mac80211: Add support for declaring MU-MIMO capability
[linux-2.6/btrfs-unstable.git] / block / bio.c
blob2a00d349cd6883cba32d9fd477251889a1c58081
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
32 #include <trace/events/block.h>
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
38 #define BIO_INLINE_VECS 4
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 #undef BV
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
59 * Our slab pool management
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
79 mutex_lock(&bio_slab_lock);
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
92 i++;
95 if (slab)
96 goto out_unlock;
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
108 if (entry == -1)
109 entry = bio_slab_nr++;
111 bslab = &bio_slabs[entry];
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
127 static void bio_put_slab(struct bio_set *bs)
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
132 mutex_lock(&bio_slab_lock);
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
144 WARN_ON(!bslab->slab_ref);
146 if (--bslab->slab_ref)
147 goto out;
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
152 out:
153 mutex_unlock(&bio_slab_lock);
156 unsigned int bvec_nr_vecs(unsigned short idx)
158 return bvec_slabs[idx].nr_vecs;
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
170 kmem_cache_free(bvs->slab, bv);
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
177 struct bio_vec *bvl;
180 * see comment near bvec_array define!
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
234 return bvl;
237 static void __bio_free(struct bio *bio)
239 bio_disassociate_task(bio);
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
245 static void bio_free(struct bio *bio)
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
250 __bio_free(bio);
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
257 * If we have front padding, adjust the bio pointer before freeing
259 p = bio;
260 p -= bs->front_pad;
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
269 void bio_init(struct bio *bio)
271 memset(bio, 0, sizeof(*bio));
272 bio->bi_flags = 1 << BIO_UPTODATE;
273 atomic_set(&bio->__bi_remaining, 1);
274 atomic_set(&bio->__bi_cnt, 1);
276 EXPORT_SYMBOL(bio_init);
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
288 void bio_reset(struct bio *bio)
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292 __bio_free(bio);
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags | (1 << BIO_UPTODATE);
296 atomic_set(&bio->__bi_remaining, 1);
298 EXPORT_SYMBOL(bio_reset);
300 static void bio_chain_endio(struct bio *bio, int error)
302 bio_endio(bio->bi_private, error);
303 bio_put(bio);
307 * Increment chain count for the bio. Make sure the CHAIN flag update
308 * is visible before the raised count.
310 static inline void bio_inc_remaining(struct bio *bio)
312 bio->bi_flags |= (1 << BIO_CHAIN);
313 smp_mb__before_atomic();
314 atomic_inc(&bio->__bi_remaining);
318 * bio_chain - chain bio completions
319 * @bio: the target bio
320 * @parent: the @bio's parent bio
322 * The caller won't have a bi_end_io called when @bio completes - instead,
323 * @parent's bi_end_io won't be called until both @parent and @bio have
324 * completed; the chained bio will also be freed when it completes.
326 * The caller must not set bi_private or bi_end_io in @bio.
328 void bio_chain(struct bio *bio, struct bio *parent)
330 BUG_ON(bio->bi_private || bio->bi_end_io);
332 bio->bi_private = parent;
333 bio->bi_end_io = bio_chain_endio;
334 bio_inc_remaining(parent);
336 EXPORT_SYMBOL(bio_chain);
338 static void bio_alloc_rescue(struct work_struct *work)
340 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
341 struct bio *bio;
343 while (1) {
344 spin_lock(&bs->rescue_lock);
345 bio = bio_list_pop(&bs->rescue_list);
346 spin_unlock(&bs->rescue_lock);
348 if (!bio)
349 break;
351 generic_make_request(bio);
355 static void punt_bios_to_rescuer(struct bio_set *bs)
357 struct bio_list punt, nopunt;
358 struct bio *bio;
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
371 bio_list_init(&punt);
372 bio_list_init(&nopunt);
374 while ((bio = bio_list_pop(current->bio_list)))
375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 *current->bio_list = nopunt;
379 spin_lock(&bs->rescue_lock);
380 bio_list_merge(&bs->rescue_list, &punt);
381 spin_unlock(&bs->rescue_lock);
383 queue_work(bs->rescue_workqueue, &bs->rescue_work);
387 * bio_alloc_bioset - allocate a bio for I/O
388 * @gfp_mask: the GFP_ mask given to the slab allocator
389 * @nr_iovecs: number of iovecs to pre-allocate
390 * @bs: the bio_set to allocate from.
392 * Description:
393 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
394 * backed by the @bs's mempool.
396 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
397 * able to allocate a bio. This is due to the mempool guarantees. To make this
398 * work, callers must never allocate more than 1 bio at a time from this pool.
399 * Callers that need to allocate more than 1 bio must always submit the
400 * previously allocated bio for IO before attempting to allocate a new one.
401 * Failure to do so can cause deadlocks under memory pressure.
403 * Note that when running under generic_make_request() (i.e. any block
404 * driver), bios are not submitted until after you return - see the code in
405 * generic_make_request() that converts recursion into iteration, to prevent
406 * stack overflows.
408 * This would normally mean allocating multiple bios under
409 * generic_make_request() would be susceptible to deadlocks, but we have
410 * deadlock avoidance code that resubmits any blocked bios from a rescuer
411 * thread.
413 * However, we do not guarantee forward progress for allocations from other
414 * mempools. Doing multiple allocations from the same mempool under
415 * generic_make_request() should be avoided - instead, use bio_set's front_pad
416 * for per bio allocations.
418 * RETURNS:
419 * Pointer to new bio on success, NULL on failure.
421 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
423 gfp_t saved_gfp = gfp_mask;
424 unsigned front_pad;
425 unsigned inline_vecs;
426 unsigned long idx = BIO_POOL_NONE;
427 struct bio_vec *bvl = NULL;
428 struct bio *bio;
429 void *p;
431 if (!bs) {
432 if (nr_iovecs > UIO_MAXIOV)
433 return NULL;
435 p = kmalloc(sizeof(struct bio) +
436 nr_iovecs * sizeof(struct bio_vec),
437 gfp_mask);
438 front_pad = 0;
439 inline_vecs = nr_iovecs;
440 } else {
441 /* should not use nobvec bioset for nr_iovecs > 0 */
442 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
443 return NULL;
445 * generic_make_request() converts recursion to iteration; this
446 * means if we're running beneath it, any bios we allocate and
447 * submit will not be submitted (and thus freed) until after we
448 * return.
