ARM: fixup_pv_table bug when CPU_ENDIAN_BE8
[linux-2.6/btrfs-unstable.git] / fs / btrfs / root-tree.c
blob0b1f4ef8db987da12951128f092a052018d5c6b9
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/uuid.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
26 * Read a root item from the tree. In case we detect a root item smaller then
27 * sizeof(root_item), we know it's an old version of the root structure and
28 * initialize all new fields to zero. The same happens if we detect mismatching
29 * generation numbers as then we know the root was once mounted with an older
30 * kernel that was not aware of the root item structure change.
32 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
33 struct btrfs_root_item *item)
35 uuid_le uuid;
36 int len;
37 int need_reset = 0;
39 len = btrfs_item_size_nr(eb, slot);
40 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
41 min_t(int, len, (int)sizeof(*item)));
42 if (len < sizeof(*item))
43 need_reset = 1;
44 if (!need_reset && btrfs_root_generation(item)
45 != btrfs_root_generation_v2(item)) {
46 if (btrfs_root_generation_v2(item) != 0) {
47 printk(KERN_WARNING "btrfs: mismatching "
48 "generation and generation_v2 "
49 "found in root item. This root "
50 "was probably mounted with an "
51 "older kernel. Resetting all "
52 "new fields.\n");
54 need_reset = 1;
56 if (need_reset) {
57 memset(&item->generation_v2, 0,
58 sizeof(*item) - offsetof(struct btrfs_root_item,
59 generation_v2));
61 uuid_le_gen(&uuid);
62 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
67 * btrfs_find_root - lookup the root by the key.
68 * root: the root of the root tree
69 * search_key: the key to search
70 * path: the path we search
71 * root_item: the root item of the tree we look for
72 * root_key: the reak key of the tree we look for
74 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset
75 * of the search key, just lookup the root with the highest offset for a
76 * given objectid.
78 * If we find something return 0, otherwise > 0, < 0 on error.
80 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
81 struct btrfs_path *path, struct btrfs_root_item *root_item,
82 struct btrfs_key *root_key)
84 struct btrfs_key found_key;
85 struct extent_buffer *l;
86 int ret;
87 int slot;
89 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
90 if (ret < 0)
91 return ret;
93 if (search_key->offset != -1ULL) { /* the search key is exact */
94 if (ret > 0)
95 goto out;
96 } else {
97 BUG_ON(ret == 0); /* Logical error */
98 if (path->slots[0] == 0)
99 goto out;
100 path->slots[0]--;
101 ret = 0;
104 l = path->nodes[0];
105 slot = path->slots[0];
107 btrfs_item_key_to_cpu(l, &found_key, slot);
108 if (found_key.objectid != search_key->objectid ||
109 found_key.type != BTRFS_ROOT_ITEM_KEY) {
110 ret = 1;
111 goto out;
114 if (root_item)
115 btrfs_read_root_item(l, slot, root_item);
116 if (root_key)
117 memcpy(root_key, &found_key, sizeof(found_key));
118 out:
119 btrfs_release_path(path);
120 return ret;
123 void btrfs_set_root_node(struct btrfs_root_item *item,
124 struct extent_buffer *node)
126 btrfs_set_root_bytenr(item, node->start);
127 btrfs_set_root_level(item, btrfs_header_level(node));
128 btrfs_set_root_generation(item, btrfs_header_generation(node));
132 * copy the data in 'item' into the btree
134 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
135 *root, struct btrfs_key *key, struct btrfs_root_item
136 *item)
138 struct btrfs_path *path;
139 struct extent_buffer *l;
140 int ret;
141 int slot;
142 unsigned long ptr;
143 int old_len;
145 path = btrfs_alloc_path();
146 if (!path)
147 return -ENOMEM;
149 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
150 if (ret < 0) {
151 btrfs_abort_transaction(trans, root, ret);
152 goto out;
155 if (ret != 0) {
156 btrfs_print_leaf(root, path->nodes[0]);
157 printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
158 key->objectid, key->type, key->offset);
159 BUG_ON(1);
162 l = path->nodes[0];
163 slot = path->slots[0];
164 ptr = btrfs_item_ptr_offset(l, slot);
165 old_len = btrfs_item_size_nr(l, slot);
168 * If this is the first time we update the root item which originated
169 * from an older kernel, we need to enlarge the item size to make room
170 * for the added fields.
