usb: musb: Remove unnecessary shutdown function
[linux-2.6/btrfs-unstable.git] / fs / dcache.c
blobad4a542e9babdceb321a77ef5c8837ad70177a6a
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
43 #include "internal.h"
44 #include "mount.h"
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
89 EXPORT_SYMBOL(rename_lock);
91 static struct kmem_cache *dentry_cache __read_mostly;
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
114 #define IN_LOOKUP_SHIFT 10
115 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
117 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
118 unsigned int hash)
120 hash += (unsigned long) parent / L1_CACHE_BYTES;
121 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
130 static DEFINE_PER_CPU(long, nr_dentry);
131 static DEFINE_PER_CPU(long, nr_dentry_unused);
133 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
136 * Here we resort to our own counters instead of using generic per-cpu counters
137 * for consistency with what the vfs inode code does. We are expected to harvest
138 * better code and performance by having our own specialized counters.
140 * Please note that the loop is done over all possible CPUs, not over all online
141 * CPUs. The reason for this is that we don't want to play games with CPUs going
142 * on and off. If one of them goes off, we will just keep their counters.
144 * glommer: See cffbc8a for details, and if you ever intend to change this,
145 * please update all vfs counters to match.
147 static long get_nr_dentry(void)
149 int i;
150 long sum = 0;
151 for_each_possible_cpu(i)
152 sum += per_cpu(nr_dentry, i);
153 return sum < 0 ? 0 : sum;
156 static long get_nr_dentry_unused(void)
158 int i;
159 long sum = 0;
160 for_each_possible_cpu(i)
161 sum += per_cpu(nr_dentry_unused, i);
162 return sum < 0 ? 0 : sum;
165 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
166 size_t *lenp, loff_t *ppos)
168 dentry_stat.nr_dentry = get_nr_dentry();
169 dentry_stat.nr_unused = get_nr_dentry_unused();
170 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
172 #endif
175 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
176 * The strings are both count bytes long, and count is non-zero.
178 #ifdef CONFIG_DCACHE_WORD_ACCESS
180 #include <asm/word-at-a-time.h>
182 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
183 * aligned allocation for this particular component. We don't
184 * strictly need the load_unaligned_zeropad() safety, but it
185 * doesn't hurt either.
187 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
188 * need the careful unaligned handling.
190 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
192 unsigned long a,b,mask;
194 for (;;) {
195 a = *(unsigned long *)cs;
196 b = load_unaligned_zeropad(ct);
197 if (tcount < sizeof(unsigned long))
198 break;
199 if (unlikely(a != b))
200 return 1;
201 cs += sizeof(unsigned long);
202 ct += sizeof(unsigned long);
203 tcount -= sizeof(unsigned long);
204 if (!tcount)
205 return 0;
207 mask = bytemask_from_count(tcount);
208 return unlikely(!!((a ^ b) & mask));
211 #else
213 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
215 do {
216 if (*cs != *ct)
217 return 1;
218 cs++;
219 ct++;
220 tcount--;
221 } while (tcount);
222 return 0;
225 #endif
227 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
229 const unsigned char *cs;
231 * Be careful about RCU walk racing with rename:
232 * use ACCESS_ONCE to fetch the name pointer.
234 * NOTE! Even if a rename will mean that the length
235 * was not loaded atomically, we don't care. The
236 * RCU walk will check the sequence count eventually,
237 * and catch it. And we won't overrun the buffer,
238 * because we're reading the name pointer atomically,
239 * and a dentry name is guaranteed to be properly
240 * terminated with a NUL byte.
242 * End result: even if 'len' is wrong, we'll exit
243 * early because the data cannot match (there can
244 * be no NUL in the ct/tcount data)
246 cs = ACCESS_ONCE(dentry->d_name.name);
247 smp_read_barrier_depends();
248 return dentry_string_cmp(cs, ct, tcount);
251 struct external_name {
252 union {
253 atomic_t count;
254 struct rcu_head head;
255 } u;
256 unsigned char name[];
259 static inline struct external_name *external_name(struct dentry *dentry)
261 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 static void __d_free(struct rcu_head *head)
266 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
268 kmem_cache_free(dentry_cache, dentry);
271 static void __d_free_external(struct rcu_head *head)
273 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
274 kfree(external_name(dentry));
275 kmem_cache_free(dentry_cache, dentry);
278 static inline int dname_external(const struct dentry *dentry)
280 return dentry->d_name.name != dentry->d_iname;
283 static inline void __d_set_inode_and_type(struct dentry *dentry,
284 struct inode *inode,
285 unsigned type_flags)
287 unsigned flags;
289 dentry->d_inode = inode;
290 flags = READ_ONCE(dentry->d_flags);
291 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
292 flags |= type_flags;
293 WRITE_ONCE(dentry->d_flags, flags);
296 static inline void __d_clear_type_and_inode(struct dentry *dentry)
298 unsigned flags = READ_ONCE(dentry->d_flags);
300 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
301 WRITE_ONCE(dentry->d_flags, flags);
302 dentry->d_inode = NULL;
305 static void dentry_free(struct dentry *dentry)
307 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
308 if (unlikely(dname_external(dentry))) {
309 struct external_name *p = external_name(dentry);
310 if (likely(atomic_dec_and_test(&p->u.count))) {
311 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
312 return;
315 /* if dentry was never visible to RCU, immediate free is OK */
316 if (!(dentry->d_flags & DCACHE_RCUACCESS))
317 __d_free(&dentry->d_u.d_rcu);
318 else
319 call_rcu(&dentry->d_u.d_rcu, __d_free);
323 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
324 * @dentry: the target dentry
325 * After this call, in-progress rcu-walk path lookup will fail. This
326 * should be called after unhashing, and after changing d_inode (if
327 * the dentry has not already been unhashed).
329 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
331 lockdep_assert_held(&dentry->d_lock);
332 /* Go through am invalidation barrier */
333 write_seqcount_invalidate(&dentry->d_seq);
337 * Release the dentry's inode, using the filesystem
338 * d_iput() operation if defined. Dentry has no refcount
339 * and is unhashed.
341 static void dentry_iput(struct dentry * dentry)
342 __releases(dentry->d_lock)
343 __releases(dentry->d_inode->i_lock)
345 struct inode *inode = dentry->d_inode;
346 if (inode) {
347 __d_clear_type_and_inode(dentry);
348 hlist_del_init(&dentry->d_u.d_alias);
349 spin_unlock(&dentry->d_lock);
350 spin_unlock(&inode->i_lock);
351 if (!inode->i_nlink)
352 fsnotify_inoderemove(inode);
353 if (dentry->d_op && dentry->d_op->d_iput)
354 dentry->d_op->d_iput(dentry, inode);
355 else
356 iput(inode);
357 } else {
358 spin_unlock(&dentry->d_lock);
363 * Release the dentry's inode, using the filesystem
364 * d_iput() operation if defined. dentry remains in-use.
366 static void dentry_unlink_inode(struct dentry * dentry)
367 __releases(dentry->d_lock)
368 __releases(dentry->d_inode->i_lock)
370 struct inode *inode = dentry->d_inode;
372 raw_write_seqcount_begin(&dentry->d_seq);
373 __d_clear_type_and_inode(dentry);
374 hlist_del_init(&dentry->d_u.d_alias);
375 raw_write_seqcount_end(&dentry->d_seq);
376 spin_unlock(&dentry->d_lock);
377 spin_unlock(&inode->i_lock);
378 if (!inode->i_nlink)
379 fsnotify_inoderemove(inode);
380 if (dentry->d_op && dentry->d_op->d_iput)
381 dentry->d_op->d_iput(dentry, inode);
382 else
383 iput(inode);
387 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
388 * is in use - which includes both the "real" per-superblock
389 * LRU list _and_ the DCACHE_SHRINK_LIST use.
391 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
392 * on the shrink list (ie not on the superblock LRU list).
394 * The per-cpu "nr_dentry_unused" counters are updated with
395 * the DCACHE_LRU_LIST bit.
397 * These helper functions make sure we always follow the
398 * rules. d_lock must be held by the caller.
400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
401 static void d_lru_add(struct dentry *dentry)
403 D_FLAG_VERIFY(dentry, 0);
404 dentry->d_flags |= DCACHE_LRU_LIST;
405 this_cpu_inc(nr_dentry_unused);
406 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
409 static void d_lru_del(struct dentry *dentry)
411 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412 dentry->d_flags &= ~DCACHE_LRU_LIST;
413 this_cpu_dec(nr_dentry_unused);
414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
417 static void d_shrink_del(struct dentry *dentry)
419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 list_del_init(&dentry->d_lru);
421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 this_cpu_dec(nr_dentry_unused);
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
427 D_FLAG_VERIFY(dentry, 0);
428 list_add(&dentry->d_lru, list);
429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 this_cpu_inc(nr_dentry_unused);
434 * These can only be called under the global LRU lock, ie during the
435 * callback for freeing the LRU list. "isolate" removes it from the
436 * LRU lists entirely, while shrink_move moves it to the indicated
437 * private list.
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags &= ~DCACHE_LRU_LIST;
443 this_cpu_dec(nr_dentry_unused);
444 list_lru_isolate(lru, &dentry->d_lru);
447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
448 struct list_head *list)
450 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
451 dentry->d_flags |= DCACHE_SHRINK_LIST;
452 list_lru_isolate_move(lru, &dentry->d_lru, list);
456 * dentry_lru_(add|del)_list) must be called with d_lock held.
458 static void dentry_lru_add(struct dentry *dentry)
460 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
461 d_lru_add(dentry);
465 * d_drop - drop a dentry
466 * @dentry: dentry to drop
468 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
469 * be found through a VFS lookup any more. Note that this is different from
470 * deleting the dentry - d_delete will try to mark the dentry negative if
471 * possible, giving a successful _negative_ lookup, while d_drop will
472 * just make the cache lookup fail.
474 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
475 * reason (NFS timeouts or autofs deletes).
477 * __d_drop requires dentry->d_lock.
479 void __d_drop(struct dentry *dentry)
481 if (!d_unhashed(dentry)) {
482 struct hlist_bl_head *b;
484 * Hashed dentries are normally on the dentry hashtable,
485 * with the exception of those newly allocated by
486 * d_obtain_alias, which are always IS_ROOT:
488 if (unlikely(IS_ROOT(dentry)))
489 b = &dentry->d_sb->s_anon;
490 else
491 b = d_hash(dentry->d_parent, dentry->d_name.hash);
493 hlist_bl_lock(b);
494 __hlist_bl_del(&dentry->d_hash);
495 dentry->d_hash.pprev = NULL;
496 hlist_bl_unlock(b);
497 dentry_rcuwalk_invalidate(dentry);
500 EXPORT_SYMBOL(__d_drop);
502 void d_drop(struct dentry *dentry)
504 spin_lock(&dentry->d_lock);
505 __d_drop(dentry);
506 spin_unlock(&dentry->d_lock);
508 EXPORT_SYMBOL(d_drop);
510 static void __dentry_kill(struct dentry *dentry)
512 struct dentry *parent = NULL;
513 bool can_free = true;
514 if (!IS_ROOT(dentry))
515 parent = dentry->d_parent;
518 * The dentry is now unrecoverably dead to the world.
520 lockref_mark_dead(&dentry->d_lockref);
523 * inform the fs via d_prune that this dentry is about to be
524 * unhashed and destroyed.
526 if (dentry->d_flags & DCACHE_OP_PRUNE)
527 dentry->d_op->d_prune(dentry);
529 if (dentry->d_flags & DCACHE_LRU_LIST) {
530 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
531 d_lru_del(dentry);
533 /* if it was on the hash then remove it */
534 __d_drop(dentry);
535 __list_del_entry(&dentry->d_child);
537 * Inform d_walk() that we are no longer attached to the
538 * dentry tree
540 dentry->d_flags |= DCACHE_DENTRY_KILLED;
541 if (parent)
542 spin_unlock(&parent->d_lock);
543 dentry_iput(dentry);
545 * dentry_iput drops the locks, at which point nobody (except
546 * transient RCU lookups) can reach this dentry.
548 BUG_ON(dentry->d_lockref.count > 0);
549 this_cpu_dec(nr_dentry);
550 if (dentry->d_op && dentry->d_op->d_release)
551 dentry->d_op->d_release(dentry);
553 spin_lock(&dentry->d_lock);
554 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
555 dentry->d_flags |= DCACHE_MAY_FREE;
556 can_free = false;
558 spin_unlock(&dentry->d_lock);
559 if (likely(can_free))
560 dentry_free(dentry);
564 * Finish off a dentry we've decided to kill.
