mm: memcontrol: shorten the page statistics update slowpath
[linux-2.6/btrfs-unstable.git] / mm / memcontrol.c
blob9073d07c11496099f6670372df94e8753648eeb1
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
65 #include <asm/uaccess.h>
67 #include <trace/events/vmscan.h>
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
86 #else
87 #define do_swap_account 0
88 #endif
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
146 struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
153 * per-zone information in memory controller.
155 struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
169 struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
178 struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
183 struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
187 struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
193 struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
208 struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
216 struct mem_cgroup_threshold_ary *spare;
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
226 * cgroup_event represents events which userspace want to receive.
228 struct mem_cgroup_event {
230 * memcg which the event belongs to.
232 struct mem_cgroup *memcg;
234 * eventfd to signal userspace about the event.
236 struct eventfd_ctx *eventfd;
238 * Each of these stored in a list by the cgroup.
240 struct list_head list;
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
279 struct mem_cgroup {
280 struct cgroup_subsys_state css;
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
287 unsigned long soft_limit;
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
292 /* css_online() has been completed */
293 int initialized;
296 * Should the accounting and control be hierarchical, per subtree?
298 bool use_hierarchy;
299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
301 bool oom_lock;
302 atomic_t under_oom;
303 atomic_t oom_wakeups;
305 int swappiness;
306 /* OOM-Killer disable */
307 int oom_kill_disable;
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
312 /* thresholds for memory usage. RCU-protected */
313 struct mem_cgroup_thresholds thresholds;
315 /* thresholds for mem+swap usage. RCU-protected */
316 struct mem_cgroup_thresholds memsw_thresholds;
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
325 unsigned long move_charge_at_immigrate;
327 * set > 0 if pages under this cgroup are moving to other cgroup.
329 atomic_t moving_account;
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
333 * percpu counter.
335 struct mem_cgroup_stat_cpu __percpu *stat;
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
343 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344 struct cg_proto tcp_mem;
345 #endif
346 #if defined(CONFIG_MEMCG_KMEM)
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
349 struct list_head memcg_slab_caches;
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352 #endif
354 int last_scanned_node;
355 #if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359 #endif
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
369 /* internal only representation about the status of kmem accounting. */
370 enum {
371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
374 #ifdef CONFIG_MEMCG_KMEM
375 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
380 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
385 #endif
387 /* Stuffs for move charges at task migration. */
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
392 enum move_type {
393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
395 NR_MOVE_TYPE,
398 /* "mc" and its members are protected by cgroup_mutex */
399 static struct move_charge_struct {
400 spinlock_t lock; /* for from, to */
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
403 unsigned long immigrate_flags;
404 unsigned long precharge;
405 unsigned long moved_charge;
406 unsigned long moved_swap;
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409 } mc = {
410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
414 static bool move_anon(void)
416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
419 static bool move_file(void)
421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
428 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
429 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
431 enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433 MEM_CGROUP_CHARGE_TYPE_ANON,
434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
436 NR_CHARGE_TYPE,
439 /* for encoding cft->private value on file */
440 enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
444 _KMEM,
447 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
449 #define MEMFILE_ATTR(val) ((val) & 0xffff)
450 /* Used for OOM nofiier */
451 #define OOM_CONTROL (0)
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
458 static DEFINE_MUTEX(memcg_create_mutex);
460 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
465 /* Some nice accessors for the vmpressure. */
466 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
473 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
478 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
480 return (memcg == root_mem_cgroup);
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
487 #define MEM_CGROUP_ID_MAX USHRT_MAX
489 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
491 return memcg->css.id;
494 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
496 struct cgroup_subsys_state *css;
498 css = css_from_id(id, &memory_cgrp_subsys);
499 return mem_cgroup_from_css(css);
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
505 void sock_update_memcg(struct sock *sk)
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
511 BUG_ON(!sk->sk_prot->proto_cgroup);
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
533 sk->sk_cgrp = cg_proto;
535 rcu_read_unlock();
538 EXPORT_SYMBOL(sock_update_memcg);
540 void sock_release_memcg(struct sock *sk)
542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
546 css_put(&sk->sk_cgrp->memcg->css);
550 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
555 return &memcg->tcp_mem;
557 EXPORT_SYMBOL(tcp_proto_cgroup);
559 static void disarm_sock_keys(struct mem_cgroup *memcg)
561 if (!memcg_proto_activated(&memcg->tcp_mem))
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
565 #else
566 static void disarm_sock_keys(struct mem_cgroup *memcg)
569 #endif
571 #ifdef CONFIG_MEMCG_KMEM
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
584 static DEFINE_IDA(kmem_limited_groups);
585 int memcg_limited_groups_array_size;
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 * increase ours as well if it increases.
599 #define MEMCG_CACHES_MIN_SIZE 4
600 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
608 struct static_key memcg_kmem_enabled_key;
609 EXPORT_SYMBOL(memcg_kmem_enabled_key);
611 static void memcg_free_cache_id(int id);
613 static void disarm_kmem_keys(struct mem_cgroup *memcg)
615 if (memcg_kmem_is_active(memcg)) {
616 static_key_slow_dec(&memcg_kmem_enabled_key);
617 memcg_free_cache_id(memcg->kmemcg_id);
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
623 WARN_ON(page_counter_read(&memcg->kmem));
625 #else
626 static void disarm_kmem_keys(struct mem_cgroup *memcg)
629 #endif /* CONFIG_MEMCG_KMEM */
631 static void disarm_static_keys(struct mem_cgroup *memcg)
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
637 static struct mem_cgroup_per_zone *
638 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
648 return &memcg->css;
651 static struct mem_cgroup_per_zone *
652 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
660 static struct mem_cgroup_tree_per_zone *
661 soft_limit_tree_node_zone(int nid, int zid)
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
666 static struct mem_cgroup_tree_per_zone *
667 soft_limit_tree_from_page(struct page *page)
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
675 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
677 unsigned long new_usage_in_excess)
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
683 if (mz->on_tree)
684 return;
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
707 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
716 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
719 unsigned long flags;
721 spin_lock_irqsave(&mctz->lock, flags);
722 __mem_cgroup_remove_exceeded(mz, mctz);
723 spin_unlock_irqrestore(&mctz->lock, flags);
726 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
735 return excess;
738 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
740 unsigned long excess;
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
744 mctz = soft_limit_tree_from_page(page);
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750 mz = mem_cgroup_page_zoneinfo(memcg, page);
751 excess = soft_limit_excess(memcg);
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
756 if (excess || mz->on_tree) {
757 unsigned long flags;
759 spin_lock_irqsave(&mctz->lock, flags);
760 /* if on-tree, remove it */
761 if (mz->on_tree)
762 __mem_cgroup_remove_exceeded(mz, mctz);
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
768 spin_unlock_irqrestore(&mctz->lock, flags);
773 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
775 struct mem_cgroup_tree_per_zone *mctz;
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
783 mem_cgroup_remove_exceeded(mz, mctz);
788 static struct mem_cgroup_per_zone *
789 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
794 retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
806 __mem_cgroup_remove_exceeded(mz, mctz);
807 if (!soft_limit_excess(mz->memcg) ||
808 !css_tryget_online(&mz->memcg->css))
809 goto retry;
810 done:
811 return mz;
814 static struct mem_cgroup_per_zone *
815 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
817 struct mem_cgroup_per_zone *mz;
819 spin_lock_irq(&mctz->lock);
820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
821 spin_unlock_irq(&mctz->lock);
822 return mz;
826 * Implementation Note: reading percpu statistics for memcg.
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
844 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845 enum mem_cgroup_stat_index idx)
847 long val = 0;
848 int cpu;
850 get_online_cpus();
851 for_each_online_cpu(cpu)
852 val += per_cpu(memcg->stat->count[idx], cpu);
853 #ifdef CONFIG_HOTPLUG_CPU
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
857 #endif
858 put_online_cpus();
859 return val;
862 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 enum mem_cgroup_events_index idx)
865 unsigned long val = 0;
866 int cpu;
868 get_online_cpus();
869 for_each_online_cpu(cpu)
870 val += per_cpu(memcg->stat->events[idx], cpu);
871 #ifdef CONFIG_HOTPLUG_CPU
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
875 #endif
876 put_online_cpus();
877 return val;
880 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881 struct page *page,
882 int nr_pages)
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
888 if (PageAnon(page))
889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890 nr_pages);
891 else
892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893 nr_pages);
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902 else {
903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 nr_pages = -nr_pages; /* for event */
907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
910 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
912 struct mem_cgroup_per_zone *mz;
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
918 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
922 unsigned long nr = 0;
923 int zid;
925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
938 return nr;
941 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942 unsigned int lru_mask)
944 unsigned long nr = 0;
945 int nid;
947 for_each_node_state(nid, N_MEMORY)
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
955 unsigned long val, next;
957 val = __this_cpu_read(memcg->stat->nr_page_events);
958 next = __this_cpu_read(memcg->stat->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
977 return false;
981 * Check events in order.
984 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990 bool do_numainfo __maybe_unused;
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 #if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997 #endif
998 mem_cgroup_threshold(memcg);
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
1001 #if MAX_NUMNODES > 1
1002 if (unlikely(do_numainfo))
1003 atomic_inc(&memcg->numainfo_events);
1004 #endif
1008 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1015 if (unlikely(!p))
1016 return NULL;
1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1021 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 struct mem_cgroup *memcg = NULL;
1025 rcu_read_lock();
1026 do {
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1032 if (unlikely(!mm))
1033 memcg = root_mem_cgroup;
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1039 } while (!css_tryget_online(&memcg->css));
1040 rcu_read_unlock();
1041 return memcg;
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1061 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062 struct mem_cgroup *prev,
1063 struct mem_cgroup_reclaim_cookie *reclaim)
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
1067 struct mem_cgroup *memcg = NULL;
1068 struct mem_cgroup *pos = NULL;
1070 if (mem_cgroup_disabled())
1071 return NULL;
1073 if (!root)
1074 root = root_mem_cgroup;
1076 if (prev && !reclaim)
1077 pos = prev;
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
1081 goto out;
1082 return root;
1085 rcu_read_lock();
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1103 } while (pos && !css_tryget(&pos->css));
1106 if (pos)
1107 css = &pos->css;
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1118 if (!prev)
1119 continue;
1120 break;
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1128 memcg = mem_cgroup_from_css(css);
1130 if (css == &root->css)
1131 break;
1133 if (css_tryget(css)) {
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1142 css_put(css);
1145 memcg = NULL;
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1160 if (pos)
1161 css_put(&pos->css);
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
1169 out_unlock:
1170 rcu_read_unlock();
1171 out:
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1175 return memcg;
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1197 #define for_each_mem_cgroup_tree(iter, root) \
1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1199 iter != NULL; \
1200 iter = mem_cgroup_iter(root, iter, NULL))
1202 #define for_each_mem_cgroup(iter) \
1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1204 iter != NULL; \
1205 iter = mem_cgroup_iter(NULL, iter, NULL))
1207 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1209 struct mem_cgroup *memcg;
1211 rcu_read_lock();
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
1214 goto out;
1216 switch (idx) {
1217 case PGFAULT:
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 break;
1223 default:
1224 BUG();
1226 out:
1227 rcu_read_unlock();
1229 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
1234 * @memcg: memcg of the wanted lruvec
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1240 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1243 struct mem_cgroup_per_zone *mz;
1244 struct lruvec *lruvec;
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 lruvec = &mz->lruvec;
1253 out:
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266 * @page: the page
1267 * @zone: zone of the page
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
1273 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1275 struct mem_cgroup_per_zone *mz;
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
1278 struct lruvec *lruvec;
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1285 pc = lookup_page_cgroup(page);
1286 memcg = pc->mem_cgroup;
1288 * Swapcache readahead pages are added to the LRU - and
1289 * possibly migrated - before they are charged.
1291 if (!memcg)
1292 memcg = root_mem_cgroup;
1294 mz = mem_cgroup_page_zoneinfo(memcg, page);
1295 lruvec = &mz->lruvec;
1296 out:
1298 * Since a node can be onlined after the mem_cgroup was created,
1299 * we have to be prepared to initialize lruvec->zone here;
1300 * and if offlined then reonlined, we need to reinitialize it.
1302 if (unlikely(lruvec->zone != zone))
1303 lruvec->zone = zone;
1304 return lruvec;
1308 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1309 * @lruvec: mem_cgroup per zone lru vector
1310 * @lru: index of lru list the page is sitting on
1311 * @nr_pages: positive when adding or negative when removing
1313 * This function must be called when a page is added to or removed from an
1314 * lru list.
1316 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1317 int nr_pages)
1319 struct mem_cgroup_per_zone *mz;
1320 unsigned long *lru_size;
1322 if (mem_cgroup_disabled())
1323 return;
1325 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1326 lru_size = mz->lru_size + lru;
1327 *lru_size += nr_pages;
1328 VM_BUG_ON((long)(*lru_size) < 0);
1332 * Checks whether given mem is same or in the root_mem_cgroup's
1333 * hierarchy subtree
1335 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1336 struct mem_cgroup *memcg)
1338 if (root_memcg == memcg)
1339 return true;
1340 if (!root_memcg->use_hierarchy || !memcg)
1341 return false;
1342 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1345 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1346 struct mem_cgroup *memcg)
1348 bool ret;
1350 rcu_read_lock();
1351 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1352 rcu_read_unlock();
1353 return ret;
1356 bool task_in_mem_cgroup(struct task_struct *task,
1357 const struct mem_cgroup *memcg)
1359 struct mem_cgroup *curr = NULL;
1360 struct task_struct *p;
1361 bool ret;
1363 p = find_lock_task_mm(task);
1364 if (p) {
1365 curr = get_mem_cgroup_from_mm(p->mm);
1366 task_unlock(p);
1367 } else {
1369 * All threads may have already detached their mm's, but the oom
1370 * killer still needs to detect if they have already been oom
1371 * killed to prevent needlessly killing additional tasks.
1373 rcu_read_lock();
1374 curr = mem_cgroup_from_task(task);
1375 if (curr)
1376 css_get(&curr->css);
1377 rcu_read_unlock();
1380 * We should check use_hierarchy of "memcg" not "curr". Because checking
1381 * use_hierarchy of "curr" here make this function true if hierarchy is
1382 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1383 * hierarchy(even if use_hierarchy is disabled in "memcg").
1385 ret = mem_cgroup_same_or_subtree(memcg, curr);
1386 css_put(&curr->css);
1387 return ret;
1390 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1392 unsigned long inactive_ratio;
1393 unsigned long inactive;
1394 unsigned long active;
1395 unsigned long gb;
1397 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1398 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1400 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1401 if (gb)
1402 inactive_ratio = int_sqrt(10 * gb);
1403 else
1404 inactive_ratio = 1;
1406 return inactive * inactive_ratio < active;
1409 #define mem_cgroup_from_counter(counter, member) \
1410 container_of(counter, struct mem_cgroup, member)
1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414 * @memcg: the memory cgroup
1416 * Returns the maximum amount of memory @mem can be charged with, in
1417 * pages.
1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
1425 count = page_counter_read(&memcg->memory);
1426 limit = ACCESS_ONCE(memcg->memory.limit);
1427 if (count < limit)
1428 margin = limit - count;
1430 if (do_swap_account) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = ACCESS_ONCE(memcg->memsw.limit);
1433 if (count <= limit)
1434 margin = min(margin, limit - count);
1437 return margin;
1440 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1442 /* root ? */
1443 if (mem_cgroup_disabled() || !memcg->css.parent)
1444 return vm_swappiness;
1446 return memcg->swappiness;
1450 * A routine for checking "mem" is under move_account() or not.
1452 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1453 * moving cgroups. This is for waiting at high-memory pressure
1454 * caused by "move".
1456 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1458 struct mem_cgroup *from;
1459 struct mem_cgroup *to;
1460 bool ret = false;
1462 * Unlike task_move routines, we access mc.to, mc.from not under
1463 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1465 spin_lock(&mc.lock);
1466 from = mc.from;
1467 to = mc.to;
1468 if (!from)
1469 goto unlock;
1471 ret = mem_cgroup_same_or_subtree(memcg, from)
1472 || mem_cgroup_same_or_subtree(memcg, to);
1473 unlock:
1474 spin_unlock(&mc.lock);
1475 return ret;
1478 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1480 if (mc.moving_task && current != mc.moving_task) {
1481 if (mem_cgroup_under_move(memcg)) {
1482 DEFINE_WAIT(wait);
1483 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1484 /* moving charge context might have finished. */
1485 if (mc.moving_task)
1486 schedule();
1487 finish_wait(&mc.waitq, &wait);
1488 return true;
1491 return false;
1494 #define K(x) ((x) << (PAGE_SHIFT-10))
1496 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1497 * @memcg: The memory cgroup that went over limit
1498 * @p: Task that is going to be killed
1500 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1501 * enabled
1503 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1505 /* oom_info_lock ensures that parallel ooms do not interleave */
1506 static DEFINE_MUTEX(oom_info_lock);
1507 struct mem_cgroup *iter;
1508 unsigned int i;
1510 if (!p)
1511 return;
1513 mutex_lock(&oom_info_lock);
1514 rcu_read_lock();
1516 pr_info("Task in ");
1517 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1518 pr_info(" killed as a result of limit of ");
1519 pr_cont_cgroup_path(memcg->css.cgroup);
1520 pr_info("\n");
1522 rcu_read_unlock();
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
1526 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1527 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1528 K((u64)page_counter_read(&memcg->memsw)),
1529 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1530 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->kmem)),
1532 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1534 for_each_mem_cgroup_tree(iter, memcg) {
1535 pr_info("Memory cgroup stats for ");
1536 pr_cont_cgroup_path(iter->css.cgroup);
1537 pr_cont(":");
1539 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1540 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1541 continue;
1542 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1543 K(mem_cgroup_read_stat(iter, i)));
1546 for (i = 0; i < NR_LRU_LISTS; i++)
1547 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1548 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1550 pr_cont("\n");
1552 mutex_unlock(&oom_info_lock);
1556 * This function returns the number of memcg under hierarchy tree. Returns
1557 * 1(self count) if no children.