172 if (old_len < sizeof(*item)) {
173 btrfs_release_path(path);
174 ret = btrfs_search_slot(trans, root, key, path,
175 -1, 1);
176 if (ret < 0) {
177 btrfs_abort_transaction(trans, root, ret);
178 goto out;
181 ret = btrfs_del_item(trans, root, path);
182 if (ret < 0) {
183 btrfs_abort_transaction(trans, root, ret);
184 goto out;
186 btrfs_release_path(path);
187 ret = btrfs_insert_empty_item(trans, root, path,
188 key, sizeof(*item));
189 if (ret < 0) {
190 btrfs_abort_transaction(trans, root, ret);
191 goto out;
193 l = path->nodes[0];
194 slot = path->slots[0];
195 ptr = btrfs_item_ptr_offset(l, slot);
199 * Update generation_v2 so at the next mount we know the new root
200 * fields are valid.
202 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
204 write_extent_buffer(l, item, ptr, sizeof(*item));
205 btrfs_mark_buffer_dirty(path->nodes[0]);
206 out:
207 btrfs_free_path(path);
208 return ret;
211 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
212 struct btrfs_key *key, struct btrfs_root_item *item)
215 * Make sure generation v1 and v2 match. See update_root for details.
217 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
218 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
221 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
223 struct extent_buffer *leaf;
224 struct btrfs_path *path;
225 struct btrfs_key key;
226 struct btrfs_key root_key;
227 struct btrfs_root *root;
228 int err = 0;
229 int ret;
230 bool can_recover = true;
232 if (tree_root->fs_info->sb->s_flags & MS_RDONLY)
233 can_recover = false;
235 path = btrfs_alloc_path();
236 if (!path)
237 return -ENOMEM;
239 key.objectid = BTRFS_ORPHAN_OBJECTID;
240 key.type = BTRFS_ORPHAN_ITEM_KEY;
241 key.offset = 0;
243 root_key.type = BTRFS_ROOT_ITEM_KEY;
244 root_key.offset = (u64)-1;
246 while (1) {
247 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
248 if (ret < 0) {
249 err = ret;
250 break;
253 leaf = path->nodes[0];
254 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
255 ret = btrfs_next_leaf(tree_root, path);
256 if (ret < 0)
257 err = ret;
258 if (ret != 0)
259 break;
260 leaf = path->nodes[0];
263 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
264 btrfs_release_path(path);
266 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
267 key.type != BTRFS_ORPHAN_ITEM_KEY)
268 break;
270 root_key.objectid = key.offset;
271 key.offset++;
273 root = btrfs_read_fs_root(tree_root, &root_key);
274 err = PTR_RET(root);
275 if (err && err != -ENOENT) {
276 break;
277 } else if (err == -ENOENT) {
278 struct btrfs_trans_handle *trans;
280 btrfs_release_path(path);
282 trans = btrfs_join_transaction(tree_root);
283 if (IS_ERR(trans)) {
284 err = PTR_ERR(trans);
285 btrfs_error(tree_root->fs_info, err,
286 "Failed to start trans to delete "
287 "orphan item");
288 break;
290 err = btrfs_del_orphan_item(trans, tree_root,
291 root_key.objectid);
292 btrfs_end_transaction(trans, tree_root);
293 if (err) {
294 btrfs_error(tree_root->fs_info, err,
295 "Failed to delete root orphan "
296 "item");
297 break;
299 continue;
302 if (btrfs_root_refs(&root->root_item) == 0) {
303 btrfs_add_dead_root(root);
304 continue;
307 err = btrfs_init_fs_root(root);
308 if (err) {
309 btrfs_free_fs_root(root);
310 break;
313 root->orphan_item_inserted = 1;
315 err = btrfs_insert_fs_root(root->fs_info, root);
316 if (err) {
317 BUG_ON(err == -EEXIST);
318 btrfs_free_fs_root(root);
319 break;
323 btrfs_free_path(path);
324 return err;
327 /* drop the root item for 'key' from 'root' */
328 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
329 struct btrfs_key *key)
331 struct btrfs_path *path;
332 int ret;
334 path = btrfs_alloc_path();
335 if (!path)
336 return -ENOMEM;
337 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
338 if (ret < 0)
339 goto out;
341 BUG_ON(ret != 0);
343 ret = btrfs_del_item(trans, root, path);
344 out:
345 btrfs_free_path(path);
346 return ret;
349 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
350 struct btrfs_root *tree_root,
351 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
352 const char *name, int name_len)
355 struct btrfs_path *path;
356 struct btrfs_root_ref *ref;
357 struct extent_buffer *leaf;
358 struct btrfs_key key;
