2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/swiotlb.h>
44 #define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
47 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
54 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56 enum swiotlb_force swiotlb_force
;
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
63 static phys_addr_t io_tlb_start
, io_tlb_end
;
66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
69 static unsigned long io_tlb_nslabs
;
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
74 static unsigned long io_tlb_overflow
= 32*1024;
76 static phys_addr_t io_tlb_overflow_buffer
;
79 * This is a free list describing the number of free entries available from
82 static unsigned int *io_tlb_list
;
83 static unsigned int io_tlb_index
;
86 * Max segment that we can provide which (if pages are contingous) will
87 * not be bounced (unless SWIOTLB_FORCE is set).
89 unsigned int max_segment
;
92 * We need to save away the original address corresponding to a mapped entry
93 * for the sync operations.
95 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
96 static phys_addr_t
*io_tlb_orig_addr
;
99 * Protect the above data structures in the map and unmap calls
101 static DEFINE_SPINLOCK(io_tlb_lock
);
103 static int late_alloc
;
106 setup_io_tlb_npages(char *str
)
109 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
110 /* avoid tail segment of size < IO_TLB_SEGSIZE */
111 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
115 if (!strcmp(str
, "force")) {
116 swiotlb_force
= SWIOTLB_FORCE
;
117 } else if (!strcmp(str
, "noforce")) {
118 swiotlb_force
= SWIOTLB_NO_FORCE
;
124 early_param("swiotlb", setup_io_tlb_npages
);
125 /* make io_tlb_overflow tunable too? */
127 unsigned long swiotlb_nr_tbl(void)
129 return io_tlb_nslabs
;
131 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
133 unsigned int swiotlb_max_segment(void)
137 EXPORT_SYMBOL_GPL(swiotlb_max_segment
);
139 void swiotlb_set_max_segment(unsigned int val
)
141 if (swiotlb_force
== SWIOTLB_FORCE
)
144 max_segment
= rounddown(val
, PAGE_SIZE
);
147 /* default to 64MB */
148 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
149 unsigned long swiotlb_size_or_default(void)
153 size
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
155 return size
? size
: (IO_TLB_DEFAULT_SIZE
);
158 /* Note that this doesn't work with highmem page */
159 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
160 volatile void *address
)
162 return phys_to_dma(hwdev
, virt_to_phys(address
));
165 static bool no_iotlb_memory
;
167 void swiotlb_print_info(void)
169 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
170 unsigned char *vstart
, *vend
;
172 if (no_iotlb_memory
) {
173 pr_warn("software IO TLB: No low mem\n");
177 vstart
= phys_to_virt(io_tlb_start
);
178 vend
= phys_to_virt(io_tlb_end
);
180 printk(KERN_INFO
"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
181 (unsigned long long)io_tlb_start
,
182 (unsigned long long)io_tlb_end
,
183 bytes
>> 20, vstart
, vend
- 1);
186 int __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
188 void *v_overflow_buffer
;
189 unsigned long i
, bytes
;
191 bytes
= nslabs
<< IO_TLB_SHIFT
;
193 io_tlb_nslabs
= nslabs
;
194 io_tlb_start
= __pa(tlb
);
195 io_tlb_end
= io_tlb_start
+ bytes
;
198 * Get the overflow emergency buffer
200 v_overflow_buffer
= memblock_virt_alloc_low_nopanic(
201 PAGE_ALIGN(io_tlb_overflow
),
203 if (!v_overflow_buffer
)
206 io_tlb_overflow_buffer
= __pa(v_overflow_buffer
);
209 * Allocate and initialize the free list array. This array is used
210 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
211 * between io_tlb_start and io_tlb_end.
