* D D P Q D */
2340 ddf_layout = 1;
2341 break;
2343 case ALGORITHM_ROTATING_N_RESTART:
2344 /* Same a left_asymmetric, by first stripe is
2345 * D D D P Q rather than
2346 * Q D D D P
2348 stripe2 += 1;
2349 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2350 qd_idx = pd_idx + 1;
2351 if (pd_idx == raid_disks-1) {
2352 (*dd_idx)++; /* Q D D D P */
2353 qd_idx = 0;
2354 } else if (*dd_idx >= pd_idx)
2355 (*dd_idx) += 2; /* D D P Q D */
2356 ddf_layout = 1;
2357 break;
2359 case ALGORITHM_ROTATING_N_CONTINUE:
2360 /* Same as left_symmetric but Q is before P */
2361 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2362 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2363 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2364 ddf_layout = 1;
2365 break;
2367 case ALGORITHM_LEFT_ASYMMETRIC_6:
2368 /* RAID5 left_asymmetric, with Q on last device */
2369 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2370 if (*dd_idx >= pd_idx)
2371 (*dd_idx)++;
2372 qd_idx = raid_disks - 1;
2373 break;
2375 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2376 pd_idx = sector_div(stripe2, raid_disks-1);
2377 if (*dd_idx >= pd_idx)
2378 (*dd_idx)++;
2379 qd_idx = raid_disks - 1;
2380 break;
2382 case ALGORITHM_LEFT_SYMMETRIC_6:
2383 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2384 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2385 qd_idx = raid_disks - 1;
2386 break;
2388 case ALGORITHM_RIGHT_SYMMETRIC_6:
2389 pd_idx = sector_div(stripe2, raid_disks-1);
2390 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2391 qd_idx = raid_disks - 1;
2392 break;
2394 case ALGORITHM_PARITY_0_6:
2395 pd_idx = 0;
2396 (*dd_idx)++;
2397 qd_idx = raid_disks - 1;
2398 break;
2400 default:
2401 BUG();
2403 break;
2406 if (sh) {
2407 sh->pd_idx = pd_idx;
2408 sh->qd_idx = qd_idx;
2409 sh->ddf_layout = ddf_layout;
2412 * Finally, compute the new sector number
2414 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2415 return new_sector;
2419 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2421 struct r5conf *conf = sh->raid_conf;
2422 int raid_disks = sh->disks;
2423 int data_disks = raid_disks - conf->max_degraded;
2424 sector_t new_sector = sh->sector, check;
2425 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2426 : conf->chunk_sectors;
2427 int algorithm = previous ? conf->prev_algo
2428 : conf->algorithm;
2429 sector_t stripe;
2430 int chunk_offset;
2431 sector_t chunk_number;
2432 int dummy1, dd_idx = i;
2433 sector_t r_sector;
2434 struct stripe_head sh2;
2437 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2438 stripe = new_sector;
2440 if (i == sh->pd_idx)
2441 return 0;
2442 switch(conf->level) {
2443 case 4: break;
2444 case 5:
2445 switch (algorithm) {
2446 case ALGORITHM_LEFT_ASYMMETRIC:
2447 case ALGORITHM_RIGHT_ASYMMETRIC:
2448 if (i > sh->pd_idx)
2449 i--;
2450 break;
2451 case ALGORITHM_LEFT_SYMMETRIC:
2452 case ALGORITHM_RIGHT_SYMMETRIC:
2453 if (i < sh->pd_idx)
2454 i += raid_disks;
2455 i -= (sh->pd_idx + 1);
2456 break;
2457 case ALGORITHM_PARITY_0:
2458 i -= 1;
2459 break;
2460 case ALGORITHM_PARITY_N:
2461 break;
2462 default:
2463 BUG();
2465 break;
2466 case 6:
2467 if (i == sh->qd_idx)
2468 return 0; /* It is the Q disk */
2469 switch (algorithm) {
2470 case ALGORITHM_LEFT_ASYMMETRIC:
2471 case ALGORITHM_RIGHT_ASYMMETRIC:
2472 case ALGORITHM_ROTATING_ZERO_RESTART:
2473 case ALGORITHM_ROTATING_N_RESTART:
2474 if (sh->pd_idx == raid_disks-1)
2475 i--; /* Q D D D P */
2476 else if (i > sh->pd_idx)
2477 i -= 2; /* D D P Q D */
2478 break;
2479 case ALGORITHM_LEFT_SYMMETRIC:
2480 case ALGORITHM_RIGHT_SYMMETRIC:
2481 if (sh->pd_idx == raid_disks-1)
2482 i--; /* Q D D D P */
2483 else {
2484 /* D D P Q D */
2485 if (i < sh->pd_idx)
2486 i += raid_disks;
2487 i -= (sh->pd_idx + 2);
2489 break;
2490 case ALGORITHM_PARITY_0:
2491 i -= 2;
2492 break;
2493 case ALGORITHM_PARITY_N:
2494 break;
2495 case ALGORITHM_ROTATING_N_CONTINUE:
2496 /* Like left_symmetric, but P is before Q */
2497 if (sh->pd_idx == 0)
2498 i--; /* P D D D Q */
2499 else {
2500 /* D D Q P D */
2501 if (i < sh->pd_idx)
2502 i += raid_disks;
2503 i -= (sh->pd_idx + 1);
2505 break;
2506 case ALGORITHM_LEFT_ASYMMETRIC_6:
2507 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2508 if (i > sh->pd_idx)
2509 i--;
2510 break;
2511 case ALGORITHM_LEFT_SYMMETRIC_6:
2512 case ALGORITHM_RIGHT_SYMMETRIC_6:
2513 if (i < sh->pd_idx)
2514 i += data_disks + 1;
2515 i -= (sh->pd_idx + 1);
2516 break;
2517 case ALGORITHM_PARITY_0_6:
2518 i -= 1;
2519 break;
2520 default:
2521 BUG();
2523 break;
2526 chunk_number = stripe * data_disks + i;
2527 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2529 check = raid5_compute_sector(conf, r_sector,
2530 previous, &dummy1, &sh2);
2531 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2532 || sh2.qd_idx != sh->qd_idx) {
2533 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2534 mdname(conf->mddev));
2535 return 0;
2537 return r_sector;
2541 static void
2542 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2543 int rcw, int expand)
2545 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2546 struct r5conf *conf = sh->raid_conf;
2547 int level = conf->level;
2549 if (rcw) {
2551 for (i = disks; i--; ) {
2552 struct r5dev *dev = &sh->dev[i];
2554 if (dev->towrite) {
2555 set_bit(R5_LOCKED, &dev->flags);
2556 set_bit(R5_Wantdrain, &dev->flags);
2557 if (!expand)
2558 clear_bit(R5_UPTODATE, &dev->flags);
2559 s->locked++;
2562 /* if we are not expanding this is a proper write request, and
2563 * there will be bios with new data to be drained into the
2564 * stripe cache
2566 if (!expand) {
2567 if (!s->locked)
2568 /* False alarm, nothing to do */
2569 return;
2570 sh->reconstruct_state = reconstruct_state_drain_run;
2571 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2572 } else
2573 sh->reconstruct_state = reconstruct_state_run;
2575 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2577 if (s->locked + conf->max_degraded == disks)
2578 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2579 atomic_inc(&conf->pending_full_writes);
2580 } else {
2581 BUG_ON(level == 6);
2582 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2583 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2585 for (i = disks; i--; ) {
2586 struct r5dev *dev = &sh->dev[i];
2587 if (i == pd_idx)
2588 continue;
2590 if (dev->towrite &&
2591 (test_bit(R5_UPTODATE, &dev->flags) ||
2592 test_bit(R5_Wantcompute, &dev->flags))) {
2593 set_bit(R5_Wantdrain, &dev->flags);
2594 set_bit(R5_LOCKED, &dev->flags);
2595 clear_bit(R5_UPTODATE, &dev->flags);
2596 s->locked++;
2599 if (!s->locked)
2600 /* False alarm - nothing to do */
2601 return;
2602 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2603 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2604 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2605 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2608 /* keep the parity disk(s) locked while asynchronous operations
2609 * are in flight
2611 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2612 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2613 s->locked++;
2615 if (level == 6) {
2616 int qd_idx = sh->qd_idx;
2617 struct r5dev *dev = &sh->dev[qd_idx];
2619 set_bit(R5_LOCKED, &dev->flags);
2620 clear_bit(R5_UPTODATE, &dev->flags);
2621 s->locked++;
2624 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2625 __func__, (unsigned long long)sh->sector,
2626 s->locked, s->ops_request);
2630 * Each stripe/dev can have one or more bion attached.
2631 * toread/towrite point to the first in a chain.
2632 * The bi_next chain must be in order.
2634 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2636 struct bio **bip;
2637 struct r5conf *conf = sh->raid_conf;
2638 int firstwrite=0;
2640 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2641 (unsigned long long)bi->bi_iter.bi_sector,
2642 (unsigned long long)sh->sector);
2645 * If several bio share a stripe. The bio bi_phys_segments acts as a
2646 * reference count to avoid race. The reference count should already be
2647 * increased before this function is called (for example, in
2648 * make_request()), so other bio sharing this stripe will not free the
2649 * stripe. If a stripe is owned by one stripe, the stripe lock will
2650 * protect it.
2652 spin_lock_irq(&sh->stripe_lock);
2653 if (forwrite) {
2654 bip = &sh->dev[dd_idx].towrite;
2655 if (*bip == NULL)
2656 firstwrite = 1;
2657 } else
2658 bip = &sh->dev[dd_idx].toread;
2659 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2660 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2661 goto overlap;
2662 bip = & (*bip)->bi_next;
2664 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2665 goto overlap;
2667 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2668 if (*bip)
2669 bi->bi_next = *bip;
2670 *bip = bi;
2671 raid5_inc_bi_active_stripes(bi);
2673 if (forwrite) {
2674 /* check if page is covered */
2675 sector_t sector = sh->dev[dd_idx].sector;
2676 for (bi=sh->dev[dd_idx].towrite;
2677 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2678 bi && bi->bi_iter.bi_sector <= sector;
2679 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2680 if (bio_end_sector(bi) >= sector)
2681 sector = bio_end_sector(bi);
2683 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2684 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2687 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2688 (unsigned long long)(*bip)->bi_iter.bi_sector,
2689 (unsigned long long)sh->sector, dd_idx);
2690 spin_unlock_irq(&sh->stripe_lock);
2692 if (conf->mddev->bitmap && firstwrite) {
2693 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2694 STRIPE_SECTORS, 0);
2695 sh->bm_seq = conf->seq_flush+1;
2696 set_bit(STRIPE_BIT_DELAY, &sh->state);
2698 return 1;
2700 overlap:
2701 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2702 spin_unlock_irq(&sh->stripe_lock);
2703 return 0;
2706 static void end_reshape(struct r5conf *conf);
2708 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2709 struct stripe_head *sh)
2711 int sectors_per_chunk =
2712 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2713 int dd_idx;
2714 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2715 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2717 raid5_compute_sector(conf,
2718 stripe * (disks - conf->max_degraded)
2719 *sectors_per_chunk + chunk_offset,
2720 previous,
2721 &dd_idx, sh);
2724 static void
2725 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2726 struct stripe_head_state *s, int disks,
2727 struct bio **return_bi)
2729 int i;
2730 for (i = disks; i--; ) {
2731 struct bio *bi;
2732 int bitmap_end = 0;
2734 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2735 struct md_rdev *rdev;
2736 rcu_read_lock();
2737 rdev = rcu_dereference(conf->disks[i].rdev);
2738 if (rdev && test_bit(In_sync, &rdev->flags))
2739 atomic_inc(&rdev->nr_pending);
2740 else
2741 rdev = NULL;
2742 rcu_read_unlock();
2743 if (rdev) {
2744 if (!rdev_set_badblocks(
2745 rdev,
2746 sh->sector,
2747 STRIPE_SECTORS, 0))
2748 md_error(conf->mddev, rdev);
2749 rdev_dec_pending(rdev, conf->mddev);
2752 spin_lock_irq(&sh->stripe_lock);
2753 /* fail all writes first */
2754 bi = sh->dev[i].towrite;
2755 sh->dev[i].towrite = NULL;
2756 spin_unlock_irq(&sh->stripe_lock);
2757 if (bi)
2758 bitmap_end = 1;
2760 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2761 wake_up(&conf->wait_for_overlap);
2763 while (bi && bi->bi_iter.bi_sector <
2764 sh->dev[i].sector + STRIPE_SECTORS) {
2765 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2766 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2767 if (!raid5_dec_bi_active_stripes(bi)) {
2768 md_write_end(conf->mddev);
2769 bi->bi_next = *return_bi;
2770 *return_bi = bi;
2772 bi = nextbi;
2774 if (bitmap_end)
2775 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2776 STRIPE_SECTORS, 0, 0);
2777 bitmap_end = 0;
2778 /* and fail all 'written' */
2779 bi = sh->dev[i].written;
2780 sh->dev[i].written = NULL;
2781 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2782 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2783 sh->dev[i].page = sh->dev[i].orig_page;
2786 if (bi) bitmap_end = 1;
2787 while (bi && bi->bi_iter.bi_sector <
2788 sh->dev[i].sector + STRIPE_SECTORS) {
2789 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2790 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2791 if (!raid5_dec_bi_active_stripes(bi)) {
2792 md_write_end(conf->mddev);
2793 bi->bi_next = *return_bi;
2794 *return_bi = bi;
2796 bi = bi2;
2799 /* fail any reads if this device is non-operational and
2800 * the data has not reached the cache yet.
2802 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2803 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2804 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2805 spin_lock_irq(&sh->stripe_lock);
2806 bi = sh->dev[i].toread;
2807 sh->dev[i].toread = NULL;
2808 spin_unlock_irq(&sh->stripe_lock);
2809 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2810 wake_up(&conf->wait_for_overlap);
2811 while (bi && bi->bi_iter.bi_sector <
2812 sh->dev[i].sector + STRIPE_SECTORS) {
2813 struct bio *nextbi =
2814 r5_next_bio(bi, sh->dev[i].sector);
2815 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2816 if (!raid5_dec_bi_active_stripes(bi)) {
2817 bi->bi_next = *return_bi;
2818 *return_bi = bi;
2820 bi = nextbi;
2823 if (bitmap_end)
2824 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2825 STRIPE_SECTORS, 0, 0);
2826 /* If we were in the middle of a write the parity block might
2827 * still be locked - so just clear all R5_LOCKED flags
2829 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2832 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2833 if (atomic_dec_and_test(&conf->pending_full_writes))
2834 md_wakeup_thread(conf->mddev->thread);
2837 static void
2838 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2839 struct stripe_head_state *s)
2841 int abort = 0;
2842 int i;
2844 clear_bit(STRIPE_SYNCING, &sh->state);
2845 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2846 wake_up(&conf->wait_for_overlap);
2847 s->syncing = 0;
2848 s->replacing = 0;
2849 /* There is nothing more to do for sync/check/repair.
2850 * Don't even need to abort as that is handled elsewhere
2851 * if needed, and not always wanted e.g. if there is a known
2852 * bad block here.
2853 * For recover/replace we need to record a bad block on all
2854 * non-sync devices, or abort the recovery
2856 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2857 /* During recovery devices cannot be removed, so
2858 * locking and refcounting of rdevs is not needed
2860 for (i = 0; i < conf->raid_disks; i++) {
2861 struct md_rdev *rdev = conf->disks[i].rdev;
2862 if (rdev
2863 && !test_bit(Faulty, &rdev->flags)
2864 && !test_bit(In_sync, &rdev->flags)
2865 && !rdev_set_badblocks(rdev, sh->sector,
2866 STRIPE_SECTORS, 0))
2867 abort = 1;
2868 rdev = conf->disks[i].replacement;
2869 if (rdev
2870 && !test_bit(Faulty, &rdev->flags)
2871 && !test_bit(In_sync, &rdev->flags)
2872 && !rdev_set_badblocks(rdev, sh->sector,
2873 STRIPE_SECTORS, 0))
2874 abort = 1;
2876 if (abort)
2877 conf->recovery_disabled =
2878 conf->mddev->recovery_disabled;
2880 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2883 static int want_replace(struct stripe_head *sh, int disk_idx)
2885 struct md_rdev *rdev;
2886 int rv = 0;
2887 /* Doing recovery so rcu locking not required */
2888 rdev = sh->raid_conf->disks[disk_idx].replacement;
2889 if (rdev
2890 && !test_bit(Faulty, &rdev->flags)
2891 && !test_bit(In_sync, &rdev->flags)
2892 && (rdev->recovery_offset <= sh->sector
2893 || rdev->mddev->recovery_cp <= sh->sector))
2894 rv = 1;
2896 return rv;
2899 /* fetch_block - checks the given member device to see if its data needs
2900 * to be read or computed to satisfy a request.
2902 * Returns 1 when no more member devices need to be checked, otherwise returns
2903 * 0 to tell the loop in handle_stripe_fill to continue
2905 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2906 int disk_idx, int disks)
2908 struct r5dev *dev = &sh->dev[disk_idx];
2909 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2910 &sh->dev[s->failed_num[1]] };
2912 /* is the data in this block needed, and can we get it? */
2913 if (!test_bit(R5_LOCKED, &dev->flags) &&
2914 !test_bit(R5_UPTODATE, &dev->flags) &&
2915 (dev->toread ||
2916 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2917 s->syncing || s->expanding ||
2918 (s->replacing && want_replace(sh, disk_idx)) ||
2919 (s->failed >= 1 && fdev[0]->toread) ||
2920 (s->failed >= 2 && fdev[1]->toread) ||
2921 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2922 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2923 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2924 (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2925 s->to_write < sh->raid_conf->raid_disks - 2 &&
2926 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2927 /* we would like to get this block, possibly by computing it,
2928 * otherwise read it if the backing disk is insync
2930 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2931 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2932 if ((s->uptodate == disks - 1) &&
2933 (s->failed && (disk_idx == s->failed_num[0] ||
2934 disk_idx == s->failed_num[1]))) {
2935 /* have disk failed, and we're requested to fetch it;
2936 * do compute it
2938 pr_debug("Computing stripe %llu block %d\n",
2939 (unsigned long long)sh->sector, disk_idx);
2940 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942 set_bit(R5_Wantcompute, &dev->flags);
2943 sh->ops.target = disk_idx;
2944 sh->ops.target2 = -1; /* no 2nd target */
2945 s->req_compute = 1;
2946 /* Careful: from this point on 'uptodate' is in the eye
2947 * of raid_run_ops which services 'compute' operations
2948 * before writes. R5_Wantcompute flags a block that will
2949 * be R5_UPTODATE by the time it is needed for a
2950 * subsequent operation.
