sis900: remove unnecessary break after return
[linux-2.6/btrfs-unstable.git] / drivers / md / dm-thin-metadata.c
blobb086a945edcbccc5106f267aa06109420c69cbd1
1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
87 #define THIN_MAX_CONCURRENT_LOCKS 5
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
93 * Little endian on-disk superblock and device details.
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
97 __le32 flags;
98 __le64 blocknr; /* This block number, dm_block_t. */
100 __u8 uuid[16];
101 __le64 magic;
102 __le32 version;
103 __le32 time;
105 __le64 trans_id;
108 * Root held by userspace transactions.
110 __le64 held_root;
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
118 __le64 data_mapping_root;
121 * Device detail root mapping dev_id -> device_details
123 __le64 device_details_root;
125 __le32 data_block_size; /* In 512-byte sectors. */
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
130 __le32 compat_flags;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
133 } __packed;
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
140 } __packed;
142 struct dm_pool_metadata {
143 struct hlist_node hash;
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
153 * Two-level btree.
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
157 struct dm_btree_info info;
160 * Non-blocking version of the above.
162 struct dm_btree_info nb_info;
165 * Just the top level for deleting whole devices.
167 struct dm_btree_info tl_info;
170 * Just the bottom level for creating new devices.
172 struct dm_btree_info bl_info;
175 * Describes the device details btree.
177 struct dm_btree_info details_info;
179 struct rw_semaphore root_lock;
180 uint32_t time;
181 dm_block_t root;
182 dm_block_t details_root;
183 struct list_head thin_devices;
184 uint64_t trans_id;
185 unsigned long flags;
186 sector_t data_block_size;
187 bool read_only:1;
190 * Set if a transaction has to be aborted but the attempt to roll back
191 * to the previous (good) transaction failed. The only pool metadata
192 * operation possible in this state is the closing of the device.
194 bool fail_io:1;
197 * Reading the space map roots can fail, so we read it into these
198 * buffers before the superblock is locked and updated.
200 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
201 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
204 struct dm_thin_device {
205 struct list_head list;
206 struct dm_pool_metadata *pmd;
207 dm_thin_id id;
209 int open_count;
210 bool changed:1;
211 bool aborted_with_changes:1;
212 uint64_t mapped_blocks;
213 uint64_t transaction_id;
214 uint32_t creation_time;
215 uint32_t snapshotted_time;
218 /*----------------------------------------------------------------
219 * superblock validator
220 *--------------------------------------------------------------*/
222 #define SUPERBLOCK_CSUM_XOR 160774
224 static void sb_prepare_for_write(struct dm_block_validator *v,
225 struct dm_block *b,
226 size_t block_size)
228 struct thin_disk_superblock *disk_super = dm_block_data(b);
230 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
231 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
232 block_size - sizeof(__le32),
233 SUPERBLOCK_CSUM_XOR));
236 static int sb_check(struct dm_block_validator *v,
237 struct dm_block *b,
238 size_t block_size)
240 struct thin_disk_superblock *disk_super = dm_block_data(b);
241 __le32 csum_le;
243 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
244 DMERR("sb_check failed: blocknr %llu: "
245 "wanted %llu", le64_to_cpu(disk_super->blocknr),
246 (unsigned long long)dm_block_location(b));
247 return -ENOTBLK;
250 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
251 DMERR("sb_check failed: magic %llu: "
252 "wanted %llu", le64_to_cpu(disk_super->magic),
253 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
254 return -EILSEQ;
257 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
258 block_size - sizeof(__le32),
259 SUPERBLOCK_CSUM_XOR));
260 if (csum_le != disk_super->csum) {
261 DMERR("sb_check failed: csum %u: wanted %u",
262 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
263 return -EILSEQ;
266 return 0;
269 static struct dm_block_validator sb_validator = {
270 .name = "superblock",
271 .prepare_for_write = sb_prepare_for_write,
272 .check = sb_check
275 /*----------------------------------------------------------------
276 * Methods for the btree value types
277 *--------------------------------------------------------------*/
279 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
281 return (b << 24) | t;
284 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
286 *b = v >> 24;
287 *t = v & ((1 << 24) - 1);
290 static void data_block_inc(void *context, const void *value_le)
292 struct dm_space_map *sm = context;
293 __le64 v_le;
294 uint64_t b;
295 uint32_t t;
297 memcpy(&v_le, value_le, sizeof(v_le));
298 unpack_block_time(le64_to_cpu(v_le), &b, &t);
299 dm_sm_inc_block(sm, b);
302 static void data_block_dec(void *context, const void *value_le)
