1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/sched.h>
5 #include <linux/sched/mm.h>
6 #include <linux/sched/coredump.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/mm_inline.h>
11 #include <linux/kthread.h>
12 #include <linux/khugepaged.h>
13 #include <linux/freezer.h>
14 #include <linux/mman.h>
15 #include <linux/hashtable.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/page_idle.h>
18 #include <linux/swapops.h>
19 #include <linux/shmem_fs.h>
22 #include <asm/pgalloc.h>
32 SCAN_LACK_REFERENCED_PAGE
,
46 SCAN_ALLOC_HUGE_PAGE_FAIL
,
47 SCAN_CGROUP_CHARGE_FAIL
,
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/huge_memory.h>
55 /* default scan 8*512 pte (or vmas) every 30 second */
56 static unsigned int khugepaged_pages_to_scan __read_mostly
;
57 static unsigned int khugepaged_pages_collapsed
;
58 static unsigned int khugepaged_full_scans
;
59 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
60 /* during fragmentation poll the hugepage allocator once every minute */
61 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
62 static unsigned long khugepaged_sleep_expire
;
63 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
64 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
66 * default collapse hugepages if there is at least one pte mapped like
67 * it would have happened if the vma was large enough during page
70 static unsigned int khugepaged_max_ptes_none __read_mostly
;
71 static unsigned int khugepaged_max_ptes_swap __read_mostly
;
73 #define MM_SLOTS_HASH_BITS 10
74 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
76 static struct kmem_cache
*mm_slot_cache __read_mostly
;
79 * struct mm_slot - hash lookup from mm to mm_slot
80 * @hash: hash collision list
81 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
82 * @mm: the mm that this information is valid for
85 struct hlist_node hash
;
86 struct list_head mm_node
;
91 * struct khugepaged_scan - cursor for scanning
92 * @mm_head: the head of the mm list to scan
93 * @mm_slot: the current mm_slot we are scanning
94 * @address: the next address inside that to be scanned
96 * There is only the one khugepaged_scan instance of this cursor structure.
98 struct khugepaged_scan
{
99 struct list_head mm_head
;
100 struct mm_slot
*mm_slot
;
101 unsigned long address
;
104 static struct khugepaged_scan khugepaged_scan
= {
105 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
109 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
110 struct kobj_attribute
*attr
,
113 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
116 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
117 struct kobj_attribute
*attr
,
118 const char *buf
, size_t count
)
123 err
= kstrtoul(buf
, 10, &msecs
);
124 if (err
|| msecs
> UINT_MAX
)
127 khugepaged_scan_sleep_millisecs
= msecs
;
128 khugepaged_sleep_expire
= 0;
129 wake_up_interruptible(&khugepaged_wait
);
133 static struct kobj_attribute scan_sleep_millisecs_attr
=
134 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
135 scan_sleep_millisecs_store
);
137 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
138 struct kobj_attribute
*attr
,
141 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
144 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
145 struct kobj_attribute
*attr
,
146 const char *buf
, size_t count
)
151 err
= kstrtoul(buf
, 10, &msecs
);
152 if (err
|| msecs
> UINT_MAX
)
155 khugepaged_alloc_sleep_millisecs
= msecs
;
156 khugepaged_sleep_expire
= 0;
157 wake_up_interruptible(&khugepaged_wait
);
161 static struct kobj_attribute alloc_sleep_millisecs_attr
=
162 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
163 alloc_sleep_millisecs_store
);
165 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
166 struct kobj_attribute
*attr
,
169 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
171 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
172 struct kobj_attribute
*attr
,
173 const char *buf
, size_t count
)
178 err
= kstrtoul(buf
, 10, &pages
);
179 if (err
|| !pages
|| pages
> UINT_MAX
)
182 khugepaged_pages_to_scan
= pages
;
186 static struct kobj_attribute pages_to_scan_attr
=
187 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
188 pages_to_scan_store
);
190 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
191 struct kobj_attribute
*attr
,
194 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
196 static struct kobj_attribute pages_collapsed_attr
=
197 __ATTR_RO(pages_collapsed
);
199 static ssize_t
full_scans_show(struct kobject
*kobj
,
200 struct kobj_attribute
*attr
,
203 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
205 static struct kobj_attribute full_scans_attr
=
206 __ATTR_RO(full_scans
);
208 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
209 struct kobj_attribute
*attr
, char *buf
)
211 return single_hugepage_flag_show(kobj
, attr
, buf
,
212 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
214 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
215 struct kobj_attribute
*attr
,
216 const char *buf
, size_t count
)
218 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
219 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
221 static struct kobj_attribute khugepaged_defrag_attr
=
222 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
223 khugepaged_defrag_store
);
226 * max_ptes_none controls if khugepaged should collapse hugepages over
227 * any unmapped ptes in turn potentially increasing the memory
228 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
229 * reduce the available free memory in the system as it
230 * runs. Increasing max_ptes_none will instead potentially reduce the
231 * free memory in the system during the khugepaged scan.