565 * dentry->d_lock must be held, returns with it unlocked.
566 * If ref is non-zero, then decrement the refcount too.
567 * Returns dentry requiring refcount drop, or NULL if we're done.
569 static struct dentry *dentry_kill(struct dentry *dentry)
570 __releases(dentry->d_lock)
572 struct inode *inode = dentry->d_inode;
573 struct dentry *parent = NULL;
575 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
576 goto failed;
578 if (!IS_ROOT(dentry)) {
579 parent = dentry->d_parent;
580 if (unlikely(!spin_trylock(&parent->d_lock))) {
581 if (inode)
582 spin_unlock(&inode->i_lock);
583 goto failed;
587 __dentry_kill(dentry);
588 return parent;
590 failed:
591 spin_unlock(&dentry->d_lock);
592 cpu_relax();
593 return dentry; /* try again with same dentry */
596 static inline struct dentry *lock_parent(struct dentry *dentry)
598 struct dentry *parent = dentry->d_parent;
599 if (IS_ROOT(dentry))
600 return NULL;
601 if (unlikely(dentry->d_lockref.count < 0))
602 return NULL;
603 if (likely(spin_trylock(&parent->d_lock)))
604 return parent;
605 rcu_read_lock();
606 spin_unlock(&dentry->d_lock);
607 again:
608 parent = ACCESS_ONCE(dentry->d_parent);
609 spin_lock(&parent->d_lock);
611 * We can't blindly lock dentry until we are sure
612 * that we won't violate the locking order.
613 * Any changes of dentry->d_parent must have
614 * been done with parent->d_lock held, so
615 * spin_lock() above is enough of a barrier
616 * for checking if it's still our child.
618 if (unlikely(parent != dentry->d_parent)) {
619 spin_unlock(&parent->d_lock);
620 goto again;
622 rcu_read_unlock();
623 if (parent != dentry)
624 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
625 else
626 parent = NULL;
627 return parent;
631 * Try to do a lockless dput(), and return whether that was successful.
633 * If unsuccessful, we return false, having already taken the dentry lock.
635 * The caller needs to hold the RCU read lock, so that the dentry is
636 * guaranteed to stay around even if the refcount goes down to zero!
638 static inline bool fast_dput(struct dentry *dentry)
640 int ret;
641 unsigned int d_flags;
644 * If we have a d_op->d_delete() operation, we sould not
645 * let the dentry count go to zero, so use "put_or_lock".
647 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
648 return lockref_put_or_lock(&dentry->d_lockref);
651 * .. otherwise, we can try to just decrement the
652 * lockref optimistically.
654 ret = lockref_put_return(&dentry->d_lockref);
657 * If the lockref_put_return() failed due to the lock being held
658 * by somebody else, the fast path has failed. We will need to
659 * get the lock, and then check the count again.
661 if (unlikely(ret < 0)) {
662 spin_lock(&dentry->d_lock);
663 if (dentry->d_lockref.count > 1) {
664 dentry->d_lockref.count--;
665 spin_unlock(&dentry->d_lock);
666 return 1;
668 return 0;
672 * If we weren't the last ref, we're done.
674 if (ret)
675 return 1;
678 * Careful, careful. The reference count went down
679 * to zero, but we don't hold the dentry lock, so
680 * somebody else could get it again, and do another
681 * dput(), and we need to not race with that.
683 * However, there is a very special and common case
684 * where we don't care, because there is nothing to
685 * do: the dentry is still hashed, it does not have
686 * a 'delete' op, and it's referenced and already on
687 * the LRU list.
689 * NOTE! Since we aren't locked, these values are
690 * not "stable". However, it is sufficient that at
691 * some point after we dropped the reference the
692 * dentry was hashed and the flags had the proper
693 * value. Other dentry users may have re-gotten
694 * a reference to the dentry and change that, but
695 * our work is done - we can leave the dentry
696 * around with a zero refcount.
698 smp_rmb();
699 d_flags = ACCESS_ONCE(dentry->d_flags);
700 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
702 /* Nothing to do? Dropping the reference was all we needed? */
703 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
704 return 1;
707 * Not the fast normal case? Get the lock. We've already decremented
708 * the refcount, but we'll need to re-check the situation after
709 * getting the lock.
711 spin_lock(&dentry->d_lock);
714 * Did somebody else grab a reference to it in the meantime, and
715 * we're no longer the last user after all? Alternatively, somebody
716 * else could have killed it and marked it dead. Either way, we
717 * don't need to do anything else.
719 if (dentry->d_lockref.count) {
720 spin_unlock(&dentry->d_lock);
721 return 1;
725 * Re-get the reference we optimistically dropped. We hold the
726 * lock, and we just tested that it was zero, so we can just
727 * set it to 1.
729 dentry->d_lockref.count = 1;
730 return 0;
735 * This is dput
737 * This is complicated by the fact that we do not want to put
738 * dentries that are no longer on any hash chain on the unused
739 * list: we'd much rather just get rid of them immediately.
741 * However, that implies that we have to traverse the dentry
742 * tree upwards to the parents which might _also_ now be
743 * scheduled for deletion (it may have been only waiting for
744 * its last child to go away).
746 * This tail recursion is done by hand as we don't want to depend
747 * on the compiler to always get this right (gcc generally doesn't).
748 * Real recursion would eat up our stack space.
752 * dput - release a dentry
753 * @dentry: dentry to release
755 * Release a dentry. This will drop the usage count and if appropriate
756 * call the dentry unlink method as well as removing it from the queues and
757 * releasing its resources. If the parent dentries were scheduled for release
758 * they too may now get deleted.
760 void dput(struct dentry *dentry)
762 if (unlikely(!dentry))
763 return;
765 repeat:
766 rcu_read_lock();
767 if (likely(fast_dput(dentry))) {
768 rcu_read_unlock();
769 return;
772 /* Slow case: now with the dentry lock held */
773 rcu_read_unlock();
775 WARN_ON(d_in_lookup(dentry));
777 /* Unreachable? Get rid of it */
778 if (unlikely(d_unhashed(dentry)))
779 goto kill_it;
781 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
782 goto kill_it;
784 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
785 if (dentry->d_op->d_delete(dentry))
786 goto kill_it;
789 if (!(dentry->d_flags & DCACHE_REFERENCED))
790 dentry->d_flags |= DCACHE_REFERENCED;
791 dentry_lru_add(dentry);
793 dentry->d_lockref.count--;
794 spin_unlock(&dentry->d_lock);
795 return;
797 kill_it:
798 dentry = dentry_kill(dentry);
799 if (dentry)
800 goto repeat;
802 EXPORT_SYMBOL(dput);
805 /* This must be called with d_lock held */
806 static inline void __dget_dlock(struct dentry *dentry)
808 dentry->d_lockref.count++;
811 static inline void __dget(struct dentry *dentry)
813 lockref_get(&dentry->d_lockref);
816 struct dentry *dget_parent(struct dentry *dentry)
818 int gotref;
819 struct dentry *ret;
822 * Do optimistic parent lookup without any
823 * locking.
825 rcu_read_lock();
826 ret = ACCESS_ONCE(dentry->d_parent);
827 gotref = lockref_get_not_zero(&ret->d_lockref);
828 rcu_read_unlock();
829 if (likely(gotref)) {
830 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
831 return ret;
832 dput(ret);
835 repeat:
837 * Don't need rcu_dereference because we re-check it was correct under
838 * the lock.
840 rcu_read_lock();
841 ret = dentry->d_parent;
842 spin_lock(&ret->d_lock);
843 if (unlikely(ret != dentry->d_parent)) {
844 spin_unlock(&ret->d_lock);
845 rcu_read_unlock();
846 goto repeat;
848 rcu_read_unlock();
849 BUG_ON(!ret->d_lockref.count);
850 ret->d_lockref.count++;
851 spin_unlock(&ret->d_lock);
852 return ret;
854 EXPORT_SYMBOL(dget_parent);
857 * d_find_alias - grab a hashed alias of inode
858 * @inode: inode in question
860 * If inode has a hashed alias, or is a directory and has any alias,
861 * acquire the reference to alias and return it. Otherwise return NULL.
862 * Notice that if inode is a directory there can be only one alias and
863 * it can be unhashed only if it has no children, or if it is the root
864 * of a filesystem, or if the directory was renamed and d_revalidate
865 * was the first vfs operation to notice.
867 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
868 * any other hashed alias over that one.
870 static struct dentry *__d_find_alias(struct inode *inode)
872 struct dentry *alias, *discon_alias;
874 again:
875 discon_alias = NULL;
876 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
877 spin_lock(&alias->d_lock);
878 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
879 if (IS_ROOT(alias) &&
880 (alias->d_flags & DCACHE_DISCONNECTED)) {
881 discon_alias = alias;
882 } else {
883 __dget_dlock(alias);
884 spin_unlock(&alias->d_lock);
885 return alias;
888 spin_unlock(&alias->d_lock);
890 if (discon_alias) {
891 alias = discon_alias;
892 spin_lock(&alias->d_lock);
893 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
894 __dget_dlock(alias);
895 spin_unlock(&alias->d_lock);
896 return alias;
898 spin_unlock(&alias->d_lock);
899 goto again;
901 return NULL;
904 struct dentry *d_find_alias(struct inode *inode)
906 struct dentry *de = NULL;
908 if (!hlist_empty(&inode->i_dentry)) {
909 spin_lock(&inode->i_lock);
910 de = __d_find_alias(inode);
911 spin_unlock(&inode->i_lock);
913 return de;
915 EXPORT_SYMBOL(d_find_alias);
918 * Try to kill dentries associated with this inode.
919 * WARNING: you must own a reference to inode.
921 void d_prune_aliases(struct inode *inode)
923 struct dentry *dentry;
924 restart:
925 spin_lock(&inode->i_lock);
926 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
927 spin_lock(&dentry->d_lock);
928 if (!dentry->d_lockref.count) {
929 struct dentry *parent = lock_parent(dentry);
930 if (likely(!dentry->d_lockref.count)) {
931 __dentry_kill(dentry);
932 dput(parent);
933 goto restart;
935 if (parent)
936 spin_unlock(&parent->d_lock);
938 spin_unlock(&dentry->d_lock);
940 spin_unlock(&inode->i_lock);
942 EXPORT_SYMBOL(d_prune_aliases);
944 static void shrink_dentry_list(struct list_head *list)
946 struct dentry *dentry, *parent;
948 while (!list_empty(list)) {
949 struct inode *inode;
950 dentry = list_entry(list->prev, struct dentry, d_lru);
951 spin_lock(&dentry->d_lock);
952 parent = lock_parent(dentry);
955 * The dispose list is isolated and dentries are not accounted
956 * to the LRU here, so we can simply remove it from the list
957 * here regardless of whether it is referenced or not.
959 d_shrink_del(dentry);
962 * We found an inuse dentry which was not removed from
963 * the LRU because of laziness during lookup. Do not free it.
965 if (dentry->d_lockref.count > 0) {
966 spin_unlock(&dentry->d_lock);
967 if (parent)
968 spin_unlock(&parent->d_lock);
969 continue;
973 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
974 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
975 spin_unlock(&dentry->d_lock);
976 if (parent)
977 spin_unlock(&parent->d_lock);
978 if (can_free)
979 dentry_free(dentry);
980 continue;
983 inode = dentry->d_inode;
984 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
985 d_shrink_add(dentry, list);
986 spin_unlock(&dentry->d_lock);
987 if (parent)
988 spin_unlock(&parent->d_lock);
989 continue;
992 __dentry_kill(dentry);
995 * We need to prune ancestors too. This is necessary to prevent
996 * quadratic behavior of shrink_dcache_parent(), but is also
997 * expected to be beneficial in reducing dentry cache
998 * fragmentation.
1000 dentry = parent;
1001 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1002 parent = lock_parent(dentry);
1003 if (dentry->d_lockref.count != 1) {
1004 dentry->d_lockref.count--;
1005 spin_unlock(&dentry->d_lock);
1006 if (parent)
1007 spin_unlock(&parent->d_lock);
1008 break;
1010 inode = dentry->d_inode; /* can't be NULL */
1011 if (unlikely(!spin_trylock(&inode->i_lock))) {
1012 spin_unlock(&dentry->d_lock);
1013 if (parent)
1014 spin_unlock(&parent->d_lock);
1015 cpu_relax();
1016 continue;
1018 __dentry_kill(dentry);
1019 dentry = parent;
1024 static enum lru_status dentry_lru_isolate(struct list_head *item,
1025 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1027 struct list_head *freeable = arg;
1028 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1032 * we are inverting the lru lock/dentry->d_lock here,
1033 * so use a trylock. If we fail to get the lock, just skip
1034 * it
1036 if (!spin_trylock(&dentry->d_lock))
1037 return LRU_SKIP;
1040 * Referenced dentries are still in use. If they have active
1041 * counts, just remove them from the LRU. Otherwise give them
1042 * another pass through the LRU.