2952 s->uptodate++;
2953 return 1;
2954 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2955 /* Computing 2-failure is *very* expensive; only
2956 * do it if failed >= 2
2958 int other;
2959 for (other = disks; other--; ) {
2960 if (other == disk_idx)
2961 continue;
2962 if (!test_bit(R5_UPTODATE,
2963 &sh->dev[other].flags))
2964 break;
2966 BUG_ON(other < 0);
2967 pr_debug("Computing stripe %llu blocks %d,%d\n",
2968 (unsigned long long)sh->sector,
2969 disk_idx, other);
2970 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2971 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2972 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2973 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2974 sh->ops.target = disk_idx;
2975 sh->ops.target2 = other;
2976 s->uptodate += 2;
2977 s->req_compute = 1;
2978 return 1;
2979 } else if (test_bit(R5_Insync, &dev->flags)) {
2980 set_bit(R5_LOCKED, &dev->flags);
2981 set_bit(R5_Wantread, &dev->flags);
2982 s->locked++;
2983 pr_debug("Reading block %d (sync=%d)\n",
2984 disk_idx, s->syncing);
2988 return 0;
2992 * handle_stripe_fill - read or compute data to satisfy pending requests.
2994 static void handle_stripe_fill(struct stripe_head *sh,
2995 struct stripe_head_state *s,
2996 int disks)
2998 int i;
3000 /* look for blocks to read/compute, skip this if a compute
3001 * is already in flight, or if the stripe contents are in the
3002 * midst of changing due to a write
3004 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3005 !sh->reconstruct_state)
3006 for (i = disks; i--; )
3007 if (fetch_block(sh, s, i, disks))
3008 break;
3009 set_bit(STRIPE_HANDLE, &sh->state);
3013 /* handle_stripe_clean_event
3014 * any written block on an uptodate or failed drive can be returned.
3015 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3016 * never LOCKED, so we don't need to test 'failed' directly.
3018 static void handle_stripe_clean_event(struct r5conf *conf,
3019 struct stripe_head *sh, int disks, struct bio **return_bi)
3021 int i;
3022 struct r5dev *dev;
3023 int discard_pending = 0;
3025 for (i = disks; i--; )
3026 if (sh->dev[i].written) {
3027 dev = &sh->dev[i];
3028 if (!test_bit(R5_LOCKED, &dev->flags) &&
3029 (test_bit(R5_UPTODATE, &dev->flags) ||
3030 test_bit(R5_Discard, &dev->flags) ||
3031 test_bit(R5_SkipCopy, &dev->flags))) {
3032 /* We can return any write requests */
3033 struct bio *wbi, *wbi2;
3034 pr_debug("Return write for disc %d\n", i);
3035 if (test_and_clear_bit(R5_Discard, &dev->flags))
3036 clear_bit(R5_UPTODATE, &dev->flags);
3037 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3038 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3039 dev->page = dev->orig_page;
3041 wbi = dev->written;
3042 dev->written = NULL;
3043 while (wbi && wbi->bi_iter.bi_sector <
3044 dev->sector + STRIPE_SECTORS) {
3045 wbi2 = r5_next_bio(wbi, dev->sector);
3046 if (!raid5_dec_bi_active_stripes(wbi)) {
3047 md_write_end(conf->mddev);
3048 wbi->bi_next = *return_bi;
3049 *return_bi = wbi;
3051 wbi = wbi2;
3053 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3054 STRIPE_SECTORS,
3055 !test_bit(STRIPE_DEGRADED, &sh->state),
3057 } else if (test_bit(R5_Discard, &dev->flags))
3058 discard_pending = 1;
3059 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3060 WARN_ON(dev->page != dev->orig_page);
3062 if (!discard_pending &&
3063 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3064 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3065 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3066 if (sh->qd_idx >= 0) {
3067 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3068 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3070 /* now that discard is done we can proceed with any sync */
3071 clear_bit(STRIPE_DISCARD, &sh->state);
3073 * SCSI discard will change some bio fields and the stripe has
3074 * no updated data, so remove it from hash list and the stripe
3075 * will be reinitialized
3077 spin_lock_irq(&conf->device_lock);
3078 remove_hash(sh);
3079 spin_unlock_irq(&conf->device_lock);
3080 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3081 set_bit(STRIPE_HANDLE, &sh->state);
3085 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3086 if (atomic_dec_and_test(&conf->pending_full_writes))
3087 md_wakeup_thread(conf->mddev->thread);
3090 static void handle_stripe_dirtying(struct r5conf *conf,
3091 struct stripe_head *sh,
3092 struct stripe_head_state *s,
3093 int disks)
3095 int rmw = 0, rcw = 0, i;
3096 sector_t recovery_cp = conf->mddev->recovery_cp;
3098 /* RAID6 requires 'rcw' in current implementation.
3099 * Otherwise, check whether resync is now happening or should start.
3100 * If yes, then the array is dirty (after unclean shutdown or
3101 * initial creation), so parity in some stripes might be inconsistent.
3102 * In this case, we need to always do reconstruct-write, to ensure
3103 * that in case of drive failure or read-error correction, we
3104 * generate correct data from the parity.
3106 if (conf->max_degraded == 2 ||
3107 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3108 /* Calculate the real rcw later - for now make it
3109 * look like rcw is cheaper
3111 rcw = 1; rmw = 2;
3112 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3113 conf->max_degraded, (unsigned long long)recovery_cp,
3114 (unsigned long long)sh->sector);
3115 } else for (i = disks; i--; ) {
3116 /* would I have to read this buffer for read_modify_write */
3117 struct r5dev *dev = &sh->dev[i];
3118 if ((dev->towrite || i == sh->pd_idx) &&
3119 !test_bit(R5_LOCKED, &dev->flags) &&
3120 !(test_bit(R5_UPTODATE, &dev->flags) ||
3121 test_bit(R5_Wantcompute, &dev->flags))) {
3122 if (test_bit(R5_Insync, &dev->flags))
3123 rmw++;
3124 else
3125 rmw += 2*disks; /* cannot read it */
3127 /* Would I have to read this buffer for reconstruct_write */
3128 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3129 !test_bit(R5_LOCKED, &dev->flags) &&
3130 !(test_bit(R5_UPTODATE, &dev->flags) ||
3131 test_bit(R5_Wantcompute, &dev->flags))) {
3132 if (test_bit(R5_Insync, &dev->flags))
3133 rcw++;
3134 else
3135 rcw += 2*disks;
3138 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3139 (unsigned long long)sh->sector, rmw, rcw);
3140 set_bit(STRIPE_HANDLE, &sh->state);
3141 if (rmw < rcw && rmw > 0) {
3142 /* prefer read-modify-write, but need to get some data */
3143 if (conf->mddev->queue)
3144 blk_add_trace_msg(conf->mddev->queue,
3145 "raid5 rmw %llu %d",
3146 (unsigned long long)sh->sector, rmw);
3147 for (i = disks; i--; ) {
3148 struct r5dev *dev = &sh->dev[i];
3149 if ((dev->towrite || i == sh->pd_idx) &&
3150 !test_bit(R5_LOCKED, &dev->flags) &&
3151 !(test_bit(R5_UPTODATE, &dev->flags) ||
3152 test_bit(R5_Wantcompute, &dev->flags)) &&
3153 test_bit(R5_Insync, &dev->flags)) {
3154 if (test_bit(STRIPE_PREREAD_ACTIVE,
3155 &sh->state)) {
3156 pr_debug("Read_old block %d for r-m-w\n",
3158 set_bit(R5_LOCKED, &dev->flags);
3159 set_bit(R5_Wantread, &dev->flags);
3160 s->locked++;
3161 } else {
3162 set_bit(STRIPE_DELAYED, &sh->state);
3163 set_bit(STRIPE_HANDLE, &sh->state);
3168 if (rcw <= rmw && rcw > 0) {
3169 /* want reconstruct write, but need to get some data */
3170 int qread =0;
3171 rcw = 0;
3172 for (i = disks; i--; ) {
3173 struct r5dev *dev = &sh->dev[i];
3174 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3175 i != sh->pd_idx && i != sh->qd_idx &&
3176 !test_bit(R5_LOCKED, &dev->flags) &&
3177 !(test_bit(R5_UPTODATE, &dev->flags) ||
3178 test_bit(R5_Wantcompute, &dev->flags))) {
3179 rcw++;
3180 if (test_bit(R5_Insync, &dev->flags) &&
3181 test_bit(STRIPE_PREREAD_ACTIVE,
3182 &sh->state)) {
3183 pr_debug("Read_old block "
3184 "%d for Reconstruct\n", i);
3185 set_bit(R5_LOCKED, &dev->flags);
3186 set_bit(R5_Wantread, &dev->flags);
3187 s->locked++;
3188 qread++;
3189 } else {
3190 set_bit(STRIPE_DELAYED, &sh->state);
3191 set_bit(STRIPE_HANDLE, &sh->state);
3195 if (rcw && conf->mddev->queue)
3196 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3197 (unsigned long long)sh->sector,
3198 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3200 /* now if nothing is locked, and if we have enough data,
3201 * we can start a write request
3203 /* since handle_stripe can be called at any time we need to handle the
3204 * case where a compute block operation has been submitted and then a
3205 * subsequent call wants to start a write request. raid_run_ops only
3206 * handles the case where compute block and reconstruct are requested
3207 * simultaneously. If this is not the case then new writes need to be
3208 * held off until the compute completes.
3210 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3211 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3212 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3213 schedule_reconstruction(sh, s, rcw == 0, 0);
3216 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3217 struct stripe_head_state *s, int disks)
3219 struct r5dev *dev = NULL;
3221 set_bit(STRIPE_HANDLE, &sh->state);
3223 switch (sh->check_state) {
3224 case check_state_idle:
3225 /* start a new check operation if there are no failures */
3226 if (s->failed == 0) {
3227 BUG_ON(s->uptodate != disks);
3228 sh->check_state = check_state_run;
3229 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3230 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3231 s->uptodate--;
3232 break;
3234 dev = &sh->dev[s->failed_num[0]];
3235 /* fall through */
3236 case check_state_compute_result:
3237 sh->check_state = check_state_idle;
3238 if (!dev)
3239 dev = &sh->dev[sh->pd_idx];
3241 /* check that a write has not made the stripe insync */
3242 if (test_bit(STRIPE_INSYNC, &sh->state))
3243 break;
3245 /* either failed parity check, or recovery is happening */
3246 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3247 BUG_ON(s->uptodate != disks);
3249 set_bit(R5_LOCKED, &dev->flags);
3250 s->locked++;
3251 set_bit(R5_Wantwrite, &dev->flags);
3253 clear_bit(STRIPE_DEGRADED, &sh->state);
3254 set_bit(STRIPE_INSYNC, &sh->state);
3255 break;
3256 case check_state_run:
3257 break; /* we will be called again upon completion */
3258 case check_state_check_result:
3259 sh->check_state = check_state_idle;
3261 /* if a failure occurred during the check operation, leave
3262 * STRIPE_INSYNC not set and let the stripe be handled again
3264 if (s->failed)
3265 break;
3267 /* handle a successful check operation, if parity is correct
3268 * we are done. Otherwise update the mismatch count and repair
3269 * parity if !MD_RECOVERY_CHECK
3271 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3272 /* parity is correct (on disc,
3273 * not in buffer any more)
3275 set_bit(STRIPE_INSYNC, &sh->state);
3276 else {
3277 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3278 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3279 /* don't try to repair!! */
3280 set_bit(STRIPE_INSYNC, &sh->state);
3281 else {
3282 sh->check_state = check_state_compute_run;
3283 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3284 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3285 set_bit(R5_Wantcompute,
3286 &sh->dev[sh->pd_idx].flags);
3287 sh->ops.target = sh->pd_idx;
3288 sh->ops.target2 = -1;
3289 s->uptodate++;
3292 break;
3293 case check_state_compute_run:
3294 break;
3295 default:
3296 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3297 __func__, sh->check_state,
3298 (unsigned long long) sh->sector);
3299 BUG();
3304 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3305 struct stripe_head_state *s,
3306 int disks)
3308 int pd_idx = sh->pd_idx;
3309 int qd_idx = sh->qd_idx;
3310 struct r5dev *dev;
3312 set_bit(STRIPE_HANDLE, &sh->state);
3314 BUG_ON(s->failed > 2);
3316 /* Want to check and possibly repair P and Q.
3317 * However there could be one 'failed' device, in which
3318 * case we can only check one of them, possibly using the
3319 * other to generate missing data
3322 switch (sh->check_state) {
3323 case check_state_idle:
3324 /* start a new check operation if there are < 2 failures */
3325 if (s->failed == s->q_failed) {
3326 /* The only possible failed device holds Q, so it
3327 * makes sense to check P (If anything else were failed,
3328 * we would have used P to recreate it).
3330 sh->check_state = check_state_run;
3332 if (!s->q_failed && s->failed < 2) {
3333 /* Q is not failed, and we didn't use it to generate
3334 * anything, so it makes sense to check it
3336 if (sh->check_state == check_state_run)
3337 sh->check_state = check_state_run_pq;
3338 else
3339 sh->check_state = check_state_run_q;
3342 /* discard potentially stale zero_sum_result */
3343 sh->ops.zero_sum_result = 0;
3345 if (sh->check_state == check_state_run) {
3346 /* async_xor_zero_sum destroys the contents of P */
3347 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3348 s->uptodate--;
3350 if (sh->check_state >= check_state_run &&
3351 sh->check_state <= check_state_run_pq) {
3352 /* async_syndrome_zero_sum preserves P and Q, so
3353 * no need to mark them !uptodate here
3355 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3356 break;
3359 /* we have 2-disk failure */
3360 BUG_ON(s->failed != 2);
3361 /* fall through */
3362 case check_state_compute_result:
3363 sh->check_state = check_state_idle;
3365 /* check that a write has not made the stripe insync */
3366 if (test_bit(STRIPE_INSYNC, &sh->state))
3367 break;
3369 /* now write out any block on a failed drive,
3370 * or P or Q if they were recomputed
3372 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3373 if (s->failed == 2) {
3374 dev = &sh->dev[s->failed_num[1]];
3375 s->locked++;
3376 set_bit(R5_LOCKED, &dev->flags);
3377 set_bit(R5_Wantwrite, &dev->flags);
3379 if (s->failed >= 1) {
3380 dev = &sh->dev[s->failed_num[0]];
3381 s->locked++;
3382 set_bit(R5_LOCKED, &dev->flags);
3383 set_bit(R5_Wantwrite, &dev->flags);
3385 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3386 dev = &sh->dev[pd_idx];
3387 s->locked++;
3388 set_bit(R5_LOCKED, &dev->flags);
3389 set_bit(R5_Wantwrite, &dev->flags);
3391 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3392 dev = &sh->dev[qd_idx];
3393 s->locked++;
3394 set_bit(R5_LOCKED, &dev->flags);
3395 set_bit(R5_Wantwrite, &dev->flags);
3397 clear_bit(STRIPE_DEGRADED, &sh->state);
3399 set_bit(STRIPE_INSYNC, &sh->state);
3400 break;
3401 case check_state_run:
3402 case check_state_run_q:
3403 case check_state_run_pq:
3404 break; /* we will be called again upon completion */
3405 case check_state_check_result:
3406 sh->check_state = check_state_idle;
3408 /* handle a successful check operation, if parity is correct
3409 * we are done. Otherwise update the mismatch count and repair
3410 * parity if !MD_RECOVERY_CHECK
3412 if (sh->ops.zero_sum_result == 0) {
3413 /* both parities are correct */
3414 if (!s->failed)
3415 set_bit(STRIPE_INSYNC, &sh->state);
3416 else {
3417 /* in contrast to the raid5 case we can validate
3418 * parity, but still have a failure to write
3419 * back
3421 sh->check_state = check_state_compute_result;
3422 /* Returning at this point means that we may go
3423 * off and bring p and/or q uptodate again so
3424 * we make sure to check zero_sum_result again
3425 * to verify if p or q need writeback
3428 } else {
3429 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3430 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3431 /* don't try to repair!! */
3432 set_bit(STRIPE_INSYNC, &sh->state);
3433 else {
3434 int *target = &sh->ops.target;
3436 sh->ops.target = -1;
3437 sh->ops.target2 = -1;
3438 sh->check_state = check_state_compute_run;
3439 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3440 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3441 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3442 set_bit(R5_Wantcompute,
3443 &sh->dev[pd_idx].flags);
3444 *target = pd_idx;
3445 target = &sh->ops.target2;
3446 s->uptodate++;
3448 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3449 set_bit(R5_Wantcompute,
3450 &sh->dev[qd_idx].flags);
3451 *target = qd_idx;
3452 s->uptodate++;
3456 break;
3457 case check_state_compute_run:
3458 break;
3459 default:
3460 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3461 __func__, sh->check_state,
3462 (unsigned long long) sh->sector);
3463 BUG();
3467 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3469 int i;
3471 /* We have read all the blocks in this stripe and now we need to
3472 * copy some of them into a target stripe for expand.
3474 struct dma_async_tx_descriptor *tx = NULL;
3475 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3476 for (i = 0; i < sh->disks; i++)
3477 if (i != sh->pd_idx && i != sh->qd_idx) {
3478 int dd_idx, j;
3479 struct stripe_head *sh2;
3480 struct async_submit_ctl submit;
3482 sector_t bn = compute_blocknr(sh, i, 1);
3483 sector_t s = raid5_compute_sector(conf, bn, 0,
3484 &dd_idx, NULL);
3485 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3486 if (sh2 == NULL)
3487 /* so far only the early blocks of this stripe
3488 * have been requested. When later blocks
3489 * get requested, we will try again
3491 continue;
3492 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3493 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3494 /* must have already done this block */
3495 release_stripe(sh2);
3496 continue;
3499 /* place all the copies on one channel */
3500 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3501 tx = async_memcpy(sh2->dev[dd_idx].page,
3502 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3503 &submit);
3505 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3506 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3507 for (j = 0; j < conf->raid_disks; j++)
3508 if (j != sh2->pd_idx &&
3509 j != sh2->qd_idx &&
3510 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3511 break;
3512 if (j == conf->raid_disks) {
3513 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3514 set_bit(STRIPE_HANDLE, &sh2->state);
3516 release_stripe(sh2);
3519 /* done submitting copies, wait for them to complete */
3520 async_tx_quiesce(&tx);
3524 * handle_stripe - do things to a stripe.
3526 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3527 * state of various bits to see what needs to be done.