304 struct dm_space_map *sm = context;
305 __le64 v_le;
306 uint64_t b;
307 uint32_t t;
309 memcpy(&v_le, value_le, sizeof(v_le));
310 unpack_block_time(le64_to_cpu(v_le), &b, &t);
311 dm_sm_dec_block(sm, b);
314 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
316 __le64 v1_le, v2_le;
317 uint64_t b1, b2;
318 uint32_t t;
320 memcpy(&v1_le, value1_le, sizeof(v1_le));
321 memcpy(&v2_le, value2_le, sizeof(v2_le));
322 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
323 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
325 return b1 == b2;
328 static void subtree_inc(void *context, const void *value)
330 struct dm_btree_info *info = context;
331 __le64 root_le;
332 uint64_t root;
334 memcpy(&root_le, value, sizeof(root_le));
335 root = le64_to_cpu(root_le);
336 dm_tm_inc(info->tm, root);
339 static void subtree_dec(void *context, const void *value)
341 struct dm_btree_info *info = context;
342 __le64 root_le;
343 uint64_t root;
345 memcpy(&root_le, value, sizeof(root_le));
346 root = le64_to_cpu(root_le);
347 if (dm_btree_del(info, root))
348 DMERR("btree delete failed\n");
351 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
353 __le64 v1_le, v2_le;
354 memcpy(&v1_le, value1_le, sizeof(v1_le));
355 memcpy(&v2_le, value2_le, sizeof(v2_le));
357 return v1_le == v2_le;
360 /*----------------------------------------------------------------*/
362 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
363 struct dm_block **sblock)
365 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
366 &sb_validator, sblock);
369 static int superblock_lock(struct dm_pool_metadata *pmd,
370 struct dm_block **sblock)
372 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
373 &sb_validator, sblock);
376 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
378 int r;
379 unsigned i;
380 struct dm_block *b;
381 __le64 *data_le, zero = cpu_to_le64(0);
382 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
385 * We can't use a validator here - it may be all zeroes.
387 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
388 if (r)
389 return r;
391 data_le = dm_block_data(b);
392 *result = 1;
393 for (i = 0; i < block_size; i++) {
394 if (data_le[i] != zero) {
395 *result = 0;
396 break;
400 return dm_bm_unlock(b);
403 static void __setup_btree_details(struct dm_pool_metadata *pmd)
405 pmd->info.tm = pmd->tm;
406 pmd->info.levels = 2;
407 pmd->info.value_type.context = pmd->data_sm;
408 pmd->info.value_type.size = sizeof(__le64);
409 pmd->info.value_type.inc = data_block_inc;
410 pmd->info.value_type.dec = data_block_dec;
411 pmd->info.value_type.equal = data_block_equal;
413 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
414 pmd->nb_info.tm = pmd->nb_tm;
416 pmd->tl_info.tm = pmd->tm;
417 pmd->tl_info.levels = 1;
418 pmd->tl_info.value_type.context = &pmd->bl_info;
419 pmd->tl_info.value_type.size = sizeof(__le64);
420 pmd->tl_info.value_type.inc = subtree_inc;
421 pmd->tl_info.value_type.dec = subtree_dec;
422 pmd->tl_info.value_type.equal = subtree_equal;
424 pmd->bl_info.tm = pmd->tm;
425 pmd->bl_info.levels = 1;
426 pmd->bl_info.value_type.context = pmd->data_sm;
427 pmd->bl_info.value_type.size = sizeof(__le64);
428 pmd->bl_info.value_type.inc = data_block_inc;
429 pmd->bl_info.value_type.dec = data_block_dec;
430 pmd->bl_info.value_type.equal = data_block_equal;
432 pmd->details_info.tm = pmd->tm;
433 pmd->details_info.levels = 1;
434 pmd->details_info.value_type.context = NULL;
435 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
436 pmd->details_info.value_type.inc = NULL;
437 pmd->details_info.value_type.dec = NULL;
438 pmd->details_info.value_type.equal = NULL;
441 static int save_sm_roots(struct dm_pool_metadata *pmd)
443 int r;
444 size_t len;
446 r = dm_sm_root_size(pmd->metadata_sm, &len);
447 if (r < 0)
448 return r;
450 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
451 if (r < 0)
452 return r;
454 r = dm_sm_root_size(pmd->data_sm, &len);
455 if (r < 0)
456 return r;
458 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
461 static void copy_sm_roots(struct dm_pool_metadata *pmd,
462 struct thin_disk_superblock *disk)
464 memcpy(&disk->metadata_space_map_root,
465 &pmd->metadata_space_map_root,
466 sizeof(pmd->metadata_space_map_root));
468 memcpy(&disk->data_space_map_root,
469 &pmd->data_space_map_root,
470 sizeof(pmd->data_space_map_root));
473 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
475 int r;
476 struct dm_block *sblock;
477 struct thin_disk_superblock *disk_super;
478 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
480 if (bdev_size > THIN_METADATA_MAX_SECTORS)
481 bdev_size = THIN_METADATA_MAX_SECTORS;
483 r = dm_sm_commit(pmd->data_sm);
484 if (r < 0)
485 return r;
487 r = save_sm_roots(pmd);
488 if (r < 0)
489 return r;
491 r = dm_tm_pre_commit(pmd->tm);
492 if (r < 0)
493 return r;
495 r = superblock_lock_zero(pmd, &sblock);
496 if (r)
497 return r;
499 disk_super = dm_block_data(sblock);