1044 if (dentry->d_lockref.count) {
1045 d_lru_isolate(lru, dentry);
1046 spin_unlock(&dentry->d_lock);
1047 return LRU_REMOVED;
1050 if (dentry->d_flags & DCACHE_REFERENCED) {
1051 dentry->d_flags &= ~DCACHE_REFERENCED;
1052 spin_unlock(&dentry->d_lock);
1055 * The list move itself will be made by the common LRU code. At
1056 * this point, we've dropped the dentry->d_lock but keep the
1057 * lru lock. This is safe to do, since every list movement is
1058 * protected by the lru lock even if both locks are held.
1060 * This is guaranteed by the fact that all LRU management
1061 * functions are intermediated by the LRU API calls like
1062 * list_lru_add and list_lru_del. List movement in this file
1063 * only ever occur through this functions or through callbacks
1064 * like this one, that are called from the LRU API.
1066 * The only exceptions to this are functions like
1067 * shrink_dentry_list, and code that first checks for the
1068 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1069 * operating only with stack provided lists after they are
1070 * properly isolated from the main list. It is thus, always a
1071 * local access.
1073 return LRU_ROTATE;
1076 d_lru_shrink_move(lru, dentry, freeable);
1077 spin_unlock(&dentry->d_lock);
1079 return LRU_REMOVED;
1083 * prune_dcache_sb - shrink the dcache
1084 * @sb: superblock
1085 * @sc: shrink control, passed to list_lru_shrink_walk()
1087 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1088 * is done when we need more memory and called from the superblock shrinker
1089 * function.
1091 * This function may fail to free any resources if all the dentries are in
1092 * use.
1094 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1096 LIST_HEAD(dispose);
1097 long freed;
1099 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1100 dentry_lru_isolate, &dispose);
1101 shrink_dentry_list(&dispose);
1102 return freed;
1105 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1106 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1108 struct list_head *freeable = arg;
1109 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1112 * we are inverting the lru lock/dentry->d_lock here,
1113 * so use a trylock. If we fail to get the lock, just skip
1114 * it
1116 if (!spin_trylock(&dentry->d_lock))
1117 return LRU_SKIP;
1119 d_lru_shrink_move(lru, dentry, freeable);
1120 spin_unlock(&dentry->d_lock);
1122 return LRU_REMOVED;
1127 * shrink_dcache_sb - shrink dcache for a superblock
1128 * @sb: superblock
1130 * Shrink the dcache for the specified super block. This is used to free
1131 * the dcache before unmounting a file system.
1133 void shrink_dcache_sb(struct super_block *sb)
1135 long freed;
1137 do {
1138 LIST_HEAD(dispose);
1140 freed = list_lru_walk(&sb->s_dentry_lru,
1141 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1143 this_cpu_sub(nr_dentry_unused, freed);
1144 shrink_dentry_list(&dispose);
1145 } while (freed > 0);
1147 EXPORT_SYMBOL(shrink_dcache_sb);
1150 * enum d_walk_ret - action to talke during tree walk
1151 * @D_WALK_CONTINUE: contrinue walk
1152 * @D_WALK_QUIT: quit walk
1153 * @D_WALK_NORETRY: quit when retry is needed
1154 * @D_WALK_SKIP: skip this dentry and its children
1156 enum d_walk_ret {
1157 D_WALK_CONTINUE,
1158 D_WALK_QUIT,
1159 D_WALK_NORETRY,
1160 D_WALK_SKIP,
1164 * d_walk - walk the dentry tree
1165 * @parent: start of walk
1166 * @data: data passed to @enter() and @finish()
1167 * @enter: callback when first entering the dentry
1168 * @finish: callback when successfully finished the walk
1170 * The @enter() and @finish() callbacks are called with d_lock held.
1172 static void d_walk(struct dentry *parent, void *data,
1173 enum d_walk_ret (*enter)(void *, struct dentry *),
1174 void (*finish)(void *))
1176 struct dentry *this_parent;
1177 struct list_head *next;
1178 unsigned seq = 0;
1179 enum d_walk_ret ret;
1180 bool retry = true;
1182 again:
1183 read_seqbegin_or_lock(&rename_lock, &seq);
1184 this_parent = parent;
1185 spin_lock(&this_parent->d_lock);
1187 ret = enter(data, this_parent);
1188 switch (ret) {
1189 case D_WALK_CONTINUE:
1190 break;
1191 case D_WALK_QUIT:
1192 case D_WALK_SKIP:
1193 goto out_unlock;
1194 case D_WALK_NORETRY:
1195 retry = false;
1196 break;
1198 repeat:
1199 next = this_parent->d_subdirs.next;
1200 resume:
1201 while (next != &this_parent->d_subdirs) {
1202 struct list_head *tmp = next;
1203 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1204 next = tmp->next;
1206 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1208 ret = enter(data, dentry);
1209 switch (ret) {
1210 case D_WALK_CONTINUE:
1211 break;
1212 case D_WALK_QUIT:
1213 spin_unlock(&dentry->d_lock);
1214 goto out_unlock;
1215 case D_WALK_NORETRY:
1216 retry = false;
1217 break;
1218 case D_WALK_SKIP:
1219 spin_unlock(&dentry->d_lock);
1220 continue;
1223 if (!list_empty(&dentry->d_subdirs)) {
1224 spin_unlock(&this_parent->d_lock);
1225 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1226 this_parent = dentry;
1227 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1228 goto repeat;
1230 spin_unlock(&dentry->d_lock);
1233 * All done at this level ... ascend and resume the search.
1235 rcu_read_lock();
1236 ascend:
1237 if (this_parent != parent) {
1238 struct dentry *child = this_parent;
1239 this_parent = child->d_parent;
1241 spin_unlock(&child->d_lock);
1242 spin_lock(&this_parent->d_lock);
1244 /* might go back up the wrong parent if we have had a rename. */
1245 if (need_seqretry(&rename_lock, seq))
1246 goto rename_retry;
1247 /* go into the first sibling still alive */
1248 do {
1249 next = child->d_child.next;
1250 if (next == &this_parent->d_subdirs)
1251 goto ascend;
1252 child = list_entry(next, struct dentry, d_child);
1253 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1254 rcu_read_unlock();
1255 goto resume;
1257 if (need_seqretry(&rename_lock, seq))
1258 goto rename_retry;
1259 rcu_read_unlock();
1260 if (finish)
1261 finish(data);
1263 out_unlock:
1264 spin_unlock(&this_parent->d_lock);
1265 done_seqretry(&rename_lock, seq);
1266 return;
1268 rename_retry:
1269 spin_unlock(&this_parent->d_lock);
1270 rcu_read_unlock();
1271 BUG_ON(seq & 1);
1272 if (!retry)
1273 return;
1274 seq = 1;
1275 goto again;
1279 * Search for at least 1 mount point in the dentry's subdirs.
1280 * We descend to the next level whenever the d_subdirs
1281 * list is non-empty and continue searching.
1284 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1286 int *ret = data;
1287 if (d_mountpoint(dentry)) {
1288 *ret = 1;
1289 return D_WALK_QUIT;
1291 return D_WALK_CONTINUE;
1295 * have_submounts - check for mounts over a dentry
1296 * @parent: dentry to check.
1298 * Return true if the parent or its subdirectories contain
1299 * a mount point
1301 int have_submounts(struct dentry *parent)
1303 int ret = 0;
1305 d_walk(parent, &ret, check_mount, NULL);
1307 return ret;
1309 EXPORT_SYMBOL(have_submounts);
1312 * Called by mount code to set a mountpoint and check if the mountpoint is
1313 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1314 * subtree can become unreachable).
1316 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1317 * this reason take rename_lock and d_lock on dentry and ancestors.
1319 int d_set_mounted(struct dentry *dentry)
1321 struct dentry *p;
1322 int ret = -ENOENT;
1323 write_seqlock(&rename_lock);
1324 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1325 /* Need exclusion wrt. d_invalidate() */
1326 spin_lock(&p->d_lock);
1327 if (unlikely(d_unhashed(p))) {
1328 spin_unlock(&p->d_lock);
1329 goto out;
1331 spin_unlock(&p->d_lock);
1333 spin_lock(&dentry->d_lock);
1334 if (!d_unlinked(dentry)) {
1335 dentry->d_flags |= DCACHE_MOUNTED;
1336 ret = 0;
1338 spin_unlock(&dentry->d_lock);
1339 out:
1340 write_sequnlock(&rename_lock);
1341 return ret;
1345 * Search the dentry child list of the specified parent,
1346 * and move any unused dentries to the end of the unused
1347 * list for prune_dcache(). We descend to the next level
1348 * whenever the d_subdirs list is non-empty and continue
1349 * searching.
1351 * It returns zero iff there are no unused children,
1352 * otherwise it returns the number of children moved to
1353 * the end of the unused list. This may not be the total
1354 * number of unused children, because select_parent can
1355 * drop the lock and return early due to latency
1356 * constraints.
1359 struct select_data {
1360 struct dentry *start;
1361 struct list_head dispose;
1362 int found;
1365 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1367 struct select_data *data = _data;
1368 enum d_walk_ret ret = D_WALK_CONTINUE;
1370 if (data->start == dentry)
1371 goto out;
1373 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1374 data->found++;
1375 } else {
1376 if (dentry->d_flags & DCACHE_LRU_LIST)
1377 d_lru_del(dentry);
1378 if (!dentry->d_lockref.count) {
1379 d_shrink_add(dentry, &data->dispose);
1380 data->found++;
1384 * We can return to the caller if we have found some (this
1385 * ensures forward progress). We'll be coming back to find
1386 * the rest.
1388 if (!list_empty(&data->dispose))
1389 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1390 out:
1391 return ret;
1395 * shrink_dcache_parent - prune dcache
1396 * @parent: parent of entries to prune
1398 * Prune the dcache to remove unused children of the parent dentry.
1400 void shrink_dcache_parent(struct dentry *parent)
1402 for (;;) {
1403 struct select_data data;
1405 INIT_LIST_HEAD(&data.dispose);
1406 data.start = parent;
1407 data.found = 0;
1409 d_walk(parent, &data, select_collect, NULL);
1410 if (!data.found)
1411 break;
1413 shrink_dentry_list(&data.dispose);
1414 cond_resched();
1417 EXPORT_SYMBOL(shrink_dcache_parent);
1419 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1421 /* it has busy descendents; complain about those instead */
1422 if (!list_empty(&dentry->d_subdirs))
1423 return D_WALK_CONTINUE;
1425 /* root with refcount 1 is fine */
1426 if (dentry == _data && dentry->d_lockref.count == 1)
1427 return D_WALK_CONTINUE;
1429 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1430 " still in use (%d) [unmount of %s %s]\n",
1431 dentry,
1432 dentry->d_inode ?
1433 dentry->d_inode->i_ino : 0UL,
1434 dentry,
1435 dentry->d_lockref.count,
1436 dentry->d_sb->s_type->name,
1437 dentry->d_sb->s_id);
1438 WARN_ON(1);
1439 return D_WALK_CONTINUE;
1442 static void do_one_tree(struct dentry *dentry)
1444 shrink_dcache_parent(dentry);
1445 d_walk(dentry, dentry, umount_check, NULL);
1446 d_drop(dentry);
1447 dput(dentry);
1451 * destroy the dentries attached to a superblock on unmounting
1453 void shrink_dcache_for_umount(struct super_block *sb)
1455 struct dentry *dentry;
1457 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1459 dentry = sb->s_root;
1460 sb->s_root = NULL;
1461 do_one_tree(dentry);
1463 while (!hlist_bl_empty(&sb->s_anon)) {
1464 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1465 do_one_tree(dentry);
1469 struct detach_data {
1470 struct select_data select;
1471 struct dentry *mountpoint;
1473 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1475 struct detach_data *data = _data;
1477 if (d_mountpoint(dentry)) {
1478 __dget_dlock(dentry);
1479 data->mountpoint = dentry;
1480 return D_WALK_QUIT;
1483 return select_collect(&data->select, dentry);
1486 static void check_and_drop(void *_data)
1488 struct detach_data *data = _data;
1490 if (!data->mountpoint && !data->select.found)
1491 __d_drop(data->select.start);
1495 * d_invalidate - detach submounts, prune dcache, and drop
1496 * @dentry: dentry to invalidate (aka detach, prune and drop)
1498 * no dcache lock.
