MIPS: Netlogic: Use chip_data for irq_chip methods
[linux-2.6/btrfs-unstable.git] / drivers / staging / rtl8192e / rtllib_tx.c
blobe99ea5e67ef98c6f0be353930417d81ee08d49bf
1 /******************************************************************************
3 Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************
27 Few modifications for Realtek's Wi-Fi drivers by
28 Andrea Merello <andrea.merello@gmail.com>
30 A special thanks goes to Realtek for their support !
32 ******************************************************************************/
34 #include <linux/compiler.h>
35 #include <linux/errno.h>
36 #include <linux/if_arp.h>
37 #include <linux/in6.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/netdevice.h>
43 #include <linux/pci.h>
44 #include <linux/proc_fs.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/tcp.h>
48 #include <linux/types.h>
49 #include <linux/wireless.h>
50 #include <linux/etherdevice.h>
51 #include <linux/uaccess.h>
52 #include <linux/if_vlan.h>
54 #include "rtllib.h"
56 /* 802.11 Data Frame
59 * 802.11 frame_control for data frames - 2 bytes
60 * ,--------------------------------------------------------------------.
61 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
62 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
63 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
64 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
65 * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep |
66 * | | | x=0 data |DS | DS |frag| | mgm |data | |
67 * | | | x=1 data+ack | | | | | | | |
68 * '--------------------------------------------------------------------'
69 * /\
70 * |
71 * 802.11 Data Frame |
72 * ,--------- 'ctrl' expands to >---'
73 * |
74 * ,--'---,-------------------------------------------------------------.
75 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
76 * |------|------|---------|---------|---------|------|---------|------|
77 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
78 * | | tion | (BSSID) | | | ence | data | |
79 * `--------------------------------------------------| |------'
80 * Total: 28 non-data bytes `----.----'
81 * |
82 * .- 'Frame data' expands to <---------------------------'
83 * |
84 * V
85 * ,---------------------------------------------------.
86 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
87 * |------|------|---------|----------|------|---------|
88 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
89 * | DSAP | SSAP | | | | Packet |
90 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
91 * `-----------------------------------------| |
92 * Total: 8 non-data bytes `----.----'
93 * |
94 * .- 'IP Packet' expands, if WEP enabled, to <--'
95 * |
96 * V
97 * ,-----------------------.
98 * Bytes | 4 | 0-2296 | 4 |
99 * |-----|-----------|-----|
100 * Desc. | IV | Encrypted | ICV |
101 * | | IP Packet | |
102 * `-----------------------'
103 * Total: 8 non-data bytes
106 * 802.3 Ethernet Data Frame
108 * ,-----------------------------------------.
109 * Bytes | 6 | 6 | 2 | Variable | 4 |
110 * |-------|-------|------|-----------|------|
111 * Desc. | Dest. | Source| Type | IP Packet | fcs |
112 * | MAC | MAC | | | |
113 * `-----------------------------------------'
114 * Total: 18 non-data bytes
116 * In the event that fragmentation is required, the incoming payload is split
117 * into N parts of size ieee->fts. The first fragment contains the SNAP header
118 * and the remaining packets are just data.
120 * If encryption is enabled, each fragment payload size is reduced by enough
121 * space to add the prefix and postfix (IV and ICV totalling 8 bytes in
122 * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to
123 * 500 without encryption it will take 3 frames. With WEP it will take 4 frames
124 * as the payload of each frame is reduced to 492 bytes.