1559 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1561 int num = 0;
1562 struct mem_cgroup *iter;
1564 for_each_mem_cgroup_tree(iter, memcg)
1565 num++;
1566 return num;
1570 * Return the memory (and swap, if configured) limit for a memcg.
1572 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1574 unsigned long limit;
1576 limit = memcg->memory.limit;
1577 if (mem_cgroup_swappiness(memcg)) {
1578 unsigned long memsw_limit;
1580 memsw_limit = memcg->memsw.limit;
1581 limit = min(limit + total_swap_pages, memsw_limit);
1583 return limit;
1586 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1587 int order)
1589 struct mem_cgroup *iter;
1590 unsigned long chosen_points = 0;
1591 unsigned long totalpages;
1592 unsigned int points = 0;
1593 struct task_struct *chosen = NULL;
1596 * If current has a pending SIGKILL or is exiting, then automatically
1597 * select it. The goal is to allow it to allocate so that it may
1598 * quickly exit and free its memory.
1600 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1601 set_thread_flag(TIF_MEMDIE);
1602 return;
1605 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1606 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1607 for_each_mem_cgroup_tree(iter, memcg) {
1608 struct css_task_iter it;
1609 struct task_struct *task;
1611 css_task_iter_start(&iter->css, &it);
1612 while ((task = css_task_iter_next(&it))) {
1613 switch (oom_scan_process_thread(task, totalpages, NULL,
1614 false)) {
1615 case OOM_SCAN_SELECT:
1616 if (chosen)
1617 put_task_struct(chosen);
1618 chosen = task;
1619 chosen_points = ULONG_MAX;
1620 get_task_struct(chosen);
1621 /* fall through */
1622 case OOM_SCAN_CONTINUE:
1623 continue;
1624 case OOM_SCAN_ABORT:
1625 css_task_iter_end(&it);
1626 mem_cgroup_iter_break(memcg, iter);
1627 if (chosen)
1628 put_task_struct(chosen);
1629 return;
1630 case OOM_SCAN_OK:
1631 break;
1633 points = oom_badness(task, memcg, NULL, totalpages);
1634 if (!points || points < chosen_points)
1635 continue;
1636 /* Prefer thread group leaders for display purposes */
1637 if (points == chosen_points &&
1638 thread_group_leader(chosen))
1639 continue;
1641 if (chosen)
1642 put_task_struct(chosen);
1643 chosen = task;
1644 chosen_points = points;
1645 get_task_struct(chosen);
1647 css_task_iter_end(&it);
1650 if (!chosen)
1651 return;
1652 points = chosen_points * 1000 / totalpages;
1653 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1654 NULL, "Memory cgroup out of memory");
1658 * test_mem_cgroup_node_reclaimable
1659 * @memcg: the target memcg
1660 * @nid: the node ID to be checked.
1661 * @noswap : specify true here if the user wants flle only information.
1663 * This function returns whether the specified memcg contains any
1664 * reclaimable pages on a node. Returns true if there are any reclaimable
1665 * pages in the node.
1667 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1668 int nid, bool noswap)
1670 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1671 return true;
1672 if (noswap || !total_swap_pages)
1673 return false;
1674 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1675 return true;
1676 return false;
1679 #if MAX_NUMNODES > 1
1682 * Always updating the nodemask is not very good - even if we have an empty
1683 * list or the wrong list here, we can start from some node and traverse all
1684 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1687 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1689 int nid;
1691 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1692 * pagein/pageout changes since the last update.
1694 if (!atomic_read(&memcg->numainfo_events))
1695 return;
1696 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1697 return;
1699 /* make a nodemask where this memcg uses memory from */
1700 memcg->scan_nodes = node_states[N_MEMORY];
1702 for_each_node_mask(nid, node_states[N_MEMORY]) {
1704 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1705 node_clear(nid, memcg->scan_nodes);
1708 atomic_set(&memcg->numainfo_events, 0);
1709 atomic_set(&memcg->numainfo_updating, 0);
1713 * Selecting a node where we start reclaim from. Because what we need is just
1714 * reducing usage counter, start from anywhere is O,K. Considering
1715 * memory reclaim from current node, there are pros. and cons.
1717 * Freeing memory from current node means freeing memory from a node which
1718 * we'll use or we've used. So, it may make LRU bad. And if several threads
1719 * hit limits, it will see a contention on a node. But freeing from remote
1720 * node means more costs for memory reclaim because of memory latency.
1722 * Now, we use round-robin. Better algorithm is welcomed.
1724 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1726 int node;
1728 mem_cgroup_may_update_nodemask(memcg);
1729 node = memcg->last_scanned_node;
1731 node = next_node(node, memcg->scan_nodes);
1732 if (node == MAX_NUMNODES)
1733 node = first_node(memcg->scan_nodes);
1735 * We call this when we hit limit, not when pages are added to LRU.
1736 * No LRU may hold pages because all pages are UNEVICTABLE or
1737 * memcg is too small and all pages are not on LRU. In that case,
1738 * we use curret node.
1740 if (unlikely(node == MAX_NUMNODES))
1741 node = numa_node_id();
1743 memcg->last_scanned_node = node;
1744 return node;
1746 #else
1747 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1749 return 0;
1751 #endif
1753 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1754 struct zone *zone,
1755 gfp_t gfp_mask,
1756 unsigned long *total_scanned)
1758 struct mem_cgroup *victim = NULL;
1759 int total = 0;
1760 int loop = 0;
1761 unsigned long excess;
1762 unsigned long nr_scanned;
1763 struct mem_cgroup_reclaim_cookie reclaim = {
1764 .zone = zone,
1765 .priority = 0,
1768 excess = soft_limit_excess(root_memcg);
1770 while (1) {
1771 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1772 if (!victim) {
1773 loop++;
1774 if (loop >= 2) {
1776 * If we have not been able to reclaim
1777 * anything, it might because there are
1778 * no reclaimable pages under this hierarchy
1780 if (!total)
1781 break;
1783 * We want to do more targeted reclaim.
1784 * excess >> 2 is not to excessive so as to
1785 * reclaim too much, nor too less that we keep
1786 * coming back to reclaim from this cgroup
1788 if (total >= (excess >> 2) ||
1789 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1790 break;
1792 continue;
1794 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1795 zone, &nr_scanned);
1796 *total_scanned += nr_scanned;
1797 if (!soft_limit_excess(root_memcg))
1798 break;
1800 mem_cgroup_iter_break(root_memcg, victim);
1801 return total;
1804 #ifdef CONFIG_LOCKDEP
1805 static struct lockdep_map memcg_oom_lock_dep_map = {
1806 .name = "memcg_oom_lock",
1808 #endif
1810 static DEFINE_SPINLOCK(memcg_oom_lock);
1813 * Check OOM-Killer is already running under our hierarchy.
1814 * If someone is running, return false.
1816 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1818 struct mem_cgroup *iter, *failed = NULL;
1820 spin_lock(&memcg_oom_lock);
1822 for_each_mem_cgroup_tree(iter, memcg) {
1823 if (iter->oom_lock) {
1825 * this subtree of our hierarchy is already locked
1826 * so we cannot give a lock.
1828 failed = iter;
1829 mem_cgroup_iter_break(memcg, iter);
1830 break;
1831 } else
1832 iter->oom_lock = true;
1835 if (failed) {
1837 * OK, we failed to lock the whole subtree so we have
1838 * to clean up what we set up to the failing subtree
1840 for_each_mem_cgroup_tree(iter, memcg) {
1841 if (iter == failed) {
1842 mem_cgroup_iter_break(memcg, iter);
1843 break;
1845 iter->oom_lock = false;
1847 } else
1848 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1850 spin_unlock(&memcg_oom_lock);
1852 return !failed;
1855 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1857 struct mem_cgroup *iter;
1859 spin_lock(&memcg_oom_lock);
1860 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1861 for_each_mem_cgroup_tree(iter, memcg)
1862 iter->oom_lock = false;
1863 spin_unlock(&memcg_oom_lock);
1866 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1868 struct mem_cgroup *iter;
1870 for_each_mem_cgroup_tree(iter, memcg)
1871 atomic_inc(&iter->under_oom);
1874 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1876 struct mem_cgroup *iter;
1879 * When a new child is created while the hierarchy is under oom,
1880 * mem_cgroup_oom_lock() may not be called. We have to use
1881 * atomic_add_unless() here.
1883 for_each_mem_cgroup_tree(iter, memcg)
1884 atomic_add_unless(&iter->under_oom, -1, 0);
1887 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1889 struct oom_wait_info {
1890 struct mem_cgroup *memcg;
1891 wait_queue_t wait;
1894 static int memcg_oom_wake_function(wait_queue_t *wait,
1895 unsigned mode, int sync, void *arg)
1897 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1898 struct mem_cgroup *oom_wait_memcg;
1899 struct oom_wait_info *oom_wait_info;
1901 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1902 oom_wait_memcg = oom_wait_info->memcg;
1905 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1906 * Then we can use css_is_ancestor without taking care of RCU.
1908 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1909 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1910 return 0;
1911 return autoremove_wake_function(wait, mode, sync, arg);
1914 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1916 atomic_inc(&memcg->oom_wakeups);
1917 /* for filtering, pass "memcg" as argument. */
1918 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1921 static void memcg_oom_recover(struct mem_cgroup *memcg)
1923 if (memcg && atomic_read(&memcg->under_oom))
1924 memcg_wakeup_oom(memcg);
1927 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1929 if (!current->memcg_oom.may_oom)
1930 return;
1932 * We are in the middle of the charge context here, so we
1933 * don't want to block when potentially sitting on a callstack
1934 * that holds all kinds of filesystem and mm locks.
1936 * Also, the caller may handle a failed allocation gracefully
1937 * (like optional page cache readahead) and so an OOM killer
1938 * invocation might not even be necessary.
1940 * That's why we don't do anything here except remember the
1941 * OOM context and then deal with it at the end of the page
1942 * fault when the stack is unwound, the locks are released,
1943 * and when we know whether the fault was overall successful.
1945 css_get(&memcg->css);
1946 current->memcg_oom.memcg = memcg;
1947 current->memcg_oom.gfp_mask = mask;
1948 current->memcg_oom.order = order;
1952 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1953 * @handle: actually kill/wait or just clean up the OOM state
1955 * This has to be called at the end of a page fault if the memcg OOM
1956 * handler was enabled.
1958 * Memcg supports userspace OOM handling where failed allocations must
1959 * sleep on a waitqueue until the userspace task resolves the
1960 * situation. Sleeping directly in the charge context with all kinds
1961 * of locks held is not a good idea, instead we remember an OOM state
1962 * in the task and mem_cgroup_oom_synchronize() has to be called at
1963 * the end of the page fault to complete the OOM handling.
1965 * Returns %true if an ongoing memcg OOM situation was detected and
1966 * completed, %false otherwise.
1968 bool mem_cgroup_oom_synchronize(bool handle)
1970 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1971 struct oom_wait_info owait;
1972 bool locked;
1974 /* OOM is global, do not handle */
1975 if (!memcg)
1976 return false;
1978 if (!handle)
1979 goto cleanup;
1981 owait.memcg = memcg;
1982 owait.wait.flags = 0;
1983 owait.wait.func = memcg_oom_wake_function;
1984 owait.wait.private = current;
1985 INIT_LIST_HEAD(&owait.wait.task_list);
1987 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1988 mem_cgroup_mark_under_oom(memcg);
1990 locked = mem_cgroup_oom_trylock(memcg);
1992 if (locked)
1993 mem_cgroup_oom_notify(memcg);
1995 if (locked && !memcg->oom_kill_disable) {
1996 mem_cgroup_unmark_under_oom(memcg);
1997 finish_wait(&memcg_oom_waitq, &owait.wait);
1998 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1999 current->memcg_oom.order);
2000 } else {
2001 schedule();
2002 mem_cgroup_unmark_under_oom(memcg);
2003 finish_wait(&memcg_oom_waitq, &owait.wait);
2006 if (locked) {
2007 mem_cgroup_oom_unlock(memcg);
2009 * There is no guarantee that an OOM-lock contender
2010 * sees the wakeups triggered by the OOM kill
2011 * uncharges. Wake any sleepers explicitely.
2013 memcg_oom_recover(memcg);
2015 cleanup:
2016 current->memcg_oom.memcg = NULL;
2017 css_put(&memcg->css);
2018 return true;
2022 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2023 * @page: page that is going to change accounted state
2024 * @locked: &memcg->move_lock slowpath was taken
2025 * @flags: IRQ-state flags for &memcg->move_lock
2027 * This function must mark the beginning of an accounted page state
2028 * change to prevent double accounting when the page is concurrently
2029 * being moved to another memcg:
2031 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2032 * if (TestClearPageState(page))
2033 * mem_cgroup_update_page_stat(memcg, state, -1);
2034 * mem_cgroup_end_page_stat(memcg, locked, flags);
2036 * The RCU lock is held throughout the transaction. The fast path can
2037 * get away without acquiring the memcg->move_lock (@locked is false)
2038 * because page moving starts with an RCU grace period.
2040 * The RCU lock also protects the memcg from being freed when the page
2041 * state that is going to change is the only thing preventing the page
2042 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2043 * which allows migration to go ahead and uncharge the page before the
2044 * account transaction might be complete.
2046 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2047 bool *locked,
2048 unsigned long *flags)
2050 struct mem_cgroup *memcg;
2051 struct page_cgroup *pc;
2053 rcu_read_lock();
2055 if (mem_cgroup_disabled())
2056 return NULL;
2058 pc = lookup_page_cgroup(page);
2059 again:
2060 memcg = pc->mem_cgroup;
2061 if (unlikely(!memcg))
2062 return NULL;
2064 *locked = false;
2065 if (atomic_read(&memcg->moving_account) <= 0)
2066 return memcg;
2068 spin_lock_irqsave(&memcg->move_lock, *flags);
2069 if (memcg != pc->mem_cgroup) {
2070 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2071 goto again;
2073 *locked = true;
2075 return memcg;
2079 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2080 * @memcg: the memcg that was accounted against
2081 * @locked: value received from mem_cgroup_begin_page_stat()
2082 * @flags: value received from mem_cgroup_begin_page_stat()
2084 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2085 unsigned long flags)
2087 if (memcg && locked)
2088 spin_unlock_irqrestore(&memcg->move_lock, flags);
2090 rcu_read_unlock();
2094 * mem_cgroup_update_page_stat - update page state statistics
2095 * @memcg: memcg to account against
2096 * @idx: page state item to account
2097 * @val: number of pages (positive or negative)
2099 * See mem_cgroup_begin_page_stat() for locking requirements.
2101 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2102 enum mem_cgroup_stat_index idx, int val)
2104 VM_BUG_ON(!rcu_read_lock_held());
2106 if (memcg)
2107 this_cpu_add(memcg->stat->count[idx], val);
2111 * size of first charge trial. "32" comes from vmscan.c's magic value.
2112 * TODO: maybe necessary to use big numbers in big irons.
2114 #define CHARGE_BATCH 32U
2115 struct memcg_stock_pcp {
2116 struct mem_cgroup *cached; /* this never be root cgroup */
2117 unsigned int nr_pages;
2118 struct work_struct work;
2119 unsigned long flags;
2120 #define FLUSHING_CACHED_CHARGE 0
2122 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2123 static DEFINE_MUTEX(percpu_charge_mutex);
2126 * consume_stock: Try to consume stocked charge on this cpu.
2127 * @memcg: memcg to consume from.
2128 * @nr_pages: how many pages to charge.
2130 * The charges will only happen if @memcg matches the current cpu's memcg
2131 * stock, and at least @nr_pages are available in that stock. Failure to
2132 * service an allocation will refill the stock.
2134 * returns true if successful, false otherwise.
2136 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2138 struct memcg_stock_pcp *stock;
2139 bool ret = false;
2141 if (nr_pages > CHARGE_BATCH)
2142 return ret;
2144 stock = &get_cpu_var(memcg_stock);
2145 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2146 stock->nr_pages -= nr_pages;
2147 ret = true;
2149 put_cpu_var(memcg_stock);
2150 return ret;
2154 * Returns stocks cached in percpu and reset cached information.