3528 * Possible results:
3529 * return some read requests which now have data
3530 * return some write requests which are safely on storage
3531 * schedule a read on some buffers
3532 * schedule a write of some buffers
3533 * return confirmation of parity correctness
3537 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3539 struct r5conf *conf = sh->raid_conf;
3540 int disks = sh->disks;
3541 struct r5dev *dev;
3542 int i;
3543 int do_recovery = 0;
3545 memset(s, 0, sizeof(*s));
3547 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3548 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3549 s->failed_num[0] = -1;
3550 s->failed_num[1] = -1;
3552 /* Now to look around and see what can be done */
3553 rcu_read_lock();
3554 for (i=disks; i--; ) {
3555 struct md_rdev *rdev;
3556 sector_t first_bad;
3557 int bad_sectors;
3558 int is_bad = 0;
3560 dev = &sh->dev[i];
3562 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3563 i, dev->flags,
3564 dev->toread, dev->towrite, dev->written);
3565 /* maybe we can reply to a read
3567 * new wantfill requests are only permitted while
3568 * ops_complete_biofill is guaranteed to be inactive
3570 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3571 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3572 set_bit(R5_Wantfill, &dev->flags);
3574 /* now count some things */
3575 if (test_bit(R5_LOCKED, &dev->flags))
3576 s->locked++;
3577 if (test_bit(R5_UPTODATE, &dev->flags))
3578 s->uptodate++;
3579 if (test_bit(R5_Wantcompute, &dev->flags)) {
3580 s->compute++;
3581 BUG_ON(s->compute > 2);
3584 if (test_bit(R5_Wantfill, &dev->flags))
3585 s->to_fill++;
3586 else if (dev->toread)
3587 s->to_read++;
3588 if (dev->towrite) {
3589 s->to_write++;
3590 if (!test_bit(R5_OVERWRITE, &dev->flags))
3591 s->non_overwrite++;
3593 if (dev->written)
3594 s->written++;
3595 /* Prefer to use the replacement for reads, but only
3596 * if it is recovered enough and has no bad blocks.
3598 rdev = rcu_dereference(conf->disks[i].replacement);
3599 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3600 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3601 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3602 &first_bad, &bad_sectors))
3603 set_bit(R5_ReadRepl, &dev->flags);
3604 else {
3605 if (rdev)
3606 set_bit(R5_NeedReplace, &dev->flags);
3607 rdev = rcu_dereference(conf->disks[i].rdev);
3608 clear_bit(R5_ReadRepl, &dev->flags);
3610 if (rdev && test_bit(Faulty, &rdev->flags))
3611 rdev = NULL;
3612 if (rdev) {
3613 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3614 &first_bad, &bad_sectors);
3615 if (s->blocked_rdev == NULL
3616 && (test_bit(Blocked, &rdev->flags)
3617 || is_bad < 0)) {
3618 if (is_bad < 0)
3619 set_bit(BlockedBadBlocks,
3620 &rdev->flags);
3621 s->blocked_rdev = rdev;
3622 atomic_inc(&rdev->nr_pending);
3625 clear_bit(R5_Insync, &dev->flags);
3626 if (!rdev)
3627 /* Not in-sync */;
3628 else if (is_bad) {
3629 /* also not in-sync */
3630 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3631 test_bit(R5_UPTODATE, &dev->flags)) {
3632 /* treat as in-sync, but with a read error
3633 * which we can now try to correct
3635 set_bit(R5_Insync, &dev->flags);
3636 set_bit(R5_ReadError, &dev->flags);
3638 } else if (test_bit(In_sync, &rdev->flags))
3639 set_bit(R5_Insync, &dev->flags);
3640 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3641 /* in sync if before recovery_offset */
3642 set_bit(R5_Insync, &dev->flags);
3643 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3644 test_bit(R5_Expanded, &dev->flags))
3645 /* If we've reshaped into here, we assume it is Insync.
3646 * We will shortly update recovery_offset to make
3647 * it official.
3649 set_bit(R5_Insync, &dev->flags);
3651 if (test_bit(R5_WriteError, &dev->flags)) {
3652 /* This flag does not apply to '.replacement'
3653 * only to .rdev, so make sure to check that*/
3654 struct md_rdev *rdev2 = rcu_dereference(
3655 conf->disks[i].rdev);
3656 if (rdev2 == rdev)
3657 clear_bit(R5_Insync, &dev->flags);
3658 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3659 s->handle_bad_blocks = 1;
3660 atomic_inc(&rdev2->nr_pending);
3661 } else
3662 clear_bit(R5_WriteError, &dev->flags);
3664 if (test_bit(R5_MadeGood, &dev->flags)) {
3665 /* This flag does not apply to '.replacement'
3666 * only to .rdev, so make sure to check that*/
3667 struct md_rdev *rdev2 = rcu_dereference(
3668 conf->disks[i].rdev);
3669 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3670 s->handle_bad_blocks = 1;
3671 atomic_inc(&rdev2->nr_pending);
3672 } else
3673 clear_bit(R5_MadeGood, &dev->flags);
3675 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3676 struct md_rdev *rdev2 = rcu_dereference(
3677 conf->disks[i].replacement);
3678 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3679 s->handle_bad_blocks = 1;
3680 atomic_inc(&rdev2->nr_pending);
3681 } else
3682 clear_bit(R5_MadeGoodRepl, &dev->flags);
3684 if (!test_bit(R5_Insync, &dev->flags)) {
3685 /* The ReadError flag will just be confusing now */
3686 clear_bit(R5_ReadError, &dev->flags);
3687 clear_bit(R5_ReWrite, &dev->flags);
3689 if (test_bit(R5_ReadError, &dev->flags))
3690 clear_bit(R5_Insync, &dev->flags);
3691 if (!test_bit(R5_Insync, &dev->flags)) {
3692 if (s->failed < 2)
3693 s->failed_num[s->failed] = i;
3694 s->failed++;
3695 if (rdev && !test_bit(Faulty, &rdev->flags))
3696 do_recovery = 1;
3699 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3700 /* If there is a failed device being replaced,
3701 * we must be recovering.
3702 * else if we are after recovery_cp, we must be syncing
3703 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3704 * else we can only be replacing
3705 * sync and recovery both need to read all devices, and so
3706 * use the same flag.
3708 if (do_recovery ||
3709 sh->sector >= conf->mddev->recovery_cp ||
3710 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3711 s->syncing = 1;
3712 else
3713 s->replacing = 1;
3715 rcu_read_unlock();
3718 static void handle_stripe(struct stripe_head *sh)
3720 struct stripe_head_state s;
3721 struct r5conf *conf = sh->raid_conf;
3722 int i;
3723 int prexor;
3724 int disks = sh->disks;
3725 struct r5dev *pdev, *qdev;
3727 clear_bit(STRIPE_HANDLE, &sh->state);
3728 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3729 /* already being handled, ensure it gets handled
3730 * again when current action finishes */
3731 set_bit(STRIPE_HANDLE, &sh->state);
3732 return;
3735 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3736 spin_lock(&sh->stripe_lock);
3737 /* Cannot process 'sync' concurrently with 'discard' */
3738 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3739 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3740 set_bit(STRIPE_SYNCING, &sh->state);
3741 clear_bit(STRIPE_INSYNC, &sh->state);
3742 clear_bit(STRIPE_REPLACED, &sh->state);
3744 spin_unlock(&sh->stripe_lock);
3746 clear_bit(STRIPE_DELAYED, &sh->state);
3748 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3749 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3750 (unsigned long long)sh->sector, sh->state,
3751 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3752 sh->check_state, sh->reconstruct_state);
3754 analyse_stripe(sh, &s);
3756 if (s.handle_bad_blocks) {
3757 set_bit(STRIPE_HANDLE, &sh->state);
3758 goto finish;
3761 if (unlikely(s.blocked_rdev)) {
3762 if (s.syncing || s.expanding || s.expanded ||
3763 s.replacing || s.to_write || s.written) {
3764 set_bit(STRIPE_HANDLE, &sh->state);
3765 goto finish;
3767 /* There is nothing for the blocked_rdev to block */
3768 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3769 s.blocked_rdev = NULL;
3772 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3773 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3774 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3777 pr_debug("locked=%d uptodate=%d to_read=%d"
3778 " to_write=%d failed=%d failed_num=%d,%d\n",
3779 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3780 s.failed_num[0], s.failed_num[1]);
3781 /* check if the array has lost more than max_degraded devices and,
3782 * if so, some requests might need to be failed.
3784 if (s.failed > conf->max_degraded) {
3785 sh->check_state = 0;
3786 sh->reconstruct_state = 0;
3787 if (s.to_read+s.to_write+s.written)
3788 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3789 if (s.syncing + s.replacing)
3790 handle_failed_sync(conf, sh, &s);
3793 /* Now we check to see if any write operations have recently
3794 * completed
3796 prexor = 0;
3797 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3798 prexor = 1;
3799 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3800 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3801 sh->reconstruct_state = reconstruct_state_idle;
3803 /* All the 'written' buffers and the parity block are ready to
3804 * be written back to disk
3806 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3807 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3808 BUG_ON(sh->qd_idx >= 0 &&
3809 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3810 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3811 for (i = disks; i--; ) {
3812 struct r5dev *dev = &sh->dev[i];
3813 if (test_bit(R5_LOCKED, &dev->flags) &&
3814 (i == sh->pd_idx || i == sh->qd_idx ||
3815 dev->written)) {
3816 pr_debug("Writing block %d\n", i);
3817 set_bit(R5_Wantwrite, &dev->flags);
3818 if (prexor)
3819 continue;
3820 if (!test_bit(R5_Insync, &dev->flags) ||
3821 ((i == sh->pd_idx || i == sh->qd_idx) &&
3822 s.failed == 0))
3823 set_bit(STRIPE_INSYNC, &sh->state);
3826 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3827 s.dec_preread_active = 1;
3831 * might be able to return some write requests if the parity blocks
3832 * are safe, or on a failed drive
3834 pdev = &sh->dev[sh->pd_idx];
3835 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3836 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3837 qdev = &sh->dev[sh->qd_idx];
3838 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3839 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3840 || conf->level < 6;
3842 if (s.written &&
3843 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3844 && !test_bit(R5_LOCKED, &pdev->flags)
3845 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3846 test_bit(R5_Discard, &pdev->flags))))) &&
3847 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3848 && !test_bit(R5_LOCKED, &qdev->flags)
3849 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3850 test_bit(R5_Discard, &qdev->flags))))))
3851 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3853 /* Now we might consider reading some blocks, either to check/generate
3854 * parity, or to satisfy requests
3855 * or to load a block that is being partially written.
3857 if (s.to_read || s.non_overwrite
3858 || (conf->level == 6 && s.to_write && s.failed)
3859 || (s.syncing && (s.uptodate + s.compute < disks))
3860 || s.replacing
3861 || s.expanding)
3862 handle_stripe_fill(sh, &s, disks);
3864 /* Now to consider new write requests and what else, if anything
3865 * should be read. We do not handle new writes when:
3866 * 1/ A 'write' operation (copy+xor) is already in flight.
3867 * 2/ A 'check' operation is in flight, as it may clobber the parity
3868 * block.
3870 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3871 handle_stripe_dirtying(conf, sh, &s, disks);
3873 /* maybe we need to check and possibly fix the parity for this stripe
3874 * Any reads will already have been scheduled, so we just see if enough
3875 * data is available. The parity check is held off while parity
3876 * dependent operations are in flight.
3878 if (sh->check_state ||
3879 (s.syncing && s.locked == 0 &&
3880 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3881 !test_bit(STRIPE_INSYNC, &sh->state))) {
3882 if (conf->level == 6)
3883 handle_parity_checks6(conf, sh, &s, disks);
3884 else
3885 handle_parity_checks5(conf, sh, &s, disks);
3888 if ((s.replacing || s.syncing) && s.locked == 0
3889 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3890 && !test_bit(STRIPE_REPLACED, &sh->state)) {
3891 /* Write out to replacement devices where possible */
3892 for (i = 0; i < conf->raid_disks; i++)
3893 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3894 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3895 set_bit(R5_WantReplace, &sh->dev[i].flags);
3896 set_bit(R5_LOCKED, &sh->dev[i].flags);
3897 s.locked++;
3899 if (s.replacing)
3900 set_bit(STRIPE_INSYNC, &sh->state);
3901 set_bit(STRIPE_REPLACED, &sh->state);
3903 if ((s.syncing || s.replacing) && s.locked == 0 &&
3904 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3905 test_bit(STRIPE_INSYNC, &sh->state)) {
3906 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3907 clear_bit(STRIPE_SYNCING, &sh->state);
3908 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3909 wake_up(&conf->wait_for_overlap);
3912 /* If the failed drives are just a ReadError, then we might need
3913 * to progress the repair/check process
3915 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3916 for (i = 0; i < s.failed; i++) {
3917 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3918 if (test_bit(R5_ReadError, &dev->flags)
3919 && !test_bit(R5_LOCKED, &dev->flags)
3920 && test_bit(R5_UPTODATE, &dev->flags)
3922 if (!test_bit(R5_ReWrite, &dev->flags)) {
3923 set_bit(R5_Wantwrite, &dev->flags);
3924 set_bit(R5_ReWrite, &dev->flags);
3925 set_bit(R5_LOCKED, &dev->flags);
3926 s.locked++;
3927 } else {
3928 /* let's read it back */
3929 set_bit(R5_Wantread, &dev->flags);
3930 set_bit(R5_LOCKED, &dev->flags);
3931 s.locked++;
3937 /* Finish reconstruct operations initiated by the expansion process */
3938 if (sh->reconstruct_state == reconstruct_state_result) {
3939 struct stripe_head *sh_src
3940 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3941 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3942 /* sh cannot be written until sh_src has been read.
3943 * so arrange for sh to be delayed a little
3945 set_bit(STRIPE_DELAYED, &sh->state);
3946 set_bit(STRIPE_HANDLE, &sh->state);
3947 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3948 &sh_src->state))
3949 atomic_inc(&conf->preread_active_stripes);
3950 release_stripe(sh_src);
3951 goto finish;
3953 if (sh_src)
3954 release_stripe(sh_src);
3956 sh->reconstruct_state = reconstruct_state_idle;
3957 clear_bit(STRIPE_EXPANDING, &sh->state);
3958 for (i = conf->raid_disks; i--; ) {
3959 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3960 set_bit(R5_LOCKED, &sh->dev[i].flags);
3961 s.locked++;
3965 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3966 !sh->reconstruct_state) {
3967 /* Need to write out all blocks after computing parity */
3968 sh->disks = conf->raid_disks;
3969 stripe_set_idx(sh->sector, conf, 0, sh);
3970 schedule_reconstruction(sh, &s, 1, 1);
3971 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3972 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3973 atomic_dec(&conf->reshape_stripes);
3974 wake_up(&conf->wait_for_overlap);
3975 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3978 if (s.expanding && s.locked == 0 &&
3979 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3980 handle_stripe_expansion(conf, sh);
3982 finish:
3983 /* wait for this device to become unblocked */
3984 if (unlikely(s.blocked_rdev)) {
3985 if (conf->mddev->external)
3986 md_wait_for_blocked_rdev(s.blocked_rdev,
3987 conf->mddev);
3988 else
3989 /* Internal metadata will immediately
3990 * be written by raid5d, so we don't
3991 * need to wait here.
3993 rdev_dec_pending(s.blocked_rdev,
3994 conf->mddev);
3997 if (s.handle_bad_blocks)
3998 for (i = disks; i--; ) {
3999 struct md_rdev *rdev;
4000 struct r5dev *dev = &sh->dev[i];
4001 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4002 /* We own a safe reference to the rdev */
4003 rdev = conf->disks[i].rdev;
4004 if (!rdev_set_badblocks(rdev, sh->sector,
4005 STRIPE_SECTORS, 0))
4006 md_error(conf->mddev, rdev);
4007 rdev_dec_pending(rdev, conf->mddev);
4009 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4010 rdev = conf->disks[i].rdev;
4011 rdev_clear_badblocks(rdev, sh->sector,
4012 STRIPE_SECTORS, 0);
4013 rdev_dec_pending(rdev, conf->mddev);
4015 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4016 rdev = conf->disks[i].replacement;
4017 if (!rdev)
4018 /* rdev have been moved down */
4019 rdev = conf->disks[i].rdev;
4020 rdev_clear_badblocks(rdev, sh->sector,
4021 STRIPE_SECTORS, 0);
4022 rdev_dec_pending(rdev, conf->mddev);
4026 if (s.ops_request)
4027 raid_run_ops(sh, s.ops_request);
4029 ops_run_io(sh, &s);
4031 if (s.dec_preread_active) {
4032 /* We delay this until after ops_run_io so that if make_request
4033 * is waiting on a flush, it won't continue until the writes
4034 * have actually been submitted.
4036 atomic_dec(&conf->preread_active_stripes);
4037 if (atomic_read(&conf->preread_active_stripes) <
4038 IO_THRESHOLD)
4039 md_wakeup_thread(conf->mddev->thread);
4042 return_io(s.return_bi);
4044 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4047 static void raid5_activate_delayed(struct r5conf *conf)
4049 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4050 while (!list_empty(&conf->delayed_list)) {
4051 struct list_head *l = conf->delayed_list.next;
4052 struct stripe_head *sh;
4053 sh = list_entry(l, struct stripe_head, lru);
4054 list_del_init(l);
4055 clear_bit(STRIPE_DELAYED, &sh->state);
4056 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4057 atomic_inc(&conf->preread_active_stripes);
4058 list_add_tail(&sh->lru, &conf->hold_list);
4059 raid5_wakeup_stripe_thread(sh);
4064 static void activate_bit_delay(struct r5conf *conf,
4065 struct list_head *temp_inactive_list)
4067 /* device_lock is held */
4068 struct list_head head;
4069 list_add(&head, &conf->bitmap_list);
4070 list_del_init(&conf->bitmap_list);
4071 while (!list_empty(&head)) {
4072 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4073 int hash;
4074 list_del_init(&sh->lru);
4075 atomic_inc(&sh->count);
4076 hash = sh->hash_lock_index;
4077 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4081 int md_raid5_congested(struct mddev *mddev, int bits)
4083 struct r5conf *conf = mddev->private;
4085 /* No difference between reads and writes. Just check
4086 * how busy the stripe_cache is
4089 if (conf->inactive_blocked)
4090 return 1;
4091 if (conf->quiesce)
4092 return 1;
4093 if (atomic_read(&conf->empty_inactive_list_nr))
4094 return 1;
4096 return 0;
4098 EXPORT_SYMBOL_GPL(md_raid5_congested);
4100 static int raid5_congested(void *data, int bits)
4102 struct mddev *mddev = data;
4104 return mddev_congested(mddev, bits) ||
4105 md_raid5_congested(mddev, bits);
4108 /* We want read requests to align with chunks where possible,
4109 * but write requests don't need to.