126 * SKB visualization
128 * ,- skb->data
130 * | ETHERNET HEADER ,-<-- PAYLOAD
131 * | | 14 bytes from skb->data
132 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
133 * | | | |
134 * |,-Dest.--. ,--Src.---. | | |
135 * | 6 bytes| | 6 bytes | | | |
136 * v | | | | | |
137 * 0 | v 1 | v | v 2
138 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
139 * ^ | ^ | ^ |
140 * | | | | | |
141 * | | | | `T' <---- 2 bytes for Type
142 * | | | |
143 * | | '---SNAP--' <-------- 6 bytes for SNAP
144 * | |
145 * `-IV--' <-------------------- 4 bytes for IV (WEP)
147 * SNAP HEADER
151 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
152 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
154 inline int rtllib_put_snap(u8 *data, u16 h_proto)
156 struct rtllib_snap_hdr *snap;
157 u8 *oui;
159 snap = (struct rtllib_snap_hdr *)data;
160 snap->dsap = 0xaa;
161 snap->ssap = 0xaa;
162 snap->ctrl = 0x03;
164 if (h_proto == 0x8137 || h_proto == 0x80f3)
165 oui = P802_1H_OUI;
166 else
167 oui = RFC1042_OUI;
168 snap->oui[0] = oui[0];
169 snap->oui[1] = oui[1];
170 snap->oui[2] = oui[2];
172 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
174 return SNAP_SIZE + sizeof(u16);
177 int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag,
178 int hdr_len)
180 struct lib80211_crypt_data *crypt = NULL;
181 int res;
183 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
185 if (!(crypt && crypt->ops)) {
186 netdev_info(ieee->dev, "=========>%s(), crypt is null\n",
187 __func__);
188 return -1;
190 /* To encrypt, frame format is:
191 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
194 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
195 * call both MSDU and MPDU encryption functions from here.
197 atomic_inc(&crypt->refcnt);
198 res = 0;
199 if (crypt->ops->encrypt_msdu)
200 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
201 if (res == 0 && crypt->ops->encrypt_mpdu)
202 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
204 atomic_dec(&crypt->refcnt);
205 if (res < 0) {
206 netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n",
207 ieee->dev->name, frag->len);
208 ieee->ieee_stats.tx_discards++;
209 return -1;
212 return 0;
216 void rtllib_txb_free(struct rtllib_txb *txb)
218 if (unlikely(!txb))
219 return;
220 kfree(txb);
223 static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size,
224 gfp_t gfp_mask)
226 struct rtllib_txb *txb;
227 int i;
229 txb = kmalloc(sizeof(struct rtllib_txb) + (sizeof(u8 *) * nr_frags),
230 gfp_mask);
231 if (!txb)
232 return NULL;
234 memset(txb, 0, sizeof(struct rtllib_txb));
235 txb->nr_frags = nr_frags;
236 txb->frag_size = cpu_to_le16(txb_size);
238 for (i = 0; i < nr_frags; i++) {
239 txb->fragments[i] = dev_alloc_skb(txb_size);
240 if (unlikely(!txb->fragments[i])) {
241 i--;
242 break;
244 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
246 if (unlikely(i != nr_frags)) {
247 while (i >= 0)
248 dev_kfree_skb_any(txb->fragments[i--]);
249 kfree(txb);
250 return NULL;
252 return txb;
255 static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu)
257 struct ethhdr *eth;
258 struct iphdr *ip;
260 eth = (struct ethhdr *)skb->data;
261 if (eth->h_proto != htons(ETH_P_IP))
262 return 0;
264 #ifdef VERBOSE_DEBUG