2156 static void drain_stock(struct memcg_stock_pcp *stock)
2158 struct mem_cgroup *old = stock->cached;
2160 if (stock->nr_pages) {
2161 page_counter_uncharge(&old->memory, stock->nr_pages);
2162 if (do_swap_account)
2163 page_counter_uncharge(&old->memsw, stock->nr_pages);
2164 css_put_many(&old->css, stock->nr_pages);
2165 stock->nr_pages = 0;
2167 stock->cached = NULL;
2171 * This must be called under preempt disabled or must be called by
2172 * a thread which is pinned to local cpu.
2174 static void drain_local_stock(struct work_struct *dummy)
2176 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2177 drain_stock(stock);
2178 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2181 static void __init memcg_stock_init(void)
2183 int cpu;
2185 for_each_possible_cpu(cpu) {
2186 struct memcg_stock_pcp *stock =
2187 &per_cpu(memcg_stock, cpu);
2188 INIT_WORK(&stock->work, drain_local_stock);
2193 * Cache charges(val) to local per_cpu area.
2194 * This will be consumed by consume_stock() function, later.
2196 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2198 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2200 if (stock->cached != memcg) { /* reset if necessary */
2201 drain_stock(stock);
2202 stock->cached = memcg;
2204 stock->nr_pages += nr_pages;
2205 put_cpu_var(memcg_stock);
2209 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2210 * of the hierarchy under it.
2212 static void drain_all_stock(struct mem_cgroup *root_memcg)
2214 int cpu, curcpu;
2216 /* If someone's already draining, avoid adding running more workers. */
2217 if (!mutex_trylock(&percpu_charge_mutex))
2218 return;
2219 /* Notify other cpus that system-wide "drain" is running */
2220 get_online_cpus();
2221 curcpu = get_cpu();
2222 for_each_online_cpu(cpu) {
2223 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2224 struct mem_cgroup *memcg;
2226 memcg = stock->cached;
2227 if (!memcg || !stock->nr_pages)
2228 continue;
2229 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2230 continue;
2231 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2232 if (cpu == curcpu)
2233 drain_local_stock(&stock->work);
2234 else
2235 schedule_work_on(cpu, &stock->work);
2238 put_cpu();
2239 put_online_cpus();
2240 mutex_unlock(&percpu_charge_mutex);
2244 * This function drains percpu counter value from DEAD cpu and
2245 * move it to local cpu. Note that this function can be preempted.
2247 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2249 int i;
2251 spin_lock(&memcg->pcp_counter_lock);
2252 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2253 long x = per_cpu(memcg->stat->count[i], cpu);
2255 per_cpu(memcg->stat->count[i], cpu) = 0;
2256 memcg->nocpu_base.count[i] += x;
2258 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2259 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2261 per_cpu(memcg->stat->events[i], cpu) = 0;
2262 memcg->nocpu_base.events[i] += x;
2264 spin_unlock(&memcg->pcp_counter_lock);
2267 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2268 unsigned long action,
2269 void *hcpu)
2271 int cpu = (unsigned long)hcpu;
2272 struct memcg_stock_pcp *stock;
2273 struct mem_cgroup *iter;
2275 if (action == CPU_ONLINE)
2276 return NOTIFY_OK;
2278 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2279 return NOTIFY_OK;
2281 for_each_mem_cgroup(iter)
2282 mem_cgroup_drain_pcp_counter(iter, cpu);
2284 stock = &per_cpu(memcg_stock, cpu);
2285 drain_stock(stock);
2286 return NOTIFY_OK;
2289 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2290 unsigned int nr_pages)
2292 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2293 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2294 struct mem_cgroup *mem_over_limit;
2295 struct page_counter *counter;
2296 unsigned long nr_reclaimed;
2297 bool may_swap = true;
2298 bool drained = false;
2299 int ret = 0;
2301 if (mem_cgroup_is_root(memcg))
2302 goto done;
2303 retry:
2304 if (consume_stock(memcg, nr_pages))
2305 goto done;
2307 if (!do_swap_account ||
2308 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2309 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2310 goto done_restock;
2311 if (do_swap_account)
2312 page_counter_uncharge(&memcg->memsw, batch);
2313 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2314 } else {
2315 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2316 may_swap = false;
2319 if (batch > nr_pages) {
2320 batch = nr_pages;
2321 goto retry;
2325 * Unlike in global OOM situations, memcg is not in a physical
2326 * memory shortage. Allow dying and OOM-killed tasks to
2327 * bypass the last charges so that they can exit quickly and
2328 * free their memory.
2330 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2331 fatal_signal_pending(current) ||
2332 current->flags & PF_EXITING))
2333 goto bypass;
2335 if (unlikely(task_in_memcg_oom(current)))
2336 goto nomem;
2338 if (!(gfp_mask & __GFP_WAIT))
2339 goto nomem;
2341 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2342 gfp_mask, may_swap);
2344 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2345 goto retry;
2347 if (!drained) {
2348 drain_all_stock(mem_over_limit);
2349 drained = true;
2350 goto retry;
2353 if (gfp_mask & __GFP_NORETRY)
2354 goto nomem;
2356 * Even though the limit is exceeded at this point, reclaim
2357 * may have been able to free some pages. Retry the charge
2358 * before killing the task.
2360 * Only for regular pages, though: huge pages are rather
2361 * unlikely to succeed so close to the limit, and we fall back
2362 * to regular pages anyway in case of failure.
2364 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2365 goto retry;
2367 * At task move, charge accounts can be doubly counted. So, it's
2368 * better to wait until the end of task_move if something is going on.
2370 if (mem_cgroup_wait_acct_move(mem_over_limit))
2371 goto retry;
2373 if (nr_retries--)
2374 goto retry;
2376 if (gfp_mask & __GFP_NOFAIL)
2377 goto bypass;
2379 if (fatal_signal_pending(current))
2380 goto bypass;
2382 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2383 nomem:
2384 if (!(gfp_mask & __GFP_NOFAIL))
2385 return -ENOMEM;
2386 bypass:
2387 return -EINTR;
2389 done_restock:
2390 css_get_many(&memcg->css, batch);
2391 if (batch > nr_pages)
2392 refill_stock(memcg, batch - nr_pages);
2393 done:
2394 return ret;
2397 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2399 if (mem_cgroup_is_root(memcg))
2400 return;
2402 page_counter_uncharge(&memcg->memory, nr_pages);
2403 if (do_swap_account)
2404 page_counter_uncharge(&memcg->memsw, nr_pages);
2406 css_put_many(&memcg->css, nr_pages);
2410 * A helper function to get mem_cgroup from ID. must be called under
2411 * rcu_read_lock(). The caller is responsible for calling
2412 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2413 * refcnt from swap can be called against removed memcg.)
2415 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2417 /* ID 0 is unused ID */
2418 if (!id)
2419 return NULL;
2420 return mem_cgroup_from_id(id);
2424 * try_get_mem_cgroup_from_page - look up page's memcg association
2425 * @page: the page
2427 * Look up, get a css reference, and return the memcg that owns @page.
2429 * The page must be locked to prevent racing with swap-in and page
2430 * cache charges. If coming from an unlocked page table, the caller
2431 * must ensure the page is on the LRU or this can race with charging.
2433 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2435 struct mem_cgroup *memcg;
2436 struct page_cgroup *pc;
2437 unsigned short id;
2438 swp_entry_t ent;
2440 VM_BUG_ON_PAGE(!PageLocked(page), page);
2442 pc = lookup_page_cgroup(page);
2443 memcg = pc->mem_cgroup;
2445 if (memcg) {
2446 if (!css_tryget_online(&memcg->css))
2447 memcg = NULL;
2448 } else if (PageSwapCache(page)) {
2449 ent.val = page_private(page);
2450 id = lookup_swap_cgroup_id(ent);
2451 rcu_read_lock();
2452 memcg = mem_cgroup_lookup(id);
2453 if (memcg && !css_tryget_online(&memcg->css))
2454 memcg = NULL;
2455 rcu_read_unlock();
2457 return memcg;
2460 static void lock_page_lru(struct page *page, int *isolated)
2462 struct zone *zone = page_zone(page);
2464 spin_lock_irq(&zone->lru_lock);
2465 if (PageLRU(page)) {
2466 struct lruvec *lruvec;
2468 lruvec = mem_cgroup_page_lruvec(page, zone);
2469 ClearPageLRU(page);
2470 del_page_from_lru_list(page, lruvec, page_lru(page));
2471 *isolated = 1;
2472 } else
2473 *isolated = 0;
2476 static void unlock_page_lru(struct page *page, int isolated)
2478 struct zone *zone = page_zone(page);
2480 if (isolated) {
2481 struct lruvec *lruvec;
2483 lruvec = mem_cgroup_page_lruvec(page, zone);
2484 VM_BUG_ON_PAGE(PageLRU(page), page);
2485 SetPageLRU(page);
2486 add_page_to_lru_list(page, lruvec, page_lru(page));
2488 spin_unlock_irq(&zone->lru_lock);
2491 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2492 bool lrucare)
2494 struct page_cgroup *pc = lookup_page_cgroup(page);
2495 int isolated;
2497 VM_BUG_ON_PAGE(pc->mem_cgroup, page);
2499 * we don't need page_cgroup_lock about tail pages, becase they are not
2500 * accessed by any other context at this point.
2504 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2505 * may already be on some other mem_cgroup's LRU. Take care of it.
2507 if (lrucare)
2508 lock_page_lru(page, &isolated);
2511 * Nobody should be changing or seriously looking at
2512 * pc->mem_cgroup at this point:
2514 * - the page is uncharged
2516 * - the page is off-LRU
2518 * - an anonymous fault has exclusive page access, except for
2519 * a locked page table
2521 * - a page cache insertion, a swapin fault, or a migration
2522 * have the page locked
2524 pc->mem_cgroup = memcg;
2526 if (lrucare)
2527 unlock_page_lru(page, isolated);
2530 #ifdef CONFIG_MEMCG_KMEM
2532 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2533 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2535 static DEFINE_MUTEX(memcg_slab_mutex);
2538 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2539 * in the memcg_cache_params struct.
2541 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2543 struct kmem_cache *cachep;
2545 VM_BUG_ON(p->is_root_cache);
2546 cachep = p->root_cache;
2547 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2550 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2551 unsigned long nr_pages)
2553 struct page_counter *counter;
2554 int ret = 0;
2556 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2557 if (ret < 0)
2558 return ret;
2560 ret = try_charge(memcg, gfp, nr_pages);
2561 if (ret == -EINTR) {
2563 * try_charge() chose to bypass to root due to OOM kill or
2564 * fatal signal. Since our only options are to either fail
2565 * the allocation or charge it to this cgroup, do it as a
2566 * temporary condition. But we can't fail. From a kmem/slab
2567 * perspective, the cache has already been selected, by
2568 * mem_cgroup_kmem_get_cache(), so it is too late to change
2569 * our minds.
2571 * This condition will only trigger if the task entered
2572 * memcg_charge_kmem in a sane state, but was OOM-killed
2573 * during try_charge() above. Tasks that were already dying
2574 * when the allocation triggers should have been already
2575 * directed to the root cgroup in memcontrol.h
2577 page_counter_charge(&memcg->memory, nr_pages);
2578 if (do_swap_account)
2579 page_counter_charge(&memcg->memsw, nr_pages);
2580 css_get_many(&memcg->css, nr_pages);
2581 ret = 0;
2582 } else if (ret)
2583 page_counter_uncharge(&memcg->kmem, nr_pages);
2585 return ret;
2588 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2589 unsigned long nr_pages)
2591 page_counter_uncharge(&memcg->memory, nr_pages);
2592 if (do_swap_account)
2593 page_counter_uncharge(&memcg->memsw, nr_pages);
2595 page_counter_uncharge(&memcg->kmem, nr_pages);
2597 css_put_many(&memcg->css, nr_pages);
2601 * helper for acessing a memcg's index. It will be used as an index in the
2602 * child cache array in kmem_cache, and also to derive its name. This function
2603 * will return -1 when this is not a kmem-limited memcg.
2605 int memcg_cache_id(struct mem_cgroup *memcg)
2607 return memcg ? memcg->kmemcg_id : -1;
2610 static int memcg_alloc_cache_id(void)
2612 int id, size;
2613 int err;
2615 id = ida_simple_get(&kmem_limited_groups,
2616 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2617 if (id < 0)
2618 return id;
2620 if (id < memcg_limited_groups_array_size)
2621 return id;
2624 * There's no space for the new id in memcg_caches arrays,
2625 * so we have to grow them.
2628 size = 2 * (id + 1);
2629 if (size < MEMCG_CACHES_MIN_SIZE)
2630 size = MEMCG_CACHES_MIN_SIZE;
2631 else if (size > MEMCG_CACHES_MAX_SIZE)
2632 size = MEMCG_CACHES_MAX_SIZE;
2634 mutex_lock(&memcg_slab_mutex);
2635 err = memcg_update_all_caches(size);
2636 mutex_unlock(&memcg_slab_mutex);
2638 if (err) {
2639 ida_simple_remove(&kmem_limited_groups, id);
2640 return err;
2642 return id;
2645 static void memcg_free_cache_id(int id)
2647 ida_simple_remove(&kmem_limited_groups, id);
2651 * We should update the current array size iff all caches updates succeed. This
2652 * can only be done from the slab side. The slab mutex needs to be held when
2653 * calling this.
2655 void memcg_update_array_size(int num)
2657 memcg_limited_groups_array_size = num;
2660 static void memcg_register_cache(struct mem_cgroup *memcg,
2661 struct kmem_cache *root_cache)
2663 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2664 memcg_slab_mutex */
2665 struct kmem_cache *cachep;
2666 int id;
2668 lockdep_assert_held(&memcg_slab_mutex);
2670 id = memcg_cache_id(memcg);
2673 * Since per-memcg caches are created asynchronously on first
2674 * allocation (see memcg_kmem_get_cache()), several threads can try to
2675 * create the same cache, but only one of them may succeed.
2677 if (cache_from_memcg_idx(root_cache, id))
2678 return;
2680 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2681 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2683 * If we could not create a memcg cache, do not complain, because
2684 * that's not critical at all as we can always proceed with the root
2685 * cache.
2687 if (!cachep)
2688 return;
2690 css_get(&memcg->css);
2691 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2694 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2695 * barrier here to ensure nobody will see the kmem_cache partially
2696 * initialized.
2698 smp_wmb();
2700 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2701 root_cache->memcg_params->memcg_caches[id] = cachep;
2704 static void memcg_unregister_cache(struct kmem_cache *cachep)
2706 struct kmem_cache *root_cache;
2707 struct mem_cgroup *memcg;
2708 int id;
2710 lockdep_assert_held(&memcg_slab_mutex);
2712 BUG_ON(is_root_cache(cachep));
2714 root_cache = cachep->memcg_params->root_cache;
2715 memcg = cachep->memcg_params->memcg;
2716 id = memcg_cache_id(memcg);
2718 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2719 root_cache->memcg_params->memcg_caches[id] = NULL;
2721 list_del(&cachep->memcg_params->list);
2723 kmem_cache_destroy(cachep);
2725 /* drop the reference taken in memcg_register_cache */
2726 css_put(&memcg->css);
2730 * During the creation a new cache, we need to disable our accounting mechanism
2731 * altogether. This is true even if we are not creating, but rather just
2732 * enqueing new caches to be created.
2734 * This is because that process will trigger allocations; some visible, like
2735 * explicit kmallocs to auxiliary data structures, name strings and internal
2736 * cache structures; some well concealed, like INIT_WORK() that can allocate
2737 * objects during debug.
2739 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2740 * to it. This may not be a bounded recursion: since the first cache creation
2741 * failed to complete (waiting on the allocation), we'll just try to create the
2742 * cache again, failing at the same point.
2744 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2745 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2746 * inside the following two functions.
2748 static inline void memcg_stop_kmem_account(void)
2750 VM_BUG_ON(!current->mm);
2751 current->memcg_kmem_skip_account++;
2754 static inline void memcg_resume_kmem_account(void)
2756 VM_BUG_ON(!current->mm);
2757 current->memcg_kmem_skip_account--;
2760 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2762 struct kmem_cache *c;
2763 int i, failed = 0;
2765 mutex_lock(&memcg_slab_mutex);
2766 for_each_memcg_cache_index(i) {
2767 c = cache_from_memcg_idx(s, i);
2768 if (!c)
2769 continue;
2771 memcg_unregister_cache(c);
2773 if (cache_from_memcg_idx(s, i))
2774 failed++;
2776 mutex_unlock(&memcg_slab_mutex);
2777 return failed;
2780 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2782 struct kmem_cache *cachep;
2783 struct memcg_cache_params *params, *tmp;
2785 if (!memcg_kmem_is_active(memcg))
2786 return;
2788 mutex_lock(&memcg_slab_mutex);
2789 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2790 cachep = memcg_params_to_cache(params);
2791 kmem_cache_shrink(cachep);
2792 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2793 memcg_unregister_cache(cachep);
2795 mutex_unlock(&memcg_slab_mutex);
2798 struct memcg_register_cache_work {
2799 struct mem_cgroup *memcg;
2800 struct kmem_cache *cachep;
2801 struct work_struct work;
2804 static void memcg_register_cache_func(struct work_struct *w)
2806 struct memcg_register_cache_work *cw =
2807 container_of(w, struct memcg_register_cache_work, work);
2808 struct mem_cgroup *memcg = cw->memcg;
2809 struct kmem_cache *cachep = cw->cachep;
2811 mutex_lock(&memcg_slab_mutex);
2812 memcg_register_cache(memcg, cachep);
2813 mutex_unlock(&memcg_slab_mutex);
2815 css_put(&memcg->css);
2816 kfree(cw);
2820 * Enqueue the creation of a per-memcg kmem_cache.