233 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
234 struct kobj_attribute
*attr
,
237 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
239 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
240 struct kobj_attribute
*attr
,
241 const char *buf
, size_t count
)
244 unsigned long max_ptes_none
;
246 err
= kstrtoul(buf
, 10, &max_ptes_none
);
247 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
250 khugepaged_max_ptes_none
= max_ptes_none
;
254 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
255 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
256 khugepaged_max_ptes_none_store
);
258 static ssize_t
khugepaged_max_ptes_swap_show(struct kobject
*kobj
,
259 struct kobj_attribute
*attr
,
262 return sprintf(buf
, "%u\n", khugepaged_max_ptes_swap
);
265 static ssize_t
khugepaged_max_ptes_swap_store(struct kobject
*kobj
,
266 struct kobj_attribute
*attr
,
267 const char *buf
, size_t count
)
270 unsigned long max_ptes_swap
;
272 err
= kstrtoul(buf
, 10, &max_ptes_swap
);
273 if (err
|| max_ptes_swap
> HPAGE_PMD_NR
-1)
276 khugepaged_max_ptes_swap
= max_ptes_swap
;
281 static struct kobj_attribute khugepaged_max_ptes_swap_attr
=
282 __ATTR(max_ptes_swap
, 0644, khugepaged_max_ptes_swap_show
,
283 khugepaged_max_ptes_swap_store
);
285 static struct attribute
*khugepaged_attr
[] = {
286 &khugepaged_defrag_attr
.attr
,
287 &khugepaged_max_ptes_none_attr
.attr
,
288 &pages_to_scan_attr
.attr
,
289 &pages_collapsed_attr
.attr
,
290 &full_scans_attr
.attr
,
291 &scan_sleep_millisecs_attr
.attr
,
292 &alloc_sleep_millisecs_attr
.attr
,
293 &khugepaged_max_ptes_swap_attr
.attr
,
297 struct attribute_group khugepaged_attr_group
= {
298 .attrs
= khugepaged_attr
,
299 .name
= "khugepaged",
301 #endif /* CONFIG_SYSFS */
303 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
305 int hugepage_madvise(struct vm_area_struct
*vma
,
306 unsigned long *vm_flags
, int advice
)
312 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
313 * can't handle this properly after s390_enable_sie, so we simply
314 * ignore the madvise to prevent qemu from causing a SIGSEGV.
316 if (mm_has_pgste(vma
->vm_mm
))
319 *vm_flags
&= ~VM_NOHUGEPAGE
;
320 *vm_flags
|= VM_HUGEPAGE
;
322 * If the vma become good for khugepaged to scan,
323 * register it here without waiting a page fault that
324 * may not happen any time soon.
326 if (!(*vm_flags
& VM_NO_KHUGEPAGED
) &&
327 khugepaged_enter_vma_merge(vma
, *vm_flags
))
330 case MADV_NOHUGEPAGE
:
331 *vm_flags
&= ~VM_HUGEPAGE
;
332 *vm_flags
|= VM_NOHUGEPAGE
;
334 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
335 * this vma even if we leave the mm registered in khugepaged if
336 * it got registered before VM_NOHUGEPAGE was set.
344 int __init
khugepaged_init(void)
346 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
347 sizeof(struct mm_slot
),
348 __alignof__(struct mm_slot
), 0, NULL
);
352 khugepaged_pages_to_scan
= HPAGE_PMD_NR
* 8;
353 khugepaged_max_ptes_none
= HPAGE_PMD_NR
- 1;
354 khugepaged_max_ptes_swap
= HPAGE_PMD_NR
/ 8;
359 void __init
khugepaged_destroy(void)
361 kmem_cache_destroy(mm_slot_cache
);
364 static inline struct mm_slot
*alloc_mm_slot(void)
366 if (!mm_slot_cache
) /* initialization failed */
368 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
371 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
373 kmem_cache_free(mm_slot_cache
, mm_slot
);
376 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
378 struct mm_slot
*mm_slot
;
380 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
381 if (mm
== mm_slot
->mm
)
387 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
388 struct mm_slot
*mm_slot
)
391 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
394 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
396 return atomic_read(&mm
->mm_users
) == 0;
399 int __khugepaged_enter(struct mm_struct
*mm
)
401 struct mm_slot
*mm_slot
;
404 mm_slot
= alloc_mm_slot();
408 /* __khugepaged_exit() must not run from under us */
409 VM_BUG_ON_MM(khugepaged_test_exit(mm
), mm
);
410 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
411 free_mm_slot(mm_slot
);
415 spin_lock(&khugepaged_mm_lock
);
416 insert_to_mm_slots_hash(mm
, mm_slot
);
418 * Insert just behind the scanning cursor, to let the area settle
421 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
422 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
423 spin_unlock(&khugepaged_mm_lock
);
427 wake_up_interruptible(&khugepaged_wait
);
432 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
433 unsigned long vm_flags
)
435 unsigned long hstart
, hend
;
438 * Not yet faulted in so we will register later in the
439 * page fault if needed.
442 if (vma
->vm_ops
|| (vm_flags
& VM_NO_KHUGEPAGED
))
443 /* khugepaged not yet working on file or special mappings */
445 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
446 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
448 return khugepaged_enter(vma
, vm_flags
);
452 void __khugepaged_exit(struct mm_struct
*mm
)
454 struct mm_slot
*mm_slot
;
457 spin_lock(&khugepaged_mm_lock
);
458 mm_slot
= get_mm_slot(mm
);
459 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
460 hash_del(&mm_slot
->hash
);
461 list_del(&mm_slot
->mm_node
);
464 spin_unlock(&khugepaged_mm_lock
);
467 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
468 free_mm_slot(mm_slot
);
470 } else if (mm_slot
) {
472 * This is required to serialize against
473 * khugepaged_test_exit() (which is guaranteed to run
474 * under mmap sem read mode). Stop here (after we
475 * return all pagetables will be destroyed) until
476 * khugepaged has finished working on the pagetables
477 * under the mmap_sem.
479 down_write(&mm
->mmap_sem
);
480 up_write(&mm
->mmap_sem
);
484 static void release_pte_page(struct page
*page
)
486 dec_node_page_state(page
, NR_ISOLATED_ANON
+ page_is_file_cache(page
));
488 putback_lru_page(page
);
491 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
493 while (--_pte
>= pte
) {
494 pte_t pteval
= *_pte
;
495 if (!pte_none(pteval
) && !is_zero_pfn(pte_pfn(pteval
)))
496 release_pte_page(pte_page(pteval
));
500 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
501 unsigned long address
,
504 struct page
*page
= NULL
;
506 int none_or_zero
= 0, result
= 0, referenced
= 0;
507 bool writable
= false;
509 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
510 _pte
++, address
+= PAGE_SIZE
) {
511 pte_t pteval
= *_pte
;
512 if (pte_none(pteval
) || (pte_present(pteval
) &&
513 is_zero_pfn(pte_pfn(pteval
)))) {
514 if (!userfaultfd_armed(vma
) &&
515 ++none_or_zero
<= khugepaged_max_ptes_none
) {
518 result
= SCAN_EXCEED_NONE_PTE
;
522 if (!pte_present(pteval
)) {
523 result
= SCAN_PTE_NON_PRESENT
;
526 page
= vm_normal_page(vma
, address
, pteval
);
527 if (unlikely(!page
)) {
528 result
= SCAN_PAGE_NULL
;
532 VM_BUG_ON_PAGE(PageCompound(page
), page
);
533 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
536 * We can do it before isolate_lru_page because the
537 * page can't be freed from under us. NOTE: PG_lock
538 * is needed to serialize against split_huge_page
539 * when invoked from the VM.