1500 * The final d_drop is done as an atomic operation relative to
1501 * rename_lock ensuring there are no races with d_set_mounted. This
1502 * ensures there are no unhashed dentries on the path to a mountpoint.
1504 void d_invalidate(struct dentry *dentry)
1507 * If it's already been dropped, return OK.
1509 spin_lock(&dentry->d_lock);
1510 if (d_unhashed(dentry)) {
1511 spin_unlock(&dentry->d_lock);
1512 return;
1514 spin_unlock(&dentry->d_lock);
1516 /* Negative dentries can be dropped without further checks */
1517 if (!dentry->d_inode) {
1518 d_drop(dentry);
1519 return;
1522 for (;;) {
1523 struct detach_data data;
1525 data.mountpoint = NULL;
1526 INIT_LIST_HEAD(&data.select.dispose);
1527 data.select.start = dentry;
1528 data.select.found = 0;
1530 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1532 if (data.select.found)
1533 shrink_dentry_list(&data.select.dispose);
1535 if (data.mountpoint) {
1536 detach_mounts(data.mountpoint);
1537 dput(data.mountpoint);
1540 if (!data.mountpoint && !data.select.found)
1541 break;
1543 cond_resched();
1546 EXPORT_SYMBOL(d_invalidate);
1549 * __d_alloc - allocate a dcache entry
1550 * @sb: filesystem it will belong to
1551 * @name: qstr of the name
1553 * Allocates a dentry. It returns %NULL if there is insufficient memory
1554 * available. On a success the dentry is returned. The name passed in is
1555 * copied and the copy passed in may be reused after this call.
1558 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1560 struct dentry *dentry;
1561 char *dname;
1563 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1564 if (!dentry)
1565 return NULL;
1568 * We guarantee that the inline name is always NUL-terminated.
1569 * This way the memcpy() done by the name switching in rename
1570 * will still always have a NUL at the end, even if we might
1571 * be overwriting an internal NUL character
1573 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1574 if (unlikely(!name)) {
1575 static const struct qstr anon = QSTR_INIT("/", 1);
1576 name = &anon;
1577 dname = dentry->d_iname;
1578 } else if (name->len > DNAME_INLINE_LEN-1) {
1579 size_t size = offsetof(struct external_name, name[1]);
1580 struct external_name *p = kmalloc(size + name->len,
1581 GFP_KERNEL_ACCOUNT);
1582 if (!p) {
1583 kmem_cache_free(dentry_cache, dentry);
1584 return NULL;
1586 atomic_set(&p->u.count, 1);
1587 dname = p->name;
1588 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1589 kasan_unpoison_shadow(dname,
1590 round_up(name->len + 1, sizeof(unsigned long)));
1591 } else {
1592 dname = dentry->d_iname;
1595 dentry->d_name.len = name->len;
1596 dentry->d_name.hash = name->hash;
1597 memcpy(dname, name->name, name->len);
1598 dname[name->len] = 0;
1600 /* Make sure we always see the terminating NUL character */
1601 smp_wmb();
1602 dentry->d_name.name = dname;
1604 dentry->d_lockref.count = 1;
1605 dentry->d_flags = 0;
1606 spin_lock_init(&dentry->d_lock);
1607 seqcount_init(&dentry->d_seq);
1608 dentry->d_inode = NULL;
1609 dentry->d_parent = dentry;
1610 dentry->d_sb = sb;
1611 dentry->d_op = NULL;
1612 dentry->d_fsdata = NULL;
1613 INIT_HLIST_BL_NODE(&dentry->d_hash);
1614 INIT_LIST_HEAD(&dentry->d_lru);
1615 INIT_LIST_HEAD(&dentry->d_subdirs);
1616 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1617 INIT_LIST_HEAD(&dentry->d_child);
1618 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1620 this_cpu_inc(nr_dentry);
1622 return dentry;
1626 * d_alloc - allocate a dcache entry
1627 * @parent: parent of entry to allocate
1628 * @name: qstr of the name
1630 * Allocates a dentry. It returns %NULL if there is insufficient memory
1631 * available. On a success the dentry is returned. The name passed in is
1632 * copied and the copy passed in may be reused after this call.
1634 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1636 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1637 if (!dentry)
1638 return NULL;
1640 spin_lock(&parent->d_lock);
1642 * don't need child lock because it is not subject
1643 * to concurrency here
1645 __dget_dlock(parent);
1646 dentry->d_parent = parent;
1647 list_add(&dentry->d_child, &parent->d_subdirs);
1648 spin_unlock(&parent->d_lock);
1650 return dentry;
1652 EXPORT_SYMBOL(d_alloc);
1655 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1656 * @sb: the superblock
1657 * @name: qstr of the name
1659 * For a filesystem that just pins its dentries in memory and never
1660 * performs lookups at all, return an unhashed IS_ROOT dentry.
1662 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1664 return __d_alloc(sb, name);
1666 EXPORT_SYMBOL(d_alloc_pseudo);
1668 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1670 struct qstr q;
1672 q.name = name;
1673 q.hash_len = hashlen_string(name);
1674 return d_alloc(parent, &q);
1676 EXPORT_SYMBOL(d_alloc_name);
1678 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1680 WARN_ON_ONCE(dentry->d_op);
1681 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1682 DCACHE_OP_COMPARE |
1683 DCACHE_OP_REVALIDATE |
1684 DCACHE_OP_WEAK_REVALIDATE |
1685 DCACHE_OP_DELETE |
1686 DCACHE_OP_SELECT_INODE |
1687 DCACHE_OP_REAL));
1688 dentry->d_op = op;
1689 if (!op)
1690 return;
1691 if (op->d_hash)
1692 dentry->d_flags |= DCACHE_OP_HASH;
1693 if (op->d_compare)
1694 dentry->d_flags |= DCACHE_OP_COMPARE;
1695 if (op->d_revalidate)
1696 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1697 if (op->d_weak_revalidate)
1698 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1699 if (op->d_delete)
1700 dentry->d_flags |= DCACHE_OP_DELETE;
1701 if (op->d_prune)
1702 dentry->d_flags |= DCACHE_OP_PRUNE;
1703 if (op->d_select_inode)
1704 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1705 if (op->d_real)
1706 dentry->d_flags |= DCACHE_OP_REAL;
1709 EXPORT_SYMBOL(d_set_d_op);
1713 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1714 * @dentry - The dentry to mark
1716 * Mark a dentry as falling through to the lower layer (as set with
1717 * d_pin_lower()). This flag may be recorded on the medium.
1719 void d_set_fallthru(struct dentry *dentry)
1721 spin_lock(&dentry->d_lock);
1722 dentry->d_flags |= DCACHE_FALLTHRU;
1723 spin_unlock(&dentry->d_lock);
1725 EXPORT_SYMBOL(d_set_fallthru);
1727 static unsigned d_flags_for_inode(struct inode *inode)
1729 unsigned add_flags = DCACHE_REGULAR_TYPE;
1731 if (!inode)
1732 return DCACHE_MISS_TYPE;
1734 if (S_ISDIR(inode->i_mode)) {
1735 add_flags = DCACHE_DIRECTORY_TYPE;
1736 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1737 if (unlikely(!inode->i_op->lookup))
1738 add_flags = DCACHE_AUTODIR_TYPE;
1739 else
1740 inode->i_opflags |= IOP_LOOKUP;
1742 goto type_determined;
1745 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1746 if (unlikely(inode->i_op->get_link)) {
1747 add_flags = DCACHE_SYMLINK_TYPE;
1748 goto type_determined;
1750 inode->i_opflags |= IOP_NOFOLLOW;
1753 if (unlikely(!S_ISREG(inode->i_mode)))
1754 add_flags = DCACHE_SPECIAL_TYPE;
1756 type_determined:
1757 if (unlikely(IS_AUTOMOUNT(inode)))
1758 add_flags |= DCACHE_NEED_AUTOMOUNT;
1759 return add_flags;
1762 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1764 unsigned add_flags = d_flags_for_inode(inode);
1765 WARN_ON(d_in_lookup(dentry));
1767 spin_lock(&dentry->d_lock);
1768 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1769 raw_write_seqcount_begin(&dentry->d_seq);
1770 __d_set_inode_and_type(dentry, inode, add_flags);
1771 raw_write_seqcount_end(&dentry->d_seq);
1772 __fsnotify_d_instantiate(dentry);
1773 spin_unlock(&dentry->d_lock);
1777 * d_instantiate - fill in inode information for a dentry
1778 * @entry: dentry to complete
1779 * @inode: inode to attach to this dentry
1781 * Fill in inode information in the entry.
1783 * This turns negative dentries into productive full members
1784 * of society.
1786 * NOTE! This assumes that the inode count has been incremented
1787 * (or otherwise set) by the caller to indicate that it is now
1788 * in use by the dcache.
1791 void d_instantiate(struct dentry *entry, struct inode * inode)
1793 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1794 if (inode) {
1795 security_d_instantiate(entry, inode);
1796 spin_lock(&inode->i_lock);
1797 __d_instantiate(entry, inode);
1798 spin_unlock(&inode->i_lock);
1801 EXPORT_SYMBOL(d_instantiate);
1804 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1805 * @entry: dentry to complete
1806 * @inode: inode to attach to this dentry
1808 * Fill in inode information in the entry. If a directory alias is found, then
1809 * return an error (and drop inode). Together with d_materialise_unique() this
1810 * guarantees that a directory inode may never have more than one alias.
1812 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1814 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1816 security_d_instantiate(entry, inode);
1817 spin_lock(&inode->i_lock);
1818 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1819 spin_unlock(&inode->i_lock);
1820 iput(inode);
1821 return -EBUSY;
1823 __d_instantiate(entry, inode);
1824 spin_unlock(&inode->i_lock);
1826 return 0;
1828 EXPORT_SYMBOL(d_instantiate_no_diralias);
1830 struct dentry *d_make_root(struct inode *root_inode)
1832 struct dentry *res = NULL;
1834 if (root_inode) {
1835 res = __d_alloc(root_inode->i_sb, NULL);
1836 if (res)
1837 d_instantiate(res, root_inode);
1838 else
1839 iput(root_inode);
1841 return res;
1843 EXPORT_SYMBOL(d_make_root);
1845 static struct dentry * __d_find_any_alias(struct inode *inode)
1847 struct dentry *alias;
1849 if (hlist_empty(&inode->i_dentry))
1850 return NULL;
1851 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1852 __dget(alias);
1853 return alias;
1857 * d_find_any_alias - find any alias for a given inode
1858 * @inode: inode to find an alias for
1860 * If any aliases exist for the given inode, take and return a
1861 * reference for one of them. If no aliases exist, return %NULL.
1863 struct dentry *d_find_any_alias(struct inode *inode)
1865 struct dentry *de;
1867 spin_lock(&inode->i_lock);
1868 de = __d_find_any_alias(inode);
1869 spin_unlock(&inode->i_lock);
1870 return de;
1872 EXPORT_SYMBOL(d_find_any_alias);
1874 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1876 struct dentry *tmp;
1877 struct dentry *res;
1878 unsigned add_flags;
1880 if (!inode)
1881 return ERR_PTR(-ESTALE);
1882 if (IS_ERR(inode))
1883 return ERR_CAST(inode);
1885 res = d_find_any_alias(inode);
1886 if (res)
1887 goto out_iput;
1889 tmp = __d_alloc(inode->i_sb, NULL);
1890 if (!tmp) {
1891 res = ERR_PTR(-ENOMEM);
1892 goto out_iput;
1895 security_d_instantiate(tmp, inode);
1896 spin_lock(&inode->i_lock);
1897 res = __d_find_any_alias(inode);
1898 if (res) {
1899 spin_unlock(&inode->i_lock);
1900 dput(tmp);
1901 goto out_iput;
1904 /* attach a disconnected dentry */
1905 add_flags = d_flags_for_inode(inode);
1907 if (disconnected)
1908 add_flags |= DCACHE_DISCONNECTED;
1910 spin_lock(&tmp->d_lock);
1911 __d_set_inode_and_type(tmp, inode, add_flags);
1912 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1913 hlist_bl_lock(&tmp->d_sb->s_anon);
1914 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1915 hlist_bl_unlock(&tmp->d_sb->s_anon);
1916 spin_unlock(&tmp->d_lock);
1917 spin_unlock(&inode->i_lock);
1919 return tmp;
1921 out_iput:
1922 iput(inode);
1923 return res;
1927 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1928 * @inode: inode to allocate the dentry for
1930 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1931 * similar open by handle operations. The returned dentry may be anonymous,
1932 * or may have a full name (if the inode was already in the cache).
