2 * Flexible array managed in PAGE_SIZE parts
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2009
20 * Author: Dave Hansen <dave@linux.vnet.ibm.com>
23 #include <linux/flex_array.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/reciprocal_div.h>
29 struct flex_array_part
{
30 char elements
[FLEX_ARRAY_PART_SIZE
];
34 * If a user requests an allocation which is small
35 * enough, we may simply use the space in the
36 * flex_array->parts[] array to store the user
39 static inline int elements_fit_in_base(struct flex_array
*fa
)
41 int data_size
= fa
->element_size
* fa
->total_nr_elements
;
42 if (data_size
<= FLEX_ARRAY_BASE_BYTES_LEFT
)
48 * flex_array_alloc - allocate a new flexible array
49 * @element_size: the size of individual elements in the array
50 * @total: total number of elements that this should hold
51 * @flags: page allocation flags to use for base array
53 * Note: all locking must be provided by the caller.
55 * @total is used to size internal structures. If the user ever
56 * accesses any array indexes >=@total, it will produce errors.
58 * The maximum number of elements is defined as: the number of
59 * elements that can be stored in a page times the number of
60 * page pointers that we can fit in the base structure or (using
63 * (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
65 * Here's a table showing example capacities. Note that the maximum
66 * index that the get/put() functions is just nr_objects-1. This
67 * basically means that you get 4MB of storage on 32-bit and 2MB on
71 * Element size | Objects | Objects |
72 * PAGE_SIZE=4k | 32-bit | 64-bit |
73 * ---------------------------------|
74 * 1 bytes | 4177920 | 2088960 |
75 * 2 bytes | 2088960 | 1044480 |
76 * 3 bytes | 1392300 | 696150 |
77 * 4 bytes | 1044480 | 522240 |
78 * 32 bytes | 130560 | 65408 |
79 * 33 bytes | 126480 | 63240 |
80 * 2048 bytes | 2040 | 1020 |
81 * 2049 bytes | 1020 | 510 |
82 * void * | 1044480 | 261120 |
84 * Since 64-bit pointers are twice the size, we lose half the
85 * capacity in the base structure. Also note that no effort is made
86 * to efficiently pack objects across page boundaries.
88 struct flex_array
*flex_array_alloc(int element_size
, unsigned int total
,
91 struct flex_array
*ret
;
92 int elems_per_part
= 0;
94 struct reciprocal_value reciprocal_elems
= { 0 };
97 elems_per_part
= FLEX_ARRAY_ELEMENTS_PER_PART(element_size
);
98 reciprocal_elems
= reciprocal_value(elems_per_part
);
99 max_size
= FLEX_ARRAY_NR_BASE_PTRS
* elems_per_part
;
102 /* max_size will end up 0 if element_size > PAGE_SIZE */
103 if (total
> max_size
)
105 ret
= kzalloc(sizeof(struct flex_array
), flags
);
108 ret
->element_size
= element_size
;
109 ret
->total_nr_elements
= total
;
110 ret
->elems_per_part
= elems_per_part
;
111 ret
->reciprocal_elems
= reciprocal_elems
;
112 if (elements_fit_in_base(ret
) && !(flags
& __GFP_ZERO
))
113 memset(&ret
->parts
[0], FLEX_ARRAY_FREE
,
114 FLEX_ARRAY_BASE_BYTES_LEFT
);
117 EXPORT_SYMBOL(flex_array_alloc
);
119 static int fa_element_to_part_nr(struct flex_array
*fa
,
120 unsigned int element_nr
)
123 * if element_size == 0 we don't get here, so we never touch
124 * the zeroed fa->reciprocal_elems, which would yield invalid
127 return reciprocal_divide(element_nr
, fa
->reciprocal_elems
);
131 * flex_array_free_parts - just free the second-level pages
132 * @fa: the flex array from which to free parts
134 * This is to be used in cases where the base 'struct flex_array'
135 * has been statically allocated and should not be free.
137 void flex_array_free_parts(struct flex_array
*fa
)
141 if (elements_fit_in_base(fa
))
143 for (part_nr
= 0; part_nr
< FLEX_ARRAY_NR_BASE_PTRS
; part_nr
++)
144 kfree(fa
->parts
[part_nr
]);
146 EXPORT_SYMBOL(flex_array_free_parts
);
148 void flex_array_free(struct flex_array
*fa
)
150 flex_array_free_parts(fa
);
153 EXPORT_SYMBOL(flex_array_free
);
155 static unsigned int index_inside_part(struct flex_array
*fa
,
156 unsigned int element_nr
,
157 unsigned int part_nr
)
159 unsigned int part_offset
;
161 part_offset
= element_nr
- part_nr
* fa
->elems_per_part
;
162 return part_offset
* fa
->element_size
;
165 static struct flex_array_part
*
166 __fa_get_part(struct flex_array
*fa
, int part_nr
, gfp_t flags
)
168 struct flex_array_part
*part
= fa
->parts
[part_nr
];
170 part
= kmalloc(sizeof(struct flex_array_part
), flags
);
173 if (!(flags
& __GFP_ZERO
))
174 memset(part
, FLEX_ARRAY_FREE
,
175 sizeof(struct flex_array_part
));
176 fa
->parts
[part_nr
] = part
;
182 * flex_array_put - copy data into the array at @element_nr
183 * @fa: the flex array to copy data into
184 * @element_nr: index of the position in which to insert
186 * @src: address of data to copy into the array
187 * @flags: page allocation flags to use for array expansion
190 * Note that this *copies* the contents of @src into
191 * the array. If you are trying to store an array of
192 * pointers, make sure to pass in &ptr instead of ptr.