265 print_hex_dump_bytes("rtllib_classify(): ", DUMP_PREFIX_NONE, skb->data,
266 skb->len);
267 #endif
268 ip = ip_hdr(skb);
269 switch (ip->tos & 0xfc) {
270 case 0x20:
271 return 2;
272 case 0x40:
273 return 1;
274 case 0x60:
275 return 3;
276 case 0x80:
277 return 4;
278 case 0xa0:
279 return 5;
280 case 0xc0:
281 return 6;
282 case 0xe0:
283 return 7;
284 default:
285 return 0;
289 static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee,
290 struct sk_buff *skb,
291 struct cb_desc *tcb_desc)
293 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
294 struct tx_ts_record *pTxTs = NULL;
295 struct rtllib_hdr_1addr *hdr = (struct rtllib_hdr_1addr *)skb->data;
297 if (rtllib_act_scanning(ieee, false))
298 return;
300 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
301 return;
302 if (!IsQoSDataFrame(skb->data))
303 return;
304 if (is_multicast_ether_addr(hdr->addr1))
305 return;
307 if (tcb_desc->bdhcp || ieee->CntAfterLink < 2)
308 return;
310 if (pHTInfo->IOTAction & HT_IOT_ACT_TX_NO_AGGREGATION)
311 return;
313 if (!ieee->GetNmodeSupportBySecCfg(ieee->dev))
314 return;
315 if (pHTInfo->bCurrentAMPDUEnable) {
316 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1,
317 skb->priority, TX_DIR, true)) {
318 netdev_info(ieee->dev, "%s: can't get TS\n", __func__);
319 return;
321 if (pTxTs->TxAdmittedBARecord.bValid == false) {
322 if (ieee->wpa_ie_len && (ieee->pairwise_key_type ==
323 KEY_TYPE_NA)) {
325 } else if (tcb_desc->bdhcp == 1) {
327 } else if (!pTxTs->bDisable_AddBa) {
328 TsStartAddBaProcess(ieee, pTxTs);
330 goto FORCED_AGG_SETTING;
331 } else if (pTxTs->bUsingBa == false) {
332 if (SN_LESS(pTxTs->TxAdmittedBARecord.BaStartSeqCtrl.field.SeqNum,
333 (pTxTs->TxCurSeq+1)%4096))
334 pTxTs->bUsingBa = true;
335 else
336 goto FORCED_AGG_SETTING;
338 if (ieee->iw_mode == IW_MODE_INFRA) {
339 tcb_desc->bAMPDUEnable = true;
340 tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
341 tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
344 FORCED_AGG_SETTING:
345 switch (pHTInfo->ForcedAMPDUMode) {
346 case HT_AGG_AUTO:
347 break;
349 case HT_AGG_FORCE_ENABLE:
350 tcb_desc->bAMPDUEnable = true;
351 tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
352 tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
353 break;
355 case HT_AGG_FORCE_DISABLE:
356 tcb_desc->bAMPDUEnable = false;
357 tcb_desc->ampdu_density = 0;
358 tcb_desc->ampdu_factor = 0;
359 break;
363 static void rtllib_qurey_ShortPreambleMode(struct rtllib_device *ieee,
364 struct cb_desc *tcb_desc)
366 tcb_desc->bUseShortPreamble = false;
367 if (tcb_desc->data_rate == 2)
368 return;
369 else if (ieee->current_network.capability &
370 WLAN_CAPABILITY_SHORT_PREAMBLE)
371 tcb_desc->bUseShortPreamble = true;
374 static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee,
375 struct cb_desc *tcb_desc)
377 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
379 tcb_desc->bUseShortGI = false;
381 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
382 return;
384 if (pHTInfo->bForcedShortGI) {
385 tcb_desc->bUseShortGI = true;
386 return;
389 if ((pHTInfo->bCurBW40MHz == true) && pHTInfo->bCurShortGI40MHz)
390 tcb_desc->bUseShortGI = true;
391 else if ((pHTInfo->bCurBW40MHz == false) && pHTInfo->bCurShortGI20MHz)