213 io_tlb_list
= memblock_virt_alloc(
214 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)),
216 io_tlb_orig_addr
= memblock_virt_alloc(
217 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)),
219 for (i
= 0; i
< io_tlb_nslabs
; i
++) {
220 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
221 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
226 swiotlb_print_info();
228 swiotlb_set_max_segment(io_tlb_nslabs
<< IO_TLB_SHIFT
);
233 * Statically reserve bounce buffer space and initialize bounce buffer data
234 * structures for the software IO TLB used to implement the DMA API.
237 swiotlb_init(int verbose
)
239 size_t default_size
= IO_TLB_DEFAULT_SIZE
;
240 unsigned char *vstart
;
243 if (!io_tlb_nslabs
) {
244 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
245 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
248 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
250 /* Get IO TLB memory from the low pages */
251 vstart
= memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes
), PAGE_SIZE
);
252 if (vstart
&& !swiotlb_init_with_tbl(vstart
, io_tlb_nslabs
, verbose
))
256 memblock_free_early(io_tlb_start
,
257 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
258 pr_warn("Cannot allocate SWIOTLB buffer");
259 no_iotlb_memory
= true;
263 * Systems with larger DMA zones (those that don't support ISA) can
264 * initialize the swiotlb later using the slab allocator if needed.
265 * This should be just like above, but with some error catching.
268 swiotlb_late_init_with_default_size(size_t default_size
)
270 unsigned long bytes
, req_nslabs
= io_tlb_nslabs
;
271 unsigned char *vstart
= NULL
;
275 if (!io_tlb_nslabs
) {
276 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
277 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
281 * Get IO TLB memory from the low pages
283 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
284 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
285 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
287 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
288 vstart
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
296 io_tlb_nslabs
= req_nslabs
;
299 if (order
!= get_order(bytes
)) {
300 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
301 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
302 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
304 rc
= swiotlb_late_init_with_tbl(vstart
, io_tlb_nslabs
);
306 free_pages((unsigned long)vstart
, order
);
312 swiotlb_late_init_with_tbl(char *tlb
, unsigned long nslabs
)
314 unsigned long i
, bytes
;
315 unsigned char *v_overflow_buffer
;
317 bytes
= nslabs
<< IO_TLB_SHIFT
;
319 io_tlb_nslabs
= nslabs
;
320 io_tlb_start
= virt_to_phys(tlb
);
321 io_tlb_end
= io_tlb_start
+ bytes
;
323 memset(tlb
, 0, bytes
);
326 * Get the overflow emergency buffer
328 v_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
329 get_order(io_tlb_overflow
));
330 if (!v_overflow_buffer
)
333 io_tlb_overflow_buffer
= virt_to_phys(v_overflow_buffer
);
336 * Allocate and initialize the free list array. This array is used
337 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
338 * between io_tlb_start and io_tlb_end.
340 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
341 get_order(io_tlb_nslabs
* sizeof(int)));
345 io_tlb_orig_addr
= (phys_addr_t
*)
346 __get_free_pages(GFP_KERNEL
,
347 get_order(io_tlb_nslabs
*
348 sizeof(phys_addr_t
)));
349 if (!io_tlb_orig_addr
)
352 for (i
= 0; i
< io_tlb_nslabs
; i
++) {
353 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
354 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
358 swiotlb_print_info();
362 swiotlb_set_max_segment(io_tlb_nslabs
<< IO_TLB_SHIFT
);
367 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
371 free_pages((unsigned long)v_overflow_buffer
,
372 get_order(io_tlb_overflow
));
373 io_tlb_overflow_buffer
= 0;
382 void __init
swiotlb_free(void)
384 if (!io_tlb_orig_addr
)
388 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer
),
389 get_order(io_tlb_overflow
));
390 free_pages((unsigned long)io_tlb_orig_addr
,
391 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
392 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
394 free_pages((unsigned long)phys_to_virt(io_tlb_start