500 disk_super->flags = 0;
501 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
502 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
503 disk_super->version = cpu_to_le32(THIN_VERSION);
504 disk_super->time = 0;
505 disk_super->trans_id = 0;
506 disk_super->held_root = 0;
508 copy_sm_roots(pmd, disk_super);
510 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
511 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
512 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
513 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
514 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
516 return dm_tm_commit(pmd->tm, sblock);
519 static int __format_metadata(struct dm_pool_metadata *pmd)
521 int r;
523 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
524 &pmd->tm, &pmd->metadata_sm);
525 if (r < 0) {
526 DMERR("tm_create_with_sm failed");
527 return r;
530 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
531 if (IS_ERR(pmd->data_sm)) {
532 DMERR("sm_disk_create failed");
533 r = PTR_ERR(pmd->data_sm);
534 goto bad_cleanup_tm;
537 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
538 if (!pmd->nb_tm) {
539 DMERR("could not create non-blocking clone tm");
540 r = -ENOMEM;
541 goto bad_cleanup_data_sm;
544 __setup_btree_details(pmd);
546 r = dm_btree_empty(&pmd->info, &pmd->root);
547 if (r < 0)
548 goto bad_cleanup_nb_tm;
550 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
551 if (r < 0) {
552 DMERR("couldn't create devices root");
553 goto bad_cleanup_nb_tm;
556 r = __write_initial_superblock(pmd);
557 if (r)
558 goto bad_cleanup_nb_tm;
560 return 0;
562 bad_cleanup_nb_tm:
563 dm_tm_destroy(pmd->nb_tm);
564 bad_cleanup_data_sm:
565 dm_sm_destroy(pmd->data_sm);
566 bad_cleanup_tm:
567 dm_tm_destroy(pmd->tm);
568 dm_sm_destroy(pmd->metadata_sm);
570 return r;
573 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
574 struct dm_pool_metadata *pmd)
576 uint32_t features;
578 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
579 if (features) {
580 DMERR("could not access metadata due to unsupported optional features (%lx).",
581 (unsigned long)features);
582 return -EINVAL;
586 * Check for read-only metadata to skip the following RDWR checks.
588 if (get_disk_ro(pmd->bdev->bd_disk))
589 return 0;
591 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
592 if (features) {
593 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
594 (unsigned long)features);
595 return -EINVAL;
598 return 0;
601 static int __open_metadata(struct dm_pool_metadata *pmd)
603 int r;
604 struct dm_block *sblock;
605 struct thin_disk_superblock *disk_super;
607 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
608 &sb_validator, &sblock);
609 if (r < 0) {
610 DMERR("couldn't read superblock");
611 return r;
614 disk_super = dm_block_data(sblock);
616 r = __check_incompat_features(disk_super, pmd);
617 if (r < 0)
618 goto bad_unlock_sblock;
620 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
621 disk_super->metadata_space_map_root,
622 sizeof(disk_super->metadata_space_map_root),
623 &pmd->tm, &pmd->metadata_sm);
624 if (r < 0) {
625 DMERR("tm_open_with_sm failed");
626 goto bad_unlock_sblock;
629 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
630 sizeof(disk_super->data_space_map_root));
631 if (IS_ERR(pmd->data_sm)) {
632 DMERR("sm_disk_open failed");
633 r = PTR_ERR(pmd->data_sm);
634 goto bad_cleanup_tm;
637 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
638 if (!pmd->nb_tm) {
639 DMERR("could not create non-blocking clone tm");
640 r = -ENOMEM;
641 goto bad_cleanup_data_sm;
644 __setup_btree_details(pmd);
645 return dm_bm_unlock(sblock);
647 bad_cleanup_data_sm:
648 dm_sm_destroy(pmd->data_sm);
649 bad_cleanup_tm:
650 dm_tm_destroy(pmd->tm);
651 dm_sm_destroy(pmd->metadata_sm);
652 bad_unlock_sblock:
653 dm_bm_unlock(sblock);
655 return r;
658 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
660 int r, unformatted;
662 r = __superblock_all_zeroes(pmd->bm, &unformatted);
663 if (r)
664 return r;
666 if (unformatted)
667 return format_device ? __format_metadata(pmd) : -EPERM;
669 return __open_metadata(pmd);
672 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
674 int r;
676 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
677 THIN_METADATA_CACHE_SIZE,
678 THIN_MAX_CONCURRENT_LOCKS);
679 if (IS_ERR(pmd->bm)) {
680 DMERR("could not create block manager");
681 return PTR_ERR(pmd->bm);
684 r = __open_or_format_metadata(pmd, format_device);
685 if (r)
686 dm_block_manager_destroy(pmd->bm);
688 return r;
691 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
693 dm_sm_destroy(pmd->data_sm);
694 dm_sm_destroy(pmd->metadata_sm);
695 dm_tm_destroy(pmd->nb_tm);
696 dm_tm_destroy(pmd->tm);
697 dm_block_manager_destroy(pmd->bm);
700 static int __begin_transaction(struct dm_pool_metadata *pmd)
702 int r;
703 struct thin_disk_superblock *disk_super;
704 struct dm_block *sblock;
707 * We re-read the superblock every time. Shouldn't need to do this
708 * really.