193 * You may instead wish to use the flex_array_put_ptr()
196 * Locking must be provided by the caller.
198 int flex_array_put(struct flex_array
*fa
, unsigned int element_nr
, void *src
,
202 struct flex_array_part
*part
;
205 if (element_nr
>= fa
->total_nr_elements
)
207 if (!fa
->element_size
)
209 if (elements_fit_in_base(fa
))
210 part
= (struct flex_array_part
*)&fa
->parts
[0];
212 part_nr
= fa_element_to_part_nr(fa
, element_nr
);
213 part
= __fa_get_part(fa
, part_nr
, flags
);
217 dst
= &part
->elements
[index_inside_part(fa
, element_nr
, part_nr
)];
218 memcpy(dst
, src
, fa
->element_size
);
221 EXPORT_SYMBOL(flex_array_put
);
224 * flex_array_clear - clear element in array at @element_nr
225 * @fa: the flex array of the element.
226 * @element_nr: index of the position to clear.
228 * Locking must be provided by the caller.
230 int flex_array_clear(struct flex_array
*fa
, unsigned int element_nr
)
233 struct flex_array_part
*part
;
236 if (element_nr
>= fa
->total_nr_elements
)
238 if (!fa
->element_size
)
240 if (elements_fit_in_base(fa
))
241 part
= (struct flex_array_part
*)&fa
->parts
[0];
243 part_nr
= fa_element_to_part_nr(fa
, element_nr
);
244 part
= fa
->parts
[part_nr
];
248 dst
= &part
->elements
[index_inside_part(fa
, element_nr
, part_nr
)];
249 memset(dst
, FLEX_ARRAY_FREE
, fa
->element_size
);
252 EXPORT_SYMBOL(flex_array_clear
);
255 * flex_array_prealloc - guarantee that array space exists
256 * @fa: the flex array for which to preallocate parts
257 * @start: index of first array element for which space is allocated
258 * @nr_elements: number of elements for which space is allocated
259 * @flags: page allocation flags
261 * This will guarantee that no future calls to flex_array_put()
262 * will allocate memory. It can be used if you are expecting to
263 * be holding a lock or in some atomic context while writing
264 * data into the array.
266 * Locking must be provided by the caller.
268 int flex_array_prealloc(struct flex_array
*fa
, unsigned int start
,
269 unsigned int nr_elements
, gfp_t flags
)
275 struct flex_array_part
*part
;
277 if (!start
&& !nr_elements
)
279 if (start
>= fa
->total_nr_elements
)
284 end
= start
+ nr_elements
- 1;
286 if (end
>= fa
->total_nr_elements
)
288 if (!fa
->element_size
)
290 if (elements_fit_in_base(fa
))
292 start_part
= fa_element_to_part_nr(fa
, start
);
293 end_part
= fa_element_to_part_nr(fa
, end
);
294 for (part_nr
= start_part
; part_nr
<= end_part
; part_nr
++) {
295 part
= __fa_get_part(fa
, part_nr
, flags
);
301 EXPORT_SYMBOL(flex_array_prealloc
);
304 * flex_array_get - pull data back out of the array
305 * @fa: the flex array from which to extract data
306 * @element_nr: index of the element to fetch from the array
308 * Returns a pointer to the data at index @element_nr. Note
309 * that this is a copy of the data that was passed in. If you
310 * are using this to store pointers, you'll get back &ptr. You
311 * may instead wish to use the flex_array_get_ptr helper.
313 * Locking must be provided by the caller.
315 void *flex_array_get(struct flex_array
*fa
, unsigned int element_nr
)
318 struct flex_array_part
*part
;
320 if (!fa
->element_size
)
322 if (element_nr
>= fa
->total_nr_elements
)
324 if (elements_fit_in_base(fa
))
325 part
= (struct flex_array_part
*)&fa
->parts
[0];
327 part_nr
= fa_element_to_part_nr(fa
, element_nr
);
328 part
= fa
->parts
[part_nr
];
332 return &part
->elements
[index_inside_part(fa
, element_nr
, part_nr
)];
334 EXPORT_SYMBOL(flex_array_get
);
337 * flex_array_get_ptr - pull a ptr back out of the array
338 * @fa: the flex array from which to extract data
339 * @element_nr: index of the element to fetch from the array
341 * Returns the pointer placed in the flex array at element_nr using
342 * flex_array_put_ptr(). This function should not be called if the
343 * element in question was not set using the _put_ptr() helper.
345 void *flex_array_get_ptr(struct flex_array
*fa
, unsigned int element_nr
)
349 tmp
= flex_array_get(fa
, element_nr
);
355 EXPORT_SYMBOL(flex_array_get_ptr
);
357 static int part_is_free(struct flex_array_part
*part
)
361 for (i
= 0; i
< sizeof(struct flex_array_part
); i
++)
362 if (part
->elements
[i
] != FLEX_ARRAY_FREE
)
368 * flex_array_shrink - free unused second-level pages
369 * @fa: the flex array to shrink
371 * Frees all second-level pages that consist solely of unused
372 * elements. Returns the number of pages freed.
374 * Locking must be provided by the caller.
376 int flex_array_shrink(struct flex_array
*fa
)
378 struct flex_array_part
*part
;
382 if (!fa
->total_nr_elements
|| !fa
->element_size
)
384 if (elements_fit_in_base(fa
))
386 for (part_nr
= 0; part_nr
< FLEX_ARRAY_NR_BASE_PTRS
; part_nr
++) {
387 part
= fa
->parts
[part_nr
];
390 if (part_is_free(part
)) {
391 fa
->parts
[part_nr
] = NULL
;
398 EXPORT_SYMBOL(flex_array_shrink
);