4111 static int raid5_mergeable_bvec(struct request_queue *q,
4112 struct bvec_merge_data *bvm,
4113 struct bio_vec *biovec)
4115 struct mddev *mddev = q->queuedata;
4116 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4117 int max;
4118 unsigned int chunk_sectors = mddev->chunk_sectors;
4119 unsigned int bio_sectors = bvm->bi_size >> 9;
4121 if ((bvm->bi_rw & 1) == WRITE)
4122 return biovec->bv_len; /* always allow writes to be mergeable */
4124 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4125 chunk_sectors = mddev->new_chunk_sectors;
4126 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4127 if (max < 0) max = 0;
4128 if (max <= biovec->bv_len && bio_sectors == 0)
4129 return biovec->bv_len;
4130 else
4131 return max;
4135 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4137 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4138 unsigned int chunk_sectors = mddev->chunk_sectors;
4139 unsigned int bio_sectors = bio_sectors(bio);
4141 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4142 chunk_sectors = mddev->new_chunk_sectors;
4143 return chunk_sectors >=
4144 ((sector & (chunk_sectors - 1)) + bio_sectors);
4148 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4149 * later sampled by raid5d.
4151 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4153 unsigned long flags;
4155 spin_lock_irqsave(&conf->device_lock, flags);
4157 bi->bi_next = conf->retry_read_aligned_list;
4158 conf->retry_read_aligned_list = bi;
4160 spin_unlock_irqrestore(&conf->device_lock, flags);
4161 md_wakeup_thread(conf->mddev->thread);
4165 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4167 struct bio *bi;
4169 bi = conf->retry_read_aligned;
4170 if (bi) {
4171 conf->retry_read_aligned = NULL;
4172 return bi;
4174 bi = conf->retry_read_aligned_list;
4175 if(bi) {
4176 conf->retry_read_aligned_list = bi->bi_next;
4177 bi->bi_next = NULL;
4179 * this sets the active strip count to 1 and the processed
4180 * strip count to zero (upper 8 bits)
4182 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4185 return bi;
4190 * The "raid5_align_endio" should check if the read succeeded and if it
4191 * did, call bio_endio on the original bio (having bio_put the new bio
4192 * first).
4193 * If the read failed..
4195 static void raid5_align_endio(struct bio *bi, int error)
4197 struct bio* raid_bi = bi->bi_private;
4198 struct mddev *mddev;
4199 struct r5conf *conf;
4200 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4201 struct md_rdev *rdev;
4203 bio_put(bi);
4205 rdev = (void*)raid_bi->bi_next;
4206 raid_bi->bi_next = NULL;
4207 mddev = rdev->mddev;
4208 conf = mddev->private;
4210 rdev_dec_pending(rdev, conf->mddev);
4212 if (!error && uptodate) {
4213 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4214 raid_bi, 0);
4215 bio_endio(raid_bi, 0);
4216 if (atomic_dec_and_test(&conf->active_aligned_reads))
4217 wake_up(&conf->wait_for_stripe);
4218 return;
4222 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4224 add_bio_to_retry(raid_bi, conf);
4227 static int bio_fits_rdev(struct bio *bi)
4229 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4231 if (bio_sectors(bi) > queue_max_sectors(q))
4232 return 0;
4233 blk_recount_segments(q, bi);
4234 if (bi->bi_phys_segments > queue_max_segments(q))
4235 return 0;
4237 if (q->merge_bvec_fn)
4238 /* it's too hard to apply the merge_bvec_fn at this stage,
4239 * just just give up
4241 return 0;
4243 return 1;
4247 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4249 struct r5conf *conf = mddev->private;
4250 int dd_idx;
4251 struct bio* align_bi;
4252 struct md_rdev *rdev;
4253 sector_t end_sector;
4255 if (!in_chunk_boundary(mddev, raid_bio)) {
4256 pr_debug("chunk_aligned_read : non aligned\n");
4257 return 0;
4260 * use bio_clone_mddev to make a copy of the bio
4262 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4263 if (!align_bi)
4264 return 0;
4266 * set bi_end_io to a new function, and set bi_private to the
4267 * original bio.
4269 align_bi->bi_end_io = raid5_align_endio;
4270 align_bi->bi_private = raid_bio;
4272 * compute position
4274 align_bi->bi_iter.bi_sector =
4275 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4276 0, &dd_idx, NULL);
4278 end_sector = bio_end_sector(align_bi);
4279 rcu_read_lock();
4280 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4281 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4282 rdev->recovery_offset < end_sector) {
4283 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4284 if (rdev &&
4285 (test_bit(Faulty, &rdev->flags) ||
4286 !(test_bit(In_sync, &rdev->flags) ||
4287 rdev->recovery_offset >= end_sector)))
4288 rdev = NULL;
4290 if (rdev) {
4291 sector_t first_bad;
4292 int bad_sectors;
4294 atomic_inc(&rdev->nr_pending);
4295 rcu_read_unlock();
4296 raid_bio->bi_next = (void*)rdev;
4297 align_bi->bi_bdev = rdev->bdev;
4298 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4300 if (!bio_fits_rdev(align_bi) ||
4301 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4302 bio_sectors(align_bi),
4303 &first_bad, &bad_sectors)) {
4304 /* too big in some way, or has a known bad block */
4305 bio_put(align_bi);
4306 rdev_dec_pending(rdev, mddev);
4307 return 0;
4310 /* No reshape active, so we can trust rdev->data_offset */
4311 align_bi->bi_iter.bi_sector += rdev->data_offset;
4313 spin_lock_irq(&conf->device_lock);
4314 wait_event_lock_irq(conf->wait_for_stripe,
4315 conf->quiesce == 0,
4316 conf->device_lock);
4317 atomic_inc(&conf->active_aligned_reads);
4318 spin_unlock_irq(&conf->device_lock);
4320 if (mddev->gendisk)
4321 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4322 align_bi, disk_devt(mddev->gendisk),
4323 raid_bio->bi_iter.bi_sector);
4324 generic_make_request(align_bi);
4325 return 1;
4326 } else {
4327 rcu_read_unlock();
4328 bio_put(align_bi);
4329 return 0;
4333 /* __get_priority_stripe - get the next stripe to process
4335 * Full stripe writes are allowed to pass preread active stripes up until
4336 * the bypass_threshold is exceeded. In general the bypass_count
4337 * increments when the handle_list is handled before the hold_list; however, it
4338 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4339 * stripe with in flight i/o. The bypass_count will be reset when the
4340 * head of the hold_list has changed, i.e. the head was promoted to the
4341 * handle_list.
4343 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4345 struct stripe_head *sh = NULL, *tmp;
4346 struct list_head *handle_list = NULL;
4347 struct r5worker_group *wg = NULL;
4349 if (conf->worker_cnt_per_group == 0) {
4350 handle_list = &conf->handle_list;
4351 } else if (group != ANY_GROUP) {
4352 handle_list = &conf->worker_groups[group].handle_list;
4353 wg = &conf->worker_groups[group];
4354 } else {
4355 int i;
4356 for (i = 0; i < conf->group_cnt; i++) {
4357 handle_list = &conf->worker_groups[i].handle_list;
4358 wg = &conf->worker_groups[i];
4359 if (!list_empty(handle_list))
4360 break;
4364 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4365 __func__,
4366 list_empty(handle_list) ? "empty" : "busy",
4367 list_empty(&conf->hold_list) ? "empty" : "busy",
4368 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4370 if (!list_empty(handle_list)) {
4371 sh = list_entry(handle_list->next, typeof(*sh), lru);
4373 if (list_empty(&conf->hold_list))
4374 conf->bypass_count = 0;
4375 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4376 if (conf->hold_list.next == conf->last_hold)
4377 conf->bypass_count++;
4378 else {
4379 conf->last_hold = conf->hold_list.next;
4380 conf->bypass_count -= conf->bypass_threshold;
4381 if (conf->bypass_count < 0)
4382 conf->bypass_count = 0;
4385 } else if (!list_empty(&conf->hold_list) &&
4386 ((conf->bypass_threshold &&
4387 conf->bypass_count > conf->bypass_threshold) ||
4388 atomic_read(&conf->pending_full_writes) == 0)) {
4390 list_for_each_entry(tmp, &conf->hold_list, lru) {
4391 if (conf->worker_cnt_per_group == 0 ||
4392 group == ANY_GROUP ||
4393 !cpu_online(tmp->cpu) ||
4394 cpu_to_group(tmp->cpu) == group) {
4395 sh = tmp;
4396 break;
4400 if (sh) {
4401 conf->bypass_count -= conf->bypass_threshold;
4402 if (conf->bypass_count < 0)
4403 conf->bypass_count = 0;
4405 wg = NULL;
4408 if (!sh)
4409 return NULL;
4411 if (wg) {
4412 wg->stripes_cnt--;
4413 sh->group = NULL;
4415 list_del_init(&sh->lru);
4416 BUG_ON(atomic_inc_return(&sh->count) != 1);
4417 return sh;
4420 struct raid5_plug_cb {
4421 struct blk_plug_cb cb;
4422 struct list_head list;
4423 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4426 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4428 struct raid5_plug_cb *cb = container_of(
4429 blk_cb, struct raid5_plug_cb, cb);
4430 struct stripe_head *sh;
4431 struct mddev *mddev = cb->cb.data;
4432 struct r5conf *conf = mddev->private;
4433 int cnt = 0;
4434 int hash;
4436 if (cb->list.next && !list_empty(&cb->list)) {
4437 spin_lock_irq(&conf->device_lock);
4438 while (!list_empty(&cb->list)) {
4439 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4440 list_del_init(&sh->lru);
4442 * avoid race release_stripe_plug() sees
4443 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4444 * is still in our list
4446 smp_mb__before_atomic();
4447 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4449 * STRIPE_ON_RELEASE_LIST could be set here. In that
4450 * case, the count is always > 1 here
4452 hash = sh->hash_lock_index;
4453 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4454 cnt++;
4456 spin_unlock_irq(&conf->device_lock);
4458 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4459 NR_STRIPE_HASH_LOCKS);
4460 if (mddev->queue)
4461 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4462 kfree(cb);
4465 static void release_stripe_plug(struct mddev *mddev,
4466 struct stripe_head *sh)
4468 struct blk_plug_cb *blk_cb = blk_check_plugged(
4469 raid5_unplug, mddev,
4470 sizeof(struct raid5_plug_cb));
4471 struct raid5_plug_cb *cb;
4473 if (!blk_cb) {
4474 release_stripe(sh);
4475 return;
4478 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4480 if (cb->list.next == NULL) {
4481 int i;
4482 INIT_LIST_HEAD(&cb->list);
4483 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4484 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4487 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4488 list_add_tail(&sh->lru, &cb->list);
4489 else
4490 release_stripe(sh);
4493 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4495 struct r5conf *conf = mddev->private;
4496 sector_t logical_sector, last_sector;
4497 struct stripe_head *sh;
4498 int remaining;
4499 int stripe_sectors;
4501 if (mddev->reshape_position != MaxSector)
4502 /* Skip discard while reshape is happening */
4503 return;
4505 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4506 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4508 bi->bi_next = NULL;
4509 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4511 stripe_sectors = conf->chunk_sectors *
4512 (conf->raid_disks - conf->max_degraded);
4513 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4514 stripe_sectors);
4515 sector_div(last_sector, stripe_sectors);
4517 logical_sector *= conf->chunk_sectors;
4518 last_sector *= conf->chunk_sectors;
4520 for (; logical_sector < last_sector;
4521 logical_sector += STRIPE_SECTORS) {
4522 DEFINE_WAIT(w);
4523 int d;
4524 again:
4525 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4526 prepare_to_wait(&conf->wait_for_overlap, &w,
4527 TASK_UNINTERRUPTIBLE);
4528 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4529 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4530 release_stripe(sh);
4531 schedule();
4532 goto again;
4534 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4535 spin_lock_irq(&sh->stripe_lock);
4536 for (d = 0; d < conf->raid_disks; d++) {
4537 if (d == sh->pd_idx || d == sh->qd_idx)
4538 continue;
4539 if (sh->dev[d].towrite || sh->dev[d].toread) {
4540 set_bit(R5_Overlap, &sh->dev[d].flags);
4541 spin_unlock_irq(&sh->stripe_lock);
4542 release_stripe(sh);
4543 schedule();
4544 goto again;
4547 set_bit(STRIPE_DISCARD, &sh->state);
4548 finish_wait(&conf->wait_for_overlap, &w);
4549 for (d = 0; d < conf->raid_disks; d++) {
4550 if (d == sh->pd_idx || d == sh->qd_idx)
4551 continue;
4552 sh->dev[d].towrite = bi;
4553 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4554 raid5_inc_bi_active_stripes(bi);
4556 spin_unlock_irq(&sh->stripe_lock);
4557 if (conf->mddev->bitmap) {
4558 for (d = 0;
4559 d < conf->raid_disks - conf->max_degraded;
4560 d++)
4561 bitmap_startwrite(mddev->bitmap,
4562 sh->sector,
4563 STRIPE_SECTORS,
4565 sh->bm_seq = conf->seq_flush + 1;
4566 set_bit(STRIPE_BIT_DELAY, &sh->state);
4569 set_bit(STRIPE_HANDLE, &sh->state);
4570 clear_bit(STRIPE_DELAYED, &sh->state);
4571 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4572 atomic_inc(&conf->preread_active_stripes);
4573 release_stripe_plug(mddev, sh);
4576 remaining = raid5_dec_bi_active_stripes(bi);
4577 if (remaining == 0) {
4578 md_write_end(mddev);
4579 bio_endio(bi, 0);
4583 static void make_request(struct mddev *mddev, struct bio * bi)
4585 struct r5conf *conf = mddev->private;
4586 int dd_idx;
4587 sector_t new_sector;
4588 sector_t logical_sector, last_sector;
4589 struct stripe_head *sh;
4590 const int rw = bio_data_dir(bi);
4591 int remaining;
4592 DEFINE_WAIT(w);
4593 bool do_prepare;
4595 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4596 md_flush_request(mddev, bi);
4597 return;
4600 md_write_start(mddev, bi);
4602 if (rw == READ &&
4603 mddev->reshape_position == MaxSector &&
4604 chunk_aligned_read(mddev,bi))
4605 return;
4607 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4608 make_discard_request(mddev, bi);
4609 return;
4612 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4613 last_sector = bio_end_sector(bi);
4614 bi->bi_next = NULL;
4615 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4617 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4618 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4619 int previous;
4620 int seq;
4622 do_prepare = false;
4623 retry:
4624 seq = read_seqcount_begin(&conf->gen_lock);
4625 previous = 0;
4626 if (do_prepare)
4627 prepare_to_wait(&conf->wait_for_overlap, &w,
4628 TASK_UNINTERRUPTIBLE);
4629 if (unlikely(conf->reshape_progress != MaxSector)) {
4630 /* spinlock is needed as reshape_progress may be
4631 * 64bit on a 32bit platform, and so it might be
4632 * possible to see a half-updated value
4633 * Of course reshape_progress could change after
4634 * the lock is dropped, so once we get a reference
4635 * to the stripe that we think it is, we will have
4636 * to check again.
4638 spin_lock_irq(&conf->device_lock);
4639 if (mddev->reshape_backwards
4640 ? logical_sector < conf->reshape_progress
4641 : logical_sector >= conf->reshape_progress) {
4642 previous = 1;
4643 } else {
4644 if (mddev->reshape_backwards
4645 ? logical_sector < conf->reshape_safe
4646 : logical_sector >= conf->reshape_safe) {
4647 spin_unlock_irq(&conf->device_lock);
4648 schedule();
4649 do_prepare = true;
4650 goto retry;
4653 spin_unlock_irq(&conf->device_lock);
4656 new_sector = raid5_compute_sector(conf, logical_sector,
4657 previous,
4658 &dd_idx, NULL);
4659 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4660 (unsigned long long)new_sector,
4661 (unsigned long long)logical_sector);
4663 sh = get_active_stripe(conf, new_sector, previous,
4664 (bi->bi_rw&RWA_MASK), 0);
4665 if (sh) {
4666 if (unlikely(previous)) {
4667 /* expansion might have moved on while waiting for a
4668 * stripe, so we must do the range check again.
4669 * Expansion could still move past after this
4670 * test, but as we are holding a reference to
4671 * 'sh', we know that if that happens,
4672 * STRIPE_EXPANDING will get set and the expansion
4673 * won't proceed until we finish with the stripe.
4675 int must_retry = 0;
4676 spin_lock_irq(&conf->device_lock);
4677 if (mddev->reshape_backwards
4678 ? logical_sector >= conf->reshape_progress
4679 : logical_sector < conf->reshape_progress)
4680 /* mismatch, need to try again */
4681 must_retry = 1;
4682 spin_unlock_irq(&conf->device_lock);
4683 if (must_retry) {
4684 release_stripe(sh);
4685 schedule();
4686 do_prepare = true;
4687 goto retry;
4690 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4691 /* Might have got the wrong stripe_head
4692 * by accident
4694 release_stripe(sh);
4695 goto retry;
4698 if (rw == WRITE &&
4699 logical_sector >= mddev->suspend_lo &&
4700 logical_sector < mddev->suspend_hi) {
4701 release_stripe(sh);
4702 /* As the suspend_* range is controlled by
4703 * userspace, we want an interruptible
4704 * wait.
4706 flush_signals(current);
4707 prepare_to_wait(&conf->wait_for_overlap,
4708 &w, TASK_INTERRUPTIBLE);
4709 if (logical_sector >= mddev->suspend_lo &&
4710 logical_sector < mddev->suspend_hi) {
4711 schedule();
4712 do_prepare = true;
4714 goto retry;
4717 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4718 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4719 /* Stripe is busy expanding or
4720 * add failed due to overlap. Flush everything
4721 * and wait a while
4723 md_wakeup_thread(mddev->thread);
4724 release_stripe(sh);
4725 schedule();
4726 do_prepare = true;
4727 goto retry;
4729 set_bit(STRIPE_HANDLE, &sh->state);
4730 clear_bit(STRIPE_DELAYED, &sh->state);
4731 if ((bi->bi_rw & REQ_SYNC) &&
4732 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4733 atomic_inc(&conf->preread_active_stripes);
4734 release_stripe_plug(mddev, sh);
4735 } else {
4736 /* cannot get stripe for read-ahead, just give-up */
4737 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4738 break;
4741 finish_wait(&conf->wait_for_overlap, &w);
4743 remaining = raid5_dec_bi_active_stripes(bi);
4744 if (remaining == 0) {
4746 if ( rw == WRITE )
4747 md_write_end(mddev);
4749 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4750 bi, 0);
4751 bio_endio(bi, 0);
4755 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4757 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4759 /* reshaping is quite different to recovery/resync so it is
4760 * handled quite separately ... here.