450 * This exposes us to a potential deadlock if we allocate
451 * multiple bios from the same bio_set() while running
452 * underneath generic_make_request(). If we were to allocate
453 * multiple bios (say a stacking block driver that was splitting
454 * bios), we would deadlock if we exhausted the mempool's
455 * reserve.
457 * We solve this, and guarantee forward progress, with a rescuer
458 * workqueue per bio_set. If we go to allocate and there are
459 * bios on current->bio_list, we first try the allocation
460 * without __GFP_WAIT; if that fails, we punt those bios we
461 * would be blocking to the rescuer workqueue before we retry
462 * with the original gfp_flags.
465 if (current->bio_list && !bio_list_empty(current->bio_list))
466 gfp_mask &= ~__GFP_WAIT;
468 p = mempool_alloc(bs->bio_pool, gfp_mask);
469 if (!p && gfp_mask != saved_gfp) {
470 punt_bios_to_rescuer(bs);
471 gfp_mask = saved_gfp;
472 p = mempool_alloc(bs->bio_pool, gfp_mask);
475 front_pad = bs->front_pad;
476 inline_vecs = BIO_INLINE_VECS;
479 if (unlikely(!p))
480 return NULL;
482 bio = p + front_pad;
483 bio_init(bio);
485 if (nr_iovecs > inline_vecs) {
486 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
487 if (!bvl && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 if (unlikely(!bvl))
494 goto err_free;
496 bio->bi_flags |= 1 << BIO_OWNS_VEC;
497 } else if (nr_iovecs) {
498 bvl = bio->bi_inline_vecs;
501 bio->bi_pool = bs;
502 bio->bi_flags |= idx << BIO_POOL_OFFSET;
503 bio->bi_max_vecs = nr_iovecs;
504 bio->bi_io_vec = bvl;
505 return bio;
507 err_free:
508 mempool_free(p, bs->bio_pool);
509 return NULL;
511 EXPORT_SYMBOL(bio_alloc_bioset);
513 void zero_fill_bio(struct bio *bio)
515 unsigned long flags;
516 struct bio_vec bv;
517 struct bvec_iter iter;
519 bio_for_each_segment(bv, bio, iter) {
520 char *data = bvec_kmap_irq(&bv, &flags);
521 memset(data, 0, bv.bv_len);
522 flush_dcache_page(bv.bv_page);
523 bvec_kunmap_irq(data, &flags);
526 EXPORT_SYMBOL(zero_fill_bio);
529 * bio_put - release a reference to a bio
530 * @bio: bio to release reference to
532 * Description:
533 * Put a reference to a &struct bio, either one you have gotten with
534 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
536 void bio_put(struct bio *bio)
538 if (!bio_flagged(bio, BIO_REFFED))
539 bio_free(bio);
540 else {
541 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
544 * last put frees it
546 if (atomic_dec_and_test(&bio->__bi_cnt))
547 bio_free(bio);
550 EXPORT_SYMBOL(bio_put);
552 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
554 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
555 blk_recount_segments(q, bio);
557 return bio->bi_phys_segments;
559 EXPORT_SYMBOL(bio_phys_segments);
562 * __bio_clone_fast - clone a bio that shares the original bio's biovec
563 * @bio: destination bio
564 * @bio_src: bio to clone
566 * Clone a &bio. Caller will own the returned bio, but not
567 * the actual data it points to. Reference count of returned
568 * bio will be one.
570 * Caller must ensure that @bio_src is not freed before @bio.
572 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
577 * most users will be overriding ->bi_bdev with a new target,
578 * so we don't set nor calculate new physical/hw segment counts here
580 bio->bi_bdev = bio_src->bi_bdev;
581 bio->bi_flags |= 1 << BIO_CLONED;
582 bio->bi_rw = bio_src->bi_rw;
583 bio->bi_iter = bio_src->bi_iter;
584 bio->bi_io_vec = bio_src->bi_io_vec;
586 EXPORT_SYMBOL(__bio_clone_fast);
589 * bio_clone_fast - clone a bio that shares the original bio's biovec
590 * @bio: bio to clone
591 * @gfp_mask: allocation priority
592 * @bs: bio_set to allocate from
594 * Like __bio_clone_fast, only also allocates the returned bio
596 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
598 struct bio *b;
600 b = bio_alloc_bioset(gfp_mask, 0, bs);
601 if (!b)
602 return NULL;
604 __bio_clone_fast(b, bio);
606 if (bio_integrity(bio)) {
607 int ret;
609 ret = bio_integrity_clone(b, bio, gfp_mask);
611 if (ret < 0) {
612 bio_put(b);
613 return NULL;
617 return b;
619 EXPORT_SYMBOL(bio_clone_fast);
622 * bio_clone_bioset - clone a bio
623 * @bio_src: bio to clone
624 * @gfp_mask: allocation priority
625 * @bs: bio_set to allocate from
627 * Clone bio. Caller will own the returned bio, but not the actual data it
628 * points to. Reference count of returned bio will be one.
630 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
631 struct bio_set *bs)
633 struct bvec_iter iter;
634 struct bio_vec bv;
635 struct bio *bio;
638 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
639 * bio_src->bi_io_vec to bio->bi_io_vec.
641 * We can't do that anymore, because:
643 * - The point of cloning the biovec is to produce a bio with a biovec
644 * the caller can modify: bi_idx and bi_bvec_done should be 0.
646 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
647 * we tried to clone the whole thing bio_alloc_bioset() would fail.
648 * But the clone should succeed as long as the number of biovecs we
649 * actually need to allocate is fewer than BIO_MAX_PAGES.
651 * - Lastly, bi_vcnt should not be looked at or relied upon by code
652 * that does not own the bio - reason being drivers don't use it for
653 * iterating over the biovec anymore, so expecting it to be kept up
654 * to date (i.e. for clones that share the parent biovec) is just
655 * asking for trouble and would force extra work on
656 * __bio_clone_fast() anyways.