2822 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2823 struct kmem_cache *cachep)
2825 struct memcg_register_cache_work *cw;
2827 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2828 if (cw == NULL) {
2829 css_put(&memcg->css);
2830 return;
2833 cw->memcg = memcg;
2834 cw->cachep = cachep;
2836 INIT_WORK(&cw->work, memcg_register_cache_func);
2837 schedule_work(&cw->work);
2840 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2841 struct kmem_cache *cachep)
2844 * We need to stop accounting when we kmalloc, because if the
2845 * corresponding kmalloc cache is not yet created, the first allocation
2846 * in __memcg_schedule_register_cache will recurse.
2848 * However, it is better to enclose the whole function. Depending on
2849 * the debugging options enabled, INIT_WORK(), for instance, can
2850 * trigger an allocation. This too, will make us recurse. Because at
2851 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2852 * the safest choice is to do it like this, wrapping the whole function.
2854 memcg_stop_kmem_account();
2855 __memcg_schedule_register_cache(memcg, cachep);
2856 memcg_resume_kmem_account();
2859 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2861 unsigned int nr_pages = 1 << order;
2862 int res;
2864 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2865 if (!res)
2866 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2867 return res;
2870 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2872 unsigned int nr_pages = 1 << order;
2874 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2875 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2879 * Return the kmem_cache we're supposed to use for a slab allocation.
2880 * We try to use the current memcg's version of the cache.
2882 * If the cache does not exist yet, if we are the first user of it,
2883 * we either create it immediately, if possible, or create it asynchronously
2884 * in a workqueue.
2885 * In the latter case, we will let the current allocation go through with
2886 * the original cache.
2888 * Can't be called in interrupt context or from kernel threads.
2889 * This function needs to be called with rcu_read_lock() held.
2891 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2892 gfp_t gfp)
2894 struct mem_cgroup *memcg;
2895 struct kmem_cache *memcg_cachep;
2897 VM_BUG_ON(!cachep->memcg_params);
2898 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2900 if (!current->mm || current->memcg_kmem_skip_account)
2901 return cachep;
2903 rcu_read_lock();
2904 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
2906 if (!memcg_kmem_is_active(memcg))
2907 goto out;
2909 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2910 if (likely(memcg_cachep)) {
2911 cachep = memcg_cachep;
2912 goto out;
2915 /* The corresponding put will be done in the workqueue. */
2916 if (!css_tryget_online(&memcg->css))
2917 goto out;
2918 rcu_read_unlock();
2921 * If we are in a safe context (can wait, and not in interrupt
2922 * context), we could be be predictable and return right away.
2923 * This would guarantee that the allocation being performed
2924 * already belongs in the new cache.
2926 * However, there are some clashes that can arrive from locking.
2927 * For instance, because we acquire the slab_mutex while doing
2928 * memcg_create_kmem_cache, this means no further allocation
2929 * could happen with the slab_mutex held. So it's better to
2930 * defer everything.
2932 memcg_schedule_register_cache(memcg, cachep);
2933 return cachep;
2934 out:
2935 rcu_read_unlock();
2936 return cachep;
2940 * We need to verify if the allocation against current->mm->owner's memcg is
2941 * possible for the given order. But the page is not allocated yet, so we'll
2942 * need a further commit step to do the final arrangements.
2944 * It is possible for the task to switch cgroups in this mean time, so at
2945 * commit time, we can't rely on task conversion any longer. We'll then use
2946 * the handle argument to return to the caller which cgroup we should commit
2947 * against. We could also return the memcg directly and avoid the pointer
2948 * passing, but a boolean return value gives better semantics considering
2949 * the compiled-out case as well.
2951 * Returning true means the allocation is possible.
2953 bool
2954 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2956 struct mem_cgroup *memcg;
2957 int ret;
2959 *_memcg = NULL;
2962 * Disabling accounting is only relevant for some specific memcg
2963 * internal allocations. Therefore we would initially not have such
2964 * check here, since direct calls to the page allocator that are
2965 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2966 * outside memcg core. We are mostly concerned with cache allocations,
2967 * and by having this test at memcg_kmem_get_cache, we are already able
2968 * to relay the allocation to the root cache and bypass the memcg cache
2969 * altogether.
2971 * There is one exception, though: the SLUB allocator does not create
2972 * large order caches, but rather service large kmallocs directly from
2973 * the page allocator. Therefore, the following sequence when backed by
2974 * the SLUB allocator:
2976 * memcg_stop_kmem_account();
2977 * kmalloc(<large_number>)
2978 * memcg_resume_kmem_account();
2980 * would effectively ignore the fact that we should skip accounting,
2981 * since it will drive us directly to this function without passing
2982 * through the cache selector memcg_kmem_get_cache. Such large
2983 * allocations are extremely rare but can happen, for instance, for the
2984 * cache arrays. We bring this test here.
2986 if (!current->mm || current->memcg_kmem_skip_account)
2987 return true;
2989 memcg = get_mem_cgroup_from_mm(current->mm);
2991 if (!memcg_kmem_is_active(memcg)) {
2992 css_put(&memcg->css);
2993 return true;
2996 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2997 if (!ret)
2998 *_memcg = memcg;
3000 css_put(&memcg->css);
3001 return (ret == 0);
3004 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3005 int order)
3007 struct page_cgroup *pc;
3009 VM_BUG_ON(mem_cgroup_is_root(memcg));
3011 /* The page allocation failed. Revert */
3012 if (!page) {
3013 memcg_uncharge_kmem(memcg, 1 << order);
3014 return;
3016 pc = lookup_page_cgroup(page);
3017 pc->mem_cgroup = memcg;
3020 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3022 struct page_cgroup *pc = lookup_page_cgroup(page);
3023 struct mem_cgroup *memcg = pc->mem_cgroup;
3025 if (!memcg)
3026 return;
3028 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3030 memcg_uncharge_kmem(memcg, 1 << order);
3031 pc->mem_cgroup = NULL;
3033 #else
3034 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3037 #endif /* CONFIG_MEMCG_KMEM */
3039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3042 * Because tail pages are not marked as "used", set it. We're under
3043 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3044 * charge/uncharge will be never happen and move_account() is done under
3045 * compound_lock(), so we don't have to take care of races.
3047 void mem_cgroup_split_huge_fixup(struct page *head)
3049 struct page_cgroup *pc = lookup_page_cgroup(head);
3050 int i;
3052 if (mem_cgroup_disabled())
3053 return;
3055 for (i = 1; i < HPAGE_PMD_NR; i++)
3056 pc[i].mem_cgroup = pc[0].mem_cgroup;
3058 __this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3059 HPAGE_PMD_NR);
3061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3064 * mem_cgroup_move_account - move account of the page
3065 * @page: the page
3066 * @nr_pages: number of regular pages (>1 for huge pages)
3067 * @pc: page_cgroup of the page.
3068 * @from: mem_cgroup which the page is moved from.
3069 * @to: mem_cgroup which the page is moved to. @from != @to.
3071 * The caller must confirm following.
3072 * - page is not on LRU (isolate_page() is useful.)
3073 * - compound_lock is held when nr_pages > 1
3075 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3076 * from old cgroup.
3078 static int mem_cgroup_move_account(struct page *page,
3079 unsigned int nr_pages,
3080 struct page_cgroup *pc,
3081 struct mem_cgroup *from,
3082 struct mem_cgroup *to)
3084 unsigned long flags;
3085 int ret;
3087 VM_BUG_ON(from == to);
3088 VM_BUG_ON_PAGE(PageLRU(page), page);
3090 * The page is isolated from LRU. So, collapse function
3091 * will not handle this page. But page splitting can happen.
3092 * Do this check under compound_page_lock(). The caller should
3093 * hold it.
3095 ret = -EBUSY;
3096 if (nr_pages > 1 && !PageTransHuge(page))
3097 goto out;
3100 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3101 * of its source page while we change it: page migration takes
3102 * both pages off the LRU, but page cache replacement doesn't.
3104 if (!trylock_page(page))
3105 goto out;
3107 ret = -EINVAL;
3108 if (pc->mem_cgroup != from)
3109 goto out_unlock;
3111 spin_lock_irqsave(&from->move_lock, flags);
3113 if (!PageAnon(page) && page_mapped(page)) {
3114 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3115 nr_pages);
3116 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3117 nr_pages);
3120 if (PageWriteback(page)) {
3121 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3122 nr_pages);
3123 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3124 nr_pages);
3128 * It is safe to change pc->mem_cgroup here because the page
3129 * is referenced, charged, and isolated - we can't race with
3130 * uncharging, charging, migration, or LRU putback.
3133 /* caller should have done css_get */
3134 pc->mem_cgroup = to;
3135 spin_unlock_irqrestore(&from->move_lock, flags);
3137 ret = 0;
3139 local_irq_disable();
3140 mem_cgroup_charge_statistics(to, page, nr_pages);
3141 memcg_check_events(to, page);
3142 mem_cgroup_charge_statistics(from, page, -nr_pages);
3143 memcg_check_events(from, page);
3144 local_irq_enable();
3145 out_unlock:
3146 unlock_page(page);
3147 out:
3148 return ret;
3151 #ifdef CONFIG_MEMCG_SWAP
3152 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3153 bool charge)
3155 int val = (charge) ? 1 : -1;
3156 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3160 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3161 * @entry: swap entry to be moved
3162 * @from: mem_cgroup which the entry is moved from
3163 * @to: mem_cgroup which the entry is moved to
3165 * It succeeds only when the swap_cgroup's record for this entry is the same
3166 * as the mem_cgroup's id of @from.
3168 * Returns 0 on success, -EINVAL on failure.
3170 * The caller must have charged to @to, IOW, called page_counter_charge() about
3171 * both res and memsw, and called css_get().
3173 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3174 struct mem_cgroup *from, struct mem_cgroup *to)
3176 unsigned short old_id, new_id;
3178 old_id = mem_cgroup_id(from);
3179 new_id = mem_cgroup_id(to);
3181 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3182 mem_cgroup_swap_statistics(from, false);
3183 mem_cgroup_swap_statistics(to, true);
3185 * This function is only called from task migration context now.
3186 * It postpones page_counter and refcount handling till the end
3187 * of task migration(mem_cgroup_clear_mc()) for performance
3188 * improvement. But we cannot postpone css_get(to) because if
3189 * the process that has been moved to @to does swap-in, the
3190 * refcount of @to might be decreased to 0.
3192 * We are in attach() phase, so the cgroup is guaranteed to be
3193 * alive, so we can just call css_get().
3195 css_get(&to->css);
3196 return 0;
3198 return -EINVAL;
3200 #else
3201 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3202 struct mem_cgroup *from, struct mem_cgroup *to)
3204 return -EINVAL;
3206 #endif
3208 #ifdef CONFIG_DEBUG_VM
3209 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3211 struct page_cgroup *pc;
3213 pc = lookup_page_cgroup(page);
3215 * Can be NULL while feeding pages into the page allocator for
3216 * the first time, i.e. during boot or memory hotplug;
3217 * or when mem_cgroup_disabled().
3219 if (likely(pc) && pc->mem_cgroup)
3220 return pc;
3221 return NULL;
3224 bool mem_cgroup_bad_page_check(struct page *page)
3226 if (mem_cgroup_disabled())
3227 return false;
3229 return lookup_page_cgroup_used(page) != NULL;
3232 void mem_cgroup_print_bad_page(struct page *page)
3234 struct page_cgroup *pc;
3236 pc = lookup_page_cgroup_used(page);
3237 if (pc)
3238 pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
3240 #endif
3242 static DEFINE_MUTEX(memcg_limit_mutex);
3244 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3245 unsigned long limit)
3247 unsigned long curusage;
3248 unsigned long oldusage;
3249 bool enlarge = false;
3250 int retry_count;
3251 int ret;
3254 * For keeping hierarchical_reclaim simple, how long we should retry
3255 * is depends on callers. We set our retry-count to be function
3256 * of # of children which we should visit in this loop.
3258 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3259 mem_cgroup_count_children(memcg);
3261 oldusage = page_counter_read(&memcg->memory);
3263 do {
3264 if (signal_pending(current)) {
3265 ret = -EINTR;
3266 break;
3269 mutex_lock(&memcg_limit_mutex);
3270 if (limit > memcg->memsw.limit) {
3271 mutex_unlock(&memcg_limit_mutex);
3272 ret = -EINVAL;
3273 break;
3275 if (limit > memcg->memory.limit)
3276 enlarge = true;
3277 ret = page_counter_limit(&memcg->memory, limit);
3278 mutex_unlock(&memcg_limit_mutex);
3280 if (!ret)
3281 break;
3283 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3285 curusage = page_counter_read(&memcg->memory);
3286 /* Usage is reduced ? */
3287 if (curusage >= oldusage)
3288 retry_count--;
3289 else
3290 oldusage = curusage;
3291 } while (retry_count);
3293 if (!ret && enlarge)
3294 memcg_oom_recover(memcg);
3296 return ret;
3299 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3300 unsigned long limit)
3302 unsigned long curusage;
3303 unsigned long oldusage;
3304 bool enlarge = false;
3305 int retry_count;
3306 int ret;
3308 /* see mem_cgroup_resize_res_limit */
3309 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3310 mem_cgroup_count_children(memcg);
3312 oldusage = page_counter_read(&memcg->memsw);
3314 do {
3315 if (signal_pending(current)) {
3316 ret = -EINTR;
3317 break;
3320 mutex_lock(&memcg_limit_mutex);
3321 if (limit < memcg->memory.limit) {
3322 mutex_unlock(&memcg_limit_mutex);
3323 ret = -EINVAL;
3324 break;
3326 if (limit > memcg->memsw.limit)
3327 enlarge = true;
3328 ret = page_counter_limit(&memcg->memsw, limit);
3329 mutex_unlock(&memcg_limit_mutex);
3331 if (!ret)
3332 break;
3334 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3336 curusage = page_counter_read(&memcg->memsw);
3337 /* Usage is reduced ? */
3338 if (curusage >= oldusage)
3339 retry_count--;
3340 else
3341 oldusage = curusage;
3342 } while (retry_count);
3344 if (!ret && enlarge)
3345 memcg_oom_recover(memcg);
3347 return ret;
3350 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3351 gfp_t gfp_mask,
3352 unsigned long *total_scanned)
3354 unsigned long nr_reclaimed = 0;
3355 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3356 unsigned long reclaimed;
3357 int loop = 0;
3358 struct mem_cgroup_tree_per_zone *mctz;
3359 unsigned long excess;
3360 unsigned long nr_scanned;
3362 if (order > 0)
3363 return 0;
3365 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3367 * This loop can run a while, specially if mem_cgroup's continuously
3368 * keep exceeding their soft limit and putting the system under
3369 * pressure
3371 do {
3372 if (next_mz)
3373 mz = next_mz;
3374 else
3375 mz = mem_cgroup_largest_soft_limit_node(mctz);
3376 if (!mz)
3377 break;
3379 nr_scanned = 0;
3380 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3381 gfp_mask, &nr_scanned);
3382 nr_reclaimed += reclaimed;
3383 *total_scanned += nr_scanned;
3384 spin_lock_irq(&mctz->lock);
3385 __mem_cgroup_remove_exceeded(mz, mctz);
3388 * If we failed to reclaim anything from this memory cgroup
3389 * it is time to move on to the next cgroup
3391 next_mz = NULL;
3392 if (!reclaimed)
3393 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3395 excess = soft_limit_excess(mz->memcg);
3397 * One school of thought says that we should not add
3398 * back the node to the tree if reclaim returns 0.
3399 * But our reclaim could return 0, simply because due
3400 * to priority we are exposing a smaller subset of
3401 * memory to reclaim from. Consider this as a longer
3402 * term TODO.
3404 /* If excess == 0, no tree ops */
3405 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3406 spin_unlock_irq(&mctz->lock);
3407 css_put(&mz->memcg->css);
3408 loop++;
3410 * Could not reclaim anything and there are no more
3411 * mem cgroups to try or we seem to be looping without
3412 * reclaiming anything.
3414 if (!nr_reclaimed &&
3415 (next_mz == NULL ||
3416 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3417 break;
3418 } while (!nr_reclaimed);
3419 if (next_mz)
3420 css_put(&next_mz->memcg->css);
3421 return nr_reclaimed;
3425 * Test whether @memcg has children, dead or alive. Note that this
3426 * function doesn't care whether @memcg has use_hierarchy enabled and
3427 * returns %true if there are child csses according to the cgroup
3428 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3430 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3432 bool ret;
3435 * The lock does not prevent addition or deletion of children, but
3436 * it prevents a new child from being initialized based on this
3437 * parent in css_online(), so it's enough to decide whether
3438 * hierarchically inherited attributes can still be changed or not.