4762 * On each call to sync_request, we gather one chunk worth of
4763 * destination stripes and flag them as expanding.
4764 * Then we find all the source stripes and request reads.
4765 * As the reads complete, handle_stripe will copy the data
4766 * into the destination stripe and release that stripe.
4768 struct r5conf *conf = mddev->private;
4769 struct stripe_head *sh;
4770 sector_t first_sector, last_sector;
4771 int raid_disks = conf->previous_raid_disks;
4772 int data_disks = raid_disks - conf->max_degraded;
4773 int new_data_disks = conf->raid_disks - conf->max_degraded;
4774 int i;
4775 int dd_idx;
4776 sector_t writepos, readpos, safepos;
4777 sector_t stripe_addr;
4778 int reshape_sectors;
4779 struct list_head stripes;
4781 if (sector_nr == 0) {
4782 /* If restarting in the middle, skip the initial sectors */
4783 if (mddev->reshape_backwards &&
4784 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4785 sector_nr = raid5_size(mddev, 0, 0)
4786 - conf->reshape_progress;
4787 } else if (!mddev->reshape_backwards &&
4788 conf->reshape_progress > 0)
4789 sector_nr = conf->reshape_progress;
4790 sector_div(sector_nr, new_data_disks);
4791 if (sector_nr) {
4792 mddev->curr_resync_completed = sector_nr;
4793 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4794 *skipped = 1;
4795 return sector_nr;
4799 /* We need to process a full chunk at a time.
4800 * If old and new chunk sizes differ, we need to process the
4801 * largest of these
4803 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4804 reshape_sectors = mddev->new_chunk_sectors;
4805 else
4806 reshape_sectors = mddev->chunk_sectors;
4808 /* We update the metadata at least every 10 seconds, or when
4809 * the data about to be copied would over-write the source of
4810 * the data at the front of the range. i.e. one new_stripe
4811 * along from reshape_progress new_maps to after where
4812 * reshape_safe old_maps to
4814 writepos = conf->reshape_progress;
4815 sector_div(writepos, new_data_disks);
4816 readpos = conf->reshape_progress;
4817 sector_div(readpos, data_disks);
4818 safepos = conf->reshape_safe;
4819 sector_div(safepos, data_disks);
4820 if (mddev->reshape_backwards) {
4821 writepos -= min_t(sector_t, reshape_sectors, writepos);
4822 readpos += reshape_sectors;
4823 safepos += reshape_sectors;
4824 } else {
4825 writepos += reshape_sectors;
4826 readpos -= min_t(sector_t, reshape_sectors, readpos);
4827 safepos -= min_t(sector_t, reshape_sectors, safepos);
4830 /* Having calculated the 'writepos' possibly use it
4831 * to set 'stripe_addr' which is where we will write to.
4833 if (mddev->reshape_backwards) {
4834 BUG_ON(conf->reshape_progress == 0);
4835 stripe_addr = writepos;
4836 BUG_ON((mddev->dev_sectors &
4837 ~((sector_t)reshape_sectors - 1))
4838 - reshape_sectors - stripe_addr
4839 != sector_nr);
4840 } else {
4841 BUG_ON(writepos != sector_nr + reshape_sectors);
4842 stripe_addr = sector_nr;
4845 /* 'writepos' is the most advanced device address we might write.
4846 * 'readpos' is the least advanced device address we might read.
4847 * 'safepos' is the least address recorded in the metadata as having
4848 * been reshaped.
4849 * If there is a min_offset_diff, these are adjusted either by
4850 * increasing the safepos/readpos if diff is negative, or
4851 * increasing writepos if diff is positive.
4852 * If 'readpos' is then behind 'writepos', there is no way that we can
4853 * ensure safety in the face of a crash - that must be done by userspace
4854 * making a backup of the data. So in that case there is no particular
4855 * rush to update metadata.
4856 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4857 * update the metadata to advance 'safepos' to match 'readpos' so that
4858 * we can be safe in the event of a crash.
4859 * So we insist on updating metadata if safepos is behind writepos and
4860 * readpos is beyond writepos.
4861 * In any case, update the metadata every 10 seconds.
4862 * Maybe that number should be configurable, but I'm not sure it is
4863 * worth it.... maybe it could be a multiple of safemode_delay???
4865 if (conf->min_offset_diff < 0) {
4866 safepos += -conf->min_offset_diff;
4867 readpos += -conf->min_offset_diff;
4868 } else
4869 writepos += conf->min_offset_diff;
4871 if ((mddev->reshape_backwards
4872 ? (safepos > writepos && readpos < writepos)
4873 : (safepos < writepos && readpos > writepos)) ||
4874 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4875 /* Cannot proceed until we've updated the superblock... */
4876 wait_event(conf->wait_for_overlap,
4877 atomic_read(&conf->reshape_stripes)==0
4878 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4879 if (atomic_read(&conf->reshape_stripes) != 0)
4880 return 0;
4881 mddev->reshape_position = conf->reshape_progress;
4882 mddev->curr_resync_completed = sector_nr;
4883 conf->reshape_checkpoint = jiffies;
4884 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4885 md_wakeup_thread(mddev->thread);
4886 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4887 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4888 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4889 return 0;
4890 spin_lock_irq(&conf->device_lock);
4891 conf->reshape_safe = mddev->reshape_position;
4892 spin_unlock_irq(&conf->device_lock);
4893 wake_up(&conf->wait_for_overlap);
4894 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4897 INIT_LIST_HEAD(&stripes);
4898 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4899 int j;
4900 int skipped_disk = 0;
4901 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4902 set_bit(STRIPE_EXPANDING, &sh->state);
4903 atomic_inc(&conf->reshape_stripes);
4904 /* If any of this stripe is beyond the end of the old
4905 * array, then we need to zero those blocks
4907 for (j=sh->disks; j--;) {
4908 sector_t s;
4909 if (j == sh->pd_idx)
4910 continue;
4911 if (conf->level == 6 &&
4912 j == sh->qd_idx)
4913 continue;
4914 s = compute_blocknr(sh, j, 0);
4915 if (s < raid5_size(mddev, 0, 0)) {
4916 skipped_disk = 1;
4917 continue;
4919 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4920 set_bit(R5_Expanded, &sh->dev[j].flags);
4921 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4923 if (!skipped_disk) {
4924 set_bit(STRIPE_EXPAND_READY, &sh->state);
4925 set_bit(STRIPE_HANDLE, &sh->state);
4927 list_add(&sh->lru, &stripes);
4929 spin_lock_irq(&conf->device_lock);
4930 if (mddev->reshape_backwards)
4931 conf->reshape_progress -= reshape_sectors * new_data_disks;
4932 else
4933 conf->reshape_progress += reshape_sectors * new_data_disks;
4934 spin_unlock_irq(&conf->device_lock);
4935 /* Ok, those stripe are ready. We can start scheduling
4936 * reads on the source stripes.
4937 * The source stripes are determined by mapping the first and last
4938 * block on the destination stripes.
4940 first_sector =
4941 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4942 1, &dd_idx, NULL);
4943 last_sector =
4944 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4945 * new_data_disks - 1),
4946 1, &dd_idx, NULL);
4947 if (last_sector >= mddev->dev_sectors)
4948 last_sector = mddev->dev_sectors - 1;
4949 while (first_sector <= last_sector) {
4950 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4951 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4952 set_bit(STRIPE_HANDLE, &sh->state);
4953 release_stripe(sh);
4954 first_sector += STRIPE_SECTORS;
4956 /* Now that the sources are clearly marked, we can release
4957 * the destination stripes
4959 while (!list_empty(&stripes)) {
4960 sh = list_entry(stripes.next, struct stripe_head, lru);
4961 list_del_init(&sh->lru);
4962 release_stripe(sh);
4964 /* If this takes us to the resync_max point where we have to pause,
4965 * then we need to write out the superblock.
4967 sector_nr += reshape_sectors;
4968 if ((sector_nr - mddev->curr_resync_completed) * 2
4969 >= mddev->resync_max - mddev->curr_resync_completed) {
4970 /* Cannot proceed until we've updated the superblock... */
4971 wait_event(conf->wait_for_overlap,
4972 atomic_read(&conf->reshape_stripes) == 0
4973 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4974 if (atomic_read(&conf->reshape_stripes) != 0)
4975 goto ret;
4976 mddev->reshape_position = conf->reshape_progress;
4977 mddev->curr_resync_completed = sector_nr;
4978 conf->reshape_checkpoint = jiffies;
4979 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4980 md_wakeup_thread(mddev->thread);
4981 wait_event(mddev->sb_wait,
4982 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4983 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4984 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4985 goto ret;
4986 spin_lock_irq(&conf->device_lock);
4987 conf->reshape_safe = mddev->reshape_position;
4988 spin_unlock_irq(&conf->device_lock);
4989 wake_up(&conf->wait_for_overlap);
4990 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4992 ret:
4993 return reshape_sectors;
4996 /* FIXME go_faster isn't used */
4997 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4999 struct r5conf *conf = mddev->private;
5000 struct stripe_head *sh;
5001 sector_t max_sector = mddev->dev_sectors;
5002 sector_t sync_blocks;
5003 int still_degraded = 0;
5004 int i;
5006 if (sector_nr >= max_sector) {
5007 /* just being told to finish up .. nothing much to do */
5009 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5010 end_reshape(conf);
5011 return 0;
5014 if (mddev->curr_resync < max_sector) /* aborted */
5015 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5016 &sync_blocks, 1);
5017 else /* completed sync */
5018 conf->fullsync = 0;
5019 bitmap_close_sync(mddev->bitmap);
5021 return 0;
5024 /* Allow raid5_quiesce to complete */
5025 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5027 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5028 return reshape_request(mddev, sector_nr, skipped);
5030 /* No need to check resync_max as we never do more than one
5031 * stripe, and as resync_max will always be on a chunk boundary,
5032 * if the check in md_do_sync didn't fire, there is no chance
5033 * of overstepping resync_max here
5036 /* if there is too many failed drives and we are trying
5037 * to resync, then assert that we are finished, because there is
5038 * nothing we can do.
5040 if (mddev->degraded >= conf->max_degraded &&
5041 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5042 sector_t rv = mddev->dev_sectors - sector_nr;
5043 *skipped = 1;
5044 return rv;
5046 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5047 !conf->fullsync &&
5048 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5049 sync_blocks >= STRIPE_SECTORS) {
5050 /* we can skip this block, and probably more */
5051 sync_blocks /= STRIPE_SECTORS;
5052 *skipped = 1;
5053 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5056 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5058 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5059 if (sh == NULL) {
5060 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5061 /* make sure we don't swamp the stripe cache if someone else
5062 * is trying to get access
5064 schedule_timeout_uninterruptible(1);
5066 /* Need to check if array will still be degraded after recovery/resync
5067 * We don't need to check the 'failed' flag as when that gets set,
5068 * recovery aborts.
5070 for (i = 0; i < conf->raid_disks; i++)
5071 if (conf->disks[i].rdev == NULL)
5072 still_degraded = 1;
5074 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5076 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5077 set_bit(STRIPE_HANDLE, &sh->state);
5079 release_stripe(sh);
5081 return STRIPE_SECTORS;
5084 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5086 /* We may not be able to submit a whole bio at once as there
5087 * may not be enough stripe_heads available.
5088 * We cannot pre-allocate enough stripe_heads as we may need
5089 * more than exist in the cache (if we allow ever large chunks).
5090 * So we do one stripe head at a time and record in
5091 * ->bi_hw_segments how many have been done.
5093 * We *know* that this entire raid_bio is in one chunk, so
5094 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5096 struct stripe_head *sh;
5097 int dd_idx;
5098 sector_t sector, logical_sector, last_sector;
5099 int scnt = 0;
5100 int remaining;
5101 int handled = 0;
5103 logical_sector = raid_bio->bi_iter.bi_sector &
5104 ~((sector_t)STRIPE_SECTORS-1);
5105 sector = raid5_compute_sector(conf, logical_sector,
5106 0, &dd_idx, NULL);
5107 last_sector = bio_end_sector(raid_bio);
5109 for (; logical_sector < last_sector;
5110 logical_sector += STRIPE_SECTORS,
5111 sector += STRIPE_SECTORS,
5112 scnt++) {
5114 if (scnt < raid5_bi_processed_stripes(raid_bio))
5115 /* already done this stripe */
5116 continue;
5118 sh = get_active_stripe(conf, sector, 0, 1, 1);
5120 if (!sh) {
5121 /* failed to get a stripe - must wait */
5122 raid5_set_bi_processed_stripes(raid_bio, scnt);
5123 conf->retry_read_aligned = raid_bio;
5124 return handled;
5127 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5128 release_stripe(sh);
5129 raid5_set_bi_processed_stripes(raid_bio, scnt);
5130 conf->retry_read_aligned = raid_bio;
5131 return handled;
5134 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5135 handle_stripe(sh);
5136 release_stripe(sh);
5137 handled++;
5139 remaining = raid5_dec_bi_active_stripes(raid_bio);
5140 if (remaining == 0) {
5141 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5142 raid_bio, 0);
5143 bio_endio(raid_bio, 0);
5145 if (atomic_dec_and_test(&conf->active_aligned_reads))
5146 wake_up(&conf->wait_for_stripe);
5147 return handled;
5150 static int handle_active_stripes(struct r5conf *conf, int group,
5151 struct r5worker *worker,
5152 struct list_head *temp_inactive_list)
5154 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5155 int i, batch_size = 0, hash;
5156 bool release_inactive = false;
5158 while (batch_size < MAX_STRIPE_BATCH &&
5159 (sh = __get_priority_stripe(conf, group)) != NULL)
5160 batch[batch_size++] = sh;
5162 if (batch_size == 0) {
5163 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5164 if (!list_empty(temp_inactive_list + i))
5165 break;
5166 if (i == NR_STRIPE_HASH_LOCKS)
5167 return batch_size;
5168 release_inactive = true;
5170 spin_unlock_irq(&conf->device_lock);
5172 release_inactive_stripe_list(conf, temp_inactive_list,
5173 NR_STRIPE_HASH_LOCKS);
5175 if (release_inactive) {
5176 spin_lock_irq(&conf->device_lock);
5177 return 0;
5180 for (i = 0; i < batch_size; i++)
5181 handle_stripe(batch[i]);
5183 cond_resched();
5185 spin_lock_irq(&conf->device_lock);
5186 for (i = 0; i < batch_size; i++) {
5187 hash = batch[i]->hash_lock_index;
5188 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5190 return batch_size;
5193 static void raid5_do_work(struct work_struct *work)
5195 struct r5worker *worker = container_of(work, struct r5worker, work);
5196 struct r5worker_group *group = worker->group;
5197 struct r5conf *conf = group->conf;
5198 int group_id = group - conf->worker_groups;
5199 int handled;
5200 struct blk_plug plug;
5202 pr_debug("+++ raid5worker active\n");
5204 blk_start_plug(&plug);
5205 handled = 0;
5206 spin_lock_irq(&conf->device_lock);
5207 while (1) {
5208 int batch_size, released;
5210 released = release_stripe_list(conf, worker->temp_inactive_list);
5212 batch_size = handle_active_stripes(conf, group_id, worker,
5213 worker->temp_inactive_list);
5214 worker->working = false;
5215 if (!batch_size && !released)
5216 break;
5217 handled += batch_size;
5219 pr_debug("%d stripes handled\n", handled);
5221 spin_unlock_irq(&conf->device_lock);
5222 blk_finish_plug(&plug);
5224 pr_debug("--- raid5worker inactive\n");
5228 * This is our raid5 kernel thread.
5230 * We scan the hash table for stripes which can be handled now.
5231 * During the scan, completed stripes are saved for us by the interrupt
5232 * handler, so that they will not have to wait for our next wakeup.