659 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
660 if (!bio)
661 return NULL;
663 bio->bi_bdev = bio_src->bi_bdev;
664 bio->bi_rw = bio_src->bi_rw;
665 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
666 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
668 if (bio->bi_rw & REQ_DISCARD)
669 goto integrity_clone;
671 if (bio->bi_rw & REQ_WRITE_SAME) {
672 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
673 goto integrity_clone;
676 bio_for_each_segment(bv, bio_src, iter)
677 bio->bi_io_vec[bio->bi_vcnt++] = bv;
679 integrity_clone:
680 if (bio_integrity(bio_src)) {
681 int ret;
683 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
684 if (ret < 0) {
685 bio_put(bio);
686 return NULL;
690 return bio;
692 EXPORT_SYMBOL(bio_clone_bioset);
695 * bio_get_nr_vecs - return approx number of vecs
696 * @bdev: I/O target
698 * Return the approximate number of pages we can send to this target.
699 * There's no guarantee that you will be able to fit this number of pages
700 * into a bio, it does not account for dynamic restrictions that vary
701 * on offset.
703 int bio_get_nr_vecs(struct block_device *bdev)
705 struct request_queue *q = bdev_get_queue(bdev);
706 int nr_pages;
708 nr_pages = min_t(unsigned,
709 queue_max_segments(q),
710 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
712 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
715 EXPORT_SYMBOL(bio_get_nr_vecs);
717 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
718 *page, unsigned int len, unsigned int offset,
719 unsigned int max_sectors)
721 int retried_segments = 0;
722 struct bio_vec *bvec;
725 * cloned bio must not modify vec list
727 if (unlikely(bio_flagged(bio, BIO_CLONED)))
728 return 0;
730 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
731 return 0;
734 * For filesystems with a blocksize smaller than the pagesize
735 * we will often be called with the same page as last time and
736 * a consecutive offset. Optimize this special case.
738 if (bio->bi_vcnt > 0) {
739 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
741 if (page == prev->bv_page &&
742 offset == prev->bv_offset + prev->bv_len) {
743 unsigned int prev_bv_len = prev->bv_len;
744 prev->bv_len += len;
746 if (q->merge_bvec_fn) {
747 struct bvec_merge_data bvm = {
748 /* prev_bvec is already charged in
749 bi_size, discharge it in order to
750 simulate merging updated prev_bvec
751 as new bvec. */
752 .bi_bdev = bio->bi_bdev,
753 .bi_sector = bio->bi_iter.bi_sector,
754 .bi_size = bio->bi_iter.bi_size -
755 prev_bv_len,
756 .bi_rw = bio->bi_rw,
759 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
760 prev->bv_len -= len;
761 return 0;
765 bio->bi_iter.bi_size += len;
766 goto done;
770 * If the queue doesn't support SG gaps and adding this
771 * offset would create a gap, disallow it.
773 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
774 bvec_gap_to_prev(prev, offset))
775 return 0;
778 if (bio->bi_vcnt >= bio->bi_max_vecs)
779 return 0;
782 * setup the new entry, we might clear it again later if we
783 * cannot add the page
785 bvec = &bio->bi_io_vec[bio->bi_vcnt];
786 bvec->bv_page = page;
787 bvec->bv_len = len;
788 bvec->bv_offset = offset;
789 bio->bi_vcnt++;
790 bio->bi_phys_segments++;
791 bio->bi_iter.bi_size += len;
794 * Perform a recount if the number of segments is greater
795 * than queue_max_segments(q).
798 while (bio->bi_phys_segments > queue_max_segments(q)) {
800 if (retried_segments)
801 goto failed;
803 retried_segments = 1;
804 blk_recount_segments(q, bio);
808 * if queue has other restrictions (eg varying max sector size
809 * depending on offset), it can specify a merge_bvec_fn in the
810 * queue to get further control
812 if (q->merge_bvec_fn) {
813 struct bvec_merge_data bvm = {
814 .bi_bdev = bio->bi_bdev,
815 .bi_sector = bio->bi_iter.bi_sector,
816 .bi_size = bio->bi_iter.bi_size - len,
817 .bi_rw = bio->bi_rw,
821 * merge_bvec_fn() returns number of bytes it can accept
822 * at this offset
824 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
825 goto failed;
828 /* If we may be able to merge these biovecs, force a recount */
829 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
830 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
832 done:
833 return len;
835 failed:
836 bvec->bv_page = NULL;
837 bvec->bv_len = 0;
838 bvec->bv_offset = 0;
839 bio->bi_vcnt--;
840 bio->bi_iter.bi_size -= len;
841 blk_recount_segments(q, bio);
842 return 0;
846 * bio_add_pc_page - attempt to add page to bio
847 * @q: the target queue
848 * @bio: destination bio
849 * @page: page to add
850 * @len: vec entry length
851 * @offset: vec entry offset
853 * Attempt to add a page to the bio_vec maplist. This can fail for a
854 * number of reasons, such as the bio being full or target block device
855 * limitations. The target block device must allow bio's up to PAGE_SIZE,
856 * so it is always possible to add a single page to an empty bio.
858 * This should only be used by REQ_PC bios.
860 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
861 unsigned int len, unsigned int offset)
863 return __bio_add_page(q, bio, page, len, offset,
864 queue_max_hw_sectors(q));
866 EXPORT_SYMBOL(bio_add_pc_page);
869 * bio_add_page - attempt to add page to bio
870 * @bio: destination bio
871 * @page: page to add
872 * @len: vec entry length
873 * @offset: vec entry offset
875 * Attempt to add a page to the bio_vec maplist. This can fail for a
876 * number of reasons, such as the bio being full or target block device
877 * limitations. The target block device must allow bio's up to PAGE_SIZE,
878 * so it is always possible to add a single page to an empty bio.
880 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
881 unsigned int offset)
883 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
884 unsigned int max_sectors;
886 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
887 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
888 max_sectors = len >> 9;
890 return __bio_add_page(q, bio, page, len, offset, max_sectors);
892 EXPORT_SYMBOL(bio_add_page);
894 struct submit_bio_ret {
895 struct completion event;
896 int error;
899 static void submit_bio_wait_endio(struct bio *bio, int error)
901 struct submit_bio_ret *ret = bio->bi_private;
903 ret->error = error;
904 complete(&ret->event);
908 * submit_bio_wait - submit a bio, and wait until it completes
909 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
910 * @bio: The &struct bio which describes the I/O
912 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
913 * bio_endio() on failure.