710 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
711 &sb_validator, &sblock);
712 if (r)
713 return r;
715 disk_super = dm_block_data(sblock);
716 pmd->time = le32_to_cpu(disk_super->time);
717 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
718 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
719 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
720 pmd->flags = le32_to_cpu(disk_super->flags);
721 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
723 dm_bm_unlock(sblock);
724 return 0;
727 static int __write_changed_details(struct dm_pool_metadata *pmd)
729 int r;
730 struct dm_thin_device *td, *tmp;
731 struct disk_device_details details;
732 uint64_t key;
734 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
735 if (!td->changed)
736 continue;
738 key = td->id;
740 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
741 details.transaction_id = cpu_to_le64(td->transaction_id);
742 details.creation_time = cpu_to_le32(td->creation_time);
743 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
744 __dm_bless_for_disk(&details);
746 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
747 &key, &details, &pmd->details_root);
748 if (r)
749 return r;
751 if (td->open_count)
752 td->changed = 0;
753 else {
754 list_del(&td->list);
755 kfree(td);
759 return 0;
762 static int __commit_transaction(struct dm_pool_metadata *pmd)
764 int r;
765 size_t metadata_len, data_len;
766 struct thin_disk_superblock *disk_super;
767 struct dm_block *sblock;
770 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
772 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
774 r = __write_changed_details(pmd);
775 if (r < 0)
776 return r;
778 r = dm_sm_commit(pmd->data_sm);
779 if (r < 0)
780 return r;
782 r = dm_tm_pre_commit(pmd->tm);
783 if (r < 0)
784 return r;
786 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
787 if (r < 0)
788 return r;
790 r = dm_sm_root_size(pmd->data_sm, &data_len);
791 if (r < 0)
792 return r;
794 r = save_sm_roots(pmd);
795 if (r < 0)
796 return r;
798 r = superblock_lock(pmd, &sblock);
799 if (r)
800 return r;
802 disk_super = dm_block_data(sblock);
803 disk_super->time = cpu_to_le32(pmd->time);
804 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
805 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
806 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
807 disk_super->flags = cpu_to_le32(pmd->flags);
809 copy_sm_roots(pmd, disk_super);
811 return dm_tm_commit(pmd->tm, sblock);
814 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
815 sector_t data_block_size,
816 bool format_device)
818 int r;
819 struct dm_pool_metadata *pmd;
821 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
822 if (!pmd) {
823 DMERR("could not allocate metadata struct");
824 return ERR_PTR(-ENOMEM);
827 init_rwsem(&pmd->root_lock);
828 pmd->time = 0;
829 INIT_LIST_HEAD(&pmd->thin_devices);
830 pmd->read_only = false;
831 pmd->fail_io = false;
832 pmd->bdev = bdev;
833 pmd->data_block_size = data_block_size;
835 r = __create_persistent_data_objects(pmd, format_device);
836 if (r) {
837 kfree(pmd);
838 return ERR_PTR(r);
841 r = __begin_transaction(pmd);
842 if (r < 0) {
843 if (dm_pool_metadata_close(pmd) < 0)
844 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
845 return ERR_PTR(r);
848 return pmd;
851 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
853 int r;
854 unsigned open_devices = 0;
855 struct dm_thin_device *td, *tmp;
857 down_read(&pmd->root_lock);
858 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
859 if (td->open_count)
860 open_devices++;
861 else {
862 list_del(&td->list);
863 kfree(td);
866 up_read(&pmd->root_lock);
868 if (open_devices) {
869 DMERR("attempt to close pmd when %u device(s) are still open",
870 open_devices);
871 return -EBUSY;
874 if (!pmd->read_only && !pmd->fail_io) {
875 r = __commit_transaction(pmd);
876 if (r < 0)
877 DMWARN("%s: __commit_transaction() failed, error = %d",
878 __func__, r);
881 if (!pmd->fail_io)
882 __destroy_persistent_data_objects(pmd);
884 kfree(pmd);
885 return 0;
889 * __open_device: Returns @td corresponding to device with id @dev,
890 * creating it if @create is set and incrementing @td->open_count.
891 * On failure, @td is undefined.
893 static int __open_device(struct dm_pool_metadata *pmd,
894 dm_thin_id dev, int create,
895 struct dm_thin_device **td)
897 int r, changed = 0;
898 struct dm_thin_device *td2;
899 uint64_t key = dev;
900 struct disk_device_details details_le;
903 * If the device is already open, return it.