1934 * When called on a directory inode, we must ensure that the inode only ever
1935 * has one dentry. If a dentry is found, that is returned instead of
1936 * allocating a new one.
1938 * On successful return, the reference to the inode has been transferred
1939 * to the dentry. In case of an error the reference on the inode is released.
1940 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1941 * be passed in and the error will be propagated to the return value,
1942 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1944 struct dentry *d_obtain_alias(struct inode *inode)
1946 return __d_obtain_alias(inode, 1);
1948 EXPORT_SYMBOL(d_obtain_alias);
1951 * d_obtain_root - find or allocate a dentry for a given inode
1952 * @inode: inode to allocate the dentry for
1954 * Obtain an IS_ROOT dentry for the root of a filesystem.
1956 * We must ensure that directory inodes only ever have one dentry. If a
1957 * dentry is found, that is returned instead of allocating a new one.
1959 * On successful return, the reference to the inode has been transferred
1960 * to the dentry. In case of an error the reference on the inode is
1961 * released. A %NULL or IS_ERR inode may be passed in and will be the
1962 * error will be propagate to the return value, with a %NULL @inode
1963 * replaced by ERR_PTR(-ESTALE).
1965 struct dentry *d_obtain_root(struct inode *inode)
1967 return __d_obtain_alias(inode, 0);
1969 EXPORT_SYMBOL(d_obtain_root);
1972 * d_add_ci - lookup or allocate new dentry with case-exact name
1973 * @inode: the inode case-insensitive lookup has found
1974 * @dentry: the negative dentry that was passed to the parent's lookup func
1975 * @name: the case-exact name to be associated with the returned dentry
1977 * This is to avoid filling the dcache with case-insensitive names to the
1978 * same inode, only the actual correct case is stored in the dcache for
1979 * case-insensitive filesystems.
1981 * For a case-insensitive lookup match and if the the case-exact dentry
1982 * already exists in in the dcache, use it and return it.
1984 * If no entry exists with the exact case name, allocate new dentry with
1985 * the exact case, and return the spliced entry.
1987 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1988 struct qstr *name)
1990 struct dentry *found, *res;
1993 * First check if a dentry matching the name already exists,
1994 * if not go ahead and create it now.
1996 found = d_hash_and_lookup(dentry->d_parent, name);
1997 if (found) {
1998 iput(inode);
1999 return found;
2001 if (d_in_lookup(dentry)) {
2002 found = d_alloc_parallel(dentry->d_parent, name,
2003 dentry->d_wait);
2004 if (IS_ERR(found) || !d_in_lookup(found)) {
2005 iput(inode);
2006 return found;
2008 } else {
2009 found = d_alloc(dentry->d_parent, name);
2010 if (!found) {
2011 iput(inode);
2012 return ERR_PTR(-ENOMEM);
2015 res = d_splice_alias(inode, found);
2016 if (res) {
2017 dput(found);
2018 return res;
2020 return found;
2022 EXPORT_SYMBOL(d_add_ci);
2025 * Do the slow-case of the dentry name compare.
2027 * Unlike the dentry_cmp() function, we need to atomically
2028 * load the name and length information, so that the
2029 * filesystem can rely on them, and can use the 'name' and
2030 * 'len' information without worrying about walking off the
2031 * end of memory etc.
2033 * Thus the read_seqcount_retry() and the "duplicate" info
2034 * in arguments (the low-level filesystem should not look
2035 * at the dentry inode or name contents directly, since
2036 * rename can change them while we're in RCU mode).
2038 enum slow_d_compare {
2039 D_COMP_OK,
2040 D_COMP_NOMATCH,
2041 D_COMP_SEQRETRY,
2044 static noinline enum slow_d_compare slow_dentry_cmp(
2045 const struct dentry *parent,
2046 struct dentry *dentry,
2047 unsigned int seq,
2048 const struct qstr *name)
2050 int tlen = dentry->d_name.len;
2051 const char *tname = dentry->d_name.name;
2053 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2054 cpu_relax();
2055 return D_COMP_SEQRETRY;
2057 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2058 return D_COMP_NOMATCH;
2059 return D_COMP_OK;
2063 * __d_lookup_rcu - search for a dentry (racy, store-free)
2064 * @parent: parent dentry
2065 * @name: qstr of name we wish to find
2066 * @seqp: returns d_seq value at the point where the dentry was found
2067 * Returns: dentry, or NULL
2069 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2070 * resolution (store-free path walking) design described in
2071 * Documentation/filesystems/path-lookup.txt.
2073 * This is not to be used outside core vfs.
2075 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2076 * held, and rcu_read_lock held. The returned dentry must not be stored into
2077 * without taking d_lock and checking d_seq sequence count against @seq
2078 * returned here.
2080 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2081 * function.
2083 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2084 * the returned dentry, so long as its parent's seqlock is checked after the
2085 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2086 * is formed, giving integrity down the path walk.
2088 * NOTE! The caller *has* to check the resulting dentry against the sequence
2089 * number we've returned before using any of the resulting dentry state!
2091 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2092 const struct qstr *name,
2093 unsigned *seqp)
2095 u64 hashlen = name->hash_len;
2096 const unsigned char *str = name->name;
2097 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2098 struct hlist_bl_node *node;
2099 struct dentry *dentry;
2102 * Note: There is significant duplication with __d_lookup_rcu which is
2103 * required to prevent single threaded performance regressions
2104 * especially on architectures where smp_rmb (in seqcounts) are costly.
2105 * Keep the two functions in sync.
2109 * The hash list is protected using RCU.
2111 * Carefully use d_seq when comparing a candidate dentry, to avoid
2112 * races with d_move().
2114 * It is possible that concurrent renames can mess up our list
2115 * walk here and result in missing our dentry, resulting in the
2116 * false-negative result. d_lookup() protects against concurrent
2117 * renames using rename_lock seqlock.
2119 * See Documentation/filesystems/path-lookup.txt for more details.
2121 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2122 unsigned seq;
2124 seqretry:
2126 * The dentry sequence count protects us from concurrent
2127 * renames, and thus protects parent and name fields.
2129 * The caller must perform a seqcount check in order
2130 * to do anything useful with the returned dentry.
2132 * NOTE! We do a "raw" seqcount_begin here. That means that
2133 * we don't wait for the sequence count to stabilize if it
2134 * is in the middle of a sequence change. If we do the slow
2135 * dentry compare, we will do seqretries until it is stable,
2136 * and if we end up with a successful lookup, we actually
2137 * want to exit RCU lookup anyway.
2139 seq = raw_seqcount_begin(&dentry->d_seq);
2140 if (dentry->d_parent != parent)
2141 continue;
2142 if (d_unhashed(dentry))
2143 continue;
2145 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2146 if (dentry->d_name.hash != hashlen_hash(hashlen))
2147 continue;
2148 *seqp = seq;
2149 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2150 case D_COMP_OK:
2151 return dentry;
2152 case D_COMP_NOMATCH:
2153 continue;
2154 default:
2155 goto seqretry;
2159 if (dentry->d_name.hash_len != hashlen)
2160 continue;
2161 *seqp = seq;
2162 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2163 return dentry;
2165 return NULL;
2169 * d_lookup - search for a dentry
2170 * @parent: parent dentry
2171 * @name: qstr of name we wish to find
2172 * Returns: dentry, or NULL
2174 * d_lookup searches the children of the parent dentry for the name in
2175 * question. If the dentry is found its reference count is incremented and the
2176 * dentry is returned. The caller must use dput to free the entry when it has
2177 * finished using it. %NULL is returned if the dentry does not exist.
2179 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2181 struct dentry *dentry;
2182 unsigned seq;
2184 do {
2185 seq = read_seqbegin(&rename_lock);
2186 dentry = __d_lookup(parent, name);
2187 if (dentry)
2188 break;
2189 } while (read_seqretry(&rename_lock, seq));
2190 return dentry;
2192 EXPORT_SYMBOL(d_lookup);
2195 * __d_lookup - search for a dentry (racy)
2196 * @parent: parent dentry
2197 * @name: qstr of name we wish to find
2198 * Returns: dentry, or NULL
2200 * __d_lookup is like d_lookup, however it may (rarely) return a
2201 * false-negative result due to unrelated rename activity.
2203 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2204 * however it must be used carefully, eg. with a following d_lookup in
2205 * the case of failure.
2207 * __d_lookup callers must be commented.
2209 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2211 unsigned int len = name->len;
2212 unsigned int hash = name->hash;
2213 const unsigned char *str = name->name;
2214 struct hlist_bl_head *b = d_hash(parent, hash);
2215 struct hlist_bl_node *node;
2216 struct dentry *found = NULL;
2217 struct dentry *dentry;
2220 * Note: There is significant duplication with __d_lookup_rcu which is
2221 * required to prevent single threaded performance regressions
2222 * especially on architectures where smp_rmb (in seqcounts) are costly.
2223 * Keep the two functions in sync.
2227 * The hash list is protected using RCU.
2229 * Take d_lock when comparing a candidate dentry, to avoid races
2230 * with d_move().
2232 * It is possible that concurrent renames can mess up our list
2233 * walk here and result in missing our dentry, resulting in the
2234 * false-negative result. d_lookup() protects against concurrent
2235 * renames using rename_lock seqlock.
2237 * See Documentation/filesystems/path-lookup.txt for more details.
2239 rcu_read_lock();
2241 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2243 if (dentry->d_name.hash != hash)
2244 continue;
2246 spin_lock(&dentry->d_lock);
2247 if (dentry->d_parent != parent)
2248 goto next;
2249 if (d_unhashed(dentry))
2250 goto next;
2253 * It is safe to compare names since d_move() cannot
2254 * change the qstr (protected by d_lock).
2256 if (parent->d_flags & DCACHE_OP_COMPARE) {
2257 int tlen = dentry->d_name.len;
2258 const char *tname = dentry->d_name.name;
2259 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2260 goto next;
2261 } else {
2262 if (dentry->d_name.len != len)
2263 goto next;
2264 if (dentry_cmp(dentry, str, len))
2265 goto next;
2268 dentry->d_lockref.count++;
2269 found = dentry;
2270 spin_unlock(&dentry->d_lock);
2271 break;
2272 next:
2273 spin_unlock(&dentry->d_lock);
2275 rcu_read_unlock();
2277 return found;
2281 * d_hash_and_lookup - hash the qstr then search for a dentry
2282 * @dir: Directory to search in
2283 * @name: qstr of name we wish to find
2285 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2287 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2290 * Check for a fs-specific hash function. Note that we must
2291 * calculate the standard hash first, as the d_op->d_hash()
2292 * routine may choose to leave the hash value unchanged.
2294 name->hash = full_name_hash(name->name, name->len);
2295 if (dir->d_flags & DCACHE_OP_HASH) {
2296 int err = dir->d_op->d_hash(dir, name);
2297 if (unlikely(err < 0))
2298 return ERR_PTR(err);
2300 return d_lookup(dir, name);
2302 EXPORT_SYMBOL(d_hash_and_lookup);
2305 * When a file is deleted, we have two options:
2306 * - turn this dentry into a negative dentry
2307 * - unhash this dentry and free it.
2309 * Usually, we want to just turn this into
2310 * a negative dentry, but if anybody else is
2311 * currently using the dentry or the inode
2312 * we can't do that and we fall back on removing
2313 * it from the hash queues and waiting for
2314 * it to be deleted later when it has no users
2318 * d_delete - delete a dentry
2319 * @dentry: The dentry to delete
2321 * Turn the dentry into a negative dentry if possible, otherwise
2322 * remove it from the hash queues so it can be deleted later
2325 void d_delete(struct dentry * dentry)
2327 struct inode *inode;
2328 int isdir = 0;
2330 * Are we the only user?