5234 static void raid5d(struct md_thread *thread)
5236 struct mddev *mddev = thread->mddev;
5237 struct r5conf *conf = mddev->private;
5238 int handled;
5239 struct blk_plug plug;
5241 pr_debug("+++ raid5d active\n");
5243 md_check_recovery(mddev);
5245 blk_start_plug(&plug);
5246 handled = 0;
5247 spin_lock_irq(&conf->device_lock);
5248 while (1) {
5249 struct bio *bio;
5250 int batch_size, released;
5252 released = release_stripe_list(conf, conf->temp_inactive_list);
5254 if (
5255 !list_empty(&conf->bitmap_list)) {
5256 /* Now is a good time to flush some bitmap updates */
5257 conf->seq_flush++;
5258 spin_unlock_irq(&conf->device_lock);
5259 bitmap_unplug(mddev->bitmap);
5260 spin_lock_irq(&conf->device_lock);
5261 conf->seq_write = conf->seq_flush;
5262 activate_bit_delay(conf, conf->temp_inactive_list);
5264 raid5_activate_delayed(conf);
5266 while ((bio = remove_bio_from_retry(conf))) {
5267 int ok;
5268 spin_unlock_irq(&conf->device_lock);
5269 ok = retry_aligned_read(conf, bio);
5270 spin_lock_irq(&conf->device_lock);
5271 if (!ok)
5272 break;
5273 handled++;
5276 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5277 conf->temp_inactive_list);
5278 if (!batch_size && !released)
5279 break;
5280 handled += batch_size;
5282 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5283 spin_unlock_irq(&conf->device_lock);
5284 md_check_recovery(mddev);
5285 spin_lock_irq(&conf->device_lock);
5288 pr_debug("%d stripes handled\n", handled);
5290 spin_unlock_irq(&conf->device_lock);
5292 async_tx_issue_pending_all();
5293 blk_finish_plug(&plug);
5295 pr_debug("--- raid5d inactive\n");
5298 static ssize_t
5299 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5301 struct r5conf *conf = mddev->private;
5302 if (conf)
5303 return sprintf(page, "%d\n", conf->max_nr_stripes);
5304 else
5305 return 0;
5309 raid5_set_cache_size(struct mddev *mddev, int size)
5311 struct r5conf *conf = mddev->private;
5312 int err;
5313 int hash;
5315 if (size <= 16 || size > 32768)
5316 return -EINVAL;
5317 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5318 while (size < conf->max_nr_stripes) {
5319 if (drop_one_stripe(conf, hash))
5320 conf->max_nr_stripes--;
5321 else
5322 break;
5323 hash--;
5324 if (hash < 0)
5325 hash = NR_STRIPE_HASH_LOCKS - 1;
5327 err = md_allow_write(mddev);
5328 if (err)
5329 return err;
5330 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5331 while (size > conf->max_nr_stripes) {
5332 if (grow_one_stripe(conf, hash))
5333 conf->max_nr_stripes++;
5334 else break;
5335 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5337 return 0;
5339 EXPORT_SYMBOL(raid5_set_cache_size);
5341 static ssize_t
5342 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5344 struct r5conf *conf = mddev->private;
5345 unsigned long new;
5346 int err;
5348 if (len >= PAGE_SIZE)
5349 return -EINVAL;
5350 if (!conf)
5351 return -ENODEV;
5353 if (kstrtoul(page, 10, &new))
5354 return -EINVAL;
5355 err = raid5_set_cache_size(mddev, new);
5356 if (err)
5357 return err;
5358 return len;
5361 static struct md_sysfs_entry
5362 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5363 raid5_show_stripe_cache_size,
5364 raid5_store_stripe_cache_size);
5366 static ssize_t
5367 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5369 struct r5conf *conf = mddev->private;
5370 if (conf)
5371 return sprintf(page, "%d\n", conf->bypass_threshold);
5372 else
5373 return 0;
5376 static ssize_t
5377 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5379 struct r5conf *conf = mddev->private;
5380 unsigned long new;
5381 if (len >= PAGE_SIZE)
5382 return -EINVAL;
5383 if (!conf)
5384 return -ENODEV;
5386 if (kstrtoul(page, 10, &new))
5387 return -EINVAL;
5388 if (new > conf->max_nr_stripes)
5389 return -EINVAL;
5390 conf->bypass_threshold = new;
5391 return len;
5394 static struct md_sysfs_entry
5395 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5396 S_IRUGO | S_IWUSR,
5397 raid5_show_preread_threshold,
5398 raid5_store_preread_threshold);
5400 static ssize_t
5401 raid5_show_skip_copy(struct mddev *mddev, char *page)
5403 struct r5conf *conf = mddev->private;
5404 if (conf)
5405 return sprintf(page, "%d\n", conf->skip_copy);
5406 else
5407 return 0;
5410 static ssize_t
5411 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5413 struct r5conf *conf = mddev->private;
5414 unsigned long new;
5415 if (len >= PAGE_SIZE)
5416 return -EINVAL;
5417 if (!conf)
5418 return -ENODEV;
5420 if (kstrtoul(page, 10, &new))
5421 return -EINVAL;
5422 new = !!new;
5423 if (new == conf->skip_copy)
5424 return len;
5426 mddev_suspend(mddev);
5427 conf->skip_copy = new;
5428 if (new)
5429 mddev->queue->backing_dev_info.capabilities |=
5430 BDI_CAP_STABLE_WRITES;
5431 else
5432 mddev->queue->backing_dev_info.capabilities &=
5433 ~BDI_CAP_STABLE_WRITES;
5434 mddev_resume(mddev);
5435 return len;
5438 static struct md_sysfs_entry
5439 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5440 raid5_show_skip_copy,
5441 raid5_store_skip_copy);
5444 static ssize_t
5445 stripe_cache_active_show(struct mddev *mddev, char *page)
5447 struct r5conf *conf = mddev->private;
5448 if (conf)
5449 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5450 else
5451 return 0;
5454 static struct md_sysfs_entry
5455 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5457 static ssize_t
5458 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5460 struct r5conf *conf = mddev->private;
5461 if (conf)
5462 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5463 else
5464 return 0;
5467 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5468 int *group_cnt,
5469 int *worker_cnt_per_group,
5470 struct r5worker_group **worker_groups);
5471 static ssize_t
5472 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5474 struct r5conf *conf = mddev->private;
5475 unsigned long new;
5476 int err;
5477 struct r5worker_group *new_groups, *old_groups;
5478 int group_cnt, worker_cnt_per_group;
5480 if (len >= PAGE_SIZE)
5481 return -EINVAL;
5482 if (!conf)
5483 return -ENODEV;
5485 if (kstrtoul(page, 10, &new))
5486 return -EINVAL;
5488 if (new == conf->worker_cnt_per_group)
5489 return len;
5491 mddev_suspend(mddev);
5493 old_groups = conf->worker_groups;
5494 if (old_groups)
5495 flush_workqueue(raid5_wq);
5497 err = alloc_thread_groups(conf, new,
5498 &group_cnt, &worker_cnt_per_group,
5499 &new_groups);
5500 if (!err) {
5501 spin_lock_irq(&conf->device_lock);
5502 conf->group_cnt = group_cnt;
5503 conf->worker_cnt_per_group = worker_cnt_per_group;
5504 conf->worker_groups = new_groups;
5505 spin_unlock_irq(&conf->device_lock);
5507 if (old_groups)
5508 kfree(old_groups[0].workers);
5509 kfree(old_groups);
5512 mddev_resume(mddev);
5514 if (err)
5515 return err;
5516 return len;
5519 static struct md_sysfs_entry
5520 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5521 raid5_show_group_thread_cnt,
5522 raid5_store_group_thread_cnt);
5524 static struct attribute *raid5_attrs[] = {
5525 &raid5_stripecache_size.attr,
5526 &raid5_stripecache_active.attr,
5527 &raid5_preread_bypass_threshold.attr,
5528 &raid5_group_thread_cnt.attr,
5529 &raid5_skip_copy.attr,
5530 NULL,
5532 static struct attribute_group raid5_attrs_group = {
5533 .name = NULL,
5534 .attrs = raid5_attrs,
5537 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5538 int *group_cnt,
5539 int *worker_cnt_per_group,
5540 struct r5worker_group **worker_groups)
5542 int i, j, k;
5543 ssize_t size;
5544 struct r5worker *workers;
5546 *worker_cnt_per_group = cnt;
5547 if (cnt == 0) {
5548 *group_cnt = 0;
5549 *worker_groups = NULL;
5550 return 0;
5552 *group_cnt = num_possible_nodes();
5553 size = sizeof(struct r5worker) * cnt;
5554 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5555 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5556 *group_cnt, GFP_NOIO);
5557 if (!*worker_groups || !workers) {
5558 kfree(workers);
5559 kfree(*worker_groups);
5560 return -ENOMEM;
5563 for (i = 0; i < *group_cnt; i++) {
5564 struct r5worker_group *group;
5566 group = &(*worker_groups)[i];
5567 INIT_LIST_HEAD(&group->handle_list);
5568 group->conf = conf;
5569 group->workers = workers + i * cnt;
5571 for (j = 0; j < cnt; j++) {
5572 struct r5worker *worker = group->workers + j;
5573 worker->group = group;
5574 INIT_WORK(&worker->work, raid5_do_work);
5576 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5577 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5581 return 0;
5584 static void free_thread_groups(struct r5conf *conf)
5586 if (conf->worker_groups)
5587 kfree(conf->worker_groups[0].workers);
5588 kfree(conf->worker_groups);
5589 conf->worker_groups = NULL;
5592 static sector_t
5593 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5595 struct r5conf *conf = mddev->private;
5597 if (!sectors)
5598 sectors = mddev->dev_sectors;
5599 if (!raid_disks)
5600 /* size is defined by the smallest of previous and new size */
5601 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5603 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5604 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5605 return sectors * (raid_disks - conf->max_degraded);
5608 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5610 safe_put_page(percpu->spare_page);
5611 kfree(percpu->scribble);
5612 percpu->spare_page = NULL;
5613 percpu->scribble = NULL;
5616 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5618 if (conf->level == 6 && !percpu->spare_page)
5619 percpu->spare_page = alloc_page(GFP_KERNEL);
5620 if (!percpu->scribble)
5621 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5623 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5624 free_scratch_buffer(conf, percpu);
5625 return -ENOMEM;
5628 return 0;
5631 static void raid5_free_percpu(struct r5conf *conf)
5633 unsigned long cpu;
5635 if (!conf->percpu)
5636 return;
5638 #ifdef CONFIG_HOTPLUG_CPU
5639 unregister_cpu_notifier(&conf->cpu_notify);
5640 #endif
5642 get_online_cpus();
5643 for_each_possible_cpu(cpu)
5644 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5645 put_online_cpus();
5647 free_percpu(conf->percpu);
5650 static void free_conf(struct r5conf *conf)
5652 free_thread_groups(conf);
5653 shrink_stripes(conf);
5654 raid5_free_percpu(conf);
5655 kfree(conf->disks);
5656 kfree(conf->stripe_hashtbl);
5657 kfree(conf);
5660 #ifdef CONFIG_HOTPLUG_CPU
5661 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5662 void *hcpu)
5664 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5665 long cpu = (long)hcpu;
5666 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5668 switch (action) {
5669 case CPU_UP_PREPARE:
5670 case CPU_UP_PREPARE_FROZEN:
5671 if (alloc_scratch_buffer(conf, percpu)) {
5672 pr_err("%s: failed memory allocation for cpu%ld\n",
5673 __func__, cpu);
5674 return notifier_from_errno(-ENOMEM);
5676 break;
5677 case CPU_DEAD:
5678 case CPU_DEAD_FROZEN:
5679 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5680 break;
5681 default:
5682 break;
5684 return NOTIFY_OK;
5686 #endif
5688 static int raid5_alloc_percpu(struct r5conf *conf)
5690 unsigned long cpu;
5691 int err = 0;
5693 conf->percpu = alloc_percpu(struct raid5_percpu);
5694 if (!conf->percpu)
5695 return -ENOMEM;
5697 #ifdef CONFIG_HOTPLUG_CPU
5698 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5699 conf->cpu_notify.priority = 0;
5700 err = register_cpu_notifier(&conf->cpu_notify);
5701 if (err)
5702 return err;
5703 #endif
5705 get_online_cpus();
5706 for_each_present_cpu(cpu) {
5707 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5708 if (err) {
5709 pr_err("%s: failed memory allocation for cpu%ld\n",
5710 __func__, cpu);
5711 break;
5714 put_online_cpus();
5716 return err;
5719 static struct r5conf *setup_conf(struct mddev *mddev)
5721 struct r5conf *conf;
5722 int raid_disk, memory, max_disks;
5723 struct md_rdev *rdev;
5724 struct disk_info *disk;
5725 char pers_name[6];
5726 int i;
5727 int group_cnt, worker_cnt_per_group;
5728 struct r5worker_group *new_group;
5730 if (mddev->new_level != 5
5731 && mddev->new_level != 4
5732 && mddev->new_level != 6) {
5733 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5734 mdname(mddev), mddev->new_level);
5735 return ERR_PTR(-EIO);
5737 if ((mddev->new_level == 5
5738 && !algorithm_valid_raid5(mddev->new_layout)) ||
5739 (mddev->new_level == 6
5740 && !algorithm_valid_raid6(mddev->new_layout))) {
5741 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5742 mdname(mddev), mddev->new_layout);
5743 return ERR_PTR(-EIO);
5745 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5746 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5747 mdname(mddev), mddev->raid_disks);
5748 return ERR_PTR(-EINVAL);
5751 if (!mddev->new_chunk_sectors ||
5752 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5753 !is_power_of_2(mddev->new_chunk_sectors)) {
5754 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5755 mdname(mddev), mddev->new_chunk_sectors << 9);
5756 return ERR_PTR(-EINVAL);
5759 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5760 if (conf == NULL)
5761 goto abort;
5762 /* Don't enable multi-threading by default*/
5763 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5764 &new_group)) {
5765 conf->group_cnt = group_cnt;
5766 conf->worker_cnt_per_group = worker_cnt_per_group;
5767 conf->worker_groups = new_group;
5768 } else
5769 goto abort;
5770 spin_lock_init(&conf->device_lock);
5771 seqcount_init(&conf->gen_lock);
5772 init_waitqueue_head(&conf->wait_for_stripe);
5773 init_waitqueue_head(&conf->wait_for_overlap);
5774 INIT_LIST_HEAD(&conf->handle_list);
5775 INIT_LIST_HEAD(&conf->hold_list);
5776 INIT_LIST_HEAD(&conf->delayed_list);
5777 INIT_LIST_HEAD(&conf->bitmap_list);
5778 init_llist_head(&conf->released_stripes);
5779 atomic_set(&conf->active_stripes, 0);
5780 atomic_set(&conf->preread_active_stripes, 0);
5781 atomic_set(&conf->active_aligned_reads, 0);
5782 conf->bypass_threshold = BYPASS_THRESHOLD;
5783 conf->recovery_disabled = mddev->recovery_disabled - 1;
5785 conf->raid_disks = mddev->raid_disks;
5786 if (mddev->reshape_position == MaxSector)
5787 conf->previous_raid_disks = mddev->raid_disks;
5788 else
5789 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5790 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5791 conf->scribble_len = scribble_len(max_disks);
5793 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5794 GFP_KERNEL);
5795 if (!conf->disks)
5796 goto abort;
5798 conf->mddev = mddev;
5800 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5801 goto abort;
5803 /* We init hash_locks[0] separately to that it can be used
5804 * as the reference lock in the spin_lock_nest_lock() call
5805 * in lock_all_device_hash_locks_irq in order to convince
5806 * lockdep that we know what we are doing.
5808 spin_lock_init(conf->hash_locks);
5809 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5810 spin_lock_init(conf->hash_locks + i);
5812 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5813 INIT_LIST_HEAD(conf->inactive_list + i);
5815 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5816 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5818 conf->level = mddev->new_level;
5819 if (raid5_alloc_percpu(conf) != 0)
5820 goto abort;
5822 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5824 rdev_for_each(rdev, mddev) {
5825 raid_disk = rdev->raid_disk;
5826 if (raid_disk >= max_disks
5827 || raid_disk < 0)
5828 continue;
5829 disk = conf->disks + raid_disk;
5831 if (test_bit(Replacement, &rdev->flags)) {
5832 if (disk->replacement)
5833 goto abort;
5834 disk->replacement = rdev;
5835 } else {
5836 if (disk->rdev)
5837 goto abort;
5838 disk->rdev = rdev;
5841 if (test_bit(In_sync, &rdev->flags)) {
5842 char b[BDEVNAME_SIZE];
5843 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5844 " disk %d\n",
5845 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5846 } else if (rdev->saved_raid_disk != raid_disk)
5847 /* Cannot rely on bitmap to complete recovery */
5848 conf->fullsync = 1;
5851 conf->chunk_sectors = mddev->new_chunk_sectors;
5852 conf->level = mddev->new_level;
5853 if (conf->level == 6)
5854 conf->max_degraded = 2;
5855 else
5856 conf->max_degraded = 1;
5857 conf->algorithm = mddev->new_layout;
5858 conf->reshape_progress = mddev->reshape_position;
5859 if (conf->reshape_progress != MaxSector) {
5860 conf->prev_chunk_sectors = mddev->chunk_sectors;
5861 conf->prev_algo = mddev->layout;
5864 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5865 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5866 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5867 if (grow_stripes(conf, NR_STRIPES)) {
5868 printk(KERN_ERR
5869 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5870 mdname(mddev), memory);
5871 goto abort;
5872 } else
5873 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5874 mdname(mddev), memory);
5876 sprintf(pers_name, "raid%d", mddev->new_level);
5877 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5878 if (!conf->thread) {
5879 printk(KERN_ERR
5880 "md/raid:%s: couldn't allocate thread.\n",
5881 mdname(mddev));
5882 goto abort;
5885 return conf;
5887 abort:
5888 if (conf) {
5889 free_conf(conf);
5890 return ERR_PTR(-EIO);
5891 } else
5892 return ERR_PTR(-ENOMEM);
5896 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5898 switch (algo) {
5899 case ALGORITHM_PARITY_0:
5900 if (raid_disk < max_degraded)
5901 return 1;
5902 break;
5903 case ALGORITHM_PARITY_N:
5904 if (raid_disk >= raid_disks - max_degraded)
5905 return 1;
5906 break;
5907 case ALGORITHM_PARITY_0_6:
5908 if (raid_disk == 0 ||
5909 raid_disk == raid_disks - 1)
5910 return 1;
5911 break;
5912 case ALGORITHM_LEFT_ASYMMETRIC_6:
5913 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5914 case ALGORITHM_LEFT_SYMMETRIC_6:
5915 case ALGORITHM_RIGHT_SYMMETRIC_6:
5916 if (raid_disk == raid_disks - 1)
5917 return 1;
5919 return 0;
5922 static int run(struct mddev *mddev)
5924 struct r5conf *conf;
5925 int working_disks = 0;
5926 int dirty_parity_disks = 0;
5927 struct md_rdev *rdev;
5928 sector_t reshape_offset = 0;
5929 int i;
5930 long long min_offset_diff = 0;
5931 int first = 1;
5933 if (mddev->recovery_cp != MaxSector)
5934 printk(KERN_NOTICE "md/raid:%s: not clean"
5935 " -- starting background reconstruction\n",
5936 mdname(mddev));
5938 rdev_for_each(rdev, mddev) {
5939 long long diff;
5940 if (rdev->raid_disk < 0)
5941 continue;
5942 diff = (rdev->new_data_offset - rdev->data_offset);
5943 if (first) {
5944 min_offset_diff = diff;
5945 first = 0;
5946 } else if (mddev->reshape_backwards &&
5947 diff < min_offset_diff)
5948 min_offset_diff = diff;
5949 else if (!mddev->reshape_backwards &&
5950 diff > min_offset_diff)
5951 min_offset_diff = diff;
5954 if (mddev->reshape_position != MaxSector) {
5955 /* Check that we can continue the reshape.
5956 * Difficulties arise if the stripe we would write to
5957 * next is at or after the stripe we would read from next.
5958 * For a reshape that changes the number of devices, this
5959 * is only possible for a very short time, and mdadm makes
5960 * sure that time appears to have past before assembling
5961 * the array. So we fail if that time hasn't passed.
5962 * For a reshape that keeps the number of devices the same
5963 * mdadm must be monitoring the reshape can keeping the
5964 * critical areas read-only and backed up. It will start
5965 * the array in read-only mode, so we check for that.
5967 sector_t here_new, here_old;
5968 int old_disks;
5969 int max_degraded = (mddev->level == 6 ? 2 : 1);
5971 if (mddev->new_level != mddev->level) {
5972 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5973 "required - aborting.\n",
5974 mdname(mddev));
5975 return -EINVAL;
5977 old_disks = mddev->raid_disks - mddev->delta_disks;
5978 /* reshape_position must be on a new-stripe boundary, and one
5979 * further up in new geometry must map after here in old
5980 * geometry.