392 tcb_desc->bUseShortGI = true;
395 static void rtllib_query_BandwidthMode(struct rtllib_device *ieee,
396 struct cb_desc *tcb_desc)
398 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo;
400 tcb_desc->bPacketBW = false;
402 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
403 return;
405 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
406 return;
408 if ((tcb_desc->data_rate & 0x80) == 0)
409 return;
410 if (pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz &&
411 !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
412 tcb_desc->bPacketBW = true;
415 static void rtllib_query_protectionmode(struct rtllib_device *ieee,
416 struct cb_desc *tcb_desc,
417 struct sk_buff *skb)
419 struct rt_hi_throughput *pHTInfo;
421 tcb_desc->bRTSSTBC = false;
422 tcb_desc->bRTSUseShortGI = false;
423 tcb_desc->bCTSEnable = false;
424 tcb_desc->RTSSC = 0;
425 tcb_desc->bRTSBW = false;
427 if (tcb_desc->bBroadcast || tcb_desc->bMulticast)
428 return;
430 if (is_broadcast_ether_addr(skb->data+16))
431 return;
433 if (ieee->mode < IEEE_N_24G) {
434 if (skb->len > ieee->rts) {
435 tcb_desc->bRTSEnable = true;
436 tcb_desc->rts_rate = MGN_24M;
437 } else if (ieee->current_network.buseprotection) {
438 tcb_desc->bRTSEnable = true;
439 tcb_desc->bCTSEnable = true;
440 tcb_desc->rts_rate = MGN_24M;
442 return;
445 pHTInfo = ieee->pHTInfo;
447 while (true) {
448 if (pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF) {
449 tcb_desc->bCTSEnable = true;
450 tcb_desc->rts_rate = MGN_24M;
451 tcb_desc->bRTSEnable = true;
452 break;
453 } else if (pHTInfo->IOTAction & (HT_IOT_ACT_FORCED_RTS |
454 HT_IOT_ACT_PURE_N_MODE)) {
455 tcb_desc->bRTSEnable = true;
456 tcb_desc->rts_rate = MGN_24M;
457 break;
459 if (ieee->current_network.buseprotection) {
460 tcb_desc->bRTSEnable = true;
461 tcb_desc->bCTSEnable = true;
462 tcb_desc->rts_rate = MGN_24M;
463 break;
465 if (pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT) {
466 u8 HTOpMode = pHTInfo->CurrentOpMode;
468 if ((pHTInfo->bCurBW40MHz && (HTOpMode == 2 ||
469 HTOpMode == 3)) ||
470 (!pHTInfo->bCurBW40MHz && HTOpMode == 3)) {
471 tcb_desc->rts_rate = MGN_24M;
472 tcb_desc->bRTSEnable = true;
473 break;
476 if (skb->len > ieee->rts) {
477 tcb_desc->rts_rate = MGN_24M;
478 tcb_desc->bRTSEnable = true;
479 break;
481 if (tcb_desc->bAMPDUEnable) {
482 tcb_desc->rts_rate = MGN_24M;
483 tcb_desc->bRTSEnable = false;
484 break;
486 goto NO_PROTECTION;
488 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
489 tcb_desc->bUseShortPreamble = true;
490 if (ieee->iw_mode == IW_MODE_MASTER)
491 goto NO_PROTECTION;
492 return;
493 NO_PROTECTION:
494 tcb_desc->bRTSEnable = false;
495 tcb_desc->bCTSEnable = false;
496 tcb_desc->rts_rate = 0;
497 tcb_desc->RTSSC = 0;
498 tcb_desc->bRTSBW = false;
502 static void rtllib_txrate_selectmode(struct rtllib_device *ieee,
503 struct cb_desc *tcb_desc)
505 if (ieee->bTxDisableRateFallBack)
506 tcb_desc->bTxDisableRateFallBack = true;
508 if (ieee->bTxUseDriverAssingedRate)
509 tcb_desc->bTxUseDriverAssingedRate = true;
510 if (!tcb_desc->bTxDisableRateFallBack ||
511 !tcb_desc->bTxUseDriverAssingedRate) {
512 if (ieee->iw_mode == IW_MODE_INFRA ||
513 ieee->iw_mode == IW_MODE_ADHOC)
514 tcb_desc->RATRIndex = 0;