541 if (!trylock_page(page
)) {
542 result
= SCAN_PAGE_LOCK
;
547 * cannot use mapcount: can't collapse if there's a gup pin.
548 * The page must only be referenced by the scanned process
549 * and page swap cache.
551 if (page_count(page
) != 1 + PageSwapCache(page
)) {
553 result
= SCAN_PAGE_COUNT
;
556 if (pte_write(pteval
)) {
559 if (PageSwapCache(page
) &&
560 !reuse_swap_page(page
, NULL
)) {
562 result
= SCAN_SWAP_CACHE_PAGE
;
566 * Page is not in the swap cache. It can be collapsed
572 * Isolate the page to avoid collapsing an hugepage
573 * currently in use by the VM.
575 if (isolate_lru_page(page
)) {
577 result
= SCAN_DEL_PAGE_LRU
;
580 inc_node_page_state(page
,
581 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
582 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
583 VM_BUG_ON_PAGE(PageLRU(page
), page
);
585 /* There should be enough young pte to collapse the page */
586 if (pte_young(pteval
) ||
587 page_is_young(page
) || PageReferenced(page
) ||
588 mmu_notifier_test_young(vma
->vm_mm
, address
))
591 if (likely(writable
)) {
592 if (likely(referenced
)) {
593 result
= SCAN_SUCCEED
;
594 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
595 referenced
, writable
, result
);
599 result
= SCAN_PAGE_RO
;
603 release_pte_pages(pte
, _pte
);
604 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
605 referenced
, writable
, result
);
609 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
610 struct vm_area_struct
*vma
,
611 unsigned long address
,
615 for (_pte
= pte
; _pte
< pte
+ HPAGE_PMD_NR
;
616 _pte
++, page
++, address
+= PAGE_SIZE
) {
617 pte_t pteval
= *_pte
;
618 struct page
*src_page
;
620 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
621 clear_user_highpage(page
, address
);
622 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
623 if (is_zero_pfn(pte_pfn(pteval
))) {
625 * ptl mostly unnecessary.
629 * paravirt calls inside pte_clear here are
632 pte_clear(vma
->vm_mm
, address
, _pte
);
636 src_page
= pte_page(pteval
);
637 copy_user_highpage(page
, src_page
, address
, vma
);
638 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
639 release_pte_page(src_page
);
641 * ptl mostly unnecessary, but preempt has to
642 * be disabled to update the per-cpu stats
643 * inside page_remove_rmap().
647 * paravirt calls inside pte_clear here are
650 pte_clear(vma
->vm_mm
, address
, _pte
);
651 page_remove_rmap(src_page
, false);
653 free_page_and_swap_cache(src_page
);
658 static void khugepaged_alloc_sleep(void)
662 add_wait_queue(&khugepaged_wait
, &wait
);
663 freezable_schedule_timeout_interruptible(
664 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
665 remove_wait_queue(&khugepaged_wait
, &wait
);
668 static int khugepaged_node_load
[MAX_NUMNODES
];
670 static bool khugepaged_scan_abort(int nid
)
675 * If node_reclaim_mode is disabled, then no extra effort is made to
676 * allocate memory locally.
678 if (!node_reclaim_mode
)
681 /* If there is a count for this node already, it must be acceptable */
682 if (khugepaged_node_load
[nid
])
685 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
686 if (!khugepaged_node_load
[i
])
688 if (node_distance(nid
, i
) > RECLAIM_DISTANCE
)
694 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
695 static inline gfp_t
alloc_hugepage_khugepaged_gfpmask(void)
697 return khugepaged_defrag() ? GFP_TRANSHUGE
: GFP_TRANSHUGE_LIGHT
;
701 static int khugepaged_find_target_node(void)
703 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
704 int nid
, target_node
= 0, max_value
= 0;
706 /* find first node with max normal pages hit */
707 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
708 if (khugepaged_node_load
[nid
] > max_value
) {
709 max_value
= khugepaged_node_load
[nid
];
713 /* do some balance if several nodes have the same hit record */
714 if (target_node
<= last_khugepaged_target_node
)
715 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
717 if (max_value
== khugepaged_node_load
[nid
]) {
722 last_khugepaged_target_node
= target_node
;
726 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
728 if (IS_ERR(*hpage
)) {
734 khugepaged_alloc_sleep();
744 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
746 VM_BUG_ON_PAGE(*hpage
, *hpage
);
748 *hpage
= __alloc_pages_node(node
, gfp
, HPAGE_PMD_ORDER
);
749 if (unlikely(!*hpage
)) {
750 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
751 *hpage
= ERR_PTR(-ENOMEM
);
755 prep_transhuge_page(*hpage
);
756 count_vm_event(THP_COLLAPSE_ALLOC
);
760 static int khugepaged_find_target_node(void)
765 static inline struct page
*alloc_khugepaged_hugepage(void)
769 page
= alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
772 prep_transhuge_page(page
);
776 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
781 hpage
= alloc_khugepaged_hugepage();
783 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
788 khugepaged_alloc_sleep();
790 count_vm_event(THP_COLLAPSE_ALLOC
);
791 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
796 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
799 *hpage
= khugepaged_alloc_hugepage(wait
);
801 if (unlikely(!*hpage
))
808 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
816 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
818 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
819 (vma
->vm_flags
& VM_NOHUGEPAGE
) ||
820 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
822 if (shmem_file(vma
->vm_file
)) {
823 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
825 return IS_ALIGNED((vma
->vm_start
>> PAGE_SHIFT
) - vma
->vm_pgoff
,
828 if (!vma
->anon_vma
|| vma
->vm_ops
)
830 if (is_vma_temporary_stack(vma
))
832 return !(vma
->vm_flags
& VM_NO_KHUGEPAGED
);
836 * If mmap_sem temporarily dropped, revalidate vma
837 * before taking mmap_sem.