915 int submit_bio_wait(int rw, struct bio *bio)
917 struct submit_bio_ret ret;
919 rw |= REQ_SYNC;
920 init_completion(&ret.event);
921 bio->bi_private = &ret;
922 bio->bi_end_io = submit_bio_wait_endio;
923 submit_bio(rw, bio);
924 wait_for_completion(&ret.event);
926 return ret.error;
928 EXPORT_SYMBOL(submit_bio_wait);
931 * bio_advance - increment/complete a bio by some number of bytes
932 * @bio: bio to advance
933 * @bytes: number of bytes to complete
935 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
936 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
937 * be updated on the last bvec as well.
939 * @bio will then represent the remaining, uncompleted portion of the io.
941 void bio_advance(struct bio *bio, unsigned bytes)
943 if (bio_integrity(bio))
944 bio_integrity_advance(bio, bytes);
946 bio_advance_iter(bio, &bio->bi_iter, bytes);
948 EXPORT_SYMBOL(bio_advance);
951 * bio_alloc_pages - allocates a single page for each bvec in a bio
952 * @bio: bio to allocate pages for
953 * @gfp_mask: flags for allocation
955 * Allocates pages up to @bio->bi_vcnt.
957 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
958 * freed.
960 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
962 int i;
963 struct bio_vec *bv;
965 bio_for_each_segment_all(bv, bio, i) {
966 bv->bv_page = alloc_page(gfp_mask);
967 if (!bv->bv_page) {
968 while (--bv >= bio->bi_io_vec)
969 __free_page(bv->bv_page);
970 return -ENOMEM;
974 return 0;
976 EXPORT_SYMBOL(bio_alloc_pages);
979 * bio_copy_data - copy contents of data buffers from one chain of bios to
980 * another
981 * @src: source bio list
982 * @dst: destination bio list
984 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
985 * @src and @dst as linked lists of bios.
987 * Stops when it reaches the end of either @src or @dst - that is, copies
988 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
990 void bio_copy_data(struct bio *dst, struct bio *src)
992 struct bvec_iter src_iter, dst_iter;
993 struct bio_vec src_bv, dst_bv;
994 void *src_p, *dst_p;
995 unsigned bytes;
997 src_iter = src->bi_iter;
998 dst_iter = dst->bi_iter;
1000 while (1) {
1001 if (!src_iter.bi_size) {
1002 src = src->bi_next;
1003 if (!src)
1004 break;
1006 src_iter = src->bi_iter;
1009 if (!dst_iter.bi_size) {
1010 dst = dst->bi_next;
1011 if (!dst)
1012 break;
1014 dst_iter = dst->bi_iter;
1017 src_bv = bio_iter_iovec(src, src_iter);
1018 dst_bv = bio_iter_iovec(dst, dst_iter);
1020 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1022 src_p = kmap_atomic(src_bv.bv_page);
1023 dst_p = kmap_atomic(dst_bv.bv_page);
1025 memcpy(dst_p + dst_bv.bv_offset,
1026 src_p + src_bv.bv_offset,
1027 bytes);
1029 kunmap_atomic(dst_p);
1030 kunmap_atomic(src_p);
1032 bio_advance_iter(src, &src_iter, bytes);
1033 bio_advance_iter(dst, &dst_iter, bytes);
1036 EXPORT_SYMBOL(bio_copy_data);
1038 struct bio_map_data {
1039 int is_our_pages;
1040 struct iov_iter iter;
1041 struct iovec iov[];
1044 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1045 gfp_t gfp_mask)
1047 if (iov_count > UIO_MAXIOV)
1048 return NULL;
1050 return kmalloc(sizeof(struct bio_map_data) +
1051 sizeof(struct iovec) * iov_count, gfp_mask);
1055 * bio_copy_from_iter - copy all pages from iov_iter to bio
1056 * @bio: The &struct bio which describes the I/O as destination
1057 * @iter: iov_iter as source
1059 * Copy all pages from iov_iter to bio.
1060 * Returns 0 on success, or error on failure.
1062 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1064 int i;
1065 struct bio_vec *bvec;
1067 bio_for_each_segment_all(bvec, bio, i) {
1068 ssize_t ret;
1070 ret = copy_page_from_iter(bvec->bv_page,
1071 bvec->bv_offset,
1072 bvec->bv_len,
1073 &iter);
1075 if (!iov_iter_count(&iter))
1076 break;
1078 if (ret < bvec->bv_len)
1079 return -EFAULT;
1082 return 0;
1086 * bio_copy_to_iter - copy all pages from bio to iov_iter
1087 * @bio: The &struct bio which describes the I/O as source
1088 * @iter: iov_iter as destination
1090 * Copy all pages from bio to iov_iter.
1091 * Returns 0 on success, or error on failure.
1093 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1095 int i;
1096 struct bio_vec *bvec;
1098 bio_for_each_segment_all(bvec, bio, i) {
1099 ssize_t ret;
1101 ret = copy_page_to_iter(bvec->bv_page,
1102 bvec->bv_offset,
1103 bvec->bv_len,
1104 &iter);
1106 if (!iov_iter_count(&iter))
1107 break;
1109 if (ret < bvec->bv_len)
1110 return -EFAULT;
1113 return 0;
1116 static void bio_free_pages(struct bio *bio)
1118 struct bio_vec *bvec;
1119 int i;
1121 bio_for_each_segment_all(bvec, bio, i)
1122 __free_page(bvec->bv_page);
1126 * bio_uncopy_user - finish previously mapped bio
1127 * @bio: bio being terminated
1129 * Free pages allocated from bio_copy_user_iov() and write back data
1130 * to user space in case of a read.
1132 int bio_uncopy_user(struct bio *bio)
1134 struct bio_map_data *bmd = bio->bi_private;
1135 int ret = 0;
1137 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1139 * if we're in a workqueue, the request is orphaned, so
1140 * don't copy into a random user address space, just free.
1142 if (current->mm && bio_data_dir(bio) == READ)
1143 ret = bio_copy_to_iter(bio, bmd->iter);
1144 if (bmd->is_our_pages)
1145 bio_free_pages(bio);
1147 kfree(bmd);
1148 bio_put(bio);
1149 return ret;
1151 EXPORT_SYMBOL(bio_uncopy_user);
1154 * bio_copy_user_iov - copy user data to bio
1155 * @q: destination block queue
1156 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1157 * @iter: iovec iterator
1158 * @gfp_mask: memory allocation flags
1160 * Prepares and returns a bio for indirect user io, bouncing data
1161 * to/from kernel pages as necessary. Must be paired with
1162 * call bio_uncopy_user() on io completion.