2332 again:
2333 spin_lock(&dentry->d_lock);
2334 inode = dentry->d_inode;
2335 isdir = S_ISDIR(inode->i_mode);
2336 if (dentry->d_lockref.count == 1) {
2337 if (!spin_trylock(&inode->i_lock)) {
2338 spin_unlock(&dentry->d_lock);
2339 cpu_relax();
2340 goto again;
2342 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2343 dentry_unlink_inode(dentry);
2344 fsnotify_nameremove(dentry, isdir);
2345 return;
2348 if (!d_unhashed(dentry))
2349 __d_drop(dentry);
2351 spin_unlock(&dentry->d_lock);
2353 fsnotify_nameremove(dentry, isdir);
2355 EXPORT_SYMBOL(d_delete);
2357 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2359 BUG_ON(!d_unhashed(entry));
2360 hlist_bl_lock(b);
2361 entry->d_flags |= DCACHE_RCUACCESS;
2362 hlist_bl_add_head_rcu(&entry->d_hash, b);
2363 hlist_bl_unlock(b);
2366 static void _d_rehash(struct dentry * entry)
2368 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2372 * d_rehash - add an entry back to the hash
2373 * @entry: dentry to add to the hash
2375 * Adds a dentry to the hash according to its name.
2378 void d_rehash(struct dentry * entry)
2380 spin_lock(&entry->d_lock);
2381 _d_rehash(entry);
2382 spin_unlock(&entry->d_lock);
2384 EXPORT_SYMBOL(d_rehash);
2386 static inline unsigned start_dir_add(struct inode *dir)
2389 for (;;) {
2390 unsigned n = dir->i_dir_seq;
2391 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2392 return n;
2393 cpu_relax();
2397 static inline void end_dir_add(struct inode *dir, unsigned n)
2399 smp_store_release(&dir->i_dir_seq, n + 2);
2402 static void d_wait_lookup(struct dentry *dentry)
2404 if (d_in_lookup(dentry)) {
2405 DECLARE_WAITQUEUE(wait, current);
2406 add_wait_queue(dentry->d_wait, &wait);
2407 do {
2408 set_current_state(TASK_UNINTERRUPTIBLE);
2409 spin_unlock(&dentry->d_lock);
2410 schedule();
2411 spin_lock(&dentry->d_lock);
2412 } while (d_in_lookup(dentry));
2416 struct dentry *d_alloc_parallel(struct dentry *parent,
2417 const struct qstr *name,
2418 wait_queue_head_t *wq)
2420 unsigned int len = name->len;
2421 unsigned int hash = name->hash;
2422 const unsigned char *str = name->name;
2423 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2424 struct hlist_bl_node *node;
2425 struct dentry *new = d_alloc(parent, name);
2426 struct dentry *dentry;
2427 unsigned seq, r_seq, d_seq;
2429 if (unlikely(!new))
2430 return ERR_PTR(-ENOMEM);
2432 retry:
2433 rcu_read_lock();
2434 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2435 r_seq = read_seqbegin(&rename_lock);
2436 dentry = __d_lookup_rcu(parent, name, &d_seq);
2437 if (unlikely(dentry)) {
2438 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2439 rcu_read_unlock();
2440 goto retry;
2442 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2443 rcu_read_unlock();
2444 dput(dentry);
2445 goto retry;
2447 rcu_read_unlock();
2448 dput(new);
2449 return dentry;
2451 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2452 rcu_read_unlock();
2453 goto retry;
2455 hlist_bl_lock(b);
2456 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2457 hlist_bl_unlock(b);
2458 rcu_read_unlock();
2459 goto retry;
2461 rcu_read_unlock();
2463 * No changes for the parent since the beginning of d_lookup().
2464 * Since all removals from the chain happen with hlist_bl_lock(),
2465 * any potential in-lookup matches are going to stay here until
2466 * we unlock the chain. All fields are stable in everything
2467 * we encounter.
2469 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2470 if (dentry->d_name.hash != hash)
2471 continue;
2472 if (dentry->d_parent != parent)
2473 continue;
2474 if (d_unhashed(dentry))
2475 continue;
2476 if (parent->d_flags & DCACHE_OP_COMPARE) {
2477 int tlen = dentry->d_name.len;
2478 const char *tname = dentry->d_name.name;
2479 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2480 continue;
2481 } else {
2482 if (dentry->d_name.len != len)
2483 continue;
2484 if (dentry_cmp(dentry, str, len))
2485 continue;
2487 dget(dentry);
2488 hlist_bl_unlock(b);
2489 /* somebody is doing lookup for it right now; wait for it */
2490 spin_lock(&dentry->d_lock);
2491 d_wait_lookup(dentry);
2493 * it's not in-lookup anymore; in principle we should repeat
2494 * everything from dcache lookup, but it's likely to be what
2495 * d_lookup() would've found anyway. If it is, just return it;
2496 * otherwise we really have to repeat the whole thing.
2498 if (unlikely(dentry->d_name.hash != hash))
2499 goto mismatch;
2500 if (unlikely(dentry->d_parent != parent))
2501 goto mismatch;
2502 if (unlikely(d_unhashed(dentry)))
2503 goto mismatch;
2504 if (parent->d_flags & DCACHE_OP_COMPARE) {
2505 int tlen = dentry->d_name.len;
2506 const char *tname = dentry->d_name.name;
2507 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2508 goto mismatch;
2509 } else {
2510 if (unlikely(dentry->d_name.len != len))
2511 goto mismatch;
2512 if (unlikely(dentry_cmp(dentry, str, len)))
2513 goto mismatch;
2515 /* OK, it *is* a hashed match; return it */
2516 spin_unlock(&dentry->d_lock);
2517 dput(new);
2518 return dentry;
2520 /* we can't take ->d_lock here; it's OK, though. */
2521 new->d_flags |= DCACHE_PAR_LOOKUP;
2522 new->d_wait = wq;
2523 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2524 hlist_bl_unlock(b);
2525 return new;
2526 mismatch:
2527 spin_unlock(&dentry->d_lock);
2528 dput(dentry);
2529 goto retry;
2531 EXPORT_SYMBOL(d_alloc_parallel);
2533 void __d_lookup_done(struct dentry *dentry)
2535 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2536 dentry->d_name.hash);
2537 hlist_bl_lock(b);
2538 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2539 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2540 wake_up_all(dentry->d_wait);
2541 dentry->d_wait = NULL;
2542 hlist_bl_unlock(b);
2543 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2544 INIT_LIST_HEAD(&dentry->d_lru);
2546 EXPORT_SYMBOL(__d_lookup_done);
2548 /* inode->i_lock held if inode is non-NULL */
2550 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2552 struct inode *dir = NULL;
2553 unsigned n;
2554 spin_lock(&dentry->d_lock);
2555 if (unlikely(d_in_lookup(dentry))) {
2556 dir = dentry->d_parent->d_inode;
2557 n = start_dir_add(dir);
2558 __d_lookup_done(dentry);
2560 if (inode) {
2561 unsigned add_flags = d_flags_for_inode(inode);
2562 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2563 raw_write_seqcount_begin(&dentry->d_seq);
2564 __d_set_inode_and_type(dentry, inode, add_flags);
2565 raw_write_seqcount_end(&dentry->d_seq);
2566 __fsnotify_d_instantiate(dentry);
2568 _d_rehash(dentry);
2569 if (dir)
2570 end_dir_add(dir, n);
2571 spin_unlock(&dentry->d_lock);
2572 if (inode)
2573 spin_unlock(&inode->i_lock);
2577 * d_add - add dentry to hash queues
2578 * @entry: dentry to add
2579 * @inode: The inode to attach to this dentry
2581 * This adds the entry to the hash queues and initializes @inode.
2582 * The entry was actually filled in earlier during d_alloc().
2585 void d_add(struct dentry *entry, struct inode *inode)
2587 if (inode) {
2588 security_d_instantiate(entry, inode);
2589 spin_lock(&inode->i_lock);
2591 __d_add(entry, inode);
2593 EXPORT_SYMBOL(d_add);
2596 * d_exact_alias - find and hash an exact unhashed alias
2597 * @entry: dentry to add
2598 * @inode: The inode to go with this dentry
2600 * If an unhashed dentry with the same name/parent and desired
2601 * inode already exists, hash and return it. Otherwise, return
2602 * NULL.
2604 * Parent directory should be locked.
2606 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2608 struct dentry *alias;
2609 int len = entry->d_name.len;
2610 const char *name = entry->d_name.name;
2611 unsigned int hash = entry->d_name.hash;
2613 spin_lock(&inode->i_lock);
2614 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2616 * Don't need alias->d_lock here, because aliases with
2617 * d_parent == entry->d_parent are not subject to name or
2618 * parent changes, because the parent inode i_mutex is held.
2620 if (alias->d_name.hash != hash)
2621 continue;
2622 if (alias->d_parent != entry->d_parent)
2623 continue;
2624 if (alias->d_name.len != len)
2625 continue;
2626 if (dentry_cmp(alias, name, len))
2627 continue;
2628 spin_lock(&alias->d_lock);
2629 if (!d_unhashed(alias)) {
2630 spin_unlock(&alias->d_lock);
2631 alias = NULL;
2632 } else {
2633 __dget_dlock(alias);
2634 _d_rehash(alias);
2635 spin_unlock(&alias->d_lock);
2637 spin_unlock(&inode->i_lock);
2638 return alias;
2640 spin_unlock(&inode->i_lock);
2641 return NULL;
2643 EXPORT_SYMBOL(d_exact_alias);
2646 * dentry_update_name_case - update case insensitive dentry with a new name
2647 * @dentry: dentry to be updated
2648 * @name: new name
2650 * Update a case insensitive dentry with new case of name.
2652 * dentry must have been returned by d_lookup with name @name. Old and new
2653 * name lengths must match (ie. no d_compare which allows mismatched name
2654 * lengths).
2656 * Parent inode i_mutex must be held over d_lookup and into this call (to
2657 * keep renames and concurrent inserts, and readdir(2) away).
2659 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2661 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2662 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2664 spin_lock(&dentry->d_lock);
2665 write_seqcount_begin(&dentry->d_seq);
2666 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2667 write_seqcount_end(&dentry->d_seq);
2668 spin_unlock(&dentry->d_lock);
2670 EXPORT_SYMBOL(dentry_update_name_case);
2672 static void swap_names(struct dentry *dentry, struct dentry *target)
2674 if (unlikely(dname_external(target))) {
2675 if (unlikely(dname_external(dentry))) {
2677 * Both external: swap the pointers
2679 swap(target->d_name.name, dentry->d_name.name);
2680 } else {
2682 * dentry:internal, target:external. Steal target's
2683 * storage and make target internal.
2685 memcpy(target->d_iname, dentry->d_name.name,
2686 dentry->d_name.len + 1);
2687 dentry->d_name.name = target->d_name.name;
2688 target->d_name.name = target->d_iname;
2690 } else {
2691 if (unlikely(dname_external(dentry))) {
2693 * dentry:external, target:internal. Give dentry's
2694 * storage to target and make dentry internal
2696 memcpy(dentry->d_iname, target->d_name.name,
2697 target->d_name.len + 1);
2698 target->d_name.name = dentry->d_name.name;
2699 dentry->d_name.name = dentry->d_iname;
2700 } else {
2702 * Both are internal.
2704 unsigned int i;
2705 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2706 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2707 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2708 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2709 swap(((long *) &dentry->d_iname)[i],
2710 ((long *) &target->d_iname)[i]);
2714 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2717 static void copy_name(struct dentry *dentry, struct dentry *target)
2719 struct external_name *old_name = NULL;
2720 if (unlikely(dname_external(dentry)))
2721 old_name = external_name(dentry);
2722 if (unlikely(dname_external(target))) {
2723 atomic_inc(&external_name(target)->u.count);
2724 dentry->d_name = target->d_name;
2725 } else {
2726 memcpy(dentry->d_iname, target->d_name.name,
2727 target->d_name.len + 1);
2728 dentry->d_name.name = dentry->d_iname;
2729 dentry->d_name.hash_len = target->d_name.hash_len;
2731 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2732 kfree_rcu(old_name, u.head);
2735 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2738 * XXXX: do we really need to take target->d_lock?