838 * Return 0 if succeeds, otherwise return none-zero
842 static int hugepage_vma_revalidate(struct mm_struct
*mm
, unsigned long address
,
843 struct vm_area_struct
**vmap
)
845 struct vm_area_struct
*vma
;
846 unsigned long hstart
, hend
;
848 if (unlikely(khugepaged_test_exit(mm
)))
849 return SCAN_ANY_PROCESS
;
851 *vmap
= vma
= find_vma(mm
, address
);
853 return SCAN_VMA_NULL
;
855 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
856 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
857 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
858 return SCAN_ADDRESS_RANGE
;
859 if (!hugepage_vma_check(vma
))
860 return SCAN_VMA_CHECK
;
865 * Bring missing pages in from swap, to complete THP collapse.
866 * Only done if khugepaged_scan_pmd believes it is worthwhile.
868 * Called and returns without pte mapped or spinlocks held,
869 * but with mmap_sem held to protect against vma changes.
872 static bool __collapse_huge_page_swapin(struct mm_struct
*mm
,
873 struct vm_area_struct
*vma
,
874 unsigned long address
, pmd_t
*pmd
,
877 int swapped_in
= 0, ret
= 0;
878 struct vm_fault vmf
= {
881 .flags
= FAULT_FLAG_ALLOW_RETRY
,
883 .pgoff
= linear_page_index(vma
, address
),
886 /* we only decide to swapin, if there is enough young ptes */
887 if (referenced
< HPAGE_PMD_NR
/2) {
888 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
891 vmf
.pte
= pte_offset_map(pmd
, address
);
892 for (; vmf
.address
< address
+ HPAGE_PMD_NR
*PAGE_SIZE
;
893 vmf
.pte
++, vmf
.address
+= PAGE_SIZE
) {
894 vmf
.orig_pte
= *vmf
.pte
;
895 if (!is_swap_pte(vmf
.orig_pte
))
898 ret
= do_swap_page(&vmf
);
900 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
901 if (ret
& VM_FAULT_RETRY
) {
902 down_read(&mm
->mmap_sem
);
903 if (hugepage_vma_revalidate(mm
, address
, &vmf
.vma
)) {
904 /* vma is no longer available, don't continue to swapin */
905 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
908 /* check if the pmd is still valid */
909 if (mm_find_pmd(mm
, address
) != pmd
) {
910 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
914 if (ret
& VM_FAULT_ERROR
) {
915 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
918 /* pte is unmapped now, we need to map it */
919 vmf
.pte
= pte_offset_map(pmd
, vmf
.address
);
923 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 1);
927 static void collapse_huge_page(struct mm_struct
*mm
,
928 unsigned long address
,
930 int node
, int referenced
)
935 struct page
*new_page
;
936 spinlock_t
*pmd_ptl
, *pte_ptl
;
937 int isolated
= 0, result
= 0;
938 struct mem_cgroup
*memcg
;
939 struct vm_area_struct
*vma
;
940 unsigned long mmun_start
; /* For mmu_notifiers */
941 unsigned long mmun_end
; /* For mmu_notifiers */
944 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
946 /* Only allocate from the target node */
947 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
950 * Before allocating the hugepage, release the mmap_sem read lock.
951 * The allocation can take potentially a long time if it involves
952 * sync compaction, and we do not need to hold the mmap_sem during
953 * that. We will recheck the vma after taking it again in write mode.
955 up_read(&mm
->mmap_sem
);
956 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
958 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
962 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
, &memcg
, true))) {
963 result
= SCAN_CGROUP_CHARGE_FAIL
;
967 down_read(&mm
->mmap_sem
);
968 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
970 mem_cgroup_cancel_charge(new_page
, memcg
, true);
971 up_read(&mm
->mmap_sem
);
975 pmd
= mm_find_pmd(mm
, address
);
977 result
= SCAN_PMD_NULL
;
978 mem_cgroup_cancel_charge(new_page
, memcg
, true);
979 up_read(&mm
->mmap_sem
);
984 * __collapse_huge_page_swapin always returns with mmap_sem locked.
985 * If it fails, we release mmap_sem and jump out_nolock.
986 * Continuing to collapse causes inconsistency.
988 if (!__collapse_huge_page_swapin(mm
, vma
, address
, pmd
, referenced
)) {
989 mem_cgroup_cancel_charge(new_page
, memcg
, true);
990 up_read(&mm
->mmap_sem
);
994 up_read(&mm
->mmap_sem
);
996 * Prevent all access to pagetables with the exception of
997 * gup_fast later handled by the ptep_clear_flush and the VM
998 * handled by the anon_vma lock + PG_lock.
1000 down_write(&mm
->mmap_sem
);
1001 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
1004 /* check if the pmd is still valid */
1005 if (mm_find_pmd(mm
, address
) != pmd
)
1008 anon_vma_lock_write(vma
->anon_vma
);
1010 pte
= pte_offset_map(pmd
, address
);
1011 pte_ptl
= pte_lockptr(mm
, pmd
);
1013 mmun_start
= address
;
1014 mmun_end
= address
+ HPAGE_PMD_SIZE
;
1015 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1016 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
1018 * After this gup_fast can't run anymore. This also removes
1019 * any huge TLB entry from the CPU so we won't allow
1020 * huge and small TLB entries for the same virtual address
1021 * to avoid the risk of CPU bugs in that area.