1164 struct bio *bio_copy_user_iov(struct request_queue *q,
1165 struct rq_map_data *map_data,
1166 const struct iov_iter *iter,
1167 gfp_t gfp_mask)
1169 struct bio_map_data *bmd;
1170 struct page *page;
1171 struct bio *bio;
1172 int i, ret;
1173 int nr_pages = 0;
1174 unsigned int len = iter->count;
1175 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1177 for (i = 0; i < iter->nr_segs; i++) {
1178 unsigned long uaddr;
1179 unsigned long end;
1180 unsigned long start;
1182 uaddr = (unsigned long) iter->iov[i].iov_base;
1183 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1184 >> PAGE_SHIFT;
1185 start = uaddr >> PAGE_SHIFT;
1188 * Overflow, abort
1190 if (end < start)
1191 return ERR_PTR(-EINVAL);
1193 nr_pages += end - start;
1196 if (offset)
1197 nr_pages++;
1199 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1200 if (!bmd)
1201 return ERR_PTR(-ENOMEM);
1204 * We need to do a deep copy of the iov_iter including the iovecs.
1205 * The caller provided iov might point to an on-stack or otherwise
1206 * shortlived one.
1208 bmd->is_our_pages = map_data ? 0 : 1;
1209 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1210 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1211 iter->nr_segs, iter->count);
1213 ret = -ENOMEM;
1214 bio = bio_kmalloc(gfp_mask, nr_pages);
1215 if (!bio)
1216 goto out_bmd;
1218 if (iter->type & WRITE)
1219 bio->bi_rw |= REQ_WRITE;
1221 ret = 0;
1223 if (map_data) {
1224 nr_pages = 1 << map_data->page_order;
1225 i = map_data->offset / PAGE_SIZE;
1227 while (len) {
1228 unsigned int bytes = PAGE_SIZE;
1230 bytes -= offset;
1232 if (bytes > len)
1233 bytes = len;
1235 if (map_data) {
1236 if (i == map_data->nr_entries * nr_pages) {
1237 ret = -ENOMEM;
1238 break;
1241 page = map_data->pages[i / nr_pages];
1242 page += (i % nr_pages);
1244 i++;
1245 } else {
1246 page = alloc_page(q->bounce_gfp | gfp_mask);
1247 if (!page) {
1248 ret = -ENOMEM;
1249 break;
1253 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1254 break;
1256 len -= bytes;
1257 offset = 0;
1260 if (ret)
1261 goto cleanup;
1264 * success
1266 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1267 (map_data && map_data->from_user)) {
1268 ret = bio_copy_from_iter(bio, *iter);
1269 if (ret)
1270 goto cleanup;
1273 bio->bi_private = bmd;
1274 return bio;
1275 cleanup:
1276 if (!map_data)
1277 bio_free_pages(bio);
1278 bio_put(bio);
1279 out_bmd:
1280 kfree(bmd);
1281 return ERR_PTR(ret);
1285 * bio_map_user_iov - map user iovec into bio
1286 * @q: the struct request_queue for the bio
1287 * @iter: iovec iterator
1288 * @gfp_mask: memory allocation flags
1290 * Map the user space address into a bio suitable for io to a block
1291 * device. Returns an error pointer in case of error.
1293 struct bio *bio_map_user_iov(struct request_queue *q,
1294 const struct iov_iter *iter,
1295 gfp_t gfp_mask)
1297 int j;
1298 int nr_pages = 0;
1299 struct page **pages;
1300 struct bio *bio;
1301 int cur_page = 0;
1302 int ret, offset;
1303 struct iov_iter i;
1304 struct iovec iov;
1306 iov_for_each(iov, i, *iter) {
1307 unsigned long uaddr = (unsigned long) iov.iov_base;
1308 unsigned long len = iov.iov_len;
1309 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1310 unsigned long start = uaddr >> PAGE_SHIFT;
1313 * Overflow, abort
1315 if (end < start)
1316 return ERR_PTR(-EINVAL);
1318 nr_pages += end - start;
1320 * buffer must be aligned to at least hardsector size for now
1322 if (uaddr & queue_dma_alignment(q))
1323 return ERR_PTR(-EINVAL);
1326 if (!nr_pages)
1327 return ERR_PTR(-EINVAL);
1329 bio = bio_kmalloc(gfp_mask, nr_pages);
1330 if (!bio)
1331 return ERR_PTR(-ENOMEM);
1333 ret = -ENOMEM;
1334 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1335 if (!pages)
1336 goto out;
1338 iov_for_each(iov, i, *iter) {
1339 unsigned long uaddr = (unsigned long) iov.iov_base;
1340 unsigned long len = iov.iov_len;
1341 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1342 unsigned long start = uaddr >> PAGE_SHIFT;
1343 const int local_nr_pages = end - start;
1344 const int page_limit = cur_page + local_nr_pages;
1346 ret = get_user_pages_fast(uaddr, local_nr_pages,
1347 (iter->type & WRITE) != WRITE,
1348 &pages[cur_page]);
1349 if (ret < local_nr_pages) {
1350 ret = -EFAULT;
1351 goto out_unmap;
1354 offset = uaddr & ~PAGE_MASK;
1355 for (j = cur_page; j < page_limit; j++) {
1356 unsigned int bytes = PAGE_SIZE - offset;
1358 if (len <= 0)
1359 break;
1361 if (bytes > len)
1362 bytes = len;
1365 * sorry...
1367 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1368 bytes)
1369 break;
1371 len -= bytes;
1372 offset = 0;
1375 cur_page = j;
1377 * release the pages we didn't map into the bio, if any
1379 while (j < page_limit)
1380 page_cache_release(pages[j++]);
1383 kfree(pages);
1386 * set data direction, and check if mapped pages need bouncing
1388 if (iter->type & WRITE)
1389 bio->bi_rw |= REQ_WRITE;
1391 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1394 * subtle -- if __bio_map_user() ended up bouncing a bio,
1395 * it would normally disappear when its bi_end_io is run.