5982 here_new = mddev->reshape_position;
5983 if (sector_div(here_new, mddev->new_chunk_sectors *
5984 (mddev->raid_disks - max_degraded))) {
5985 printk(KERN_ERR "md/raid:%s: reshape_position not "
5986 "on a stripe boundary\n", mdname(mddev));
5987 return -EINVAL;
5989 reshape_offset = here_new * mddev->new_chunk_sectors;
5990 /* here_new is the stripe we will write to */
5991 here_old = mddev->reshape_position;
5992 sector_div(here_old, mddev->chunk_sectors *
5993 (old_disks-max_degraded));
5994 /* here_old is the first stripe that we might need to read
5995 * from */
5996 if (mddev->delta_disks == 0) {
5997 if ((here_new * mddev->new_chunk_sectors !=
5998 here_old * mddev->chunk_sectors)) {
5999 printk(KERN_ERR "md/raid:%s: reshape position is"
6000 " confused - aborting\n", mdname(mddev));
6001 return -EINVAL;
6003 /* We cannot be sure it is safe to start an in-place
6004 * reshape. It is only safe if user-space is monitoring
6005 * and taking constant backups.
6006 * mdadm always starts a situation like this in
6007 * readonly mode so it can take control before
6008 * allowing any writes. So just check for that.
6010 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6011 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6012 /* not really in-place - so OK */;
6013 else if (mddev->ro == 0) {
6014 printk(KERN_ERR "md/raid:%s: in-place reshape "
6015 "must be started in read-only mode "
6016 "- aborting\n",
6017 mdname(mddev));
6018 return -EINVAL;
6020 } else if (mddev->reshape_backwards
6021 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6022 here_old * mddev->chunk_sectors)
6023 : (here_new * mddev->new_chunk_sectors >=
6024 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6025 /* Reading from the same stripe as writing to - bad */
6026 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6027 "auto-recovery - aborting.\n",
6028 mdname(mddev));
6029 return -EINVAL;
6031 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6032 mdname(mddev));
6033 /* OK, we should be able to continue; */
6034 } else {
6035 BUG_ON(mddev->level != mddev->new_level);
6036 BUG_ON(mddev->layout != mddev->new_layout);
6037 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6038 BUG_ON(mddev->delta_disks != 0);
6041 if (mddev->private == NULL)
6042 conf = setup_conf(mddev);
6043 else
6044 conf = mddev->private;
6046 if (IS_ERR(conf))
6047 return PTR_ERR(conf);
6049 conf->min_offset_diff = min_offset_diff;
6050 mddev->thread = conf->thread;
6051 conf->thread = NULL;
6052 mddev->private = conf;
6054 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6055 i++) {
6056 rdev = conf->disks[i].rdev;
6057 if (!rdev && conf->disks[i].replacement) {
6058 /* The replacement is all we have yet */
6059 rdev = conf->disks[i].replacement;
6060 conf->disks[i].replacement = NULL;
6061 clear_bit(Replacement, &rdev->flags);
6062 conf->disks[i].rdev = rdev;
6064 if (!rdev)
6065 continue;
6066 if (conf->disks[i].replacement &&
6067 conf->reshape_progress != MaxSector) {
6068 /* replacements and reshape simply do not mix. */
6069 printk(KERN_ERR "md: cannot handle concurrent "
6070 "replacement and reshape.\n");
6071 goto abort;
6073 if (test_bit(In_sync, &rdev->flags)) {
6074 working_disks++;
6075 continue;
6077 /* This disc is not fully in-sync. However if it
6078 * just stored parity (beyond the recovery_offset),
6079 * when we don't need to be concerned about the
6080 * array being dirty.
6081 * When reshape goes 'backwards', we never have
6082 * partially completed devices, so we only need
6083 * to worry about reshape going forwards.
6085 /* Hack because v0.91 doesn't store recovery_offset properly. */
6086 if (mddev->major_version == 0 &&
6087 mddev->minor_version > 90)
6088 rdev->recovery_offset = reshape_offset;
6090 if (rdev->recovery_offset < reshape_offset) {
6091 /* We need to check old and new layout */
6092 if (!only_parity(rdev->raid_disk,
6093 conf->algorithm,
6094 conf->raid_disks,
6095 conf->max_degraded))
6096 continue;
6098 if (!only_parity(rdev->raid_disk,
6099 conf->prev_algo,
6100 conf->previous_raid_disks,
6101 conf->max_degraded))
6102 continue;
6103 dirty_parity_disks++;
6107 * 0 for a fully functional array, 1 or 2 for a degraded array.
6109 mddev->degraded = calc_degraded(conf);
6111 if (has_failed(conf)) {
6112 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6113 " (%d/%d failed)\n",
6114 mdname(mddev), mddev->degraded, conf->raid_disks);
6115 goto abort;
6118 /* device size must be a multiple of chunk size */
6119 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6120 mddev->resync_max_sectors = mddev->dev_sectors;
6122 if (mddev->degraded > dirty_parity_disks &&
6123 mddev->recovery_cp != MaxSector) {
6124 if (mddev->ok_start_degraded)
6125 printk(KERN_WARNING
6126 "md/raid:%s: starting dirty degraded array"
6127 " - data corruption possible.\n",
6128 mdname(mddev));
6129 else {
6130 printk(KERN_ERR
6131 "md/raid:%s: cannot start dirty degraded array.\n",
6132 mdname(mddev));
6133 goto abort;
6137 if (mddev->degraded == 0)
6138 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6139 " devices, algorithm %d\n", mdname(mddev), conf->level,
6140 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6141 mddev->new_layout);
6142 else
6143 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6144 " out of %d devices, algorithm %d\n",
6145 mdname(mddev), conf->level,
6146 mddev->raid_disks - mddev->degraded,
6147 mddev->raid_disks, mddev->new_layout);
6149 print_raid5_conf(conf);
6151 if (conf->reshape_progress != MaxSector) {
6152 conf->reshape_safe = conf->reshape_progress;
6153 atomic_set(&conf->reshape_stripes, 0);
6154 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6155 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6156 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6157 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6158 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6159 "reshape");
6163 /* Ok, everything is just fine now */
6164 if (mddev->to_remove == &raid5_attrs_group)
6165 mddev->to_remove = NULL;
6166 else if (mddev->kobj.sd &&
6167 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6168 printk(KERN_WARNING
6169 "raid5: failed to create sysfs attributes for %s\n",
6170 mdname(mddev));
6171 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6173 if (mddev->queue) {
6174 int chunk_size;
6175 bool discard_supported = true;
6176 /* read-ahead size must cover two whole stripes, which
6177 * is 2 * (datadisks) * chunksize where 'n' is the
6178 * number of raid devices
6180 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6181 int stripe = data_disks *
6182 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6183 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6184 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6186 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6188 mddev->queue->backing_dev_info.congested_data = mddev;
6189 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6191 chunk_size = mddev->chunk_sectors << 9;
6192 blk_queue_io_min(mddev->queue, chunk_size);
6193 blk_queue_io_opt(mddev->queue, chunk_size *
6194 (conf->raid_disks - conf->max_degraded));
6195 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6197 * We can only discard a whole stripe. It doesn't make sense to
6198 * discard data disk but write parity disk
6200 stripe = stripe * PAGE_SIZE;
6201 /* Round up to power of 2, as discard handling
6202 * currently assumes that */
6203 while ((stripe-1) & stripe)
6204 stripe = (stripe | (stripe-1)) + 1;
6205 mddev->queue->limits.discard_alignment = stripe;
6206 mddev->queue->limits.discard_granularity = stripe;
6208 * unaligned part of discard request will be ignored, so can't
6209 * guarantee discard_zerors_data
6211 mddev->queue->limits.discard_zeroes_data = 0;
6213 blk_queue_max_write_same_sectors(mddev->queue, 0);
6215 rdev_for_each(rdev, mddev) {
6216 disk_stack_limits(mddev->gendisk, rdev->bdev,
6217 rdev->data_offset << 9);
6218 disk_stack_limits(mddev->gendisk, rdev->bdev,
6219 rdev->new_data_offset << 9);
6221 * discard_zeroes_data is required, otherwise data
6222 * could be lost. Consider a scenario: discard a stripe
6223 * (the stripe could be inconsistent if
6224 * discard_zeroes_data is 0); write one disk of the
6225 * stripe (the stripe could be inconsistent again
6226 * depending on which disks are used to calculate
6227 * parity); the disk is broken; The stripe data of this
6228 * disk is lost.
6230 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6231 !bdev_get_queue(rdev->bdev)->
6232 limits.discard_zeroes_data)
6233 discard_supported = false;
6236 if (discard_supported &&
6237 mddev->queue->limits.max_discard_sectors >= stripe &&
6238 mddev->queue->limits.discard_granularity >= stripe)
6239 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6240 mddev->queue);
6241 else
6242 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6243 mddev->queue);
6246 return 0;
6247 abort:
6248 md_unregister_thread(&mddev->thread);
6249 print_raid5_conf(conf);
6250 free_conf(conf);
6251 mddev->private = NULL;
6252 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6253 return -EIO;
6256 static int stop(struct mddev *mddev)
6258 struct r5conf *conf = mddev->private;
6260 md_unregister_thread(&mddev->thread);
6261 if (mddev->queue)
6262 mddev->queue->backing_dev_info.congested_fn = NULL;
6263 free_conf(conf);
6264 mddev->private = NULL;
6265 mddev->to_remove = &raid5_attrs_group;
6266 return 0;
6269 static void status(struct seq_file *seq, struct mddev *mddev)
6271 struct r5conf *conf = mddev->private;
6272 int i;
6274 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6275 mddev->chunk_sectors / 2, mddev->layout);
6276 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6277 for (i = 0; i < conf->raid_disks; i++)
6278 seq_printf (seq, "%s",
6279 conf->disks[i].rdev &&
6280 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6281 seq_printf (seq, "]");
6284 static void print_raid5_conf (struct r5conf *conf)
6286 int i;
6287 struct disk_info *tmp;
6289 printk(KERN_DEBUG "RAID conf printout:\n");
6290 if (!conf) {
6291 printk("(conf==NULL)\n");
6292 return;
6294 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6295 conf->raid_disks,
6296 conf->raid_disks - conf->mddev->degraded);
6298 for (i = 0; i < conf->raid_disks; i++) {
6299 char b[BDEVNAME_SIZE];
6300 tmp = conf->disks + i;
6301 if (tmp->rdev)
6302 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6303 i, !test_bit(Faulty, &tmp->rdev->flags),
6304 bdevname(tmp->rdev->bdev, b));
6308 static int raid5_spare_active(struct mddev *mddev)
6310 int i;
6311 struct r5conf *conf = mddev->private;
6312 struct disk_info *tmp;
6313 int count = 0;
6314 unsigned long flags;
6316 for (i = 0; i < conf->raid_disks; i++) {
6317 tmp = conf->disks + i;
6318 if (tmp->replacement
6319 && tmp->replacement->recovery_offset == MaxSector
6320 && !test_bit(Faulty, &tmp->replacement->flags)
6321 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6322 /* Replacement has just become active. */
6323 if (!tmp->rdev
6324 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6325 count++;
6326 if (tmp->rdev) {
6327 /* Replaced device not technically faulty,
6328 * but we need to be sure it gets removed
6329 * and never re-added.
6331 set_bit(Faulty, &tmp->rdev->flags);
6332 sysfs_notify_dirent_safe(
6333 tmp->rdev->sysfs_state);
6335 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6336 } else if (tmp->rdev
6337 && tmp->rdev->recovery_offset == MaxSector
6338 && !test_bit(Faulty, &tmp->rdev->flags)
6339 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6340 count++;
6341 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6344 spin_lock_irqsave(&conf->device_lock, flags);
6345 mddev->degraded = calc_degraded(conf);
6346 spin_unlock_irqrestore(&conf->device_lock, flags);
6347 print_raid5_conf(conf);
6348 return count;
6351 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6353 struct r5conf *conf = mddev->private;
6354 int err = 0;
6355 int number = rdev->raid_disk;
6356 struct md_rdev **rdevp;
6357 struct disk_info *p = conf->disks + number;
6359 print_raid5_conf(conf);
6360 if (rdev == p->rdev)
6361 rdevp = &p->rdev;
6362 else if (rdev == p->replacement)
6363 rdevp = &p->replacement;
6364 else
6365 return 0;
6367 if (number >= conf->raid_disks &&
6368 conf->reshape_progress == MaxSector)
6369 clear_bit(In_sync, &rdev->flags);
6371 if (test_bit(In_sync, &rdev->flags) ||
6372 atomic_read(&rdev->nr_pending)) {
6373 err = -EBUSY;
6374 goto abort;
6376 /* Only remove non-faulty devices if recovery
6377 * isn't possible.
6379 if (!test_bit(Faulty, &rdev->flags) &&
6380 mddev->recovery_disabled != conf->recovery_disabled &&
6381 !has_failed(conf) &&
6382 (!p->replacement || p->replacement == rdev) &&
6383 number < conf->raid_disks) {
6384 err = -EBUSY;
6385 goto abort;
6387 *rdevp = NULL;
6388 synchronize_rcu();
6389 if (atomic_read(&rdev->nr_pending)) {
6390 /* lost the race, try later */
6391 err = -EBUSY;
6392 *rdevp = rdev;
6393 } else if (p->replacement) {
6394 /* We must have just cleared 'rdev' */
6395 p->rdev = p->replacement;
6396 clear_bit(Replacement, &p->replacement->flags);
6397 smp_mb(); /* Make sure other CPUs may see both as identical
6398 * but will never see neither - if they are careful
6400 p->replacement = NULL;
6401 clear_bit(WantReplacement, &rdev->flags);
6402 } else
6403 /* We might have just removed the Replacement as faulty-
6404 * clear the bit just in case
6406 clear_bit(WantReplacement, &rdev->flags);
6407 abort:
6409 print_raid5_conf(conf);
6410 return err;
6413 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6415 struct r5conf *conf = mddev->private;
6416 int err = -EEXIST;
6417 int disk;
6418 struct disk_info *p;
6419 int first = 0;
6420 int last = conf->raid_disks - 1;
6422 if (mddev->recovery_disabled == conf->recovery_disabled)
6423 return -EBUSY;
6425 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6426 /* no point adding a device */
6427 return -EINVAL;
6429 if (rdev->raid_disk >= 0)
6430 first = last = rdev->raid_disk;
6433 * find the disk ... but prefer rdev->saved_raid_disk
6434 * if possible.
6436 if (rdev->saved_raid_disk >= 0 &&
6437 rdev->saved_raid_disk >= first &&
6438 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6439 first = rdev->saved_raid_disk;
6441 for (disk = first; disk <= last; disk++) {
6442 p = conf->disks + disk;
6443 if (p->rdev == NULL) {
6444 clear_bit(In_sync, &rdev->flags);
6445 rdev->raid_disk = disk;
6446 err = 0;
6447 if (rdev->saved_raid_disk != disk)
6448 conf->fullsync = 1;
6449 rcu_assign_pointer(p->rdev, rdev);
6450 goto out;
6453 for (disk = first; disk <= last; disk++) {
6454 p = conf->disks + disk;
6455 if (test_bit(WantReplacement, &p->rdev->flags) &&
6456 p->replacement == NULL) {
6457 clear_bit(In_sync, &rdev->flags);
6458 set_bit(Replacement, &rdev->flags);
6459 rdev->raid_disk = disk;
6460 err = 0;
6461 conf->fullsync = 1;
6462 rcu_assign_pointer(p->replacement, rdev);
6463 break;
6466 out:
6467 print_raid5_conf(conf);
6468 return err;
6471 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6473 /* no resync is happening, and there is enough space
6474 * on all devices, so we can resize.
6475 * We need to make sure resync covers any new space.
6476 * If the array is shrinking we should possibly wait until
6477 * any io in the removed space completes, but it hardly seems
6478 * worth it.
6480 sector_t newsize;
6481 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6482 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6483 if (mddev->external_size &&
6484 mddev->array_sectors > newsize)
6485 return -EINVAL;
6486 if (mddev->bitmap) {
6487 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6488 if (ret)
6489 return ret;
6491 md_set_array_sectors(mddev, newsize);
6492 set_capacity(mddev->gendisk, mddev->array_sectors);
6493 revalidate_disk(mddev->gendisk);
6494 if (sectors > mddev->dev_sectors &&
6495 mddev->recovery_cp > mddev->dev_sectors) {
6496 mddev->recovery_cp = mddev->dev_sectors;
6497 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6499 mddev->dev_sectors = sectors;
6500 mddev->resync_max_sectors = sectors;
6501 return 0;
6504 static int check_stripe_cache(struct mddev *mddev)
6506 /* Can only proceed if there are plenty of stripe_heads.
6507 * We need a minimum of one full stripe,, and for sensible progress
6508 * it is best to have about 4 times that.
6509 * If we require 4 times, then the default 256 4K stripe_heads will
6510 * allow for chunk sizes up to 256K, which is probably OK.
6511 * If the chunk size is greater, user-space should request more
6512 * stripe_heads first.
6514 struct r5conf *conf = mddev->private;
6515 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6516 > conf->max_nr_stripes ||
6517 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6518 > conf->max_nr_stripes) {
6519 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6520 mdname(mddev),
6521 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6522 / STRIPE_SIZE)*4);
6523 return 0;
6525 return 1;
6528 static int check_reshape(struct mddev *mddev)
6530 struct r5conf *conf = mddev->private;
6532 if (mddev->delta_disks == 0 &&
6533 mddev->new_layout == mddev->layout &&
6534 mddev->new_chunk_sectors == mddev->chunk_sectors)
6535 return 0; /* nothing to do */
6536 if (has_failed(conf))
6537 return -EINVAL;
6538 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6539 /* We might be able to shrink, but the devices must
6540 * be made bigger first.
6541 * For raid6, 4 is the minimum size.
6542 * Otherwise 2 is the minimum
6544 int min = 2;
6545 if (mddev->level == 6)
6546 min = 4;
6547 if (mddev->raid_disks + mddev->delta_disks < min)
6548 return -EINVAL;
6551 if (!check_stripe_cache(mddev))
6552 return -ENOSPC;
6554 return resize_stripes(conf, (conf->previous_raid_disks
6555 + mddev->delta_disks));
6558 static int raid5_start_reshape(struct mddev *mddev)
6560 struct r5conf *conf = mddev->private;
6561 struct md_rdev *rdev;
6562 int spares = 0;
6563 unsigned long flags;
6565 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6566 return -EBUSY;
6568 if (!check_stripe_cache(mddev))
6569 return -ENOSPC;
6571 if (has_failed(conf))
6572 return -EINVAL;
6574 rdev_for_each(rdev, mddev) {
6575 if (!test_bit(In_sync, &rdev->flags)
6576 && !test_bit(Faulty, &rdev->flags))
6577 spares++;
6580 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6581 /* Not enough devices even to make a degraded array
6582 * of that size
6584 return -EINVAL;
6586 /* Refuse to reduce size of the array. Any reductions in
6587 * array size must be through explicit setting of array_size
6588 * attribute.