905 list_for_each_entry(td2, &pmd->thin_devices, list)
906 if (td2->id == dev) {
908 * May not create an already-open device.
910 if (create)
911 return -EEXIST;
913 td2->open_count++;
914 *td = td2;
915 return 0;
919 * Check the device exists.
921 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
922 &key, &details_le);
923 if (r) {
924 if (r != -ENODATA || !create)
925 return r;
928 * Create new device.
930 changed = 1;
931 details_le.mapped_blocks = 0;
932 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
933 details_le.creation_time = cpu_to_le32(pmd->time);
934 details_le.snapshotted_time = cpu_to_le32(pmd->time);
937 *td = kmalloc(sizeof(**td), GFP_NOIO);
938 if (!*td)
939 return -ENOMEM;
941 (*td)->pmd = pmd;
942 (*td)->id = dev;
943 (*td)->open_count = 1;
944 (*td)->changed = changed;
945 (*td)->aborted_with_changes = false;
946 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
947 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
948 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
949 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
951 list_add(&(*td)->list, &pmd->thin_devices);
953 return 0;
956 static void __close_device(struct dm_thin_device *td)
958 --td->open_count;
961 static int __create_thin(struct dm_pool_metadata *pmd,
962 dm_thin_id dev)
964 int r;
965 dm_block_t dev_root;
966 uint64_t key = dev;
967 struct disk_device_details details_le;
968 struct dm_thin_device *td;
969 __le64 value;
971 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
972 &key, &details_le);
973 if (!r)
974 return -EEXIST;
977 * Create an empty btree for the mappings.
979 r = dm_btree_empty(&pmd->bl_info, &dev_root);
980 if (r)
981 return r;
984 * Insert it into the main mapping tree.
986 value = cpu_to_le64(dev_root);
987 __dm_bless_for_disk(&value);
988 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
989 if (r) {
990 dm_btree_del(&pmd->bl_info, dev_root);
991 return r;
994 r = __open_device(pmd, dev, 1, &td);
995 if (r) {
996 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
997 dm_btree_del(&pmd->bl_info, dev_root);
998 return r;
1000 __close_device(td);
1002 return r;
1005 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1007 int r = -EINVAL;
1009 down_write(&pmd->root_lock);
1010 if (!pmd->fail_io)
1011 r = __create_thin(pmd, dev);
1012 up_write(&pmd->root_lock);
1014 return r;
1017 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1018 struct dm_thin_device *snap,
1019 dm_thin_id origin, uint32_t time)
1021 int r;
1022 struct dm_thin_device *td;
1024 r = __open_device(pmd, origin, 0, &td);
1025 if (r)
1026 return r;
1028 td->changed = 1;
1029 td->snapshotted_time = time;
1031 snap->mapped_blocks = td->mapped_blocks;
1032 snap->snapshotted_time = time;
1033 __close_device(td);
1035 return 0;
1038 static int __create_snap(struct dm_pool_metadata *pmd,
1039 dm_thin_id dev, dm_thin_id origin)
1041 int r;
1042 dm_block_t origin_root;
1043 uint64_t key = origin, dev_key = dev;
1044 struct dm_thin_device *td;
1045 struct disk_device_details details_le;
1046 __le64 value;
1048 /* check this device is unused */
1049 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1050 &dev_key, &details_le);
1051 if (!r)
1052 return -EEXIST;
1054 /* find the mapping tree for the origin */
1055 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1056 if (r)
1057 return r;
1058 origin_root = le64_to_cpu(value);
1060 /* clone the origin, an inc will do */
1061 dm_tm_inc(pmd->tm, origin_root);
1063 /* insert into the main mapping tree */
1064 value = cpu_to_le64(origin_root);
1065 __dm_bless_for_disk(&value);
1066 key = dev;
1067 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1068 if (r) {
1069 dm_tm_dec(pmd->tm, origin_root);
1070 return r;
1073 pmd->time++;
1075 r = __open_device(pmd, dev, 1, &td);
1076 if (r)
1077 goto bad;
1079 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1080 __close_device(td);
1082 if (r)
1083 goto bad;
1085 return 0;
1087 bad:
1088 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1089 dm_btree_remove(&pmd->details_info, pmd->details_root,
1090 &key, &pmd->details_root);
1091 return r;
1094 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1095 dm_thin_id dev,
1096 dm_thin_id origin)
1098 int r = -EINVAL;
1100 down_write(&pmd->root_lock);
1101 if (!pmd->fail_io)
1102 r = __create_snap(pmd, dev, origin);
1103 up_write(&pmd->root_lock);
1105 return r;
1108 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1110 int r;
1111 uint64_t key = dev;
1112 struct dm_thin_device *td;
1114 /* TODO: failure should mark the transaction invalid */
1115 r = __open_device(pmd, dev, 0, &td);
1116 if (r)
1117 return r;
1119 if (td->open_count > 1) {
1120 __close_device(td);
1121 return -EBUSY;
1124 list_del(&td->list);
1125 kfree(td);
1126 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1127 &key, &pmd->details_root);
1128 if (r)
1129 return r;
1131 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1132 if (r)