518 u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb,
519 u8 *dst)
521 u16 seqnum = 0;
523 if (is_multicast_ether_addr(dst))
524 return 0;
525 if (IsQoSDataFrame(skb->data)) {
526 struct tx_ts_record *pTS = NULL;
528 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst,
529 skb->priority, TX_DIR, true))
530 return 0;
531 seqnum = pTS->TxCurSeq;
532 pTS->TxCurSeq = (pTS->TxCurSeq+1)%4096;
533 return seqnum;
535 return 0;
538 static int wme_downgrade_ac(struct sk_buff *skb)
540 switch (skb->priority) {
541 case 6:
542 case 7:
543 skb->priority = 5; /* VO -> VI */
544 return 0;
545 case 4:
546 case 5:
547 skb->priority = 3; /* VI -> BE */
548 return 0;
549 case 0:
550 case 3:
551 skb->priority = 1; /* BE -> BK */
552 return 0;
553 default:
554 return -1;
558 static u8 rtllib_current_rate(struct rtllib_device *ieee)
560 if (ieee->mode & IEEE_MODE_MASK)
561 return ieee->rate;
563 if (ieee->HTCurrentOperaRate)
564 return ieee->HTCurrentOperaRate;
565 else
566 return ieee->rate & 0x7F;
569 int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev)
571 struct rtllib_device *ieee = (struct rtllib_device *)
572 netdev_priv_rsl(dev);
573 struct rtllib_txb *txb = NULL;
574 struct rtllib_hdr_3addrqos *frag_hdr;
575 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
576 unsigned long flags;
577 struct net_device_stats *stats = &ieee->stats;
578 int ether_type = 0, encrypt;
579 int bytes, fc, qos_ctl = 0, hdr_len;
580 struct sk_buff *skb_frag;
581 struct rtllib_hdr_3addrqos header = { /* Ensure zero initialized */
582 .duration_id = 0,
583 .seq_ctl = 0,
584 .qos_ctl = 0
586 int qos_actived = ieee->current_network.qos_data.active;
587 u8 dest[ETH_ALEN];
588 u8 src[ETH_ALEN];
589 struct lib80211_crypt_data *crypt = NULL;
590 struct cb_desc *tcb_desc;
591 u8 bIsMulticast = false;
592 u8 IsAmsdu = false;
593 bool bdhcp = false;
595 spin_lock_irqsave(&ieee->lock, flags);
597 /* If there is no driver handler to take the TXB, don't bother
598 * creating it...
600 if ((!ieee->hard_start_xmit && !(ieee->softmac_features &
601 IEEE_SOFTMAC_TX_QUEUE)) ||
602 ((!ieee->softmac_data_hard_start_xmit &&
603 (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
604 netdev_warn(ieee->dev, "No xmit handler.\n");
605 goto success;
609 if (likely(ieee->raw_tx == 0)) {
610 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
611 netdev_warn(ieee->dev, "skb too small (%d).\n",
612 skb->len);
613 goto success;
615 /* Save source and destination addresses */
616 ether_addr_copy(dest, skb->data);
617 ether_addr_copy(src, skb->data + ETH_ALEN);
619 memset(skb->cb, 0, sizeof(skb->cb));
620 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
622 if (ieee->iw_mode == IW_MODE_MONITOR) {
623 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
624 if (unlikely(!txb)) {
625 netdev_warn(ieee->dev,
626 "Could not allocate TXB\n");
627 goto failed;
630 txb->encrypted = 0;
631 txb->payload_size = cpu_to_le16(skb->len);
632 memcpy(skb_put(txb->fragments[0], skb->len), skb->data,
633 skb->len);
635 goto success;
638 if (skb->len > 282) {
639 if (ETH_P_IP == ether_type) {
640 const struct iphdr *ip = (struct iphdr *)
641 ((u8 *)skb->data+14);
642 if (IPPROTO_UDP == ip->protocol) {
643 struct udphdr *udp;
645 udp = (struct udphdr *)((u8 *)ip +