2740 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2741 spin_lock(&target->d_parent->d_lock);
2742 else {
2743 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2744 spin_lock(&dentry->d_parent->d_lock);
2745 spin_lock_nested(&target->d_parent->d_lock,
2746 DENTRY_D_LOCK_NESTED);
2747 } else {
2748 spin_lock(&target->d_parent->d_lock);
2749 spin_lock_nested(&dentry->d_parent->d_lock,
2750 DENTRY_D_LOCK_NESTED);
2753 if (target < dentry) {
2754 spin_lock_nested(&target->d_lock, 2);
2755 spin_lock_nested(&dentry->d_lock, 3);
2756 } else {
2757 spin_lock_nested(&dentry->d_lock, 2);
2758 spin_lock_nested(&target->d_lock, 3);
2762 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2764 if (target->d_parent != dentry->d_parent)
2765 spin_unlock(&dentry->d_parent->d_lock);
2766 if (target->d_parent != target)
2767 spin_unlock(&target->d_parent->d_lock);
2768 spin_unlock(&target->d_lock);
2769 spin_unlock(&dentry->d_lock);
2773 * When switching names, the actual string doesn't strictly have to
2774 * be preserved in the target - because we're dropping the target
2775 * anyway. As such, we can just do a simple memcpy() to copy over
2776 * the new name before we switch, unless we are going to rehash
2777 * it. Note that if we *do* unhash the target, we are not allowed
2778 * to rehash it without giving it a new name/hash key - whether
2779 * we swap or overwrite the names here, resulting name won't match
2780 * the reality in filesystem; it's only there for d_path() purposes.
2781 * Note that all of this is happening under rename_lock, so the
2782 * any hash lookup seeing it in the middle of manipulations will
2783 * be discarded anyway. So we do not care what happens to the hash
2784 * key in that case.
2787 * __d_move - move a dentry
2788 * @dentry: entry to move
2789 * @target: new dentry
2790 * @exchange: exchange the two dentries
2792 * Update the dcache to reflect the move of a file name. Negative
2793 * dcache entries should not be moved in this way. Caller must hold
2794 * rename_lock, the i_mutex of the source and target directories,
2795 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2797 static void __d_move(struct dentry *dentry, struct dentry *target,
2798 bool exchange)
2800 struct inode *dir = NULL;
2801 unsigned n;
2802 if (!dentry->d_inode)
2803 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2805 BUG_ON(d_ancestor(dentry, target));
2806 BUG_ON(d_ancestor(target, dentry));
2808 dentry_lock_for_move(dentry, target);
2809 if (unlikely(d_in_lookup(target))) {
2810 dir = target->d_parent->d_inode;
2811 n = start_dir_add(dir);
2812 __d_lookup_done(target);
2815 write_seqcount_begin(&dentry->d_seq);
2816 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2818 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2821 * Move the dentry to the target hash queue. Don't bother checking
2822 * for the same hash queue because of how unlikely it is.
2824 __d_drop(dentry);
2825 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2828 * Unhash the target (d_delete() is not usable here). If exchanging
2829 * the two dentries, then rehash onto the other's hash queue.
2831 __d_drop(target);
2832 if (exchange) {
2833 __d_rehash(target,
2834 d_hash(dentry->d_parent, dentry->d_name.hash));
2837 /* Switch the names.. */
2838 if (exchange)
2839 swap_names(dentry, target);
2840 else
2841 copy_name(dentry, target);
2843 /* ... and switch them in the tree */
2844 if (IS_ROOT(dentry)) {
2845 /* splicing a tree */
2846 dentry->d_parent = target->d_parent;
2847 target->d_parent = target;
2848 list_del_init(&target->d_child);
2849 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2850 } else {
2851 /* swapping two dentries */
2852 swap(dentry->d_parent, target->d_parent);
2853 list_move(&target->d_child, &target->d_parent->d_subdirs);
2854 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2855 if (exchange)
2856 fsnotify_d_move(target);
2857 fsnotify_d_move(dentry);
2860 write_seqcount_end(&target->d_seq);
2861 write_seqcount_end(&dentry->d_seq);
2863 if (dir)
2864 end_dir_add(dir, n);
2865 dentry_unlock_for_move(dentry, target);
2869 * d_move - move a dentry
2870 * @dentry: entry to move
2871 * @target: new dentry
2873 * Update the dcache to reflect the move of a file name. Negative
2874 * dcache entries should not be moved in this way. See the locking
2875 * requirements for __d_move.
2877 void d_move(struct dentry *dentry, struct dentry *target)
2879 write_seqlock(&rename_lock);
2880 __d_move(dentry, target, false);
2881 write_sequnlock(&rename_lock);
2883 EXPORT_SYMBOL(d_move);
2886 * d_exchange - exchange two dentries
2887 * @dentry1: first dentry
2888 * @dentry2: second dentry
2890 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2892 write_seqlock(&rename_lock);
2894 WARN_ON(!dentry1->d_inode);
2895 WARN_ON(!dentry2->d_inode);
2896 WARN_ON(IS_ROOT(dentry1));
2897 WARN_ON(IS_ROOT(dentry2));
2899 __d_move(dentry1, dentry2, true);
2901 write_sequnlock(&rename_lock);
2905 * d_ancestor - search for an ancestor
2906 * @p1: ancestor dentry
2907 * @p2: child dentry
2909 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2910 * an ancestor of p2, else NULL.
2912 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2914 struct dentry *p;
2916 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2917 if (p->d_parent == p1)
2918 return p;
2920 return NULL;
2924 * This helper attempts to cope with remotely renamed directories
2926 * It assumes that the caller is already holding
2927 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2929 * Note: If ever the locking in lock_rename() changes, then please
2930 * remember to update this too...
2932 static int __d_unalias(struct inode *inode,
2933 struct dentry *dentry, struct dentry *alias)
2935 struct mutex *m1 = NULL;
2936 struct rw_semaphore *m2 = NULL;
2937 int ret = -ESTALE;
2939 /* If alias and dentry share a parent, then no extra locks required */
2940 if (alias->d_parent == dentry->d_parent)
2941 goto out_unalias;
2943 /* See lock_rename() */
2944 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2945 goto out_err;
2946 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2947 if (!inode_trylock_shared(alias->d_parent->d_inode))
2948 goto out_err;
2949 m2 = &alias->d_parent->d_inode->i_rwsem;
2950 out_unalias:
2951 __d_move(alias, dentry, false);
2952 ret = 0;
2953 out_err:
2954 if (m2)
2955 up_read(m2);
2956 if (m1)
2957 mutex_unlock(m1);
2958 return ret;
2962 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2963 * @inode: the inode which may have a disconnected dentry
2964 * @dentry: a negative dentry which we want to point to the inode.
2966 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2967 * place of the given dentry and return it, else simply d_add the inode
2968 * to the dentry and return NULL.
2970 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2971 * we should error out: directories can't have multiple aliases.
2973 * This is needed in the lookup routine of any filesystem that is exportable
2974 * (via knfsd) so that we can build dcache paths to directories effectively.
2976 * If a dentry was found and moved, then it is returned. Otherwise NULL
2977 * is returned. This matches the expected return value of ->lookup.
2979 * Cluster filesystems may call this function with a negative, hashed dentry.
2980 * In that case, we know that the inode will be a regular file, and also this
2981 * will only occur during atomic_open. So we need to check for the dentry
2982 * being already hashed only in the final case.
2984 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2986 if (IS_ERR(inode))
2987 return ERR_CAST(inode);
2989 BUG_ON(!d_unhashed(dentry));
2991 if (!inode)
2992 goto out;
2994 security_d_instantiate(dentry, inode);
2995 spin_lock(&inode->i_lock);
2996 if (S_ISDIR(inode->i_mode)) {
2997 struct dentry *new = __d_find_any_alias(inode);
2998 if (unlikely(new)) {
2999 /* The reference to new ensures it remains an alias */
3000 spin_unlock(&inode->i_lock);
3001 write_seqlock(&rename_lock);
3002 if (unlikely(d_ancestor(new, dentry))) {
3003 write_sequnlock(&rename_lock);
3004 dput(new);
3005 new = ERR_PTR(-ELOOP);
3006 pr_warn_ratelimited(
3007 "VFS: Lookup of '%s' in %s %s"
3008 " would have caused loop\n",
3009 dentry->d_name.name,
3010 inode->i_sb->s_type->name,
3011 inode->i_sb->s_id);
3012 } else if (!IS_ROOT(new)) {
3013 int err = __d_unalias(inode, dentry, new);
3014 write_sequnlock(&rename_lock);
3015 if (err) {
3016 dput(new);
3017 new = ERR_PTR(err);
3019 } else {
3020 __d_move(new, dentry, false);
3021 write_sequnlock(&rename_lock);
3023 iput(inode);
3024 return new;
3027 out:
3028 __d_add(dentry, inode);
3029 return NULL;
3031 EXPORT_SYMBOL(d_splice_alias);
3033 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3035 *buflen -= namelen;
3036 if (*buflen < 0)
3037 return -ENAMETOOLONG;
3038 *buffer -= namelen;
3039 memcpy(*buffer, str, namelen);
3040 return 0;
3044 * prepend_name - prepend a pathname in front of current buffer pointer
3045 * @buffer: buffer pointer
3046 * @buflen: allocated length of the buffer
3047 * @name: name string and length qstr structure
3049 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3050 * make sure that either the old or the new name pointer and length are
3051 * fetched. However, there may be mismatch between length and pointer.
3052 * The length cannot be trusted, we need to copy it byte-by-byte until
3053 * the length is reached or a null byte is found. It also prepends "/" at
3054 * the beginning of the name. The sequence number check at the caller will
3055 * retry it again when a d_move() does happen. So any garbage in the buffer
3056 * due to mismatched pointer and length will be discarded.
3058 * Data dependency barrier is needed to make sure that we see that terminating
3059 * NUL. Alpha strikes again, film at 11...
3061 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3063 const char *dname = ACCESS_ONCE(name->name);
3064 u32 dlen = ACCESS_ONCE(name->len);
3065 char *p;
3067 smp_read_barrier_depends();
3069 *buflen -= dlen + 1;
3070 if (*buflen < 0)
3071 return -ENAMETOOLONG;
3072 p = *buffer -= dlen + 1;
3073 *p++ = '/';
3074 while (dlen--) {
3075 char c = *dname++;
3076 if (!c)
3077 break;
3078 *p++ = c;
3080 return 0;
3084 * prepend_path - Prepend path string to a buffer
3085 * @path: the dentry/vfsmount to report
3086 * @root: root vfsmnt/dentry
3087 * @buffer: pointer to the end of the buffer
3088 * @buflen: pointer to buffer length
3090 * The function will first try to write out the pathname without taking any
3091 * lock other than the RCU read lock to make sure that dentries won't go away.
3092 * It only checks the sequence number of the global rename_lock as any change
3093 * in the dentry's d_seq will be preceded by changes in the rename_lock
3094 * sequence number. If the sequence number had been changed, it will restart
3095 * the whole pathname back-tracing sequence again by taking the rename_lock.
3096 * In this case, there is no need to take the RCU read lock as the recursive
3097 * parent pointer references will keep the dentry chain alive as long as no
3098 * rename operation is performed.
3100 static int prepend_path(const struct path *path,
3101 const struct path *root,
3102 char **buffer, int *buflen)
3104 struct dentry *dentry;
3105 struct vfsmount *vfsmnt;
3106 struct mount *mnt;
3107 int error = 0;
3108 unsigned seq, m_seq = 0;
3109 char *bptr;
3110 int blen;
3112 rcu_read_lock();
3113 restart_mnt:
3114 read_seqbegin_or_lock(&mount_lock, &m_seq);
3115 seq = 0;
3116 rcu_read_lock();
3117 restart:
3118 bptr = *buffer;
3119 blen = *buflen;
3120 error = 0;
3121 dentry = path->dentry;
3122 vfsmnt = path->mnt;
3123 mnt = real_mount(vfsmnt);
3124 read_seqbegin_or_lock(&rename_lock, &seq);
3125 while (dentry != root->dentry || vfsmnt != root->mnt) {
3126 struct dentry * parent;
3128 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3129 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3130 /* Escaped? */
3131 if (dentry != vfsmnt->mnt_root) {
3132 bptr = *buffer;
3133 blen = *buflen;
3134 error = 3;
3135 break;
3137 /* Global root? */
3138 if (mnt != parent) {
3139 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3140 mnt = parent;
3141 vfsmnt = &mnt->mnt;
3142 continue;
3144 if (!error)
3145 error = is_mounted(vfsmnt) ? 1 : 2;
3146 break;
3148 parent = dentry->d_parent;
3149 prefetch(parent);
3150 error = prepend_name(&bptr, &blen, &dentry->d_name);
3151 if (error)
3152 break;
3154 dentry = parent;
3156 if (!(seq & 1))
3157 rcu_read_unlock();
3158 if (need_seqretry(&rename_lock, seq)) {
3159 seq = 1;
3160 goto restart;
3162 done_seqretry(&rename_lock, seq);
3164 if (!(m_seq & 1))
3165 rcu_read_unlock();
3166 if (need_seqretry(&mount_lock, m_seq)) {
3167 m_seq = 1;
3168 goto restart_mnt;
3170 done_seqretry(&mount_lock, m_seq);
3172 if (error >= 0 && bptr == *buffer) {
3173 if (--blen < 0)
3174 error = -ENAMETOOLONG;
3175 else
3176 *--bptr = '/';
3178 *buffer = bptr;
3179 *buflen = blen;
3180 return error;
3184 * __d_path - return the path of a dentry
3185 * @path: the dentry/vfsmount to report
3186 * @root: root vfsmnt/dentry
3187 * @buf: buffer to return value in
3188 * @buflen: buffer length
3190 * Convert a dentry into an ASCII path name.