1023 _pmd
= pmdp_collapse_flush(vma
, address
, pmd
);
1024 spin_unlock(pmd_ptl
);
1025 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1028 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1029 spin_unlock(pte_ptl
);
1031 if (unlikely(!isolated
)) {
1034 BUG_ON(!pmd_none(*pmd
));
1036 * We can only use set_pmd_at when establishing
1037 * hugepmds and never for establishing regular pmds that
1038 * points to regular pagetables. Use pmd_populate for that
1040 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
1041 spin_unlock(pmd_ptl
);
1042 anon_vma_unlock_write(vma
->anon_vma
);
1048 * All pages are isolated and locked so anon_vma rmap
1049 * can't run anymore.
1051 anon_vma_unlock_write(vma
->anon_vma
);
1053 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
1055 __SetPageUptodate(new_page
);
1056 pgtable
= pmd_pgtable(_pmd
);
1058 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1059 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1062 * spin_lock() below is not the equivalent of smp_wmb(), so
1063 * this is needed to avoid the copy_huge_page writes to become
1064 * visible after the set_pmd_at() write.
1069 BUG_ON(!pmd_none(*pmd
));
1070 page_add_new_anon_rmap(new_page
, vma
, address
, true);
1071 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1072 lru_cache_add_active_or_unevictable(new_page
, vma
);
1073 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
1074 set_pmd_at(mm
, address
, pmd
, _pmd
);
1075 update_mmu_cache_pmd(vma
, address
, pmd
);
1076 spin_unlock(pmd_ptl
);
1080 khugepaged_pages_collapsed
++;
1081 result
= SCAN_SUCCEED
;
1083 up_write(&mm
->mmap_sem
);
1085 trace_mm_collapse_huge_page(mm
, isolated
, result
);
1088 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1092 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1093 struct vm_area_struct
*vma
,
1094 unsigned long address
,
1095 struct page
**hpage
)
1099 int ret
= 0, none_or_zero
= 0, result
= 0, referenced
= 0;
1100 struct page
*page
= NULL
;
1101 unsigned long _address
;
1103 int node
= NUMA_NO_NODE
, unmapped
= 0;
1104 bool writable
= false;
1106 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1108 pmd
= mm_find_pmd(mm
, address
);
1110 result
= SCAN_PMD_NULL
;
1114 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1115 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1116 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1117 _pte
++, _address
+= PAGE_SIZE
) {
1118 pte_t pteval
= *_pte
;
1119 if (is_swap_pte(pteval
)) {
1120 if (++unmapped
<= khugepaged_max_ptes_swap
) {
1123 result
= SCAN_EXCEED_SWAP_PTE
;
1127 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
1128 if (!userfaultfd_armed(vma
) &&
1129 ++none_or_zero
<= khugepaged_max_ptes_none
) {
1132 result
= SCAN_EXCEED_NONE_PTE
;
1136 if (!pte_present(pteval
)) {
1137 result
= SCAN_PTE_NON_PRESENT
;
1140 if (pte_write(pteval
))
1143 page
= vm_normal_page(vma
, _address
, pteval
);
1144 if (unlikely(!page
)) {
1145 result
= SCAN_PAGE_NULL
;
1149 /* TODO: teach khugepaged to collapse THP mapped with pte */
1150 if (PageCompound(page
)) {
1151 result
= SCAN_PAGE_COMPOUND
;
1156 * Record which node the original page is from and save this
1157 * information to khugepaged_node_load[].
1158 * Khupaged will allocate hugepage from the node has the max
1161 node
= page_to_nid(page
);
1162 if (khugepaged_scan_abort(node
)) {
1163 result
= SCAN_SCAN_ABORT
;
1166 khugepaged_node_load
[node
]++;
1167 if (!PageLRU(page
)) {
1168 result
= SCAN_PAGE_LRU
;
1171 if (PageLocked(page
)) {
1172 result
= SCAN_PAGE_LOCK
;
1175 if (!PageAnon(page
)) {
1176 result
= SCAN_PAGE_ANON
;
1181 * cannot use mapcount: can't collapse if there's a gup pin.
1182 * The page must only be referenced by the scanned process
1183 * and page swap cache.
1185 if (page_count(page
) != 1 + PageSwapCache(page
)) {
1186 result
= SCAN_PAGE_COUNT
;
1189 if (pte_young(pteval
) ||
1190 page_is_young(page
) || PageReferenced(page
) ||
1191 mmu_notifier_test_young(vma
->vm_mm
, address
))
1196 result
= SCAN_SUCCEED
;
1199 result
= SCAN_LACK_REFERENCED_PAGE
;
1202 result
= SCAN_PAGE_RO
;
1205 pte_unmap_unlock(pte
, ptl
);
1207 node
= khugepaged_find_target_node();
1208 /* collapse_huge_page will return with the mmap_sem released */
1209 collapse_huge_page(mm
, address
, hpage
, node
, referenced
);
1212 trace_mm_khugepaged_scan_pmd(mm
, page
, writable
, referenced
,
1213 none_or_zero
, result
, unmapped
);
1217 static void collect_mm_slot(struct mm_slot
*mm_slot
)
1219 struct mm_struct
*mm
= mm_slot
->mm
;
1221 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1223 if (khugepaged_test_exit(mm
)) {
1225 hash_del(&mm_slot
->hash
);
1226 list_del(&mm_slot
->mm_node
);
1229 * Not strictly needed because the mm exited already.
1231 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1234 /* khugepaged_mm_lock actually not necessary for the below */
1235 free_mm_slot(mm_slot
);
1240 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1241 static void retract_page_tables(struct address_space
*mapping
, pgoff_t pgoff
)
1243 struct vm_area_struct
*vma
;
1247 i_mmap_lock_write(mapping
);
1248 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1249 /* probably overkill */
1252 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
1253 if (addr
& ~HPAGE_PMD_MASK
)
1255 if (vma
->vm_end
< addr
+ HPAGE_PMD_SIZE
)
1257 pmd
= mm_find_pmd(vma
->vm_mm
, addr
);
1261 * We need exclusive mmap_sem to retract page table.
1262 * If trylock fails we would end up with pte-mapped THP after
1263 * re-fault. Not ideal, but it's more important to not disturb
1264 * the system too much.