646 (ip->ihl << 2));
647 if (((((u8 *)udp)[1] == 68) &&
648 (((u8 *)udp)[3] == 67)) ||
649 ((((u8 *)udp)[1] == 67) &&
650 (((u8 *)udp)[3] == 68))) {
651 bdhcp = true;
652 ieee->LPSDelayCnt = 200;
655 } else if (ETH_P_ARP == ether_type) {
656 netdev_info(ieee->dev,
657 "=================>DHCP Protocol start tx ARP pkt!!\n");
658 bdhcp = true;
659 ieee->LPSDelayCnt =
660 ieee->current_network.tim.tim_count;
664 skb->priority = rtllib_classify(skb, IsAmsdu);
665 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
666 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
667 ieee->host_encrypt && crypt && crypt->ops;
668 if (!encrypt && ieee->ieee802_1x &&
669 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
670 stats->tx_dropped++;
671 goto success;
673 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
674 struct eapol *eap = (struct eapol *)(skb->data +
675 sizeof(struct ethhdr) - SNAP_SIZE -
676 sizeof(u16));
677 netdev_dbg(ieee->dev,
678 "TX: IEEE 802.11 EAPOL frame: %s\n",
679 eap_get_type(eap->type));
682 /* Advance the SKB to the start of the payload */
683 skb_pull(skb, sizeof(struct ethhdr));
685 /* Determine total amount of storage required for TXB packets */
686 bytes = skb->len + SNAP_SIZE + sizeof(u16);
688 if (encrypt)
689 fc = RTLLIB_FTYPE_DATA | RTLLIB_FCTL_WEP;
690 else
691 fc = RTLLIB_FTYPE_DATA;
693 if (qos_actived)
694 fc |= RTLLIB_STYPE_QOS_DATA;
695 else
696 fc |= RTLLIB_STYPE_DATA;
698 if (ieee->iw_mode == IW_MODE_INFRA) {
699 fc |= RTLLIB_FCTL_TODS;
700 /* To DS: Addr1 = BSSID, Addr2 = SA,
701 * Addr3 = DA
703 ether_addr_copy(header.addr1,
704 ieee->current_network.bssid);
705 ether_addr_copy(header.addr2, src);
706 if (IsAmsdu)
707 ether_addr_copy(header.addr3,
708 ieee->current_network.bssid);
709 else
710 ether_addr_copy(header.addr3, dest);
711 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
712 /* not From/To DS: Addr1 = DA, Addr2 = SA,
713 * Addr3 = BSSID
715 ether_addr_copy(header.addr1, dest);
716 ether_addr_copy(header.addr2, src);
717 ether_addr_copy(header.addr3,
718 ieee->current_network.bssid);
721 bIsMulticast = is_multicast_ether_addr(header.addr1);
723 header.frame_ctl = cpu_to_le16(fc);
725 /* Determine fragmentation size based on destination (multicast
726 * and broadcast are not fragmented)
728 if (bIsMulticast) {
729 frag_size = MAX_FRAG_THRESHOLD;
730 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
731 } else {
732 frag_size = ieee->fts;
733 qos_ctl = 0;
736 if (qos_actived) {
737 hdr_len = RTLLIB_3ADDR_LEN + 2;
739 /* in case we are a client verify acm is not set for this ac */
740 while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) {
741 netdev_info(ieee->dev, "skb->priority = %x\n",
742 skb->priority);
743 if (wme_downgrade_ac(skb))
744 break;
745 netdev_info(ieee->dev, "converted skb->priority = %x\n",
746 skb->priority);
748 qos_ctl |= skb->priority;
749 header.qos_ctl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID);
750 } else {
751 hdr_len = RTLLIB_3ADDR_LEN;
753 /* Determine amount of payload per fragment. Regardless of if
754 * this stack is providing the full 802.11 header, one will
755 * eventually be affixed to this fragment -- so we must account
756 * for it when determining the amount of payload space.