1133 return r;
1135 return 0;
1138 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1139 dm_thin_id dev)
1141 int r = -EINVAL;
1143 down_write(&pmd->root_lock);
1144 if (!pmd->fail_io)
1145 r = __delete_device(pmd, dev);
1146 up_write(&pmd->root_lock);
1148 return r;
1151 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1152 uint64_t current_id,
1153 uint64_t new_id)
1155 int r = -EINVAL;
1157 down_write(&pmd->root_lock);
1159 if (pmd->fail_io)
1160 goto out;
1162 if (pmd->trans_id != current_id) {
1163 DMERR("mismatched transaction id");
1164 goto out;
1167 pmd->trans_id = new_id;
1168 r = 0;
1170 out:
1171 up_write(&pmd->root_lock);
1173 return r;
1176 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1177 uint64_t *result)
1179 int r = -EINVAL;
1181 down_read(&pmd->root_lock);
1182 if (!pmd->fail_io) {
1183 *result = pmd->trans_id;
1184 r = 0;
1186 up_read(&pmd->root_lock);
1188 return r;
1191 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1193 int r, inc;
1194 struct thin_disk_superblock *disk_super;
1195 struct dm_block *copy, *sblock;
1196 dm_block_t held_root;
1199 * Copy the superblock.
1201 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1202 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1203 &sb_validator, &copy, &inc);
1204 if (r)
1205 return r;
1207 BUG_ON(!inc);
1209 held_root = dm_block_location(copy);
1210 disk_super = dm_block_data(copy);
1212 if (le64_to_cpu(disk_super->held_root)) {
1213 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1215 dm_tm_dec(pmd->tm, held_root);
1216 dm_tm_unlock(pmd->tm, copy);
1217 return -EBUSY;
1221 * Wipe the spacemap since we're not publishing this.
1223 memset(&disk_super->data_space_map_root, 0,
1224 sizeof(disk_super->data_space_map_root));
1225 memset(&disk_super->metadata_space_map_root, 0,
1226 sizeof(disk_super->metadata_space_map_root));
1229 * Increment the data structures that need to be preserved.
1231 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1232 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1233 dm_tm_unlock(pmd->tm, copy);
1236 * Write the held root into the superblock.
1238 r = superblock_lock(pmd, &sblock);
1239 if (r) {
1240 dm_tm_dec(pmd->tm, held_root);
1241 return r;
1244 disk_super = dm_block_data(sblock);
1245 disk_super->held_root = cpu_to_le64(held_root);
1246 dm_bm_unlock(sblock);
1247 return 0;
1250 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1252 int r = -EINVAL;
1254 down_write(&pmd->root_lock);
1255 if (!pmd->fail_io)
1256 r = __reserve_metadata_snap(pmd);
1257 up_write(&pmd->root_lock);
1259 return r;
1262 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1264 int r;
1265 struct thin_disk_superblock *disk_super;
1266 struct dm_block *sblock, *copy;
1267 dm_block_t held_root;
1269 r = superblock_lock(pmd, &sblock);
1270 if (r)
1271 return r;
1273 disk_super = dm_block_data(sblock);
1274 held_root = le64_to_cpu(disk_super->held_root);
1275 disk_super->held_root = cpu_to_le64(0);
1277 dm_bm_unlock(sblock);
1279 if (!held_root) {
1280 DMWARN("No pool metadata snapshot found: nothing to release.");
1281 return -EINVAL;
1284 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1285 if (r)
1286 return r;
1288 disk_super = dm_block_data(copy);
1289 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1290 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1291 dm_sm_dec_block(pmd->metadata_sm, held_root);
1293 return dm_tm_unlock(pmd->tm, copy);
1296 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1298 int r = -EINVAL;
1300 down_write(&pmd->root_lock);
1301 if (!pmd->fail_io)
1302 r = __release_metadata_snap(pmd);
1303 up_write(&pmd->root_lock);
1305 return r;
1308 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1309 dm_block_t *result)
1311 int r;
1312 struct thin_disk_superblock *disk_super;
1313 struct dm_block *sblock;
1315 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1316 &sb_validator, &sblock);
1317 if (r)
1318 return r;
1320 disk_super = dm_block_data(sblock);
1321 *result = le64_to_cpu(disk_super->held_root);
1323 return dm_bm_unlock(sblock);
1326 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1327 dm_block_t *result)
1329 int r = -EINVAL;
1331 down_read(&pmd->root_lock);
1332 if (!pmd->fail_io)
1333 r = __get_metadata_snap(pmd, result);
1334 up_read(&pmd->root_lock);
1336 return r;
1339 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1340 struct dm_thin_device **td)
1342 int r = -EINVAL;
1344 down_write(&pmd->root_lock);
1345 if (!pmd->fail_io)
1346 r = __open_device(pmd, dev, 0, td);
1347 up_write(&pmd->root_lock);
1349 return r;
1352 int dm_pool_close_thin_device(struct dm_thin_device *td)
1354 down_write(&td->pmd->root_lock);
1355 __close_device(td);
1356 up_write(&td->pmd->root_lock);
1358 return 0;
1361 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1363 return td->id;
1367 * Check whether @time (of block creation) is older than @td's last snapshot.