3440 lockdep_assert_held(&memcg_create_mutex);
3442 rcu_read_lock();
3443 ret = css_next_child(NULL, &memcg->css);
3444 rcu_read_unlock();
3445 return ret;
3449 * Reclaims as many pages from the given memcg as possible and moves
3450 * the rest to the parent.
3452 * Caller is responsible for holding css reference for memcg.
3454 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3456 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3458 /* we call try-to-free pages for make this cgroup empty */
3459 lru_add_drain_all();
3460 /* try to free all pages in this cgroup */
3461 while (nr_retries && page_counter_read(&memcg->memory)) {
3462 int progress;
3464 if (signal_pending(current))
3465 return -EINTR;
3467 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3468 GFP_KERNEL, true);
3469 if (!progress) {
3470 nr_retries--;
3471 /* maybe some writeback is necessary */
3472 congestion_wait(BLK_RW_ASYNC, HZ/10);
3477 return 0;
3480 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3481 char *buf, size_t nbytes,
3482 loff_t off)
3484 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3486 if (mem_cgroup_is_root(memcg))
3487 return -EINVAL;
3488 return mem_cgroup_force_empty(memcg) ?: nbytes;
3491 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3492 struct cftype *cft)
3494 return mem_cgroup_from_css(css)->use_hierarchy;
3497 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3498 struct cftype *cft, u64 val)
3500 int retval = 0;
3501 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3502 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3504 mutex_lock(&memcg_create_mutex);
3506 if (memcg->use_hierarchy == val)
3507 goto out;
3510 * If parent's use_hierarchy is set, we can't make any modifications
3511 * in the child subtrees. If it is unset, then the change can
3512 * occur, provided the current cgroup has no children.
3514 * For the root cgroup, parent_mem is NULL, we allow value to be
3515 * set if there are no children.
3517 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3518 (val == 1 || val == 0)) {
3519 if (!memcg_has_children(memcg))
3520 memcg->use_hierarchy = val;
3521 else
3522 retval = -EBUSY;
3523 } else
3524 retval = -EINVAL;
3526 out:
3527 mutex_unlock(&memcg_create_mutex);
3529 return retval;
3532 static unsigned long tree_stat(struct mem_cgroup *memcg,
3533 enum mem_cgroup_stat_index idx)
3535 struct mem_cgroup *iter;
3536 long val = 0;
3538 /* Per-cpu values can be negative, use a signed accumulator */
3539 for_each_mem_cgroup_tree(iter, memcg)
3540 val += mem_cgroup_read_stat(iter, idx);
3542 if (val < 0) /* race ? */
3543 val = 0;
3544 return val;
3547 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3549 u64 val;
3551 if (mem_cgroup_is_root(memcg)) {
3552 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3553 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3554 if (swap)
3555 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3556 } else {
3557 if (!swap)
3558 val = page_counter_read(&memcg->memory);
3559 else
3560 val = page_counter_read(&memcg->memsw);
3562 return val << PAGE_SHIFT;
3565 enum {
3566 RES_USAGE,
3567 RES_LIMIT,
3568 RES_MAX_USAGE,
3569 RES_FAILCNT,
3570 RES_SOFT_LIMIT,
3573 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3574 struct cftype *cft)
3576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3577 struct page_counter *counter;
3579 switch (MEMFILE_TYPE(cft->private)) {
3580 case _MEM:
3581 counter = &memcg->memory;
3582 break;
3583 case _MEMSWAP:
3584 counter = &memcg->memsw;
3585 break;
3586 case _KMEM:
3587 counter = &memcg->kmem;
3588 break;
3589 default:
3590 BUG();
3593 switch (MEMFILE_ATTR(cft->private)) {
3594 case RES_USAGE:
3595 if (counter == &memcg->memory)
3596 return mem_cgroup_usage(memcg, false);
3597 if (counter == &memcg->memsw)
3598 return mem_cgroup_usage(memcg, true);
3599 return (u64)page_counter_read(counter) * PAGE_SIZE;
3600 case RES_LIMIT:
3601 return (u64)counter->limit * PAGE_SIZE;
3602 case RES_MAX_USAGE:
3603 return (u64)counter->watermark * PAGE_SIZE;
3604 case RES_FAILCNT:
3605 return counter->failcnt;
3606 case RES_SOFT_LIMIT:
3607 return (u64)memcg->soft_limit * PAGE_SIZE;
3608 default:
3609 BUG();
3613 #ifdef CONFIG_MEMCG_KMEM
3614 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3615 unsigned long nr_pages)
3617 int err = 0;
3618 int memcg_id;
3620 if (memcg_kmem_is_active(memcg))
3621 return 0;
3624 * We are going to allocate memory for data shared by all memory
3625 * cgroups so let's stop accounting here.
3627 memcg_stop_kmem_account();
3630 * For simplicity, we won't allow this to be disabled. It also can't
3631 * be changed if the cgroup has children already, or if tasks had
3632 * already joined.
3634 * If tasks join before we set the limit, a person looking at
3635 * kmem.usage_in_bytes will have no way to determine when it took
3636 * place, which makes the value quite meaningless.
3638 * After it first became limited, changes in the value of the limit are
3639 * of course permitted.
3641 mutex_lock(&memcg_create_mutex);
3642 if (cgroup_has_tasks(memcg->css.cgroup) ||
3643 (memcg->use_hierarchy && memcg_has_children(memcg)))
3644 err = -EBUSY;
3645 mutex_unlock(&memcg_create_mutex);
3646 if (err)
3647 goto out;
3649 memcg_id = memcg_alloc_cache_id();
3650 if (memcg_id < 0) {
3651 err = memcg_id;
3652 goto out;
3655 memcg->kmemcg_id = memcg_id;
3656 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3659 * We couldn't have accounted to this cgroup, because it hasn't got the
3660 * active bit set yet, so this should succeed.
3662 err = page_counter_limit(&memcg->kmem, nr_pages);
3663 VM_BUG_ON(err);
3665 static_key_slow_inc(&memcg_kmem_enabled_key);
3667 * Setting the active bit after enabling static branching will
3668 * guarantee no one starts accounting before all call sites are
3669 * patched.
3671 memcg_kmem_set_active(memcg);
3672 out:
3673 memcg_resume_kmem_account();
3674 return err;
3677 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3678 unsigned long limit)
3680 int ret;
3682 mutex_lock(&memcg_limit_mutex);
3683 if (!memcg_kmem_is_active(memcg))
3684 ret = memcg_activate_kmem(memcg, limit);
3685 else
3686 ret = page_counter_limit(&memcg->kmem, limit);
3687 mutex_unlock(&memcg_limit_mutex);
3688 return ret;
3691 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3693 int ret = 0;
3694 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3696 if (!parent)
3697 return 0;
3699 mutex_lock(&memcg_limit_mutex);
3701 * If the parent cgroup is not kmem-active now, it cannot be activated
3702 * after this point, because it has at least one child already.
3704 if (memcg_kmem_is_active(parent))
3705 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3706 mutex_unlock(&memcg_limit_mutex);
3707 return ret;
3709 #else
3710 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3711 unsigned long limit)
3713 return -EINVAL;
3715 #endif /* CONFIG_MEMCG_KMEM */
3718 * The user of this function is...
3719 * RES_LIMIT.
3721 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3722 char *buf, size_t nbytes, loff_t off)
3724 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3725 unsigned long nr_pages;
3726 int ret;
3728 buf = strstrip(buf);
3729 ret = page_counter_memparse(buf, &nr_pages);
3730 if (ret)
3731 return ret;
3733 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3734 case RES_LIMIT:
3735 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3736 ret = -EINVAL;
3737 break;
3739 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3740 case _MEM:
3741 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3742 break;
3743 case _MEMSWAP:
3744 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3745 break;
3746 case _KMEM:
3747 ret = memcg_update_kmem_limit(memcg, nr_pages);
3748 break;
3750 break;
3751 case RES_SOFT_LIMIT:
3752 memcg->soft_limit = nr_pages;
3753 ret = 0;
3754 break;
3756 return ret ?: nbytes;
3759 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3760 size_t nbytes, loff_t off)
3762 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3763 struct page_counter *counter;
3765 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3766 case _MEM:
3767 counter = &memcg->memory;
3768 break;
3769 case _MEMSWAP:
3770 counter = &memcg->memsw;
3771 break;
3772 case _KMEM:
3773 counter = &memcg->kmem;
3774 break;
3775 default:
3776 BUG();
3779 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3780 case RES_MAX_USAGE:
3781 page_counter_reset_watermark(counter);
3782 break;
3783 case RES_FAILCNT:
3784 counter->failcnt = 0;
3785 break;
3786 default:
3787 BUG();
3790 return nbytes;
3793 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3794 struct cftype *cft)
3796 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3799 #ifdef CONFIG_MMU
3800 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3801 struct cftype *cft, u64 val)
3803 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3805 if (val >= (1 << NR_MOVE_TYPE))
3806 return -EINVAL;
3809 * No kind of locking is needed in here, because ->can_attach() will
3810 * check this value once in the beginning of the process, and then carry
3811 * on with stale data. This means that changes to this value will only
3812 * affect task migrations starting after the change.
3814 memcg->move_charge_at_immigrate = val;
3815 return 0;
3817 #else
3818 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3819 struct cftype *cft, u64 val)
3821 return -ENOSYS;
3823 #endif
3825 #ifdef CONFIG_NUMA
3826 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3828 struct numa_stat {
3829 const char *name;
3830 unsigned int lru_mask;
3833 static const struct numa_stat stats[] = {
3834 { "total", LRU_ALL },
3835 { "file", LRU_ALL_FILE },
3836 { "anon", LRU_ALL_ANON },
3837 { "unevictable", BIT(LRU_UNEVICTABLE) },
3839 const struct numa_stat *stat;
3840 int nid;
3841 unsigned long nr;
3842 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3844 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3845 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3846 seq_printf(m, "%s=%lu", stat->name, nr);
3847 for_each_node_state(nid, N_MEMORY) {
3848 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3849 stat->lru_mask);
3850 seq_printf(m, " N%d=%lu", nid, nr);
3852 seq_putc(m, '\n');
3855 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3856 struct mem_cgroup *iter;
3858 nr = 0;
3859 for_each_mem_cgroup_tree(iter, memcg)
3860 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3861 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3862 for_each_node_state(nid, N_MEMORY) {
3863 nr = 0;
3864 for_each_mem_cgroup_tree(iter, memcg)
3865 nr += mem_cgroup_node_nr_lru_pages(
3866 iter, nid, stat->lru_mask);
3867 seq_printf(m, " N%d=%lu", nid, nr);
3869 seq_putc(m, '\n');
3872 return 0;
3874 #endif /* CONFIG_NUMA */
3876 static inline void mem_cgroup_lru_names_not_uptodate(void)
3878 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3881 static int memcg_stat_show(struct seq_file *m, void *v)
3883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3884 unsigned long memory, memsw;
3885 struct mem_cgroup *mi;
3886 unsigned int i;
3888 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3889 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3890 continue;
3891 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3892 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3895 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3896 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3897 mem_cgroup_read_events(memcg, i));
3899 for (i = 0; i < NR_LRU_LISTS; i++)
3900 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3901 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3903 /* Hierarchical information */
3904 memory = memsw = PAGE_COUNTER_MAX;
3905 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3906 memory = min(memory, mi->memory.limit);
3907 memsw = min(memsw, mi->memsw.limit);
3909 seq_printf(m, "hierarchical_memory_limit %llu\n",
3910 (u64)memory * PAGE_SIZE);
3911 if (do_swap_account)
3912 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3913 (u64)memsw * PAGE_SIZE);
3915 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3916 long long val = 0;
3918 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3919 continue;
3920 for_each_mem_cgroup_tree(mi, memcg)
3921 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3922 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3925 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3926 unsigned long long val = 0;
3928 for_each_mem_cgroup_tree(mi, memcg)
3929 val += mem_cgroup_read_events(mi, i);
3930 seq_printf(m, "total_%s %llu\n",
3931 mem_cgroup_events_names[i], val);
3934 for (i = 0; i < NR_LRU_LISTS; i++) {
3935 unsigned long long val = 0;
3937 for_each_mem_cgroup_tree(mi, memcg)
3938 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3939 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3942 #ifdef CONFIG_DEBUG_VM
3944 int nid, zid;
3945 struct mem_cgroup_per_zone *mz;
3946 struct zone_reclaim_stat *rstat;
3947 unsigned long recent_rotated[2] = {0, 0};
3948 unsigned long recent_scanned[2] = {0, 0};
3950 for_each_online_node(nid)
3951 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3952 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3953 rstat = &mz->lruvec.reclaim_stat;
3955 recent_rotated[0] += rstat->recent_rotated[0];
3956 recent_rotated[1] += rstat->recent_rotated[1];
3957 recent_scanned[0] += rstat->recent_scanned[0];
3958 recent_scanned[1] += rstat->recent_scanned[1];
3960 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3961 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3962 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3963 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3965 #endif
3967 return 0;
3970 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3971 struct cftype *cft)
3973 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3975 return mem_cgroup_swappiness(memcg);
3978 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3979 struct cftype *cft, u64 val)
3981 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3983 if (val > 100)
3984 return -EINVAL;
3986 if (css->parent)
3987 memcg->swappiness = val;
3988 else
3989 vm_swappiness = val;
3991 return 0;
3994 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3996 struct mem_cgroup_threshold_ary *t;
3997 unsigned long usage;
3998 int i;
4000 rcu_read_lock();
4001 if (!swap)
4002 t = rcu_dereference(memcg->thresholds.primary);
4003 else
4004 t = rcu_dereference(memcg->memsw_thresholds.primary);
4006 if (!t)
4007 goto unlock;
4009 usage = mem_cgroup_usage(memcg, swap);
4012 * current_threshold points to threshold just below or equal to usage.
4013 * If it's not true, a threshold was crossed after last
4014 * call of __mem_cgroup_threshold().
4016 i = t->current_threshold;
4019 * Iterate backward over array of thresholds starting from
4020 * current_threshold and check if a threshold is crossed.
4021 * If none of thresholds below usage is crossed, we read
4022 * only one element of the array here.
4024 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4025 eventfd_signal(t->entries[i].eventfd, 1);
4027 /* i = current_threshold + 1 */
4028 i++;
4031 * Iterate forward over array of thresholds starting from
4032 * current_threshold+1 and check if a threshold is crossed.
4033 * If none of thresholds above usage is crossed, we read
4034 * only one element of the array here.
4036 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4037 eventfd_signal(t->entries[i].eventfd, 1);
4039 /* Update current_threshold */
4040 t->current_threshold = i - 1;
4041 unlock:
4042 rcu_read_unlock();
4045 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4047 while (memcg) {
4048 __mem_cgroup_threshold(memcg, false);
4049 if (do_swap_account)
4050 __mem_cgroup_threshold(memcg, true);
4052 memcg = parent_mem_cgroup(memcg);
4056 static int compare_thresholds(const void *a, const void *b)
4058 const struct mem_cgroup_threshold *_a = a;
4059 const struct mem_cgroup_threshold *_b = b;
4061 if (_a->threshold > _b->threshold)
4062 return 1;
4064 if (_a->threshold < _b->threshold)
4065 return -1;
4067 return 0;
4070 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4072 struct mem_cgroup_eventfd_list *ev;
4074 spin_lock(&memcg_oom_lock);
4076 list_for_each_entry(ev, &memcg->oom_notify, list)
4077 eventfd_signal(ev->eventfd, 1);
4079 spin_unlock(&memcg_oom_lock);
4080 return 0;
4083 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4085 struct mem_cgroup *iter;
4087 for_each_mem_cgroup_tree(iter, memcg)
4088 mem_cgroup_oom_notify_cb(iter);
4091 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4092 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4094 struct mem_cgroup_thresholds *thresholds;
4095 struct mem_cgroup_threshold_ary *new;
4096 unsigned long threshold;
4097 unsigned long usage;
4098 int i, size, ret;
4100 ret = page_counter_memparse(args, &threshold);
4101 if (ret)
4102 return ret;
4104 mutex_lock(&memcg->thresholds_lock);
4106 if (type == _MEM) {
4107 thresholds = &memcg->thresholds;
4108 usage = mem_cgroup_usage(memcg, false);
4109 } else if (type == _MEMSWAP) {
4110 thresholds = &memcg->memsw_thresholds;
4111 usage = mem_cgroup_usage(memcg, true);
4112 } else
4113 BUG();
4115 /* Check if a threshold crossed before adding a new one */
4116 if (thresholds->primary)
4117 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4119 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4121 /* Allocate memory for new array of thresholds */
4122 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4123 GFP_KERNEL);
4124 if (!new) {
4125 ret = -ENOMEM;
4126 goto unlock;
4128 new->size = size;
4130 /* Copy thresholds (if any) to new array */
4131 if (thresholds->primary) {
4132 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4133 sizeof(struct mem_cgroup_threshold));
4136 /* Add new threshold */
4137 new->entries[size - 1].eventfd = eventfd;
4138 new->entries[size - 1].threshold = threshold;
4140 /* Sort thresholds. Registering of new threshold isn't time-critical */
4141 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4142 compare_thresholds, NULL);
4144 /* Find current threshold */
4145 new->current_threshold = -1;
4146 for (i = 0; i < size; i++) {
4147 if (new->entries[i].threshold <= usage) {
4149 * new->current_threshold will not be used until
4150 * rcu_assign_pointer(), so it's safe to increment
4151 * it here.