758 bytes_per_frag = frag_size - hdr_len;
759 if (ieee->config &
760 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
761 bytes_per_frag -= RTLLIB_FCS_LEN;
763 /* Each fragment may need to have room for encrypting
764 * pre/postfix
766 if (encrypt) {
767 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
768 crypt->ops->extra_mpdu_postfix_len +
769 crypt->ops->extra_msdu_prefix_len +
770 crypt->ops->extra_msdu_postfix_len;
772 /* Number of fragments is the total bytes_per_frag /
773 * payload_per_fragment
775 nr_frags = bytes / bytes_per_frag;
776 bytes_last_frag = bytes % bytes_per_frag;
777 if (bytes_last_frag)
778 nr_frags++;
779 else
780 bytes_last_frag = bytes_per_frag;
782 /* When we allocate the TXB we allocate enough space for the
783 * reserve and full fragment bytes (bytes_per_frag doesn't
784 * include prefix, postfix, header, FCS, etc.)
786 txb = rtllib_alloc_txb(nr_frags, frag_size +
787 ieee->tx_headroom, GFP_ATOMIC);
788 if (unlikely(!txb)) {
789 netdev_warn(ieee->dev, "Could not allocate TXB\n");
790 goto failed;
792 txb->encrypted = encrypt;
793 txb->payload_size = cpu_to_le16(bytes);
795 if (qos_actived)
796 txb->queue_index = UP2AC(skb->priority);
797 else
798 txb->queue_index = WME_AC_BE;
800 for (i = 0; i < nr_frags; i++) {
801 skb_frag = txb->fragments[i];
802 tcb_desc = (struct cb_desc *)(skb_frag->cb +
803 MAX_DEV_ADDR_SIZE);
804 if (qos_actived) {
805 skb_frag->priority = skb->priority;
806 tcb_desc->queue_index = UP2AC(skb->priority);
807 } else {
808 skb_frag->priority = WME_AC_BE;
809 tcb_desc->queue_index = WME_AC_BE;
811 skb_reserve(skb_frag, ieee->tx_headroom);
813 if (encrypt) {
814 if (ieee->hwsec_active)
815 tcb_desc->bHwSec = 1;
816 else
817 tcb_desc->bHwSec = 0;
818 skb_reserve(skb_frag,
819 crypt->ops->extra_mpdu_prefix_len +
820 crypt->ops->extra_msdu_prefix_len);
821 } else {
822 tcb_desc->bHwSec = 0;
824 frag_hdr = (struct rtllib_hdr_3addrqos *)
825 skb_put(skb_frag, hdr_len);
826 memcpy(frag_hdr, &header, hdr_len);
828 /* If this is not the last fragment, then add the
829 * MOREFRAGS bit to the frame control
831 if (i != nr_frags - 1) {
832 frag_hdr->frame_ctl = cpu_to_le16(
833 fc | RTLLIB_FCTL_MOREFRAGS);
834 bytes = bytes_per_frag;
836 } else {
837 /* The last fragment has the remaining length */
838 bytes = bytes_last_frag;
840 if ((qos_actived) && (!bIsMulticast)) {
841 frag_hdr->seq_ctl =
842 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag,
843 header.addr1));
844 frag_hdr->seq_ctl =
845 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctl)<<4 | i);
846 } else {
847 frag_hdr->seq_ctl =
848 cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
850 /* Put a SNAP header on the first fragment */
851 if (i == 0) {
852 rtllib_put_snap(
853 skb_put(skb_frag, SNAP_SIZE +
854 sizeof(u16)), ether_type);
855 bytes -= SNAP_SIZE + sizeof(u16);
858 memcpy(skb_put(skb_frag, bytes), skb->data, bytes);
860 /* Advance the SKB... */
861 skb_pull(skb, bytes);
863 /* Encryption routine will move the header forward in
864 * order to insert the IV between the header and the
865 * payload
867 if (encrypt)
868 rtllib_encrypt_fragment(ieee, skb_frag,
869 hdr_len);
870 if (ieee->config &
871 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