1368 * If so then the associated block is shared with the last snapshot device.
1369 * Any block on a device created *after* the device last got snapshotted is
1370 * necessarily not shared.
1372 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1374 return td->snapshotted_time > time;
1377 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1378 int can_block, struct dm_thin_lookup_result *result)
1380 int r = -EINVAL;
1381 uint64_t block_time = 0;
1382 __le64 value;
1383 struct dm_pool_metadata *pmd = td->pmd;
1384 dm_block_t keys[2] = { td->id, block };
1385 struct dm_btree_info *info;
1387 if (can_block) {
1388 down_read(&pmd->root_lock);
1389 info = &pmd->info;
1390 } else if (down_read_trylock(&pmd->root_lock))
1391 info = &pmd->nb_info;
1392 else
1393 return -EWOULDBLOCK;
1395 if (pmd->fail_io)
1396 goto out;
1398 r = dm_btree_lookup(info, pmd->root, keys, &value);
1399 if (!r)
1400 block_time = le64_to_cpu(value);
1402 out:
1403 up_read(&pmd->root_lock);
1405 if (!r) {
1406 dm_block_t exception_block;
1407 uint32_t exception_time;
1408 unpack_block_time(block_time, &exception_block,
1409 &exception_time);
1410 result->block = exception_block;
1411 result->shared = __snapshotted_since(td, exception_time);
1414 return r;
1417 static int __insert(struct dm_thin_device *td, dm_block_t block,
1418 dm_block_t data_block)
1420 int r, inserted;
1421 __le64 value;
1422 struct dm_pool_metadata *pmd = td->pmd;
1423 dm_block_t keys[2] = { td->id, block };
1425 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1426 __dm_bless_for_disk(&value);
1428 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1429 &pmd->root, &inserted);
1430 if (r)
1431 return r;
1433 td->changed = 1;
1434 if (inserted)
1435 td->mapped_blocks++;
1437 return 0;
1440 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1441 dm_block_t data_block)
1443 int r = -EINVAL;
1445 down_write(&td->pmd->root_lock);
1446 if (!td->pmd->fail_io)
1447 r = __insert(td, block, data_block);
1448 up_write(&td->pmd->root_lock);
1450 return r;
1453 static int __remove(struct dm_thin_device *td, dm_block_t block)
1455 int r;
1456 struct dm_pool_metadata *pmd = td->pmd;
1457 dm_block_t keys[2] = { td->id, block };
1459 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1460 if (r)
1461 return r;
1463 td->mapped_blocks--;
1464 td->changed = 1;
1466 return 0;
1469 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1471 int r = -EINVAL;
1473 down_write(&td->pmd->root_lock);
1474 if (!td->pmd->fail_io)
1475 r = __remove(td, block);
1476 up_write(&td->pmd->root_lock);
1478 return r;
1481 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1483 int r;
1484 uint32_t ref_count;
1486 down_read(&pmd->root_lock);
1487 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1488 if (!r)
1489 *result = (ref_count != 0);
1490 up_read(&pmd->root_lock);
1492 return r;
1495 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1497 int r;
1499 down_read(&td->pmd->root_lock);
1500 r = td->changed;
1501 up_read(&td->pmd->root_lock);
1503 return r;
1506 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1508 bool r = false;
1509 struct dm_thin_device *td, *tmp;
1511 down_read(&pmd->root_lock);
1512 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1513 if (td->changed) {
1514 r = td->changed;
1515 break;
1518 up_read(&pmd->root_lock);
1520 return r;
1523 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1525 bool r;
1527 down_read(&td->pmd->root_lock);
1528 r = td->aborted_with_changes;
1529 up_read(&td->pmd->root_lock);
1531 return r;
1534 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1536 int r = -EINVAL;
1538 down_write(&pmd->root_lock);
1539 if (!pmd->fail_io)
1540 r = dm_sm_new_block(pmd->data_sm, result);
1541 up_write(&pmd->root_lock);
1543 return r;
1546 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1548 int r = -EINVAL;
1550 down_write(&pmd->root_lock);
1551 if (pmd->fail_io)
1552 goto out;
1554 r = __commit_transaction(pmd);
1555 if (r <= 0)
1556 goto out;
1559 * Open the next transaction.