4153 ++new->current_threshold;
4154 } else
4155 break;
4158 /* Free old spare buffer and save old primary buffer as spare */
4159 kfree(thresholds->spare);
4160 thresholds->spare = thresholds->primary;
4162 rcu_assign_pointer(thresholds->primary, new);
4164 /* To be sure that nobody uses thresholds */
4165 synchronize_rcu();
4167 unlock:
4168 mutex_unlock(&memcg->thresholds_lock);
4170 return ret;
4173 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4174 struct eventfd_ctx *eventfd, const char *args)
4176 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4179 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4180 struct eventfd_ctx *eventfd, const char *args)
4182 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4185 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4186 struct eventfd_ctx *eventfd, enum res_type type)
4188 struct mem_cgroup_thresholds *thresholds;
4189 struct mem_cgroup_threshold_ary *new;
4190 unsigned long usage;
4191 int i, j, size;
4193 mutex_lock(&memcg->thresholds_lock);
4195 if (type == _MEM) {
4196 thresholds = &memcg->thresholds;
4197 usage = mem_cgroup_usage(memcg, false);
4198 } else if (type == _MEMSWAP) {
4199 thresholds = &memcg->memsw_thresholds;
4200 usage = mem_cgroup_usage(memcg, true);
4201 } else
4202 BUG();
4204 if (!thresholds->primary)
4205 goto unlock;
4207 /* Check if a threshold crossed before removing */
4208 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4210 /* Calculate new number of threshold */
4211 size = 0;
4212 for (i = 0; i < thresholds->primary->size; i++) {
4213 if (thresholds->primary->entries[i].eventfd != eventfd)
4214 size++;
4217 new = thresholds->spare;
4219 /* Set thresholds array to NULL if we don't have thresholds */
4220 if (!size) {
4221 kfree(new);
4222 new = NULL;
4223 goto swap_buffers;
4226 new->size = size;
4228 /* Copy thresholds and find current threshold */
4229 new->current_threshold = -1;
4230 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4231 if (thresholds->primary->entries[i].eventfd == eventfd)
4232 continue;
4234 new->entries[j] = thresholds->primary->entries[i];
4235 if (new->entries[j].threshold <= usage) {
4237 * new->current_threshold will not be used
4238 * until rcu_assign_pointer(), so it's safe to increment
4239 * it here.
4241 ++new->current_threshold;
4243 j++;
4246 swap_buffers:
4247 /* Swap primary and spare array */
4248 thresholds->spare = thresholds->primary;
4249 /* If all events are unregistered, free the spare array */
4250 if (!new) {
4251 kfree(thresholds->spare);
4252 thresholds->spare = NULL;
4255 rcu_assign_pointer(thresholds->primary, new);
4257 /* To be sure that nobody uses thresholds */
4258 synchronize_rcu();
4259 unlock:
4260 mutex_unlock(&memcg->thresholds_lock);
4263 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4264 struct eventfd_ctx *eventfd)
4266 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4269 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4270 struct eventfd_ctx *eventfd)
4272 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4275 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4276 struct eventfd_ctx *eventfd, const char *args)
4278 struct mem_cgroup_eventfd_list *event;
4280 event = kmalloc(sizeof(*event), GFP_KERNEL);
4281 if (!event)
4282 return -ENOMEM;
4284 spin_lock(&memcg_oom_lock);
4286 event->eventfd = eventfd;
4287 list_add(&event->list, &memcg->oom_notify);
4289 /* already in OOM ? */
4290 if (atomic_read(&memcg->under_oom))
4291 eventfd_signal(eventfd, 1);
4292 spin_unlock(&memcg_oom_lock);
4294 return 0;
4297 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4298 struct eventfd_ctx *eventfd)
4300 struct mem_cgroup_eventfd_list *ev, *tmp;
4302 spin_lock(&memcg_oom_lock);
4304 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4305 if (ev->eventfd == eventfd) {
4306 list_del(&ev->list);
4307 kfree(ev);
4311 spin_unlock(&memcg_oom_lock);
4314 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4316 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4318 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4319 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4320 return 0;
4323 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4324 struct cftype *cft, u64 val)
4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4328 /* cannot set to root cgroup and only 0 and 1 are allowed */
4329 if (!css->parent || !((val == 0) || (val == 1)))
4330 return -EINVAL;
4332 memcg->oom_kill_disable = val;
4333 if (!val)
4334 memcg_oom_recover(memcg);
4336 return 0;
4339 #ifdef CONFIG_MEMCG_KMEM
4340 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4342 int ret;
4344 memcg->kmemcg_id = -1;
4345 ret = memcg_propagate_kmem(memcg);
4346 if (ret)
4347 return ret;
4349 return mem_cgroup_sockets_init(memcg, ss);
4352 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4354 mem_cgroup_sockets_destroy(memcg);
4356 #else
4357 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4359 return 0;
4362 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4365 #endif
4368 * DO NOT USE IN NEW FILES.
4370 * "cgroup.event_control" implementation.
4372 * This is way over-engineered. It tries to support fully configurable
4373 * events for each user. Such level of flexibility is completely
4374 * unnecessary especially in the light of the planned unified hierarchy.
4376 * Please deprecate this and replace with something simpler if at all
4377 * possible.
4381 * Unregister event and free resources.
4383 * Gets called from workqueue.
4385 static void memcg_event_remove(struct work_struct *work)
4387 struct mem_cgroup_event *event =
4388 container_of(work, struct mem_cgroup_event, remove);
4389 struct mem_cgroup *memcg = event->memcg;
4391 remove_wait_queue(event->wqh, &event->wait);
4393 event->unregister_event(memcg, event->eventfd);
4395 /* Notify userspace the event is going away. */
4396 eventfd_signal(event->eventfd, 1);
4398 eventfd_ctx_put(event->eventfd);
4399 kfree(event);
4400 css_put(&memcg->css);
4404 * Gets called on POLLHUP on eventfd when user closes it.
4406 * Called with wqh->lock held and interrupts disabled.
4408 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4409 int sync, void *key)
4411 struct mem_cgroup_event *event =
4412 container_of(wait, struct mem_cgroup_event, wait);
4413 struct mem_cgroup *memcg = event->memcg;
4414 unsigned long flags = (unsigned long)key;
4416 if (flags & POLLHUP) {
4418 * If the event has been detached at cgroup removal, we
4419 * can simply return knowing the other side will cleanup
4420 * for us.
4422 * We can't race against event freeing since the other
4423 * side will require wqh->lock via remove_wait_queue(),
4424 * which we hold.
4426 spin_lock(&memcg->event_list_lock);
4427 if (!list_empty(&event->list)) {
4428 list_del_init(&event->list);
4430 * We are in atomic context, but cgroup_event_remove()
4431 * may sleep, so we have to call it in workqueue.
4433 schedule_work(&event->remove);
4435 spin_unlock(&memcg->event_list_lock);
4438 return 0;
4441 static void memcg_event_ptable_queue_proc(struct file *file,
4442 wait_queue_head_t *wqh, poll_table *pt)
4444 struct mem_cgroup_event *event =
4445 container_of(pt, struct mem_cgroup_event, pt);
4447 event->wqh = wqh;
4448 add_wait_queue(wqh, &event->wait);
4452 * DO NOT USE IN NEW FILES.
4454 * Parse input and register new cgroup event handler.
4456 * Input must be in format '<event_fd> <control_fd> <args>'.
4457 * Interpretation of args is defined by control file implementation.
4459 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4460 char *buf, size_t nbytes, loff_t off)
4462 struct cgroup_subsys_state *css = of_css(of);
4463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4464 struct mem_cgroup_event *event;
4465 struct cgroup_subsys_state *cfile_css;
4466 unsigned int efd, cfd;
4467 struct fd efile;
4468 struct fd cfile;
4469 const char *name;
4470 char *endp;
4471 int ret;
4473 buf = strstrip(buf);
4475 efd = simple_strtoul(buf, &endp, 10);
4476 if (*endp != ' ')
4477 return -EINVAL;
4478 buf = endp + 1;
4480 cfd = simple_strtoul(buf, &endp, 10);
4481 if ((*endp != ' ') && (*endp != '\0'))
4482 return -EINVAL;
4483 buf = endp + 1;
4485 event = kzalloc(sizeof(*event), GFP_KERNEL);
4486 if (!event)
4487 return -ENOMEM;
4489 event->memcg = memcg;
4490 INIT_LIST_HEAD(&event->list);
4491 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4492 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4493 INIT_WORK(&event->remove, memcg_event_remove);
4495 efile = fdget(efd);
4496 if (!efile.file) {
4497 ret = -EBADF;
4498 goto out_kfree;
4501 event->eventfd = eventfd_ctx_fileget(efile.file);
4502 if (IS_ERR(event->eventfd)) {
4503 ret = PTR_ERR(event->eventfd);
4504 goto out_put_efile;
4507 cfile = fdget(cfd);
4508 if (!cfile.file) {
4509 ret = -EBADF;
4510 goto out_put_eventfd;
4513 /* the process need read permission on control file */
4514 /* AV: shouldn't we check that it's been opened for read instead? */
4515 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4516 if (ret < 0)
4517 goto out_put_cfile;
4520 * Determine the event callbacks and set them in @event. This used
4521 * to be done via struct cftype but cgroup core no longer knows
4522 * about these events. The following is crude but the whole thing
4523 * is for compatibility anyway.
4525 * DO NOT ADD NEW FILES.
4527 name = cfile.file->f_dentry->d_name.name;
4529 if (!strcmp(name, "memory.usage_in_bytes")) {
4530 event->register_event = mem_cgroup_usage_register_event;
4531 event->unregister_event = mem_cgroup_usage_unregister_event;
4532 } else if (!strcmp(name, "memory.oom_control")) {
4533 event->register_event = mem_cgroup_oom_register_event;
4534 event->unregister_event = mem_cgroup_oom_unregister_event;
4535 } else if (!strcmp(name, "memory.pressure_level")) {
4536 event->register_event = vmpressure_register_event;
4537 event->unregister_event = vmpressure_unregister_event;
4538 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4539 event->register_event = memsw_cgroup_usage_register_event;
4540 event->unregister_event = memsw_cgroup_usage_unregister_event;
4541 } else {
4542 ret = -EINVAL;
4543 goto out_put_cfile;
4547 * Verify @cfile should belong to @css. Also, remaining events are
4548 * automatically removed on cgroup destruction but the removal is
4549 * asynchronous, so take an extra ref on @css.
4551 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4552 &memory_cgrp_subsys);
4553 ret = -EINVAL;
4554 if (IS_ERR(cfile_css))
4555 goto out_put_cfile;
4556 if (cfile_css != css) {
4557 css_put(cfile_css);
4558 goto out_put_cfile;
4561 ret = event->register_event(memcg, event->eventfd, buf);
4562 if (ret)
4563 goto out_put_css;
4565 efile.file->f_op->poll(efile.file, &event->pt);
4567 spin_lock(&memcg->event_list_lock);
4568 list_add(&event->list, &memcg->event_list);
4569 spin_unlock(&memcg->event_list_lock);
4571 fdput(cfile);
4572 fdput(efile);
4574 return nbytes;
4576 out_put_css:
4577 css_put(css);
4578 out_put_cfile:
4579 fdput(cfile);
4580 out_put_eventfd:
4581 eventfd_ctx_put(event->eventfd);
4582 out_put_efile:
4583 fdput(efile);
4584 out_kfree:
4585 kfree(event);
4587 return ret;
4590 static struct cftype mem_cgroup_files[] = {
4592 .name = "usage_in_bytes",
4593 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4594 .read_u64 = mem_cgroup_read_u64,
4597 .name = "max_usage_in_bytes",
4598 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4599 .write = mem_cgroup_reset,
4600 .read_u64 = mem_cgroup_read_u64,
4603 .name = "limit_in_bytes",
4604 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4605 .write = mem_cgroup_write,
4606 .read_u64 = mem_cgroup_read_u64,
4609 .name = "soft_limit_in_bytes",
4610 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4611 .write = mem_cgroup_write,
4612 .read_u64 = mem_cgroup_read_u64,
4615 .name = "failcnt",
4616 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4617 .write = mem_cgroup_reset,
4618 .read_u64 = mem_cgroup_read_u64,
4621 .name = "stat",
4622 .seq_show = memcg_stat_show,
4625 .name = "force_empty",
4626 .write = mem_cgroup_force_empty_write,
4629 .name = "use_hierarchy",
4630 .write_u64 = mem_cgroup_hierarchy_write,
4631 .read_u64 = mem_cgroup_hierarchy_read,
4634 .name = "cgroup.event_control", /* XXX: for compat */
4635 .write = memcg_write_event_control,
4636 .flags = CFTYPE_NO_PREFIX,
4637 .mode = S_IWUGO,
4640 .name = "swappiness",
4641 .read_u64 = mem_cgroup_swappiness_read,
4642 .write_u64 = mem_cgroup_swappiness_write,
4645 .name = "move_charge_at_immigrate",
4646 .read_u64 = mem_cgroup_move_charge_read,
4647 .write_u64 = mem_cgroup_move_charge_write,
4650 .name = "oom_control",
4651 .seq_show = mem_cgroup_oom_control_read,
4652 .write_u64 = mem_cgroup_oom_control_write,
4653 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4656 .name = "pressure_level",
4658 #ifdef CONFIG_NUMA
4660 .name = "numa_stat",
4661 .seq_show = memcg_numa_stat_show,
4663 #endif
4664 #ifdef CONFIG_MEMCG_KMEM
4666 .name = "kmem.limit_in_bytes",
4667 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4668 .write = mem_cgroup_write,
4669 .read_u64 = mem_cgroup_read_u64,
4672 .name = "kmem.usage_in_bytes",
4673 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4674 .read_u64 = mem_cgroup_read_u64,
4677 .name = "kmem.failcnt",
4678 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4679 .write = mem_cgroup_reset,
4680 .read_u64 = mem_cgroup_read_u64,
4683 .name = "kmem.max_usage_in_bytes",
4684 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4685 .write = mem_cgroup_reset,
4686 .read_u64 = mem_cgroup_read_u64,
4688 #ifdef CONFIG_SLABINFO
4690 .name = "kmem.slabinfo",
4691 .seq_start = slab_start,
4692 .seq_next = slab_next,
4693 .seq_stop = slab_stop,
4694 .seq_show = memcg_slab_show,
4696 #endif
4697 #endif
4698 { }, /* terminate */
4701 #ifdef CONFIG_MEMCG_SWAP
4702 static struct cftype memsw_cgroup_files[] = {
4704 .name = "memsw.usage_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4706 .read_u64 = mem_cgroup_read_u64,
4709 .name = "memsw.max_usage_in_bytes",
4710 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4711 .write = mem_cgroup_reset,
4712 .read_u64 = mem_cgroup_read_u64,
4715 .name = "memsw.limit_in_bytes",
4716 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4717 .write = mem_cgroup_write,
4718 .read_u64 = mem_cgroup_read_u64,
4721 .name = "memsw.failcnt",
4722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4723 .write = mem_cgroup_reset,
4724 .read_u64 = mem_cgroup_read_u64,
4726 { }, /* terminate */
4728 #endif
4729 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4731 struct mem_cgroup_per_node *pn;
4732 struct mem_cgroup_per_zone *mz;
4733 int zone, tmp = node;
4735 * This routine is called against possible nodes.
4736 * But it's BUG to call kmalloc() against offline node.
4738 * TODO: this routine can waste much memory for nodes which will
4739 * never be onlined. It's better to use memory hotplug callback
4740 * function.
4742 if (!node_state(node, N_NORMAL_MEMORY))
4743 tmp = -1;
4744 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4745 if (!pn)
4746 return 1;
4748 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4749 mz = &pn->zoneinfo[zone];
4750 lruvec_init(&mz->lruvec);
4751 mz->usage_in_excess = 0;
4752 mz->on_tree = false;
4753 mz->memcg = memcg;
4755 memcg->nodeinfo[node] = pn;
4756 return 0;
4759 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4761 kfree(memcg->nodeinfo[node]);
4764 static struct mem_cgroup *mem_cgroup_alloc(void)
4766 struct mem_cgroup *memcg;
4767 size_t size;
4769 size = sizeof(struct mem_cgroup);
4770 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4772 memcg = kzalloc(size, GFP_KERNEL);
4773 if (!memcg)
4774 return NULL;
4776 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4777 if (!memcg->stat)
4778 goto out_free;
4779 spin_lock_init(&memcg->pcp_counter_lock);
4780 return memcg;
4782 out_free:
4783 kfree(memcg);
4784 return NULL;
4788 * At destroying mem_cgroup, references from swap_cgroup can remain.