872 skb_put(skb_frag, 4);
875 if ((qos_actived) && (!bIsMulticast)) {
876 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
877 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
878 else
879 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
880 } else {
881 if (ieee->seq_ctrl[0] == 0xFFF)
882 ieee->seq_ctrl[0] = 0;
883 else
884 ieee->seq_ctrl[0]++;
886 } else {
887 if (unlikely(skb->len < sizeof(struct rtllib_hdr_3addr))) {
888 netdev_warn(ieee->dev, "skb too small (%d).\n",
889 skb->len);
890 goto success;
893 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
894 if (!txb) {
895 netdev_warn(ieee->dev, "Could not allocate TXB\n");
896 goto failed;
899 txb->encrypted = 0;
900 txb->payload_size = cpu_to_le16(skb->len);
901 memcpy(skb_put(txb->fragments[0], skb->len), skb->data,
902 skb->len);
905 success:
906 if (txb) {
907 struct cb_desc *tcb_desc = (struct cb_desc *)
908 (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
909 tcb_desc->bTxEnableFwCalcDur = 1;
910 tcb_desc->priority = skb->priority;
912 if (ether_type == ETH_P_PAE) {
913 if (ieee->pHTInfo->IOTAction &
914 HT_IOT_ACT_WA_IOT_Broadcom) {
915 tcb_desc->data_rate =
916 MgntQuery_TxRateExcludeCCKRates(ieee);
917 tcb_desc->bTxDisableRateFallBack = false;
918 } else {
919 tcb_desc->data_rate = ieee->basic_rate;
920 tcb_desc->bTxDisableRateFallBack = 1;
924 tcb_desc->RATRIndex = 7;
925 tcb_desc->bTxUseDriverAssingedRate = 1;
926 } else {
927 if (is_multicast_ether_addr(header.addr1))
928 tcb_desc->bMulticast = 1;
929 if (is_broadcast_ether_addr(header.addr1))
930 tcb_desc->bBroadcast = 1;
931 rtllib_txrate_selectmode(ieee, tcb_desc);
932 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
933 tcb_desc->data_rate = ieee->basic_rate;
934 else
935 tcb_desc->data_rate = rtllib_current_rate(ieee);
937 if (bdhcp) {
938 if (ieee->pHTInfo->IOTAction &
939 HT_IOT_ACT_WA_IOT_Broadcom) {
940 tcb_desc->data_rate =
941 MgntQuery_TxRateExcludeCCKRates(ieee);
942 tcb_desc->bTxDisableRateFallBack = false;
943 } else {
944 tcb_desc->data_rate = MGN_1M;
945 tcb_desc->bTxDisableRateFallBack = 1;
949 tcb_desc->RATRIndex = 7;
950 tcb_desc->bTxUseDriverAssingedRate = 1;
951 tcb_desc->bdhcp = 1;
954 rtllib_qurey_ShortPreambleMode(ieee, tcb_desc);
955 rtllib_tx_query_agg_cap(ieee, txb->fragments[0],
956 tcb_desc);
957 rtllib_query_HTCapShortGI(ieee, tcb_desc);
958 rtllib_query_BandwidthMode(ieee, tcb_desc);
959 rtllib_query_protectionmode(ieee, tcb_desc,
960 txb->fragments[0]);
963 spin_unlock_irqrestore(&ieee->lock, flags);
964 dev_kfree_skb_any(skb);
965 if (txb) {
966 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
967 dev->stats.tx_packets++;
968 dev->stats.tx_bytes += le16_to_cpu(txb->payload_size);
969 rtllib_softmac_xmit(txb, ieee);
970 } else {
971 if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
972 stats->tx_packets++;
973 stats->tx_bytes += le16_to_cpu(txb->payload_size);
974 return 0;
976 rtllib_txb_free(txb);
980 return 0;
982 failed:
983 spin_unlock_irqrestore(&ieee->lock, flags);
984 netif_stop_queue(dev);
985 stats->tx_errors++;
986 return 1;
989 int rtllib_xmit(struct sk_buff *skb, struct net_device *dev)
991 memset(skb->cb, 0, sizeof(skb->cb));
992 return rtllib_xmit_inter(skb, dev);
994 EXPORT_SYMBOL(rtllib_xmit);