1266 if (down_write_trylock(&vma
->vm_mm
->mmap_sem
)) {
1267 spinlock_t
*ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1268 /* assume page table is clear */
1269 _pmd
= pmdp_collapse_flush(vma
, addr
, pmd
);
1271 up_write(&vma
->vm_mm
->mmap_sem
);
1272 atomic_long_dec(&vma
->vm_mm
->nr_ptes
);
1273 pte_free(vma
->vm_mm
, pmd_pgtable(_pmd
));
1276 i_mmap_unlock_write(mapping
);
1280 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1282 * Basic scheme is simple, details are more complex:
1283 * - allocate and freeze a new huge page;
1284 * - scan over radix tree replacing old pages the new one
1285 * + swap in pages if necessary;
1287 * + keep old pages around in case if rollback is required;
1288 * - if replacing succeed:
1291 * + unfreeze huge page;
1292 * - if replacing failed;
1293 * + put all pages back and unfreeze them;
1294 * + restore gaps in the radix-tree;
1297 static void collapse_shmem(struct mm_struct
*mm
,
1298 struct address_space
*mapping
, pgoff_t start
,
1299 struct page
**hpage
, int node
)
1302 struct page
*page
, *new_page
, *tmp
;
1303 struct mem_cgroup
*memcg
;
1304 pgoff_t index
, end
= start
+ HPAGE_PMD_NR
;
1305 LIST_HEAD(pagelist
);
1306 struct radix_tree_iter iter
;
1308 int nr_none
= 0, result
= SCAN_SUCCEED
;
1310 VM_BUG_ON(start
& (HPAGE_PMD_NR
- 1));
1312 /* Only allocate from the target node */
1313 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
1315 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
1317 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
1321 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
, &memcg
, true))) {
1322 result
= SCAN_CGROUP_CHARGE_FAIL
;
1326 new_page
->index
= start
;
1327 new_page
->mapping
= mapping
;
1328 __SetPageSwapBacked(new_page
);
1329 __SetPageLocked(new_page
);
1330 BUG_ON(!page_ref_freeze(new_page
, 1));
1334 * At this point the new_page is 'frozen' (page_count() is zero), locked
1335 * and not up-to-date. It's safe to insert it into radix tree, because
1336 * nobody would be able to map it or use it in other way until we
1341 spin_lock_irq(&mapping
->tree_lock
);
1342 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1343 int n
= min(iter
.index
, end
) - index
;
1346 * Handle holes in the radix tree: charge it from shmem and
1347 * insert relevant subpage of new_page into the radix-tree.
1349 if (n
&& !shmem_charge(mapping
->host
, n
)) {
1354 for (; index
< min(iter
.index
, end
); index
++) {
1355 radix_tree_insert(&mapping
->page_tree
, index
,
1356 new_page
+ (index
% HPAGE_PMD_NR
));
1363 page
= radix_tree_deref_slot_protected(slot
,
1364 &mapping
->tree_lock
);
1365 if (radix_tree_exceptional_entry(page
) || !PageUptodate(page
)) {
1366 spin_unlock_irq(&mapping
->tree_lock
);
1367 /* swap in or instantiate fallocated page */
1368 if (shmem_getpage(mapping
->host
, index
, &page
,
1373 spin_lock_irq(&mapping
->tree_lock
);
1374 } else if (trylock_page(page
)) {
1377 result
= SCAN_PAGE_LOCK
;
1382 * The page must be locked, so we can drop the tree_lock
1383 * without racing with truncate.
1385 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1386 VM_BUG_ON_PAGE(!PageUptodate(page
), page
);
1387 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
1389 if (page_mapping(page
) != mapping
) {
1390 result
= SCAN_TRUNCATED
;
1393 spin_unlock_irq(&mapping
->tree_lock
);
1395 if (isolate_lru_page(page
)) {
1396 result
= SCAN_DEL_PAGE_LRU
;
1397 goto out_isolate_failed
;
1400 if (page_mapped(page
))
1401 unmap_mapping_range(mapping
, index
<< PAGE_SHIFT
,
1404 spin_lock_irq(&mapping
->tree_lock
);
1406 slot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
1407 VM_BUG_ON_PAGE(page
!= radix_tree_deref_slot_protected(slot
,
1408 &mapping
->tree_lock
), page
);
1409 VM_BUG_ON_PAGE(page_mapped(page
), page
);
1412 * The page is expected to have page_count() == 3:
1413 * - we hold a pin on it;
1414 * - one reference from radix tree;
1415 * - one from isolate_lru_page;
1417 if (!page_ref_freeze(page
, 3)) {
1418 result
= SCAN_PAGE_COUNT
;
1423 * Add the page to the list to be able to undo the collapse if
1424 * something go wrong.
1426 list_add_tail(&page
->lru
, &pagelist
);
1428 /* Finally, replace with the new page. */
1429 radix_tree_replace_slot(&mapping
->page_tree
, slot
,
1430 new_page
+ (index
% HPAGE_PMD_NR
));
1432 slot
= radix_tree_iter_resume(slot
, &iter
);
1436 spin_unlock_irq(&mapping
->tree_lock
);
1437 putback_lru_page(page
);
1449 * Handle hole in radix tree at the end of the range.
1450 * This code only triggers if there's nothing in radix tree
1453 if (result
== SCAN_SUCCEED
&& index
< end
) {
1454 int n
= end
- index
;
1456 if (!shmem_charge(mapping
->host
, n
)) {
1461 for (; index
< end
; index
++) {
1462 radix_tree_insert(&mapping
->page_tree
, index
,
1463 new_page
+ (index
% HPAGE_PMD_NR
));
1469 spin_unlock_irq(&mapping
->tree_lock
);
1472 if (result
== SCAN_SUCCEED
) {
1473 unsigned long flags
;
1474 struct zone
*zone
= page_zone(new_page
);
1477 * Replacing old pages with new one has succeed, now we need to
1478 * copy the content and free old pages.