3192 * Returns a pointer into the buffer or an error code if the
3193 * path was too long.
3195 * "buflen" should be positive.
3197 * If the path is not reachable from the supplied root, return %NULL.
3199 char *__d_path(const struct path *path,
3200 const struct path *root,
3201 char *buf, int buflen)
3203 char *res = buf + buflen;
3204 int error;
3206 prepend(&res, &buflen, "\0", 1);
3207 error = prepend_path(path, root, &res, &buflen);
3209 if (error < 0)
3210 return ERR_PTR(error);
3211 if (error > 0)
3212 return NULL;
3213 return res;
3216 char *d_absolute_path(const struct path *path,
3217 char *buf, int buflen)
3219 struct path root = {};
3220 char *res = buf + buflen;
3221 int error;
3223 prepend(&res, &buflen, "\0", 1);
3224 error = prepend_path(path, &root, &res, &buflen);
3226 if (error > 1)
3227 error = -EINVAL;
3228 if (error < 0)
3229 return ERR_PTR(error);
3230 return res;
3234 * same as __d_path but appends "(deleted)" for unlinked files.
3236 static int path_with_deleted(const struct path *path,
3237 const struct path *root,
3238 char **buf, int *buflen)
3240 prepend(buf, buflen, "\0", 1);
3241 if (d_unlinked(path->dentry)) {
3242 int error = prepend(buf, buflen, " (deleted)", 10);
3243 if (error)
3244 return error;
3247 return prepend_path(path, root, buf, buflen);
3250 static int prepend_unreachable(char **buffer, int *buflen)
3252 return prepend(buffer, buflen, "(unreachable)", 13);
3255 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3257 unsigned seq;
3259 do {
3260 seq = read_seqcount_begin(&fs->seq);
3261 *root = fs->root;
3262 } while (read_seqcount_retry(&fs->seq, seq));
3266 * d_path - return the path of a dentry
3267 * @path: path to report
3268 * @buf: buffer to return value in
3269 * @buflen: buffer length
3271 * Convert a dentry into an ASCII path name. If the entry has been deleted
3272 * the string " (deleted)" is appended. Note that this is ambiguous.
3274 * Returns a pointer into the buffer or an error code if the path was
3275 * too long. Note: Callers should use the returned pointer, not the passed
3276 * in buffer, to use the name! The implementation often starts at an offset
3277 * into the buffer, and may leave 0 bytes at the start.
3279 * "buflen" should be positive.
3281 char *d_path(const struct path *path, char *buf, int buflen)
3283 char *res = buf + buflen;
3284 struct path root;
3285 int error;
3288 * We have various synthetic filesystems that never get mounted. On
3289 * these filesystems dentries are never used for lookup purposes, and
3290 * thus don't need to be hashed. They also don't need a name until a
3291 * user wants to identify the object in /proc/pid/fd/. The little hack
3292 * below allows us to generate a name for these objects on demand:
3294 * Some pseudo inodes are mountable. When they are mounted
3295 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3296 * and instead have d_path return the mounted path.
3298 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3299 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3300 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3302 rcu_read_lock();
3303 get_fs_root_rcu(current->fs, &root);
3304 error = path_with_deleted(path, &root, &res, &buflen);
3305 rcu_read_unlock();
3307 if (error < 0)
3308 res = ERR_PTR(error);
3309 return res;
3311 EXPORT_SYMBOL(d_path);
3314 * Helper function for dentry_operations.d_dname() members
3316 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3317 const char *fmt, ...)
3319 va_list args;
3320 char temp[64];
3321 int sz;
3323 va_start(args, fmt);
3324 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3325 va_end(args);
3327 if (sz > sizeof(temp) || sz > buflen)
3328 return ERR_PTR(-ENAMETOOLONG);
3330 buffer += buflen - sz;
3331 return memcpy(buffer, temp, sz);
3334 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3336 char *end = buffer + buflen;
3337 /* these dentries are never renamed, so d_lock is not needed */
3338 if (prepend(&end, &buflen, " (deleted)", 11) ||
3339 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3340 prepend(&end, &buflen, "/", 1))
3341 end = ERR_PTR(-ENAMETOOLONG);
3342 return end;
3344 EXPORT_SYMBOL(simple_dname);
3347 * Write full pathname from the root of the filesystem into the buffer.
3349 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3351 struct dentry *dentry;
3352 char *end, *retval;
3353 int len, seq = 0;
3354 int error = 0;
3356 if (buflen < 2)
3357 goto Elong;
3359 rcu_read_lock();
3360 restart:
3361 dentry = d;
3362 end = buf + buflen;
3363 len = buflen;
3364 prepend(&end, &len, "\0", 1);
3365 /* Get '/' right */
3366 retval = end-1;
3367 *retval = '/';
3368 read_seqbegin_or_lock(&rename_lock, &seq);
3369 while (!IS_ROOT(dentry)) {
3370 struct dentry *parent = dentry->d_parent;
3372 prefetch(parent);
3373 error = prepend_name(&end, &len, &dentry->d_name);
3374 if (error)
3375 break;
3377 retval = end;
3378 dentry = parent;
3380 if (!(seq & 1))
3381 rcu_read_unlock();
3382 if (need_seqretry(&rename_lock, seq)) {
3383 seq = 1;
3384 goto restart;
3386 done_seqretry(&rename_lock, seq);
3387 if (error)
3388 goto Elong;
3389 return retval;
3390 Elong:
3391 return ERR_PTR(-ENAMETOOLONG);
3394 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3396 return __dentry_path(dentry, buf, buflen);
3398 EXPORT_SYMBOL(dentry_path_raw);
3400 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3402 char *p = NULL;
3403 char *retval;
3405 if (d_unlinked(dentry)) {
3406 p = buf + buflen;
3407 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3408 goto Elong;
3409 buflen++;
3411 retval = __dentry_path(dentry, buf, buflen);
3412 if (!IS_ERR(retval) && p)
3413 *p = '/'; /* restore '/' overriden with '\0' */
3414 return retval;
3415 Elong:
3416 return ERR_PTR(-ENAMETOOLONG);
3419 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3420 struct path *pwd)
3422 unsigned seq;
3424 do {
3425 seq = read_seqcount_begin(&fs->seq);
3426 *root = fs->root;
3427 *pwd = fs->pwd;
3428 } while (read_seqcount_retry(&fs->seq, seq));
3432 * NOTE! The user-level library version returns a
3433 * character pointer. The kernel system call just
3434 * returns the length of the buffer filled (which
3435 * includes the ending '\0' character), or a negative
3436 * error value. So libc would do something like
3438 * char *getcwd(char * buf, size_t size)
3440 * int retval;
3442 * retval = sys_getcwd(buf, size);
3443 * if (retval >= 0)
3444 * return buf;
3445 * errno = -retval;
3446 * return NULL;
3449 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3451 int error;
3452 struct path pwd, root;
3453 char *page = __getname();
3455 if (!page)
3456 return -ENOMEM;
3458 rcu_read_lock();
3459 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3461 error = -ENOENT;
3462 if (!d_unlinked(pwd.dentry)) {
3463 unsigned long len;
3464 char *cwd = page + PATH_MAX;
3465 int buflen = PATH_MAX;
3467 prepend(&cwd, &buflen, "\0", 1);
3468 error = prepend_path(&pwd, &root, &cwd, &buflen);
3469 rcu_read_unlock();
3471 if (error < 0)
3472 goto out;
3474 /* Unreachable from current root */
3475 if (error > 0) {
3476 error = prepend_unreachable(&cwd, &buflen);
3477 if (error)
3478 goto out;
3481 error = -ERANGE;
3482 len = PATH_MAX + page - cwd;
3483 if (len <= size) {
3484 error = len;
3485 if (copy_to_user(buf, cwd, len))
3486 error = -EFAULT;
3488 } else {
3489 rcu_read_unlock();
3492 out:
3493 __putname(page);
3494 return error;
3498 * Test whether new_dentry is a subdirectory of old_dentry.
3500 * Trivially implemented using the dcache structure
3504 * is_subdir - is new dentry a subdirectory of old_dentry
3505 * @new_dentry: new dentry
3506 * @old_dentry: old dentry
3508 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3509 * Returns false otherwise.
3510 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3513 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3515 bool result;
3516 unsigned seq;
3518 if (new_dentry == old_dentry)
3519 return true;
3521 do {
3522 /* for restarting inner loop in case of seq retry */
3523 seq = read_seqbegin(&rename_lock);
3525 * Need rcu_readlock to protect against the d_parent trashing
3526 * due to d_move
3528 rcu_read_lock();
3529 if (d_ancestor(old_dentry, new_dentry))
3530 result = true;
3531 else
3532 result = false;
3533 rcu_read_unlock();
3534 } while (read_seqretry(&rename_lock, seq));
3536 return result;
3539 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3541 struct dentry *root = data;
3542 if (dentry != root) {
3543 if (d_unhashed(dentry) || !dentry->d_inode)
3544 return D_WALK_SKIP;
3546 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3547 dentry->d_flags |= DCACHE_GENOCIDE;
3548 dentry->d_lockref.count--;
3551 return D_WALK_CONTINUE;
3554 void d_genocide(struct dentry *parent)
3556 d_walk(parent, parent, d_genocide_kill, NULL);
3559 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3561 inode_dec_link_count(inode);
3562 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3563 !hlist_unhashed(&dentry->d_u.d_alias) ||
3564 !d_unlinked(dentry));
3565 spin_lock(&dentry->d_parent->d_lock);
3566 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3567 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3568 (unsigned long long)inode->i_ino);
3569 spin_unlock(&dentry->d_lock);
3570 spin_unlock(&dentry->d_parent->d_lock);
3571 d_instantiate(dentry, inode);
3573 EXPORT_SYMBOL(d_tmpfile);
3575 static __initdata unsigned long dhash_entries;
3576 static int __init set_dhash_entries(char *str)
3578 if (!str)
3579 return 0;
3580 dhash_entries = simple_strtoul(str, &str, 0);
3581 return 1;
3583 __setup("dhash_entries=", set_dhash_entries);
3585 static void __init dcache_init_early(void)
3587 unsigned int loop;
3589 /* If hashes are distributed across NUMA nodes, defer
3590 * hash allocation until vmalloc space is available.
3592 if (hashdist)
3593 return;
3595 dentry_hashtable =
3596 alloc_large_system_hash("Dentry cache",
3597 sizeof(struct hlist_bl_head),
3598 dhash_entries,
3600 HASH_EARLY,
3601 &d_hash_shift,
3602 &d_hash_mask,
3606 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3607 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3610 static void __init dcache_init(void)
3612 unsigned int loop;
3615 * A constructor could be added for stable state like the lists,
3616 * but it is probably not worth it because of the cache nature
3617 * of the dcache.
3619 dentry_cache = KMEM_CACHE(dentry,
3620 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3622 /* Hash may have been set up in dcache_init_early */
3623 if (!hashdist)
3624 return;
3626 dentry_hashtable =
3627 alloc_large_system_hash("Dentry cache",
3628 sizeof(struct hlist_bl_head),
3629 dhash_entries,
3632 &d_hash_shift,
3633 &d_hash_mask,
3637 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3638 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3641 /* SLAB cache for __getname() consumers */
3642 struct kmem_cache *names_cachep __read_mostly;
3643 EXPORT_SYMBOL(names_cachep);
3645 EXPORT_SYMBOL(d_genocide);
3647 void __init vfs_caches_init_early(void)
3649 dcache_init_early();
3650 inode_init_early();
3653 void __init vfs_caches_init(void)
3655 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3656 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3658 dcache_init();
3659 inode_init();
3660 files_init();
3661 files_maxfiles_init();
3662 mnt_init();
3663 bdev_cache_init();
3664 chrdev_init();