),
395 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
397 memblock_free_late(io_tlb_overflow_buffer
,
398 PAGE_ALIGN(io_tlb_overflow
));
399 memblock_free_late(__pa(io_tlb_orig_addr
),
400 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
401 memblock_free_late(__pa(io_tlb_list
),
402 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
403 memblock_free_late(io_tlb_start
,
404 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
410 int is_swiotlb_buffer(phys_addr_t paddr
)
412 return paddr
>= io_tlb_start
&& paddr
< io_tlb_end
;
416 * Bounce: copy the swiotlb buffer back to the original dma location
418 static void swiotlb_bounce(phys_addr_t orig_addr
, phys_addr_t tlb_addr
,
419 size_t size
, enum dma_data_direction dir
)
421 unsigned long pfn
= PFN_DOWN(orig_addr
);
422 unsigned char *vaddr
= phys_to_virt(tlb_addr
);
424 if (PageHighMem(pfn_to_page(pfn
))) {
425 /* The buffer does not have a mapping. Map it in and copy */
426 unsigned int offset
= orig_addr
& ~PAGE_MASK
;
432 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
434 local_irq_save(flags
);
435 buffer
= kmap_atomic(pfn_to_page(pfn
));
436 if (dir
== DMA_TO_DEVICE
)
437 memcpy(vaddr
, buffer
+ offset
, sz
);
439 memcpy(buffer
+ offset
, vaddr
, sz
);
440 kunmap_atomic(buffer
);
441 local_irq_restore(flags
);
448 } else if (dir
== DMA_TO_DEVICE
) {
449 memcpy(vaddr
, phys_to_virt(orig_addr
), size
);
451 memcpy(phys_to_virt(orig_addr
), vaddr
, size
);
455 phys_addr_t
swiotlb_tbl_map_single(struct device
*hwdev
,
456 dma_addr_t tbl_dma_addr
,
457 phys_addr_t orig_addr
, size_t size
,
458 enum dma_data_direction dir
,
462 phys_addr_t tlb_addr
;
463 unsigned int nslots
, stride
, index
, wrap
;
466 unsigned long offset_slots
;
467 unsigned long max_slots
;
470 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
472 mask
= dma_get_seg_boundary(hwdev
);
474 tbl_dma_addr
&= mask
;
476 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
479 * Carefully handle integer overflow which can occur when mask == ~0UL.
482 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
483 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
486 * For mappings greater than or equal to a page, we limit the stride
487 * (and hence alignment) to a page size.
489 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
490 if (size
>= PAGE_SIZE
)
491 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
498 * Find suitable number of IO TLB entries size that will fit this
499 * request and allocate a buffer from that IO TLB pool.
501 spin_lock_irqsave(&io_tlb_lock
, flags
);
502 index
= ALIGN(io_tlb_index
, stride
);
503 if (index
>= io_tlb_nslabs
)
508 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
511 if (index
>= io_tlb_nslabs
)
518 * If we find a slot that indicates we have 'nslots' number of
519 * contiguous buffers, we allocate the buffers from that slot
520 * and mark the entries as '0' indicating unavailable.
522 if (io_tlb_list
[index
] >= nslots
) {
525 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
527 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
528 io_tlb_list
[i
] = ++count
;
529 tlb_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
532 * Update the indices to avoid searching in the next
535 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
536 ? (index
+ nslots
) : 0);
541 if (index
>= io_tlb_nslabs
)
543 } while (index
!= wrap
);
546 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
547 if (printk_ratelimit())
548 dev_warn(hwdev
, "swiotlb buffer is full (sz: %zd bytes)\n", size
);
549 return SWIOTLB_MAP_ERROR
;
551 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
554 * Save away the mapping from the original address to the DMA address.
555 * This is needed when we sync the memory. Then we sync the buffer if
558 for (i
= 0; i
< nslots
; i
++)
559 io_tlb_orig_addr
[index
+i
] = orig_addr
+ (i
<< IO_TLB_SHIFT
);
560 if (!(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
561 (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
562 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_TO_DEVICE
);
566 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
569 * Allocates bounce buffer and returns its kernel virtual address.