359 unsigned long ptr;
360 int err = 0;
361 int ret;
363 path = btrfs_alloc_path();
364 if (!path)
365 return -ENOMEM;
367 key.objectid = root_id;
368 key.type = BTRFS_ROOT_BACKREF_KEY;
369 key.offset = ref_id;
370 again:
371 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
372 BUG_ON(ret < 0);
373 if (ret == 0) {
374 leaf = path->nodes[0];
375 ref = btrfs_item_ptr(leaf, path->slots[0],
376 struct btrfs_root_ref);
378 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
379 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
380 ptr = (unsigned long)(ref + 1);
381 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
382 *sequence = btrfs_root_ref_sequence(leaf, ref);
384 ret = btrfs_del_item(trans, tree_root, path);
385 if (ret) {
386 err = ret;
387 goto out;
389 } else
390 err = -ENOENT;
392 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
393 btrfs_release_path(path);
394 key.objectid = ref_id;
395 key.type = BTRFS_ROOT_REF_KEY;
396 key.offset = root_id;
397 goto again;
400 out:
401 btrfs_free_path(path);
402 return err;
405 int btrfs_find_root_ref(struct btrfs_root *tree_root,
406 struct btrfs_path *path,
407 u64 root_id, u64 ref_id)
409 struct btrfs_key key;
410 int ret;
412 key.objectid = root_id;
413 key.type = BTRFS_ROOT_REF_KEY;
414 key.offset = ref_id;
416 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
417 return ret;
421 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
422 * or BTRFS_ROOT_BACKREF_KEY.
424 * The dirid, sequence, name and name_len refer to the directory entry
425 * that is referencing the root.
427 * For a forward ref, the root_id is the id of the tree referencing
428 * the root and ref_id is the id of the subvol or snapshot.
430 * For a back ref the root_id is the id of the subvol or snapshot and
431 * ref_id is the id of the tree referencing it.
433 * Will return 0, -ENOMEM, or anything from the CoW path
435 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
436 struct btrfs_root *tree_root,
437 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
438 const char *name, int name_len)
440 struct btrfs_key key;
441 int ret;
442 struct btrfs_path *path;
443 struct btrfs_root_ref *ref;
444 struct extent_buffer *leaf;
445 unsigned long ptr;
447 path = btrfs_alloc_path();
448 if (!path)
449 return -ENOMEM;
451 key.objectid = root_id;
452 key.type = BTRFS_ROOT_BACKREF_KEY;
453 key.offset = ref_id;
454 again:
455 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
456 sizeof(*ref) + name_len);
457 if (ret) {
458 btrfs_abort_transaction(trans, tree_root, ret);
459 btrfs_free_path(path);
460 return ret;
463 leaf = path->nodes[0];
464 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
465 btrfs_set_root_ref_dirid(leaf, ref, dirid);
466 btrfs_set_root_ref_sequence(leaf, ref, sequence);
467 btrfs_set_root_ref_name_len(leaf, ref, name_len);
468 ptr = (unsigned long)(ref + 1);
469 write_extent_buffer(leaf, name, ptr, name_len);
470 btrfs_mark_buffer_dirty(leaf);
472 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
473 btrfs_release_path(path);
474 key.objectid = ref_id;
475 key.type = BTRFS_ROOT_REF_KEY;
476 key.offset = root_id;
477 goto again;
480 btrfs_free_path(path);
481 return 0;
485 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
486 * for subvolumes. To work around this problem, we steal a bit from
487 * root_item->inode_item->flags, and use it to indicate if those fields
488 * have been properly initialized.
490 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
492 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
494 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
495 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
496 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
497 btrfs_set_root_flags(root_item, 0);
498 btrfs_set_root_limit(root_item, 0);
502 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
503 struct btrfs_root *root)
505 struct btrfs_root_item *item = &root->root_item;
506 struct timespec ct = CURRENT_TIME;
508 spin_lock(&root->root_item_lock);
509 btrfs_set_root_ctransid(item, trans->transid);
510 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
511 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
512 spin_unlock(&root->root_item_lock);