1396 * however, we need it for the unmap, so grab an extra
1397 * reference to it
1399 bio_get(bio);
1400 return bio;
1402 out_unmap:
1403 for (j = 0; j < nr_pages; j++) {
1404 if (!pages[j])
1405 break;
1406 page_cache_release(pages[j]);
1408 out:
1409 kfree(pages);
1410 bio_put(bio);
1411 return ERR_PTR(ret);
1414 static void __bio_unmap_user(struct bio *bio)
1416 struct bio_vec *bvec;
1417 int i;
1420 * make sure we dirty pages we wrote to
1422 bio_for_each_segment_all(bvec, bio, i) {
1423 if (bio_data_dir(bio) == READ)
1424 set_page_dirty_lock(bvec->bv_page);
1426 page_cache_release(bvec->bv_page);
1429 bio_put(bio);
1433 * bio_unmap_user - unmap a bio
1434 * @bio: the bio being unmapped
1436 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1437 * a process context.
1439 * bio_unmap_user() may sleep.
1441 void bio_unmap_user(struct bio *bio)
1443 __bio_unmap_user(bio);
1444 bio_put(bio);
1446 EXPORT_SYMBOL(bio_unmap_user);
1448 static void bio_map_kern_endio(struct bio *bio, int err)
1450 bio_put(bio);
1454 * bio_map_kern - map kernel address into bio
1455 * @q: the struct request_queue for the bio
1456 * @data: pointer to buffer to map
1457 * @len: length in bytes
1458 * @gfp_mask: allocation flags for bio allocation
1460 * Map the kernel address into a bio suitable for io to a block
1461 * device. Returns an error pointer in case of error.
1463 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1464 gfp_t gfp_mask)
1466 unsigned long kaddr = (unsigned long)data;
1467 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468 unsigned long start = kaddr >> PAGE_SHIFT;
1469 const int nr_pages = end - start;
1470 int offset, i;
1471 struct bio *bio;
1473 bio = bio_kmalloc(gfp_mask, nr_pages);
1474 if (!bio)
1475 return ERR_PTR(-ENOMEM);
1477 offset = offset_in_page(kaddr);
1478 for (i = 0; i < nr_pages; i++) {
1479 unsigned int bytes = PAGE_SIZE - offset;
1481 if (len <= 0)
1482 break;
1484 if (bytes > len)
1485 bytes = len;
1487 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1488 offset) < bytes) {
1489 /* we don't support partial mappings */
1490 bio_put(bio);
1491 return ERR_PTR(-EINVAL);
1494 data += bytes;
1495 len -= bytes;
1496 offset = 0;
1499 bio->bi_end_io = bio_map_kern_endio;
1500 return bio;
1502 EXPORT_SYMBOL(bio_map_kern);
1504 static void bio_copy_kern_endio(struct bio *bio, int err)
1506 bio_free_pages(bio);
1507 bio_put(bio);
1510 static void bio_copy_kern_endio_read(struct bio *bio, int err)
1512 char *p = bio->bi_private;
1513 struct bio_vec *bvec;
1514 int i;
1516 bio_for_each_segment_all(bvec, bio, i) {
1517 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1518 p += bvec->bv_len;
1521 bio_copy_kern_endio(bio, err);
1525 * bio_copy_kern - copy kernel address into bio
1526 * @q: the struct request_queue for the bio
1527 * @data: pointer to buffer to copy
1528 * @len: length in bytes
1529 * @gfp_mask: allocation flags for bio and page allocation
1530 * @reading: data direction is READ
1532 * copy the kernel address into a bio suitable for io to a block
1533 * device. Returns an error pointer in case of error.
1535 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1536 gfp_t gfp_mask, int reading)
1538 unsigned long kaddr = (unsigned long)data;
1539 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1540 unsigned long start = kaddr >> PAGE_SHIFT;
1541 struct bio *bio;
1542 void *p = data;
1543 int nr_pages = 0;
1546 * Overflow, abort
1548 if (end < start)
1549 return ERR_PTR(-EINVAL);
1551 nr_pages = end - start;
1552 bio = bio_kmalloc(gfp_mask, nr_pages);
1553 if (!bio)
1554 return ERR_PTR(-ENOMEM);
1556 while (len) {
1557 struct page *page;
1558 unsigned int bytes = PAGE_SIZE;
1560 if (bytes > len)
1561 bytes = len;
1563 page = alloc_page(q->bounce_gfp | gfp_mask);
1564 if (!page)
1565 goto cleanup;
1567 if (!reading)
1568 memcpy(page_address(page), p, bytes);
1570 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1571 break;
1573 len -= bytes;
1574 p += bytes;
1577 if (reading) {
1578 bio->bi_end_io = bio_copy_kern_endio_read;
1579 bio->bi_private = data;
1580 } else {
1581 bio->bi_end_io = bio_copy_kern_endio;
1582 bio->bi_rw |= REQ_WRITE;
1585 return bio;
1587 cleanup:
1588 bio_free_pages(bio);
1589 bio_put(bio);
1590 return ERR_PTR(-ENOMEM);
1592 EXPORT_SYMBOL(bio_copy_kern);
1595 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1596 * for performing direct-IO in BIOs.
1598 * The problem is that we cannot run set_page_dirty() from interrupt context
1599 * because the required locks are not interrupt-safe. So what we can do is to
1600 * mark the pages dirty _before_ performing IO. And in interrupt context,
1601 * check that the pages are still dirty. If so, fine. If not, redirty them
1602 * in process context.
1604 * We special-case compound pages here: normally this means reads into hugetlb
1605 * pages. The logic in here doesn't really work right for compound pages
1606 * because the VM does not uniformly chase down the head page in all cases.
1607 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1608 * handle them at all. So we skip compound pages here at an early stage.
1610 * Note that this code is very hard to test under normal circumstances because
1611 * direct-io pins the pages with get_user_pages(). This makes
1612 * is_page_cache_freeable return false, and the VM will not clean the pages.
1613 * But other code (eg, flusher threads) could clean the pages if they are mapped
1614 * pagecache.
1616 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1617 * deferred bio dirtying paths.