1480 list_for_each_entry_safe(page
, tmp
, &pagelist
, lru
) {
1481 copy_highpage(new_page
+ (page
->index
% HPAGE_PMD_NR
),
1483 list_del(&page
->lru
);
1485 page_ref_unfreeze(page
, 1);
1486 page
->mapping
= NULL
;
1487 ClearPageActive(page
);
1488 ClearPageUnevictable(page
);
1492 local_irq_save(flags
);
1493 __inc_node_page_state(new_page
, NR_SHMEM_THPS
);
1495 __mod_node_page_state(zone
->zone_pgdat
, NR_FILE_PAGES
, nr_none
);
1496 __mod_node_page_state(zone
->zone_pgdat
, NR_SHMEM
, nr_none
);
1498 local_irq_restore(flags
);
1501 * Remove pte page tables, so we can re-faulti
1504 retract_page_tables(mapping
, start
);
1506 /* Everything is ready, let's unfreeze the new_page */
1507 set_page_dirty(new_page
);
1508 SetPageUptodate(new_page
);
1509 page_ref_unfreeze(new_page
, HPAGE_PMD_NR
);
1510 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1511 lru_cache_add_anon(new_page
);
1512 unlock_page(new_page
);
1516 /* Something went wrong: rollback changes to the radix-tree */
1517 shmem_uncharge(mapping
->host
, nr_none
);
1518 spin_lock_irq(&mapping
->tree_lock
);
1519 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
,
1521 if (iter
.index
>= end
)
1523 page
= list_first_entry_or_null(&pagelist
,
1525 if (!page
|| iter
.index
< page
->index
) {
1529 /* Put holes back where they were */
1530 radix_tree_delete(&mapping
->page_tree
,
1535 VM_BUG_ON_PAGE(page
->index
!= iter
.index
, page
);
1537 /* Unfreeze the page. */
1538 list_del(&page
->lru
);
1539 page_ref_unfreeze(page
, 2);
1540 radix_tree_replace_slot(&mapping
->page_tree
,
1542 slot
= radix_tree_iter_resume(slot
, &iter
);
1543 spin_unlock_irq(&mapping
->tree_lock
);
1544 putback_lru_page(page
);
1546 spin_lock_irq(&mapping
->tree_lock
);
1549 spin_unlock_irq(&mapping
->tree_lock
);
1551 /* Unfreeze new_page, caller would take care about freeing it */
1552 page_ref_unfreeze(new_page
, 1);
1553 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1554 unlock_page(new_page
);
1555 new_page
->mapping
= NULL
;
1558 VM_BUG_ON(!list_empty(&pagelist
));
1559 /* TODO: tracepoints */
1562 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1563 struct address_space
*mapping
,
1564 pgoff_t start
, struct page
**hpage
)
1566 struct page
*page
= NULL
;
1567 struct radix_tree_iter iter
;
1570 int node
= NUMA_NO_NODE
;
1571 int result
= SCAN_SUCCEED
;
1575 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1577 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1578 if (iter
.index
>= start
+ HPAGE_PMD_NR
)
1581 page
= radix_tree_deref_slot(slot
);
1582 if (radix_tree_deref_retry(page
)) {
1583 slot
= radix_tree_iter_retry(&iter
);
1587 if (radix_tree_exception(page
)) {
1588 if (++swap
> khugepaged_max_ptes_swap
) {
1589 result
= SCAN_EXCEED_SWAP_PTE
;
1595 if (PageTransCompound(page
)) {
1596 result
= SCAN_PAGE_COMPOUND
;
1600 node
= page_to_nid(page
);
1601 if (khugepaged_scan_abort(node
)) {
1602 result
= SCAN_SCAN_ABORT
;
1605 khugepaged_node_load
[node
]++;
1607 if (!PageLRU(page
)) {
1608 result
= SCAN_PAGE_LRU
;
1612 if (page_count(page
) != 1 + page_mapcount(page
)) {
1613 result
= SCAN_PAGE_COUNT
;
1618 * We probably should check if the page is referenced here, but
1619 * nobody would transfer pte_young() to PageReferenced() for us.
1620 * And rmap walk here is just too costly...
1625 if (need_resched()) {
1626 slot
= radix_tree_iter_resume(slot
, &iter
);
1632 if (result
== SCAN_SUCCEED
) {
1633 if (present
< HPAGE_PMD_NR
- khugepaged_max_ptes_none
) {
1634 result
= SCAN_EXCEED_NONE_PTE
;
1636 node
= khugepaged_find_target_node();
1637 collapse_shmem(mm
, mapping
, start
, hpage
, node
);
1641 /* TODO: tracepoints */
1644 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1645 struct address_space
*mapping
,
1646 pgoff_t start
, struct page
**hpage
)
1652 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
1653 struct page
**hpage
)
1654 __releases(&khugepaged_mm_lock
)
1655 __acquires(&khugepaged_mm_lock
)
1657 struct mm_slot
*mm_slot
;
1658 struct mm_struct
*mm
;
1659 struct vm_area_struct
*vma
;
1663 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1665 if (khugepaged_scan
.mm_slot
)
1666 mm_slot
= khugepaged_scan
.mm_slot
;
1668 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
1669 struct mm_slot
, mm_node
);
1670 khugepaged_scan
.address
= 0;
1671 khugepaged_scan
.mm_slot
= mm_slot
;
1673 spin_unlock(&khugepaged_mm_lock
);
1676 down_read(&mm
->mmap_sem
);
1677 if (unlikely(khugepaged_test_exit(mm
)))
1680 vma
= find_vma(mm
, khugepaged_scan
.address
);
1683 for (; vma
; vma
= vma
->vm_next
) {
1684 unsigned long hstart
, hend
;
1687 if (unlikely(khugepaged_test_exit(mm
))) {
1691 if (!hugepage_vma_check(vma
)) {
1696 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1697 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1700 if (khugepaged_scan
.address
> hend
)
1702 if (khugepaged_scan
.address
< hstart
)
1703 khugepaged_scan
.address
= hstart
;
1704 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
1706 while (khugepaged_scan
.address
< hend
) {
1709 if (unlikely(khugepaged_test_exit(mm
)))
1710 goto breakouterloop
;
1712 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
1713 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
1715 if (shmem_file(vma
->vm_file
)) {
1717 pgoff_t pgoff
= linear_page_index(vma
,
1718 khugepaged_scan
.address
);
1719 if (!shmem_huge_enabled(vma
))
1721 file
= get_file(vma
->vm_file
);
1722 up_read(&mm
->mmap_sem
);
1724 khugepaged_scan_shmem(mm
, file
->f_mapping
,
1728 ret
= khugepaged_scan_pmd(mm
, vma
,
1729 khugepaged_scan
.address
,
1732 /* move to next address */
1733 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
1734 progress
+= HPAGE_PMD_NR
;
1736 /* we released mmap_sem so break loop */
1737 goto breakouterloop_mmap_sem
;
1738 if (progress
>= pages
)
1739 goto breakouterloop
;
1743 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
1744 breakouterloop_mmap_sem
:
1746 spin_lock(&khugepaged_mm_lock
);
1747 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
1749 * Release the current mm_slot if this mm is about to die, or
1750 * if we scanned all vmas of this mm.