4789 * (scanning all at force_empty is too costly...)
4791 * Instead of clearing all references at force_empty, we remember
4792 * the number of reference from swap_cgroup and free mem_cgroup when
4793 * it goes down to 0.
4795 * Removal of cgroup itself succeeds regardless of refs from swap.
4798 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4800 int node;
4802 mem_cgroup_remove_from_trees(memcg);
4804 for_each_node(node)
4805 free_mem_cgroup_per_zone_info(memcg, node);
4807 free_percpu(memcg->stat);
4810 * We need to make sure that (at least for now), the jump label
4811 * destruction code runs outside of the cgroup lock. This is because
4812 * get_online_cpus(), which is called from the static_branch update,
4813 * can't be called inside the cgroup_lock. cpusets are the ones
4814 * enforcing this dependency, so if they ever change, we might as well.
4816 * schedule_work() will guarantee this happens. Be careful if you need
4817 * to move this code around, and make sure it is outside
4818 * the cgroup_lock.
4820 disarm_static_keys(memcg);
4821 kfree(memcg);
4825 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4827 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4829 if (!memcg->memory.parent)
4830 return NULL;
4831 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4833 EXPORT_SYMBOL(parent_mem_cgroup);
4835 static void __init mem_cgroup_soft_limit_tree_init(void)
4837 struct mem_cgroup_tree_per_node *rtpn;
4838 struct mem_cgroup_tree_per_zone *rtpz;
4839 int tmp, node, zone;
4841 for_each_node(node) {
4842 tmp = node;
4843 if (!node_state(node, N_NORMAL_MEMORY))
4844 tmp = -1;
4845 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4846 BUG_ON(!rtpn);
4848 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4850 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4851 rtpz = &rtpn->rb_tree_per_zone[zone];
4852 rtpz->rb_root = RB_ROOT;
4853 spin_lock_init(&rtpz->lock);
4858 static struct cgroup_subsys_state * __ref
4859 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4861 struct mem_cgroup *memcg;
4862 long error = -ENOMEM;
4863 int node;
4865 memcg = mem_cgroup_alloc();
4866 if (!memcg)
4867 return ERR_PTR(error);
4869 for_each_node(node)
4870 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4871 goto free_out;
4873 /* root ? */
4874 if (parent_css == NULL) {
4875 root_mem_cgroup = memcg;
4876 page_counter_init(&memcg->memory, NULL);
4877 page_counter_init(&memcg->memsw, NULL);
4878 page_counter_init(&memcg->kmem, NULL);
4881 memcg->last_scanned_node = MAX_NUMNODES;
4882 INIT_LIST_HEAD(&memcg->oom_notify);
4883 memcg->move_charge_at_immigrate = 0;
4884 mutex_init(&memcg->thresholds_lock);
4885 spin_lock_init(&memcg->move_lock);
4886 vmpressure_init(&memcg->vmpressure);
4887 INIT_LIST_HEAD(&memcg->event_list);
4888 spin_lock_init(&memcg->event_list_lock);
4890 return &memcg->css;
4892 free_out:
4893 __mem_cgroup_free(memcg);
4894 return ERR_PTR(error);
4897 static int
4898 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4900 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4901 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4902 int ret;
4904 if (css->id > MEM_CGROUP_ID_MAX)
4905 return -ENOSPC;
4907 if (!parent)
4908 return 0;
4910 mutex_lock(&memcg_create_mutex);
4912 memcg->use_hierarchy = parent->use_hierarchy;
4913 memcg->oom_kill_disable = parent->oom_kill_disable;
4914 memcg->swappiness = mem_cgroup_swappiness(parent);
4916 if (parent->use_hierarchy) {
4917 page_counter_init(&memcg->memory, &parent->memory);
4918 page_counter_init(&memcg->memsw, &parent->memsw);
4919 page_counter_init(&memcg->kmem, &parent->kmem);
4922 * No need to take a reference to the parent because cgroup
4923 * core guarantees its existence.
4925 } else {
4926 page_counter_init(&memcg->memory, NULL);
4927 page_counter_init(&memcg->memsw, NULL);
4928 page_counter_init(&memcg->kmem, NULL);
4930 * Deeper hierachy with use_hierarchy == false doesn't make
4931 * much sense so let cgroup subsystem know about this
4932 * unfortunate state in our controller.
4934 if (parent != root_mem_cgroup)
4935 memory_cgrp_subsys.broken_hierarchy = true;
4937 mutex_unlock(&memcg_create_mutex);
4939 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4940 if (ret)
4941 return ret;
4944 * Make sure the memcg is initialized: mem_cgroup_iter()
4945 * orders reading memcg->initialized against its callers
4946 * reading the memcg members.
4948 smp_store_release(&memcg->initialized, 1);
4950 return 0;
4953 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4955 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4956 struct mem_cgroup_event *event, *tmp;
4959 * Unregister events and notify userspace.
4960 * Notify userspace about cgroup removing only after rmdir of cgroup
4961 * directory to avoid race between userspace and kernelspace.
4963 spin_lock(&memcg->event_list_lock);
4964 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4965 list_del_init(&event->list);
4966 schedule_work(&event->remove);
4968 spin_unlock(&memcg->event_list_lock);
4970 memcg_unregister_all_caches(memcg);
4971 vmpressure_cleanup(&memcg->vmpressure);
4974 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4976 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4978 memcg_destroy_kmem(memcg);
4979 __mem_cgroup_free(memcg);
4983 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4984 * @css: the target css
4986 * Reset the states of the mem_cgroup associated with @css. This is
4987 * invoked when the userland requests disabling on the default hierarchy
4988 * but the memcg is pinned through dependency. The memcg should stop
4989 * applying policies and should revert to the vanilla state as it may be
4990 * made visible again.
4992 * The current implementation only resets the essential configurations.
4993 * This needs to be expanded to cover all the visible parts.
4995 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4997 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4999 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5000 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5001 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5002 memcg->soft_limit = 0;
5005 #ifdef CONFIG_MMU
5006 /* Handlers for move charge at task migration. */
5007 static int mem_cgroup_do_precharge(unsigned long count)
5009 int ret;
5011 /* Try a single bulk charge without reclaim first */
5012 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5013 if (!ret) {
5014 mc.precharge += count;
5015 return ret;
5017 if (ret == -EINTR) {
5018 cancel_charge(root_mem_cgroup, count);
5019 return ret;
5022 /* Try charges one by one with reclaim */
5023 while (count--) {
5024 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5026 * In case of failure, any residual charges against
5027 * mc.to will be dropped by mem_cgroup_clear_mc()
5028 * later on. However, cancel any charges that are
5029 * bypassed to root right away or they'll be lost.
5031 if (ret == -EINTR)
5032 cancel_charge(root_mem_cgroup, 1);
5033 if (ret)
5034 return ret;
5035 mc.precharge++;
5036 cond_resched();
5038 return 0;
5042 * get_mctgt_type - get target type of moving charge
5043 * @vma: the vma the pte to be checked belongs
5044 * @addr: the address corresponding to the pte to be checked
5045 * @ptent: the pte to be checked
5046 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5048 * Returns
5049 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5050 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5051 * move charge. if @target is not NULL, the page is stored in target->page
5052 * with extra refcnt got(Callers should handle it).
5053 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5054 * target for charge migration. if @target is not NULL, the entry is stored
5055 * in target->ent.
5057 * Called with pte lock held.
5059 union mc_target {
5060 struct page *page;
5061 swp_entry_t ent;
5064 enum mc_target_type {
5065 MC_TARGET_NONE = 0,
5066 MC_TARGET_PAGE,
5067 MC_TARGET_SWAP,
5070 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5071 unsigned long addr, pte_t ptent)
5073 struct page *page = vm_normal_page(vma, addr, ptent);
5075 if (!page || !page_mapped(page))
5076 return NULL;
5077 if (PageAnon(page)) {
5078 /* we don't move shared anon */
5079 if (!move_anon())
5080 return NULL;
5081 } else if (!move_file())
5082 /* we ignore mapcount for file pages */
5083 return NULL;
5084 if (!get_page_unless_zero(page))
5085 return NULL;
5087 return page;
5090 #ifdef CONFIG_SWAP
5091 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5092 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5094 struct page *page = NULL;
5095 swp_entry_t ent = pte_to_swp_entry(ptent);
5097 if (!move_anon() || non_swap_entry(ent))
5098 return NULL;
5100 * Because lookup_swap_cache() updates some statistics counter,
5101 * we call find_get_page() with swapper_space directly.
5103 page = find_get_page(swap_address_space(ent), ent.val);
5104 if (do_swap_account)
5105 entry->val = ent.val;
5107 return page;
5109 #else
5110 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5111 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5113 return NULL;
5115 #endif
5117 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5118 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5120 struct page *page = NULL;
5121 struct address_space *mapping;
5122 pgoff_t pgoff;
5124 if (!vma->vm_file) /* anonymous vma */
5125 return NULL;
5126 if (!move_file())
5127 return NULL;
5129 mapping = vma->vm_file->f_mapping;
5130 if (pte_none(ptent))
5131 pgoff = linear_page_index(vma, addr);
5132 else /* pte_file(ptent) is true */
5133 pgoff = pte_to_pgoff(ptent);
5135 /* page is moved even if it's not RSS of this task(page-faulted). */
5136 #ifdef CONFIG_SWAP
5137 /* shmem/tmpfs may report page out on swap: account for that too. */
5138 if (shmem_mapping(mapping)) {
5139 page = find_get_entry(mapping, pgoff);
5140 if (radix_tree_exceptional_entry(page)) {
5141 swp_entry_t swp = radix_to_swp_entry(page);
5142 if (do_swap_account)
5143 *entry = swp;
5144 page = find_get_page(swap_address_space(swp), swp.val);
5146 } else
5147 page = find_get_page(mapping, pgoff);
5148 #else
5149 page = find_get_page(mapping, pgoff);
5150 #endif
5151 return page;
5154 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5155 unsigned long addr, pte_t ptent, union mc_target *target)
5157 struct page *page = NULL;
5158 struct page_cgroup *pc;
5159 enum mc_target_type ret = MC_TARGET_NONE;
5160 swp_entry_t ent = { .val = 0 };
5162 if (pte_present(ptent))
5163 page = mc_handle_present_pte(vma, addr, ptent);
5164 else if (is_swap_pte(ptent))
5165 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5166 else if (pte_none(ptent) || pte_file(ptent))
5167 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5169 if (!page && !ent.val)
5170 return ret;
5171 if (page) {
5172 pc = lookup_page_cgroup(page);
5174 * Do only loose check w/o serialization.
5175 * mem_cgroup_move_account() checks the pc is valid or
5176 * not under LRU exclusion.
5178 if (pc->mem_cgroup == mc.from) {
5179 ret = MC_TARGET_PAGE;
5180 if (target)
5181 target->page = page;
5183 if (!ret || !target)
5184 put_page(page);
5186 /* There is a swap entry and a page doesn't exist or isn't charged */
5187 if (ent.val && !ret &&
5188 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5189 ret = MC_TARGET_SWAP;
5190 if (target)
5191 target->ent = ent;
5193 return ret;
5196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5198 * We don't consider swapping or file mapped pages because THP does not
5199 * support them for now.
5200 * Caller should make sure that pmd_trans_huge(pmd) is true.
5202 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5203 unsigned long addr, pmd_t pmd, union mc_target *target)
5205 struct page *page = NULL;
5206 struct page_cgroup *pc;
5207 enum mc_target_type ret = MC_TARGET_NONE;
5209 page = pmd_page(pmd);
5210 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5211 if (!move_anon())
5212 return ret;
5213 pc = lookup_page_cgroup(page);
5214 if (pc->mem_cgroup == mc.from) {
5215 ret = MC_TARGET_PAGE;
5216 if (target) {
5217 get_page(page);
5218 target->page = page;
5221 return ret;
5223 #else
5224 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5225 unsigned long addr, pmd_t pmd, union mc_target *target)
5227 return MC_TARGET_NONE;
5229 #endif
5231 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5232 unsigned long addr, unsigned long end,
5233 struct mm_walk *walk)
5235 struct vm_area_struct *vma = walk->private;
5236 pte_t *pte;
5237 spinlock_t *ptl;
5239 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5240 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5241 mc.precharge += HPAGE_PMD_NR;
5242 spin_unlock(ptl);
5243 return 0;
5246 if (pmd_trans_unstable(pmd))
5247 return 0;
5248 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5249 for (; addr != end; pte++, addr += PAGE_SIZE)
5250 if (get_mctgt_type(vma, addr, *pte, NULL))
5251 mc.precharge++; /* increment precharge temporarily */
5252 pte_unmap_unlock(pte - 1, ptl);
5253 cond_resched();
5255 return 0;
5258 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5260 unsigned long precharge;
5261 struct vm_area_struct *vma;
5263 down_read(&mm->mmap_sem);
5264 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5265 struct mm_walk mem_cgroup_count_precharge_walk = {
5266 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5267 .mm = mm,
5268 .private = vma,
5270 if (is_vm_hugetlb_page(vma))
5271 continue;
5272 walk_page_range(vma->vm_start, vma->vm_end,
5273 &mem_cgroup_count_precharge_walk);
5275 up_read(&mm->mmap_sem);
5277 precharge = mc.precharge;
5278 mc.precharge = 0;
5280 return precharge;
5283 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5285 unsigned long precharge = mem_cgroup_count_precharge(mm);
5287 VM_BUG_ON(mc.moving_task);
5288 mc.moving_task = current;
5289 return mem_cgroup_do_precharge(precharge);
5292 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5293 static void __mem_cgroup_clear_mc(void)
5295 struct mem_cgroup *from = mc.from;
5296 struct mem_cgroup *to = mc.to;
5298 /* we must uncharge all the leftover precharges from mc.to */
5299 if (mc.precharge) {
5300 cancel_charge(mc.to, mc.precharge);
5301 mc.precharge = 0;
5304 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5305 * we must uncharge here.
5307 if (mc.moved_charge) {
5308 cancel_charge(mc.from, mc.moved_charge);
5309 mc.moved_charge = 0;
5311 /* we must fixup refcnts and charges */
5312 if (mc.moved_swap) {
5313 /* uncharge swap account from the old cgroup */
5314 if (!mem_cgroup_is_root(mc.from))
5315 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5318 * we charged both to->memory and to->memsw, so we
5319 * should uncharge to->memory.
5321 if (!mem_cgroup_is_root(mc.to))
5322 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5324 css_put_many(&mc.from->css, mc.moved_swap);
5326 /* we've already done css_get(mc.to) */
5327 mc.moved_swap = 0;
5329 memcg_oom_recover(from);
5330 memcg_oom_recover(to);
5331 wake_up_all(&mc.waitq);
5334 static void mem_cgroup_clear_mc(void)
5337 * we must clear moving_task before waking up waiters at the end of
5338 * task migration.
5340 mc.moving_task = NULL;
5341 __mem_cgroup_clear_mc();
5342 spin_lock(&mc.lock);
5343 mc.from = NULL;
5344 mc.to = NULL;
5345 spin_unlock(&mc.lock);
5348 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5349 struct cgroup_taskset *tset)
5351 struct task_struct *p = cgroup_taskset_first(tset);
5352 int ret = 0;
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5354 unsigned long move_charge_at_immigrate;
5357 * We are now commited to this value whatever it is. Changes in this
5358 * tunable will only affect upcoming migrations, not the current one.
5359 * So we need to save it, and keep it going.
5361 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5362 if (move_charge_at_immigrate) {
5363 struct mm_struct *mm;
5364 struct mem_cgroup *from = mem_cgroup_from_task(p);
5366 VM_BUG_ON(from == memcg);
5368 mm = get_task_mm(p);
5369 if (!mm)
5370 return 0;
5371 /* We move charges only when we move a owner of the mm */
5372 if (mm->owner == p) {
5373 VM_BUG_ON(mc.from);
5374 VM_BUG_ON(mc.to);
5375 VM_BUG_ON(mc.precharge);
5376 VM_BUG_ON(mc.moved_charge);
5377 VM_BUG_ON(mc.moved_swap);
5379 spin_lock(&mc.lock);
5380 mc.from = from;
5381 mc.to = memcg;
5382 mc.immigrate_flags = move_charge_at_immigrate;
5383 spin_unlock(&mc.lock);
5384 /* We set mc.moving_task later */
5386 ret = mem_cgroup_precharge_mc(mm);
5387 if (ret)
5388 mem_cgroup_clear_mc();
5390 mmput(mm);
5392 return ret;
5395 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5396 struct cgroup_taskset *tset)
5398 if (mc.to)
5399 mem_cgroup_clear_mc();
5402 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5403 unsigned long addr, unsigned long end,
5404 struct mm_walk *walk)
5406 int ret = 0;
5407 struct vm_area_struct *vma = walk->private;
5408 pte_t *pte;
5409 spinlock_t *ptl;
5410 enum mc_target_type target_type;
5411 union mc_target target;
5412 struct page *page;
5413 struct page_cgroup *pc;
5416 * We don't take compound_lock() here but no race with splitting thp
5417 * happens because:
5418 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5419 * under splitting, which means there's no concurrent thp split,
5420 * - if another thread runs into split_huge_page() just after we
5421 * entered this if-block, the thread must wait for page table lock
5422 * to be unlocked in __split_huge_page_splitting(), where the main
5423 * part of thp split is not executed yet.