6590 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6591 < mddev->array_sectors) {
6592 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6593 "before number of disks\n", mdname(mddev));
6594 return -EINVAL;
6597 atomic_set(&conf->reshape_stripes, 0);
6598 spin_lock_irq(&conf->device_lock);
6599 write_seqcount_begin(&conf->gen_lock);
6600 conf->previous_raid_disks = conf->raid_disks;
6601 conf->raid_disks += mddev->delta_disks;
6602 conf->prev_chunk_sectors = conf->chunk_sectors;
6603 conf->chunk_sectors = mddev->new_chunk_sectors;
6604 conf->prev_algo = conf->algorithm;
6605 conf->algorithm = mddev->new_layout;
6606 conf->generation++;
6607 /* Code that selects data_offset needs to see the generation update
6608 * if reshape_progress has been set - so a memory barrier needed.
6610 smp_mb();
6611 if (mddev->reshape_backwards)
6612 conf->reshape_progress = raid5_size(mddev, 0, 0);
6613 else
6614 conf->reshape_progress = 0;
6615 conf->reshape_safe = conf->reshape_progress;
6616 write_seqcount_end(&conf->gen_lock);
6617 spin_unlock_irq(&conf->device_lock);
6619 /* Now make sure any requests that proceeded on the assumption
6620 * the reshape wasn't running - like Discard or Read - have
6621 * completed.
6623 mddev_suspend(mddev);
6624 mddev_resume(mddev);
6626 /* Add some new drives, as many as will fit.
6627 * We know there are enough to make the newly sized array work.
6628 * Don't add devices if we are reducing the number of
6629 * devices in the array. This is because it is not possible
6630 * to correctly record the "partially reconstructed" state of
6631 * such devices during the reshape and confusion could result.
6633 if (mddev->delta_disks >= 0) {
6634 rdev_for_each(rdev, mddev)
6635 if (rdev->raid_disk < 0 &&
6636 !test_bit(Faulty, &rdev->flags)) {
6637 if (raid5_add_disk(mddev, rdev) == 0) {
6638 if (rdev->raid_disk
6639 >= conf->previous_raid_disks)
6640 set_bit(In_sync, &rdev->flags);
6641 else
6642 rdev->recovery_offset = 0;
6644 if (sysfs_link_rdev(mddev, rdev))
6645 /* Failure here is OK */;
6647 } else if (rdev->raid_disk >= conf->previous_raid_disks
6648 && !test_bit(Faulty, &rdev->flags)) {
6649 /* This is a spare that was manually added */
6650 set_bit(In_sync, &rdev->flags);
6653 /* When a reshape changes the number of devices,
6654 * ->degraded is measured against the larger of the
6655 * pre and post number of devices.
6657 spin_lock_irqsave(&conf->device_lock, flags);
6658 mddev->degraded = calc_degraded(conf);
6659 spin_unlock_irqrestore(&conf->device_lock, flags);
6661 mddev->raid_disks = conf->raid_disks;
6662 mddev->reshape_position = conf->reshape_progress;
6663 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6665 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6666 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6667 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6668 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6669 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6670 "reshape");
6671 if (!mddev->sync_thread) {
6672 mddev->recovery = 0;
6673 spin_lock_irq(&conf->device_lock);
6674 write_seqcount_begin(&conf->gen_lock);
6675 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6676 mddev->new_chunk_sectors =
6677 conf->chunk_sectors = conf->prev_chunk_sectors;
6678 mddev->new_layout = conf->algorithm = conf->prev_algo;
6679 rdev_for_each(rdev, mddev)
6680 rdev->new_data_offset = rdev->data_offset;
6681 smp_wmb();
6682 conf->generation --;
6683 conf->reshape_progress = MaxSector;
6684 mddev->reshape_position = MaxSector;
6685 write_seqcount_end(&conf->gen_lock);
6686 spin_unlock_irq(&conf->device_lock);
6687 return -EAGAIN;
6689 conf->reshape_checkpoint = jiffies;
6690 md_wakeup_thread(mddev->sync_thread);
6691 md_new_event(mddev);
6692 return 0;
6695 /* This is called from the reshape thread and should make any
6696 * changes needed in 'conf'
6698 static void end_reshape(struct r5conf *conf)
6701 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6702 struct md_rdev *rdev;
6704 spin_lock_irq(&conf->device_lock);
6705 conf->previous_raid_disks = conf->raid_disks;
6706 rdev_for_each(rdev, conf->mddev)
6707 rdev->data_offset = rdev->new_data_offset;
6708 smp_wmb();
6709 conf->reshape_progress = MaxSector;
6710 spin_unlock_irq(&conf->device_lock);
6711 wake_up(&conf->wait_for_overlap);
6713 /* read-ahead size must cover two whole stripes, which is
6714 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6716 if (conf->mddev->queue) {
6717 int data_disks = conf->raid_disks - conf->max_degraded;
6718 int stripe = data_disks * ((conf->chunk_sectors << 9)
6719 / PAGE_SIZE);
6720 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6721 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6726 /* This is called from the raid5d thread with mddev_lock held.
6727 * It makes config changes to the device.
6729 static void raid5_finish_reshape(struct mddev *mddev)
6731 struct r5conf *conf = mddev->private;
6733 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6735 if (mddev->delta_disks > 0) {
6736 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6737 set_capacity(mddev->gendisk, mddev->array_sectors);
6738 revalidate_disk(mddev->gendisk);
6739 } else {
6740 int d;
6741 spin_lock_irq(&conf->device_lock);
6742 mddev->degraded = calc_degraded(conf);
6743 spin_unlock_irq(&conf->device_lock);
6744 for (d = conf->raid_disks ;
6745 d < conf->raid_disks - mddev->delta_disks;
6746 d++) {
6747 struct md_rdev *rdev = conf->disks[d].rdev;
6748 if (rdev)
6749 clear_bit(In_sync, &rdev->flags);
6750 rdev = conf->disks[d].replacement;
6751 if (rdev)
6752 clear_bit(In_sync, &rdev->flags);
6755 mddev->layout = conf->algorithm;
6756 mddev->chunk_sectors = conf->chunk_sectors;
6757 mddev->reshape_position = MaxSector;
6758 mddev->delta_disks = 0;
6759 mddev->reshape_backwards = 0;
6763 static void raid5_quiesce(struct mddev *mddev, int state)
6765 struct r5conf *conf = mddev->private;
6767 switch(state) {
6768 case 2: /* resume for a suspend */
6769 wake_up(&conf->wait_for_overlap);
6770 break;
6772 case 1: /* stop all writes */
6773 lock_all_device_hash_locks_irq(conf);
6774 /* '2' tells resync/reshape to pause so that all
6775 * active stripes can drain
6777 conf->quiesce = 2;
6778 wait_event_cmd(conf->wait_for_stripe,
6779 atomic_read(&conf->active_stripes) == 0 &&
6780 atomic_read(&conf->active_aligned_reads) == 0,
6781 unlock_all_device_hash_locks_irq(conf),
6782 lock_all_device_hash_locks_irq(conf));
6783 conf->quiesce = 1;
6784 unlock_all_device_hash_locks_irq(conf);
6785 /* allow reshape to continue */
6786 wake_up(&conf->wait_for_overlap);
6787 break;
6789 case 0: /* re-enable writes */
6790 lock_all_device_hash_locks_irq(conf);
6791 conf->quiesce = 0;
6792 wake_up(&conf->wait_for_stripe);
6793 wake_up(&conf->wait_for_overlap);
6794 unlock_all_device_hash_locks_irq(conf);
6795 break;
6800 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6802 struct r0conf *raid0_conf = mddev->private;
6803 sector_t sectors;
6805 /* for raid0 takeover only one zone is supported */
6806 if (raid0_conf->nr_strip_zones > 1) {
6807 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6808 mdname(mddev));
6809 return ERR_PTR(-EINVAL);
6812 sectors = raid0_conf->strip_zone[0].zone_end;
6813 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6814 mddev->dev_sectors = sectors;
6815 mddev->new_level = level;
6816 mddev->new_layout = ALGORITHM_PARITY_N;
6817 mddev->new_chunk_sectors = mddev->chunk_sectors;
6818 mddev->raid_disks += 1;
6819 mddev->delta_disks = 1;
6820 /* make sure it will be not marked as dirty */
6821 mddev->recovery_cp = MaxSector;
6823 return setup_conf(mddev);
6827 static void *raid5_takeover_raid1(struct mddev *mddev)
6829 int chunksect;
6831 if (mddev->raid_disks != 2 ||
6832 mddev->degraded > 1)
6833 return ERR_PTR(-EINVAL);
6835 /* Should check if there are write-behind devices? */
6837 chunksect = 64*2; /* 64K by default */
6839 /* The array must be an exact multiple of chunksize */
6840 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6841 chunksect >>= 1;
6843 if ((chunksect<<9) < STRIPE_SIZE)
6844 /* array size does not allow a suitable chunk size */
6845 return ERR_PTR(-EINVAL);
6847 mddev->new_level = 5;
6848 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6849 mddev->new_chunk_sectors = chunksect;
6851 return setup_conf(mddev);
6854 static void *raid5_takeover_raid6(struct mddev *mddev)
6856 int new_layout;
6858 switch (mddev->layout) {
6859 case ALGORITHM_LEFT_ASYMMETRIC_6:
6860 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6861 break;
6862 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6863 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6864 break;
6865 case ALGORITHM_LEFT_SYMMETRIC_6:
6866 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6867 break;
6868 case ALGORITHM_RIGHT_SYMMETRIC_6:
6869 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6870 break;
6871 case ALGORITHM_PARITY_0_6:
6872 new_layout = ALGORITHM_PARITY_0;
6873 break;
6874 case ALGORITHM_PARITY_N:
6875 new_layout = ALGORITHM_PARITY_N;
6876 break;
6877 default:
6878 return ERR_PTR(-EINVAL);
6880 mddev->new_level = 5;
6881 mddev->new_layout = new_layout;
6882 mddev->delta_disks = -1;
6883 mddev->raid_disks -= 1;
6884 return setup_conf(mddev);
6888 static int raid5_check_reshape(struct mddev *mddev)
6890 /* For a 2-drive array, the layout and chunk size can be changed
6891 * immediately as not restriping is needed.
6892 * For larger arrays we record the new value - after validation
6893 * to be used by a reshape pass.
6895 struct r5conf *conf = mddev->private;
6896 int new_chunk = mddev->new_chunk_sectors;
6898 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6899 return -EINVAL;
6900 if (new_chunk > 0) {
6901 if (!is_power_of_2(new_chunk))
6902 return -EINVAL;
6903 if (new_chunk < (PAGE_SIZE>>9))
6904 return -EINVAL;
6905 if (mddev->array_sectors & (new_chunk-1))
6906 /* not factor of array size */
6907 return -EINVAL;
6910 /* They look valid */
6912 if (mddev->raid_disks == 2) {
6913 /* can make the change immediately */
6914 if (mddev->new_layout >= 0) {
6915 conf->algorithm = mddev->new_layout;
6916 mddev->layout = mddev->new_layout;
6918 if (new_chunk > 0) {
6919 conf->chunk_sectors = new_chunk ;
6920 mddev->chunk_sectors = new_chunk;
6922 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6923 md_wakeup_thread(mddev->thread);
6925 return check_reshape(mddev);
6928 static int raid6_check_reshape(struct mddev *mddev)
6930 int new_chunk = mddev->new_chunk_sectors;
6932 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6933 return -EINVAL;
6934 if (new_chunk > 0) {
6935 if (!is_power_of_2(new_chunk))
6936 return -EINVAL;
6937 if (new_chunk < (PAGE_SIZE >> 9))
6938 return -EINVAL;
6939 if (mddev->array_sectors & (new_chunk-1))
6940 /* not factor of array size */
6941 return -EINVAL;
6944 /* They look valid */
6945 return check_reshape(mddev);
6948 static void *raid5_takeover(struct mddev *mddev)
6950 /* raid5 can take over:
6951 * raid0 - if there is only one strip zone - make it a raid4 layout
6952 * raid1 - if there are two drives. We need to know the chunk size
6953 * raid4 - trivial - just use a raid4 layout.
6954 * raid6 - Providing it is a *_6 layout
6956 if (mddev->level == 0)
6957 return raid45_takeover_raid0(mddev, 5);
6958 if (mddev->level == 1)
6959 return raid5_takeover_raid1(mddev);
6960 if (mddev->level == 4) {
6961 mddev->new_layout = ALGORITHM_PARITY_N;
6962 mddev->new_level = 5;
6963 return setup_conf(mddev);
6965 if (mddev->level == 6)
6966 return raid5_takeover_raid6(mddev);
6968 return ERR_PTR(-EINVAL);
6971 static void *raid4_takeover(struct mddev *mddev)
6973 /* raid4 can take over:
6974 * raid0 - if there is only one strip zone
6975 * raid5 - if layout is right
6977 if (mddev->level == 0)
6978 return raid45_takeover_raid0(mddev, 4);
6979 if (mddev->level == 5 &&
6980 mddev->layout == ALGORITHM_PARITY_N) {
6981 mddev->new_layout = 0;
6982 mddev->new_level = 4;
6983 return setup_conf(mddev);
6985 return ERR_PTR(-EINVAL);
6988 static struct md_personality raid5_personality;
6990 static void *raid6_takeover(struct mddev *mddev)
6992 /* Currently can only take over a raid5. We map the
6993 * personality to an equivalent raid6 personality
6994 * with the Q block at the end.
6996 int new_layout;
6998 if (mddev->pers != &raid5_personality)
6999 return ERR_PTR(-EINVAL);
7000 if (mddev->degraded > 1)
7001 return ERR_PTR(-EINVAL);
7002 if (mddev->raid_disks > 253)
7003 return ERR_PTR(-EINVAL);
7004 if (mddev->raid_disks < 3)
7005 return ERR_PTR(-EINVAL);
7007 switch (mddev->layout) {
7008 case ALGORITHM_LEFT_ASYMMETRIC:
7009 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7010 break;
7011 case ALGORITHM_RIGHT_ASYMMETRIC:
7012 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7013 break;
7014 case ALGORITHM_LEFT_SYMMETRIC:
7015 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7016 break;
7017 case ALGORITHM_RIGHT_SYMMETRIC:
7018 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7019 break;
7020 case ALGORITHM_PARITY_0:
7021 new_layout = ALGORITHM_PARITY_0_6;
7022 break;
7023 case ALGORITHM_PARITY_N:
7024 new_layout = ALGORITHM_PARITY_N;
7025 break;
7026 default:
7027 return ERR_PTR(-EINVAL);
7029 mddev->new_level = 6;
7030 mddev->new_layout = new_layout;
7031 mddev->delta_disks = 1;
7032 mddev->raid_disks += 1;
7033 return setup_conf(mddev);
7037 static struct md_personality raid6_personality =
7039 .name = "raid6",
7040 .level = 6,
7041 .owner = THIS_MODULE,
7042 .make_request = make_request,
7043 .run = run,
7044 .stop = stop,
7045 .status = status,
7046 .error_handler = error,
7047 .hot_add_disk = raid5_add_disk,
7048 .hot_remove_disk= raid5_remove_disk,
7049 .spare_active = raid5_spare_active,
7050 .sync_request = sync_request,
7051 .resize = raid5_resize,
7052 .size = raid5_size,
7053 .check_reshape = raid6_check_reshape,
7054 .start_reshape = raid5_start_reshape,
7055 .finish_reshape = raid5_finish_reshape,
7056 .quiesce = raid5_quiesce,
7057 .takeover = raid6_takeover,
7059 static struct md_personality raid5_personality =
7061 .name = "raid5",
7062 .level = 5,
7063 .owner = THIS_MODULE,
7064 .make_request = make_request,
7065 .run = run,
7066 .stop = stop,
7067 .status = status,
7068 .error_handler = error,
7069 .hot_add_disk = raid5_add_disk,
7070 .hot_remove_disk= raid5_remove_disk,
7071 .spare_active = raid5_spare_active,
7072 .sync_request = sync_request,
7073 .resize = raid5_resize,
7074 .size = raid5_size,
7075 .check_reshape = raid5_check_reshape,
7076 .start_reshape = raid5_start_reshape,
7077 .finish_reshape = raid5_finish_reshape,
7078 .quiesce = raid5_quiesce,
7079 .takeover = raid5_takeover,
7082 static struct md_personality raid4_personality =
7084 .name = "raid4",
7085 .level = 4,
7086 .owner = THIS_MODULE,
7087 .make_request = make_request,
7088 .run = run,
7089 .stop = stop,
7090 .status = status,
7091 .error_handler = error,
7092 .hot_add_disk = raid5_add_disk,
7093 .hot_remove_disk= raid5_remove_disk,
7094 .spare_active = raid5_spare_active,
7095 .sync_request = sync_request,
7096 .resize = raid5_resize,
7097 .size = raid5_size,
7098 .check_reshape = raid5_check_reshape,
7099 .start_reshape = raid5_start_reshape,
7100 .finish_reshape = raid5_finish_reshape,
7101 .quiesce = raid5_quiesce,
7102 .takeover = raid4_takeover,
7105 static int __init raid5_init(void)
7107 raid5_wq = alloc_workqueue("raid5wq",
7108 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7109 if (!raid5_wq)
7110 return -ENOMEM;
7111 register_md_personality(&raid6_personality);
7112 register_md_personality(&raid5_personality);
7113 register_md_personality(&raid4_personality);
7114 return 0;
7117 static void raid5_exit(void)
7119 unregister_md_personality(&raid6_personality);
7120 unregister_md_personality(&raid5_personality);
7121 unregister_md_personality(&raid4_personality);
7122 destroy_workqueue(raid5_wq);
7125 module_init(raid5_init);
7126 module_exit(raid5_exit);
7127 MODULE_LICENSE("GPL");
7128 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7129 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7130 MODULE_ALIAS("md-raid5");
7131 MODULE_ALIAS("md-raid4");
7132 MODULE_ALIAS("md-level-5");
7133 MODULE_ALIAS("md-level-4");
7134 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7135 MODULE_ALIAS("md-raid6");
7136 MODULE_ALIAS("md-level-6");
7138 /* This used to be two separate modules, they were: */
7139 MODULE_ALIAS("raid5");
7140 MODULE_ALIAS("raid6");