573 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
574 enum dma_data_direction dir
, unsigned long attrs
)
576 dma_addr_t start_dma_addr
;
578 if (swiotlb_force
== SWIOTLB_NO_FORCE
) {
579 dev_warn_ratelimited(hwdev
, "Cannot do DMA to address %pa\n",
581 return SWIOTLB_MAP_ERROR
;
584 start_dma_addr
= phys_to_dma(hwdev
, io_tlb_start
);
585 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
,
590 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
592 void swiotlb_tbl_unmap_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
593 size_t size
, enum dma_data_direction dir
,
597 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
598 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
599 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
602 * First, sync the memory before unmapping the entry
604 if (orig_addr
!= INVALID_PHYS_ADDR
&&
605 !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
606 ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
607 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_FROM_DEVICE
);
610 * Return the buffer to the free list by setting the corresponding
611 * entries to indicate the number of contiguous entries available.
612 * While returning the entries to the free list, we merge the entries
613 * with slots below and above the pool being returned.
615 spin_lock_irqsave(&io_tlb_lock
, flags
);
617 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
618 io_tlb_list
[index
+ nslots
] : 0);
620 * Step 1: return the slots to the free list, merging the
621 * slots with superceeding slots
623 for (i
= index
+ nslots
- 1; i
>= index
; i
--) {
624 io_tlb_list
[i
] = ++count
;
625 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
628 * Step 2: merge the returned slots with the preceding slots,
629 * if available (non zero)
631 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
632 io_tlb_list
[i
] = ++count
;
634 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
636 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
638 void swiotlb_tbl_sync_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
639 size_t size
, enum dma_data_direction dir
,
640 enum dma_sync_target target
)
642 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
643 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
645 if (orig_addr
== INVALID_PHYS_ADDR
)
647 orig_addr
+= (unsigned long)tlb_addr
& ((1 << IO_TLB_SHIFT
) - 1);
651 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
652 swiotlb_bounce(orig_addr
, tlb_addr
,
653 size
, DMA_FROM_DEVICE
);
655 BUG_ON(dir
!= DMA_TO_DEVICE
);
657 case SYNC_FOR_DEVICE
:
658 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
659 swiotlb_bounce(orig_addr
, tlb_addr
,
660 size
, DMA_TO_DEVICE
);
662 BUG_ON(dir
!= DMA_FROM_DEVICE
);
668 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
671 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
672 dma_addr_t
*dma_handle
, gfp_t flags
)
676 int order
= get_order(size
);
677 u64 dma_mask
= DMA_BIT_MASK(32);
679 if (hwdev
&& hwdev
->coherent_dma_mask
)
680 dma_mask
= hwdev
->coherent_dma_mask
;
682 ret
= (void *)__get_free_pages(flags
, order
);
684 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
685 if (dev_addr
+ size
- 1 > dma_mask
) {
687 * The allocated memory isn't reachable by the device.
689 free_pages((unsigned long) ret
, order
);
695 * We are either out of memory or the device can't DMA to
696 * GFP_DMA memory; fall back on map_single(), which
697 * will grab memory from the lowest available address range.
699 phys_addr_t paddr
= map_single(hwdev
, 0, size
,
701 if (paddr
== SWIOTLB_MAP_ERROR
)
704 ret
= phys_to_virt(paddr
);
705 dev_addr
= phys_to_dma(hwdev
, paddr
);
707 /* Confirm address can be DMA'd by device */
708 if (dev_addr
+ size
- 1 > dma_mask
) {
709 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
710 (unsigned long long)dma_mask
,
711 (unsigned long long)dev_addr
);
714 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
715 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
717 swiotlb_tbl_unmap_single(hwdev
, paddr
,
719 DMA_ATTR_SKIP_CPU_SYNC
);
724 *dma_handle
= dev_addr
;
725 memset(ret
, 0, size
);
730 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
731 dev_name(hwdev
), size
);
736 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
739 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
742 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
744 WARN_ON(irqs_disabled());
745 if (!is_swiotlb_buffer(paddr
))
746 free_pages((unsigned long)vaddr
, get_order(size
));
749 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
750 * DMA_ATTR_SKIP_CPU_SYNC is optional.