5425 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5426 if (mc.precharge < HPAGE_PMD_NR) {
5427 spin_unlock(ptl);
5428 return 0;
5430 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5431 if (target_type == MC_TARGET_PAGE) {
5432 page = target.page;
5433 if (!isolate_lru_page(page)) {
5434 pc = lookup_page_cgroup(page);
5435 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5436 pc, mc.from, mc.to)) {
5437 mc.precharge -= HPAGE_PMD_NR;
5438 mc.moved_charge += HPAGE_PMD_NR;
5440 putback_lru_page(page);
5442 put_page(page);
5444 spin_unlock(ptl);
5445 return 0;
5448 if (pmd_trans_unstable(pmd))
5449 return 0;
5450 retry:
5451 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5452 for (; addr != end; addr += PAGE_SIZE) {
5453 pte_t ptent = *(pte++);
5454 swp_entry_t ent;
5456 if (!mc.precharge)
5457 break;
5459 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5460 case MC_TARGET_PAGE:
5461 page = target.page;
5462 if (isolate_lru_page(page))
5463 goto put;
5464 pc = lookup_page_cgroup(page);
5465 if (!mem_cgroup_move_account(page, 1, pc,
5466 mc.from, mc.to)) {
5467 mc.precharge--;
5468 /* we uncharge from mc.from later. */
5469 mc.moved_charge++;
5471 putback_lru_page(page);
5472 put: /* get_mctgt_type() gets the page */
5473 put_page(page);
5474 break;
5475 case MC_TARGET_SWAP:
5476 ent = target.ent;
5477 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5478 mc.precharge--;
5479 /* we fixup refcnts and charges later. */
5480 mc.moved_swap++;
5482 break;
5483 default:
5484 break;
5487 pte_unmap_unlock(pte - 1, ptl);
5488 cond_resched();
5490 if (addr != end) {
5492 * We have consumed all precharges we got in can_attach().
5493 * We try charge one by one, but don't do any additional
5494 * charges to mc.to if we have failed in charge once in attach()
5495 * phase.
5497 ret = mem_cgroup_do_precharge(1);
5498 if (!ret)
5499 goto retry;
5502 return ret;
5505 static void mem_cgroup_move_charge(struct mm_struct *mm)
5507 struct vm_area_struct *vma;
5509 lru_add_drain_all();
5511 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5512 * move_lock while we're moving its pages to another memcg.
5513 * Then wait for already started RCU-only updates to finish.
5515 atomic_inc(&mc.from->moving_account);
5516 synchronize_rcu();
5517 retry:
5518 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5520 * Someone who are holding the mmap_sem might be waiting in
5521 * waitq. So we cancel all extra charges, wake up all waiters,
5522 * and retry. Because we cancel precharges, we might not be able
5523 * to move enough charges, but moving charge is a best-effort
5524 * feature anyway, so it wouldn't be a big problem.
5526 __mem_cgroup_clear_mc();
5527 cond_resched();
5528 goto retry;
5530 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5531 int ret;
5532 struct mm_walk mem_cgroup_move_charge_walk = {
5533 .pmd_entry = mem_cgroup_move_charge_pte_range,
5534 .mm = mm,
5535 .private = vma,
5537 if (is_vm_hugetlb_page(vma))
5538 continue;
5539 ret = walk_page_range(vma->vm_start, vma->vm_end,
5540 &mem_cgroup_move_charge_walk);
5541 if (ret)
5543 * means we have consumed all precharges and failed in
5544 * doing additional charge. Just abandon here.
5546 break;
5548 up_read(&mm->mmap_sem);
5549 atomic_dec(&mc.from->moving_account);
5552 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5553 struct cgroup_taskset *tset)
5555 struct task_struct *p = cgroup_taskset_first(tset);
5556 struct mm_struct *mm = get_task_mm(p);
5558 if (mm) {
5559 if (mc.to)
5560 mem_cgroup_move_charge(mm);
5561 mmput(mm);
5563 if (mc.to)
5564 mem_cgroup_clear_mc();
5566 #else /* !CONFIG_MMU */
5567 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5568 struct cgroup_taskset *tset)
5570 return 0;
5572 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5573 struct cgroup_taskset *tset)
5576 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5577 struct cgroup_taskset *tset)
5580 #endif
5583 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5584 * to verify whether we're attached to the default hierarchy on each mount
5585 * attempt.
5587 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5590 * use_hierarchy is forced on the default hierarchy. cgroup core
5591 * guarantees that @root doesn't have any children, so turning it
5592 * on for the root memcg is enough.
5594 if (cgroup_on_dfl(root_css->cgroup))
5595 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5598 struct cgroup_subsys memory_cgrp_subsys = {
5599 .css_alloc = mem_cgroup_css_alloc,
5600 .css_online = mem_cgroup_css_online,
5601 .css_offline = mem_cgroup_css_offline,
5602 .css_free = mem_cgroup_css_free,
5603 .css_reset = mem_cgroup_css_reset,
5604 .can_attach = mem_cgroup_can_attach,
5605 .cancel_attach = mem_cgroup_cancel_attach,
5606 .attach = mem_cgroup_move_task,
5607 .bind = mem_cgroup_bind,
5608 .legacy_cftypes = mem_cgroup_files,
5609 .early_init = 0,
5612 #ifdef CONFIG_MEMCG_SWAP
5613 static int __init enable_swap_account(char *s)
5615 if (!strcmp(s, "1"))
5616 really_do_swap_account = 1;
5617 else if (!strcmp(s, "0"))
5618 really_do_swap_account = 0;
5619 return 1;
5621 __setup("swapaccount=", enable_swap_account);
5623 static void __init memsw_file_init(void)
5625 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5626 memsw_cgroup_files));
5629 static void __init enable_swap_cgroup(void)
5631 if (!mem_cgroup_disabled() && really_do_swap_account) {
5632 do_swap_account = 1;
5633 memsw_file_init();
5637 #else
5638 static void __init enable_swap_cgroup(void)
5641 #endif
5643 #ifdef CONFIG_MEMCG_SWAP
5645 * mem_cgroup_swapout - transfer a memsw charge to swap
5646 * @page: page whose memsw charge to transfer
5647 * @entry: swap entry to move the charge to
5649 * Transfer the memsw charge of @page to @entry.
5651 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5653 struct mem_cgroup *memcg;
5654 struct page_cgroup *pc;
5655 unsigned short oldid;
5657 VM_BUG_ON_PAGE(PageLRU(page), page);
5658 VM_BUG_ON_PAGE(page_count(page), page);
5660 if (!do_swap_account)
5661 return;
5663 pc = lookup_page_cgroup(page);
5664 memcg = pc->mem_cgroup;
5666 /* Readahead page, never charged */
5667 if (!memcg)
5668 return;
5670 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5671 VM_BUG_ON_PAGE(oldid, page);
5672 mem_cgroup_swap_statistics(memcg, true);
5674 pc->mem_cgroup = NULL;
5676 if (!mem_cgroup_is_root(memcg))
5677 page_counter_uncharge(&memcg->memory, 1);
5679 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5680 VM_BUG_ON(!irqs_disabled());
5682 mem_cgroup_charge_statistics(memcg, page, -1);
5683 memcg_check_events(memcg, page);
5687 * mem_cgroup_uncharge_swap - uncharge a swap entry
5688 * @entry: swap entry to uncharge
5690 * Drop the memsw charge associated with @entry.
5692 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5694 struct mem_cgroup *memcg;
5695 unsigned short id;
5697 if (!do_swap_account)
5698 return;
5700 id = swap_cgroup_record(entry, 0);
5701 rcu_read_lock();
5702 memcg = mem_cgroup_lookup(id);
5703 if (memcg) {
5704 if (!mem_cgroup_is_root(memcg))
5705 page_counter_uncharge(&memcg->memsw, 1);
5706 mem_cgroup_swap_statistics(memcg, false);
5707 css_put(&memcg->css);
5709 rcu_read_unlock();
5711 #endif
5714 * mem_cgroup_try_charge - try charging a page
5715 * @page: page to charge
5716 * @mm: mm context of the victim
5717 * @gfp_mask: reclaim mode
5718 * @memcgp: charged memcg return
5720 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5721 * pages according to @gfp_mask if necessary.
5723 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5724 * Otherwise, an error code is returned.
5726 * After page->mapping has been set up, the caller must finalize the
5727 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5728 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5730 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5731 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5733 struct mem_cgroup *memcg = NULL;
5734 unsigned int nr_pages = 1;
5735 int ret = 0;
5737 if (mem_cgroup_disabled())
5738 goto out;
5740 if (PageSwapCache(page)) {
5741 struct page_cgroup *pc = lookup_page_cgroup(page);
5743 * Every swap fault against a single page tries to charge the
5744 * page, bail as early as possible. shmem_unuse() encounters
5745 * already charged pages, too. The USED bit is protected by
5746 * the page lock, which serializes swap cache removal, which
5747 * in turn serializes uncharging.
5749 if (pc->mem_cgroup)
5750 goto out;
5753 if (PageTransHuge(page)) {
5754 nr_pages <<= compound_order(page);
5755 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5758 if (do_swap_account && PageSwapCache(page))
5759 memcg = try_get_mem_cgroup_from_page(page);
5760 if (!memcg)
5761 memcg = get_mem_cgroup_from_mm(mm);
5763 ret = try_charge(memcg, gfp_mask, nr_pages);
5765 css_put(&memcg->css);
5767 if (ret == -EINTR) {
5768 memcg = root_mem_cgroup;
5769 ret = 0;
5771 out:
5772 *memcgp = memcg;
5773 return ret;
5777 * mem_cgroup_commit_charge - commit a page charge
5778 * @page: page to charge
5779 * @memcg: memcg to charge the page to
5780 * @lrucare: page might be on LRU already
5782 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5783 * after page->mapping has been set up. This must happen atomically
5784 * as part of the page instantiation, i.e. under the page table lock
5785 * for anonymous pages, under the page lock for page and swap cache.
5787 * In addition, the page must not be on the LRU during the commit, to
5788 * prevent racing with task migration. If it might be, use @lrucare.
5790 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5792 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5793 bool lrucare)
5795 unsigned int nr_pages = 1;
5797 VM_BUG_ON_PAGE(!page->mapping, page);
5798 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5800 if (mem_cgroup_disabled())
5801 return;
5803 * Swap faults will attempt to charge the same page multiple
5804 * times. But reuse_swap_page() might have removed the page
5805 * from swapcache already, so we can't check PageSwapCache().
5807 if (!memcg)
5808 return;
5810 commit_charge(page, memcg, lrucare);
5812 if (PageTransHuge(page)) {
5813 nr_pages <<= compound_order(page);
5814 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5817 local_irq_disable();
5818 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5819 memcg_check_events(memcg, page);
5820 local_irq_enable();
5822 if (do_swap_account && PageSwapCache(page)) {
5823 swp_entry_t entry = { .val = page_private(page) };
5825 * The swap entry might not get freed for a long time,
5826 * let's not wait for it. The page already received a
5827 * memory+swap charge, drop the swap entry duplicate.
5829 mem_cgroup_uncharge_swap(entry);
5834 * mem_cgroup_cancel_charge - cancel a page charge
5835 * @page: page to charge
5836 * @memcg: memcg to charge the page to
5838 * Cancel a charge transaction started by mem_cgroup_try_charge().
5840 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5842 unsigned int nr_pages = 1;
5844 if (mem_cgroup_disabled())
5845 return;
5847 * Swap faults will attempt to charge the same page multiple
5848 * times. But reuse_swap_page() might have removed the page
5849 * from swapcache already, so we can't check PageSwapCache().
5851 if (!memcg)
5852 return;
5854 if (PageTransHuge(page)) {
5855 nr_pages <<= compound_order(page);
5856 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5859 cancel_charge(memcg, nr_pages);
5862 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5863 unsigned long nr_anon, unsigned long nr_file,
5864 unsigned long nr_huge, struct page *dummy_page)
5866 unsigned long nr_pages = nr_anon + nr_file;
5867 unsigned long flags;
5869 if (!mem_cgroup_is_root(memcg)) {
5870 page_counter_uncharge(&memcg->memory, nr_pages);
5871 if (do_swap_account)
5872 page_counter_uncharge(&memcg->memsw, nr_pages);
5873 memcg_oom_recover(memcg);
5876 local_irq_save(flags);
5877 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5878 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5879 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5880 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5881 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5882 memcg_check_events(memcg, dummy_page);
5883 local_irq_restore(flags);
5885 if (!mem_cgroup_is_root(memcg))
5886 css_put_many(&memcg->css, nr_pages);
5889 static void uncharge_list(struct list_head *page_list)
5891 struct mem_cgroup *memcg = NULL;
5892 unsigned long nr_anon = 0;
5893 unsigned long nr_file = 0;
5894 unsigned long nr_huge = 0;
5895 unsigned long pgpgout = 0;
5896 struct list_head *next;
5897 struct page *page;
5899 next = page_list->next;
5900 do {
5901 unsigned int nr_pages = 1;
5902 struct page_cgroup *pc;
5904 page = list_entry(next, struct page, lru);
5905 next = page->lru.next;
5907 VM_BUG_ON_PAGE(PageLRU(page), page);
5908 VM_BUG_ON_PAGE(page_count(page), page);
5910 pc = lookup_page_cgroup(page);
5911 if (!pc->mem_cgroup)
5912 continue;
5915 * Nobody should be changing or seriously looking at
5916 * pc->mem_cgroup at this point, we have fully
5917 * exclusive access to the page.
5920 if (memcg != pc->mem_cgroup) {
5921 if (memcg) {
5922 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5923 nr_huge, page);
5924 pgpgout = nr_anon = nr_file = nr_huge = 0;
5926 memcg = pc->mem_cgroup;
5929 if (PageTransHuge(page)) {
5930 nr_pages <<= compound_order(page);
5931 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5932 nr_huge += nr_pages;
5935 if (PageAnon(page))
5936 nr_anon += nr_pages;
5937 else
5938 nr_file += nr_pages;
5940 pc->mem_cgroup = NULL;
5942 pgpgout++;
5943 } while (next != page_list);
5945 if (memcg)
5946 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5947 nr_huge, page);
5951 * mem_cgroup_uncharge - uncharge a page
5952 * @page: page to uncharge
5954 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5955 * mem_cgroup_commit_charge().
5957 void mem_cgroup_uncharge(struct page *page)
5959 struct page_cgroup *pc;
5961 if (mem_cgroup_disabled())
5962 return;
5964 /* Don't touch page->lru of any random page, pre-check: */
5965 pc = lookup_page_cgroup(page);
5966 if (!pc->mem_cgroup)
5967 return;
5969 INIT_LIST_HEAD(&page->lru);
5970 uncharge_list(&page->lru);
5974 * mem_cgroup_uncharge_list - uncharge a list of page
5975 * @page_list: list of pages to uncharge
5977 * Uncharge a list of pages previously charged with
5978 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5980 void mem_cgroup_uncharge_list(struct list_head *page_list)
5982 if (mem_cgroup_disabled())
5983 return;
5985 if (!list_empty(page_list))
5986 uncharge_list(page_list);
5990 * mem_cgroup_migrate - migrate a charge to another page
5991 * @oldpage: currently charged page
5992 * @newpage: page to transfer the charge to
5993 * @lrucare: both pages might be on the LRU already
5995 * Migrate the charge from @oldpage to @newpage.
5997 * Both pages must be locked, @newpage->mapping must be set up.
5999 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6000 bool lrucare)
6002 struct mem_cgroup *memcg;
6003 struct page_cgroup *pc;
6004 int isolated;
6006 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6007 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6008 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6009 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6010 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6011 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6012 newpage);
6014 if (mem_cgroup_disabled())
6015 return;
6017 /* Page cache replacement: new page already charged? */
6018 pc = lookup_page_cgroup(newpage);
6019 if (pc->mem_cgroup)
6020 return;
6023 * Swapcache readahead pages can get migrated before being
6024 * charged, and migration from compaction can happen to an
6025 * uncharged page when the PFN walker finds a page that
6026 * reclaim just put back on the LRU but has not released yet.
6028 pc = lookup_page_cgroup(oldpage);
6029 memcg = pc->mem_cgroup;
6030 if (!memcg)
6031 return;
6033 if (lrucare)
6034 lock_page_lru(oldpage, &isolated);
6036 pc->mem_cgroup = NULL;
6038 if (lrucare)
6039 unlock_page_lru(oldpage, isolated);
6041 commit_charge(newpage, memcg, lrucare);
6045 * subsys_initcall() for memory controller.
6047 * Some parts like hotcpu_notifier() have to be initialized from this context
6048 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6049 * everything that doesn't depend on a specific mem_cgroup structure should
6050 * be initialized from here.
6052 static int __init mem_cgroup_init(void)
6054 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6055 enable_swap_cgroup();
6056 mem_cgroup_soft_limit_tree_init();
6057 memcg_stock_init();
6058 return 0;
6060 subsys_initcall(mem_cgroup_init);