1621 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1623 void bio_set_pages_dirty(struct bio *bio)
1625 struct bio_vec *bvec;
1626 int i;
1628 bio_for_each_segment_all(bvec, bio, i) {
1629 struct page *page = bvec->bv_page;
1631 if (page && !PageCompound(page))
1632 set_page_dirty_lock(page);
1636 static void bio_release_pages(struct bio *bio)
1638 struct bio_vec *bvec;
1639 int i;
1641 bio_for_each_segment_all(bvec, bio, i) {
1642 struct page *page = bvec->bv_page;
1644 if (page)
1645 put_page(page);
1650 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1651 * If they are, then fine. If, however, some pages are clean then they must
1652 * have been written out during the direct-IO read. So we take another ref on
1653 * the BIO and the offending pages and re-dirty the pages in process context.
1655 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1656 * here on. It will run one page_cache_release() against each page and will
1657 * run one bio_put() against the BIO.
1660 static void bio_dirty_fn(struct work_struct *work);
1662 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1663 static DEFINE_SPINLOCK(bio_dirty_lock);
1664 static struct bio *bio_dirty_list;
1667 * This runs in process context
1669 static void bio_dirty_fn(struct work_struct *work)
1671 unsigned long flags;
1672 struct bio *bio;
1674 spin_lock_irqsave(&bio_dirty_lock, flags);
1675 bio = bio_dirty_list;
1676 bio_dirty_list = NULL;
1677 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1679 while (bio) {
1680 struct bio *next = bio->bi_private;
1682 bio_set_pages_dirty(bio);
1683 bio_release_pages(bio);
1684 bio_put(bio);
1685 bio = next;
1689 void bio_check_pages_dirty(struct bio *bio)
1691 struct bio_vec *bvec;
1692 int nr_clean_pages = 0;
1693 int i;
1695 bio_for_each_segment_all(bvec, bio, i) {
1696 struct page *page = bvec->bv_page;
1698 if (PageDirty(page) || PageCompound(page)) {
1699 page_cache_release(page);
1700 bvec->bv_page = NULL;
1701 } else {
1702 nr_clean_pages++;
1706 if (nr_clean_pages) {
1707 unsigned long flags;
1709 spin_lock_irqsave(&bio_dirty_lock, flags);
1710 bio->bi_private = bio_dirty_list;
1711 bio_dirty_list = bio;
1712 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1713 schedule_work(&bio_dirty_work);
1714 } else {
1715 bio_put(bio);
1719 void generic_start_io_acct(int rw, unsigned long sectors,
1720 struct hd_struct *part)
1722 int cpu = part_stat_lock();
1724 part_round_stats(cpu, part);
1725 part_stat_inc(cpu, part, ios[rw]);
1726 part_stat_add(cpu, part, sectors[rw], sectors);
1727 part_inc_in_flight(part, rw);
1729 part_stat_unlock();
1731 EXPORT_SYMBOL(generic_start_io_acct);
1733 void generic_end_io_acct(int rw, struct hd_struct *part,
1734 unsigned long start_time)
1736 unsigned long duration = jiffies - start_time;
1737 int cpu = part_stat_lock();
1739 part_stat_add(cpu, part, ticks[rw], duration);
1740 part_round_stats(cpu, part);
1741 part_dec_in_flight(part, rw);
1743 part_stat_unlock();
1745 EXPORT_SYMBOL(generic_end_io_acct);
1747 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1748 void bio_flush_dcache_pages(struct bio *bi)
1750 struct bio_vec bvec;
1751 struct bvec_iter iter;
1753 bio_for_each_segment(bvec, bi, iter)
1754 flush_dcache_page(bvec.bv_page);
1756 EXPORT_SYMBOL(bio_flush_dcache_pages);
1757 #endif
1759 static inline bool bio_remaining_done(struct bio *bio)
1762 * If we're not chaining, then ->__bi_remaining is always 1 and
1763 * we always end io on the first invocation.
1765 if (!bio_flagged(bio, BIO_CHAIN))
1766 return true;
1768 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1770 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1771 clear_bit(BIO_CHAIN, &bio->bi_flags);
1772 return true;
1775 return false;
1779 * bio_endio - end I/O on a bio
1780 * @bio: bio
1781 * @error: error, if any
1783 * Description:
1784 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1785 * preferred way to end I/O on a bio, it takes care of clearing
1786 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1787 * established -Exxxx (-EIO, for instance) error values in case
1788 * something went wrong. No one should call bi_end_io() directly on a
1789 * bio unless they own it and thus know that it has an end_io
1790 * function.
1792 void bio_endio(struct bio *bio, int error)
1794 while (bio) {
1795 if (error)
1796 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1797 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1798 error = -EIO;
1800 if (unlikely(!bio_remaining_done(bio)))
1801 break;
1804 * Need to have a real endio function for chained bios,
1805 * otherwise various corner cases will break (like stacking
1806 * block devices that save/restore bi_end_io) - however, we want
1807 * to avoid unbounded recursion and blowing the stack. Tail call
1808 * optimization would handle this, but compiling with frame
1809 * pointers also disables gcc's sibling call optimization.
1811 if (bio->bi_end_io == bio_chain_endio) {
1812 struct bio *parent = bio->bi_private;
1813 bio_put(bio);
1814 bio = parent;
1815 } else {
1816 if (bio->bi_end_io)
1817 bio->bi_end_io(bio, error);
1818 bio = NULL;
1822 EXPORT_SYMBOL(bio_endio);
1825 * bio_split - split a bio
1826 * @bio: bio to split
1827 * @sectors: number of sectors to split from the front of @bio
1828 * @gfp: gfp mask
1829 * @bs: bio set to allocate from
1831 * Allocates and returns a new bio which represents @sectors from the start of
1832 * @bio, and updates @bio to represent the remaining sectors.
1834 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1835 * responsibility to ensure that @bio is not freed before the split.
1837 struct bio *bio_split(struct bio *bio, int sectors,
1838 gfp_t gfp, struct bio_set *bs)
1840 struct bio *split = NULL;
1842 BUG_ON(sectors <= 0);
1843 BUG_ON(sectors >= bio_sectors(bio));
1845 split = bio_clone_fast(bio, gfp, bs);
1846 if (!split)
1847 return NULL;
1849 split->bi_iter.bi_size = sectors << 9;
1851 if (bio_integrity(split))
1852 bio_integrity_trim(split, 0, sectors);
1854 bio_advance(bio, split->bi_iter.bi_size);
1856 return split;
1858 EXPORT_SYMBOL(bio_split);
1861 * bio_trim - trim a bio
1862 * @bio: bio to trim
1863 * @offset: number of sectors to trim from the front of @bio
1864 * @size: size we want to trim @bio to, in sectors
1866 void bio_trim(struct bio *bio, int offset, int size)
1868 /* 'bio' is a cloned bio which we need to trim to match
1869 * the given offset and size.