752 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, DMA_TO_DEVICE
,
753 DMA_ATTR_SKIP_CPU_SYNC
);
755 EXPORT_SYMBOL(swiotlb_free_coherent
);
758 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
761 if (swiotlb_force
== SWIOTLB_NO_FORCE
)
765 * Ran out of IOMMU space for this operation. This is very bad.
766 * Unfortunately the drivers cannot handle this operation properly.
767 * unless they check for dma_mapping_error (most don't)
768 * When the mapping is small enough return a static buffer to limit
769 * the damage, or panic when the transfer is too big.
771 dev_err_ratelimited(dev
, "DMA: Out of SW-IOMMU space for %zu bytes\n",
774 if (size
<= io_tlb_overflow
|| !do_panic
)
777 if (dir
== DMA_BIDIRECTIONAL
)
778 panic("DMA: Random memory could be DMA accessed\n");
779 if (dir
== DMA_FROM_DEVICE
)
780 panic("DMA: Random memory could be DMA written\n");
781 if (dir
== DMA_TO_DEVICE
)
782 panic("DMA: Random memory could be DMA read\n");
786 * Map a single buffer of the indicated size for DMA in streaming mode. The
787 * physical address to use is returned.
789 * Once the device is given the dma address, the device owns this memory until
790 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
792 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
793 unsigned long offset
, size_t size
,
794 enum dma_data_direction dir
,
797 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
798 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
800 BUG_ON(dir
== DMA_NONE
);
802 * If the address happens to be in the device's DMA window,
803 * we can safely return the device addr and not worry about bounce
806 if (dma_capable(dev
, dev_addr
, size
) && swiotlb_force
!= SWIOTLB_FORCE
)
809 trace_swiotlb_bounced(dev
, dev_addr
, size
, swiotlb_force
);
811 /* Oh well, have to allocate and map a bounce buffer. */
812 map
= map_single(dev
, phys
, size
, dir
, attrs
);
813 if (map
== SWIOTLB_MAP_ERROR
) {
814 swiotlb_full(dev
, size
, dir
, 1);
815 return phys_to_dma(dev
, io_tlb_overflow_buffer
);
818 dev_addr
= phys_to_dma(dev
, map
);
820 /* Ensure that the address returned is DMA'ble */
821 if (dma_capable(dev
, dev_addr
, size
))
824 attrs
|= DMA_ATTR_SKIP_CPU_SYNC
;
825 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
, attrs
);
827 return phys_to_dma(dev
, io_tlb_overflow_buffer
);
829 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
832 * Unmap a single streaming mode DMA translation. The dma_addr and size must
833 * match what was provided for in a previous swiotlb_map_page call. All
834 * other usages are undefined.
836 * After this call, reads by the cpu to the buffer are guaranteed to see
837 * whatever the device wrote there.
839 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
840 size_t size
, enum dma_data_direction dir
,
843 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
845 BUG_ON(dir
== DMA_NONE
);
847 if (is_swiotlb_buffer(paddr
)) {
848 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
, attrs
);
852 if (dir
!= DMA_FROM_DEVICE
)
856 * phys_to_virt doesn't work with hihgmem page but we could
857 * call dma_mark_clean() with hihgmem page here. However, we
858 * are fine since dma_mark_clean() is null on POWERPC. We can
859 * make dma_mark_clean() take a physical address if necessary.