1561 r = __begin_transaction(pmd);
1562 out:
1563 up_write(&pmd->root_lock);
1564 return r;
1567 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1569 struct dm_thin_device *td;
1571 list_for_each_entry(td, &pmd->thin_devices, list)
1572 td->aborted_with_changes = td->changed;
1575 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1577 int r = -EINVAL;
1579 down_write(&pmd->root_lock);
1580 if (pmd->fail_io)
1581 goto out;
1583 __set_abort_with_changes_flags(pmd);
1584 __destroy_persistent_data_objects(pmd);
1585 r = __create_persistent_data_objects(pmd, false);
1586 if (r)
1587 pmd->fail_io = true;
1589 out:
1590 up_write(&pmd->root_lock);
1592 return r;
1595 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1597 int r = -EINVAL;
1599 down_read(&pmd->root_lock);
1600 if (!pmd->fail_io)
1601 r = dm_sm_get_nr_free(pmd->data_sm, result);
1602 up_read(&pmd->root_lock);
1604 return r;
1607 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1608 dm_block_t *result)
1610 int r = -EINVAL;
1612 down_read(&pmd->root_lock);
1613 if (!pmd->fail_io)
1614 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1615 up_read(&pmd->root_lock);
1617 return r;
1620 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1621 dm_block_t *result)
1623 int r = -EINVAL;
1625 down_read(&pmd->root_lock);
1626 if (!pmd->fail_io)
1627 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1628 up_read(&pmd->root_lock);
1630 return r;
1633 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1635 down_read(&pmd->root_lock);
1636 *result = pmd->data_block_size;
1637 up_read(&pmd->root_lock);
1639 return 0;
1642 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1644 int r = -EINVAL;
1646 down_read(&pmd->root_lock);
1647 if (!pmd->fail_io)
1648 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1649 up_read(&pmd->root_lock);
1651 return r;
1654 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1656 int r = -EINVAL;
1657 struct dm_pool_metadata *pmd = td->pmd;
1659 down_read(&pmd->root_lock);
1660 if (!pmd->fail_io) {
1661 *result = td->mapped_blocks;
1662 r = 0;
1664 up_read(&pmd->root_lock);
1666 return r;
1669 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1671 int r;
1672 __le64 value_le;
1673 dm_block_t thin_root;
1674 struct dm_pool_metadata *pmd = td->pmd;
1676 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1677 if (r)
1678 return r;
1680 thin_root = le64_to_cpu(value_le);
1682 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1685 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1686 dm_block_t *result)
1688 int r = -EINVAL;
1689 struct dm_pool_metadata *pmd = td->pmd;
1691 down_read(&pmd->root_lock);
1692 if (!pmd->fail_io)
1693 r = __highest_block(td, result);
1694 up_read(&pmd->root_lock);
1696 return r;
1699 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1701 int r;
1702 dm_block_t old_count;
1704 r = dm_sm_get_nr_blocks(sm, &old_count);
1705 if (r)
1706 return r;
1708 if (new_count == old_count)
1709 return 0;
1711 if (new_count < old_count) {
1712 DMERR("cannot reduce size of space map");
1713 return -EINVAL;
1716 return dm_sm_extend(sm, new_count - old_count);
1719 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1721 int r = -EINVAL;
1723 down_write(&pmd->root_lock);
1724 if (!pmd->fail_io)
1725 r = __resize_space_map(pmd->data_sm, new_count);
1726 up_write(&pmd->root_lock);
1728 return r;
1731 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1733 int r = -EINVAL;
1735 down_write(&pmd->root_lock);
1736 if (!pmd->fail_io)
1737 r = __resize_space_map(pmd->metadata_sm, new_count);
1738 up_write(&pmd->root_lock);
1740 return r;
1743 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1745 down_write(&pmd->root_lock);
1746 pmd->read_only = true;
1747 dm_bm_set_read_only(pmd->bm);
1748 up_write(&pmd->root_lock);
1751 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1753 down_write(&pmd->root_lock);
1754 pmd->read_only = false;
1755 dm_bm_set_read_write(pmd->bm);
1756 up_write(&pmd->root_lock);
1759 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1760 dm_block_t threshold,
1761 dm_sm_threshold_fn fn,
1762 void *context)
1764 int r;
1766 down_write(&pmd->root_lock);
1767 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1768 up_write(&pmd->root_lock);
1770 return r;
1773 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1775 int r;
1776 struct dm_block *sblock;
1777 struct thin_disk_superblock *disk_super;
1779 down_write(&pmd->root_lock);
1780 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1782 r = superblock_lock(pmd, &sblock);
1783 if (r) {
1784 DMERR("couldn't read superblock");
1785 goto out;
1788 disk_super = dm_block_data(sblock);
1789 disk_super->flags = cpu_to_le32(pmd->flags);
1791 dm_bm_unlock(sblock);
1792 out:
1793 up_write(&pmd->root_lock);
1794 return r;
1797 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1799 bool needs_check;
1801 down_read(&pmd->root_lock);
1802 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1803 up_read(&pmd->root_lock);
1805 return needs_check;