1872 size <<= 9;
1873 if (offset == 0 && size == bio->bi_iter.bi_size)
1874 return;
1876 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1878 bio_advance(bio, offset << 9);
1880 bio->bi_iter.bi_size = size;
1882 EXPORT_SYMBOL_GPL(bio_trim);
1885 * create memory pools for biovec's in a bio_set.
1886 * use the global biovec slabs created for general use.
1888 mempool_t *biovec_create_pool(int pool_entries)
1890 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1892 return mempool_create_slab_pool(pool_entries, bp->slab);
1895 void bioset_free(struct bio_set *bs)
1897 if (bs->rescue_workqueue)
1898 destroy_workqueue(bs->rescue_workqueue);
1900 if (bs->bio_pool)
1901 mempool_destroy(bs->bio_pool);
1903 if (bs->bvec_pool)
1904 mempool_destroy(bs->bvec_pool);
1906 bioset_integrity_free(bs);
1907 bio_put_slab(bs);
1909 kfree(bs);
1911 EXPORT_SYMBOL(bioset_free);
1913 static struct bio_set *__bioset_create(unsigned int pool_size,
1914 unsigned int front_pad,
1915 bool create_bvec_pool)
1917 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1918 struct bio_set *bs;
1920 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1921 if (!bs)
1922 return NULL;
1924 bs->front_pad = front_pad;
1926 spin_lock_init(&bs->rescue_lock);
1927 bio_list_init(&bs->rescue_list);
1928 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1930 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1931 if (!bs->bio_slab) {
1932 kfree(bs);
1933 return NULL;
1936 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1937 if (!bs->bio_pool)
1938 goto bad;
1940 if (create_bvec_pool) {
1941 bs->bvec_pool = biovec_create_pool(pool_size);
1942 if (!bs->bvec_pool)
1943 goto bad;
1946 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1947 if (!bs->rescue_workqueue)
1948 goto bad;
1950 return bs;
1951 bad:
1952 bioset_free(bs);
1953 return NULL;
1957 * bioset_create - Create a bio_set
1958 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1959 * @front_pad: Number of bytes to allocate in front of the returned bio
1961 * Description:
1962 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1963 * to ask for a number of bytes to be allocated in front of the bio.
1964 * Front pad allocation is useful for embedding the bio inside
1965 * another structure, to avoid allocating extra data to go with the bio.
1966 * Note that the bio must be embedded at the END of that structure always,
1967 * or things will break badly.
1969 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1971 return __bioset_create(pool_size, front_pad, true);
1973 EXPORT_SYMBOL(bioset_create);
1976 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1977 * @pool_size: Number of bio to cache in the mempool
1978 * @front_pad: Number of bytes to allocate in front of the returned bio
1980 * Description:
1981 * Same functionality as bioset_create() except that mempool is not
1982 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1984 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1986 return __bioset_create(pool_size, front_pad, false);
1988 EXPORT_SYMBOL(bioset_create_nobvec);
1990 #ifdef CONFIG_BLK_CGROUP
1993 * bio_associate_blkcg - associate a bio with the specified blkcg
1994 * @bio: target bio
1995 * @blkcg_css: css of the blkcg to associate
1997 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1998 * treat @bio as if it were issued by a task which belongs to the blkcg.
2000 * This function takes an extra reference of @blkcg_css which will be put
2001 * when @bio is released. The caller must own @bio and is responsible for
2002 * synchronizing calls to this function.
2004 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2006 if (unlikely(bio->bi_css))
2007 return -EBUSY;
2008 css_get(blkcg_css);
2009 bio->bi_css = blkcg_css;
2010 return 0;
2014 * bio_associate_current - associate a bio with %current
2015 * @bio: target bio
2017 * Associate @bio with %current if it hasn't been associated yet. Block
2018 * layer will treat @bio as if it were issued by %current no matter which
2019 * task actually issues it.
2021 * This function takes an extra reference of @task's io_context and blkcg
2022 * which will be put when @bio is released. The caller must own @bio,
2023 * ensure %current->io_context exists, and is responsible for synchronizing
2024 * calls to this function.
2026 int bio_associate_current(struct bio *bio)
2028 struct io_context *ioc;
2030 if (bio->bi_css)
2031 return -EBUSY;
2033 ioc = current->io_context;
2034 if (!ioc)
2035 return -ENOENT;
2037 get_io_context_active(ioc);
2038 bio->bi_ioc = ioc;
2039 bio->bi_css = task_get_css(current, blkio_cgrp_id);
2040 return 0;
2044 * bio_disassociate_task - undo bio_associate_current()
2045 * @bio: target bio
2047 void bio_disassociate_task(struct bio *bio)
2049 if (bio->bi_ioc) {
2050 put_io_context(bio->bi_ioc);
2051 bio->bi_ioc = NULL;
2053 if (bio->bi_css) {
2054 css_put(bio->bi_css);
2055 bio->bi_css = NULL;
2059 #endif /* CONFIG_BLK_CGROUP */
2061 static void __init biovec_init_slabs(void)
2063 int i;
2065 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2066 int size;
2067 struct biovec_slab *bvs = bvec_slabs + i;
2069 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2070 bvs->slab = NULL;
2071 continue;
2074 size = bvs->nr_vecs * sizeof(struct bio_vec);
2075 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2076 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2080 static int __init init_bio(void)
2082 bio_slab_max = 2;
2083 bio_slab_nr = 0;
2084 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2085 if (!bio_slabs)
2086 panic("bio: can't allocate bios\n");
2088 bio_integrity_init();
2089 biovec_init_slabs();
2091 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2092 if (!fs_bio_set)
2093 panic("bio: can't allocate bios\n");
2095 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2096 panic("bio: can't create integrity pool\n");
2098 return 0;
2100 subsys_initcall(init_bio);