1752 if (khugepaged_test_exit(mm
) || !vma
) {
1754 * Make sure that if mm_users is reaching zero while
1755 * khugepaged runs here, khugepaged_exit will find
1756 * mm_slot not pointing to the exiting mm.
1758 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
1759 khugepaged_scan
.mm_slot
= list_entry(
1760 mm_slot
->mm_node
.next
,
1761 struct mm_slot
, mm_node
);
1762 khugepaged_scan
.address
= 0;
1764 khugepaged_scan
.mm_slot
= NULL
;
1765 khugepaged_full_scans
++;
1768 collect_mm_slot(mm_slot
);
1774 static int khugepaged_has_work(void)
1776 return !list_empty(&khugepaged_scan
.mm_head
) &&
1777 khugepaged_enabled();
1780 static int khugepaged_wait_event(void)
1782 return !list_empty(&khugepaged_scan
.mm_head
) ||
1783 kthread_should_stop();
1786 static void khugepaged_do_scan(void)
1788 struct page
*hpage
= NULL
;
1789 unsigned int progress
= 0, pass_through_head
= 0;
1790 unsigned int pages
= khugepaged_pages_to_scan
;
1793 barrier(); /* write khugepaged_pages_to_scan to local stack */
1795 while (progress
< pages
) {
1796 if (!khugepaged_prealloc_page(&hpage
, &wait
))
1801 if (unlikely(kthread_should_stop() || try_to_freeze()))
1804 spin_lock(&khugepaged_mm_lock
);
1805 if (!khugepaged_scan
.mm_slot
)
1806 pass_through_head
++;
1807 if (khugepaged_has_work() &&
1808 pass_through_head
< 2)
1809 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
1813 spin_unlock(&khugepaged_mm_lock
);
1816 if (!IS_ERR_OR_NULL(hpage
))
1820 static bool khugepaged_should_wakeup(void)
1822 return kthread_should_stop() ||
1823 time_after_eq(jiffies
, khugepaged_sleep_expire
);
1826 static void khugepaged_wait_work(void)
1828 if (khugepaged_has_work()) {
1829 const unsigned long scan_sleep_jiffies
=
1830 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
);
1832 if (!scan_sleep_jiffies
)
1835 khugepaged_sleep_expire
= jiffies
+ scan_sleep_jiffies
;
1836 wait_event_freezable_timeout(khugepaged_wait
,
1837 khugepaged_should_wakeup(),
1838 scan_sleep_jiffies
);
1842 if (khugepaged_enabled())
1843 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
1846 static int khugepaged(void *none
)
1848 struct mm_slot
*mm_slot
;
1851 set_user_nice(current
, MAX_NICE
);
1853 while (!kthread_should_stop()) {
1854 khugepaged_do_scan();
1855 khugepaged_wait_work();
1858 spin_lock(&khugepaged_mm_lock
);
1859 mm_slot
= khugepaged_scan
.mm_slot
;
1860 khugepaged_scan
.mm_slot
= NULL
;
1862 collect_mm_slot(mm_slot
);
1863 spin_unlock(&khugepaged_mm_lock
);
1867 static void set_recommended_min_free_kbytes(void)
1871 unsigned long recommended_min
;
1873 for_each_populated_zone(zone
)
1876 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1877 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
1880 * Make sure that on average at least two pageblocks are almost free
1881 * of another type, one for a migratetype to fall back to and a
1882 * second to avoid subsequent fallbacks of other types There are 3
1883 * MIGRATE_TYPES we care about.
1885 recommended_min
+= pageblock_nr_pages
* nr_zones
*
1886 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
1888 /* don't ever allow to reserve more than 5% of the lowmem */
1889 recommended_min
= min(recommended_min
,
1890 (unsigned long) nr_free_buffer_pages() / 20);
1891 recommended_min
<<= (PAGE_SHIFT
-10);
1893 if (recommended_min
> min_free_kbytes
) {
1894 if (user_min_free_kbytes
>= 0)
1895 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1896 min_free_kbytes
, recommended_min
);
1898 min_free_kbytes
= recommended_min
;
1900 setup_per_zone_wmarks();
1903 int start_stop_khugepaged(void)
1905 static struct task_struct
*khugepaged_thread __read_mostly
;
1906 static DEFINE_MUTEX(khugepaged_mutex
);
1909 mutex_lock(&khugepaged_mutex
);
1910 if (khugepaged_enabled()) {
1911 if (!khugepaged_thread
)
1912 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
1914 if (IS_ERR(khugepaged_thread
)) {
1915 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1916 err
= PTR_ERR(khugepaged_thread
);
1917 khugepaged_thread
= NULL
;
1921 if (!list_empty(&khugepaged_scan
.mm_head
))
1922 wake_up_interruptible(&khugepaged_wait
);
1924 set_recommended_min_free_kbytes();
1925 } else if (khugepaged_thread
) {
1926 kthread_stop(khugepaged_thread
);
1927 khugepaged_thread
= NULL
;
1930 mutex_unlock(&khugepaged_mutex
);