861 dma_mark_clean(phys_to_virt(paddr
), size
);
864 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
865 size_t size
, enum dma_data_direction dir
,
868 unmap_single(hwdev
, dev_addr
, size
, dir
, attrs
);
870 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
873 * Make physical memory consistent for a single streaming mode DMA translation
876 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
877 * using the cpu, yet do not wish to teardown the dma mapping, you must
878 * call this function before doing so. At the next point you give the dma
879 * address back to the card, you must first perform a
880 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
883 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
884 size_t size
, enum dma_data_direction dir
,
885 enum dma_sync_target target
)
887 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
889 BUG_ON(dir
== DMA_NONE
);
891 if (is_swiotlb_buffer(paddr
)) {
892 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
896 if (dir
!= DMA_FROM_DEVICE
)
899 dma_mark_clean(phys_to_virt(paddr
), size
);
903 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
904 size_t size
, enum dma_data_direction dir
)
906 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
908 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
911 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
912 size_t size
, enum dma_data_direction dir
)
914 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
916 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
919 * Map a set of buffers described by scatterlist in streaming mode for DMA.
920 * This is the scatter-gather version of the above swiotlb_map_page
921 * interface. Here the scatter gather list elements are each tagged with the
922 * appropriate dma address and length. They are obtained via
923 * sg_dma_{address,length}(SG).
925 * NOTE: An implementation may be able to use a smaller number of
926 * DMA address/length pairs than there are SG table elements.
927 * (for example via virtual mapping capabilities)
928 * The routine returns the number of addr/length pairs actually
929 * used, at most nents.
931 * Device ownership issues as mentioned above for swiotlb_map_page are the
935 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
936 enum dma_data_direction dir
, unsigned long attrs
)
938 struct scatterlist
*sg
;
941 BUG_ON(dir
== DMA_NONE
);
943 for_each_sg(sgl
, sg
, nelems
, i
) {
944 phys_addr_t paddr
= sg_phys(sg
);
945 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
947 if (swiotlb_force
== SWIOTLB_FORCE
||
948 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
949 phys_addr_t map
= map_single(hwdev
, sg_phys(sg
),
950 sg
->length
, dir
, attrs
);
951 if (map
== SWIOTLB_MAP_ERROR
) {
952 /* Don't panic here, we expect map_sg users
953 to do proper error handling. */
954 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
955 attrs
|= DMA_ATTR_SKIP_CPU_SYNC
;
956 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
961 sg
->dma_address
= phys_to_dma(hwdev
, map
);
963 sg
->dma_address
= dev_addr
;
964 sg_dma_len(sg
) = sg
->length
;
968 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
971 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
972 * concerning calls here are the same as for swiotlb_unmap_page() above.
975 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
976 int nelems
, enum dma_data_direction dir
,
979 struct scatterlist
*sg
;
982 BUG_ON(dir
== DMA_NONE
);
984 for_each_sg(sgl
, sg
, nelems
, i
)
985 unmap_single(hwdev
, sg
->dma_address
, sg_dma_len(sg
), dir
,
988 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
991 * Make physical memory consistent for a set of streaming mode DMA translations
994 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
998 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
999 int nelems
, enum dma_data_direction dir
,
1000 enum dma_sync_target target
)
1002 struct scatterlist
*sg
;
1005 for_each_sg(sgl
, sg
, nelems
, i
)
1006 swiotlb_sync_single(hwdev
, sg
->dma_address
,
1007 sg_dma_len(sg
), dir
, target
);
1011 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
1012 int nelems
, enum dma_data_direction dir
)
1014 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
1016 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
1019 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
1020 int nelems
, enum dma_data_direction dir
)
1022 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
1024 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
1027 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
1029 return (dma_addr
== phys_to_dma(hwdev
, io_tlb_overflow_buffer
));
1031 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
1034 * Return whether the given device DMA address mask can be supported
1035 * properly. For example, if your device can only drive the low 24-bits
1036 * during bus mastering, then you would pass 0x00ffffff as the mask to
1040 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
1042 return phys_to_dma(hwdev
, io_tlb_end
- 1) <= mask
;
1044 EXPORT_SYMBOL(swiotlb_dma_supported
);