m32r: remove deprecated IRQF_DISABLED
[linux-2.6/btrfs-unstable.git] / include / asm-generic / pgtable.h
blob53b2acc38213298ff75d8c32a3f1dbfa196562a9
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
11 * On almost all architectures and configurations, 0 can be used as the
12 * upper ceiling to free_pgtables(): on many architectures it has the same
13 * effect as using TASK_SIZE. However, there is one configuration which
14 * must impose a more careful limit, to avoid freeing kernel pgtables.
16 #ifndef USER_PGTABLES_CEILING
17 #define USER_PGTABLES_CEILING 0UL
18 #endif
20 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
21 extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 unsigned long address, pte_t *ptep,
23 pte_t entry, int dirty);
24 #endif
26 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pmd_t *pmdp,
29 pmd_t entry, int dirty);
30 #endif
32 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
33 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 unsigned long address,
35 pte_t *ptep)
37 pte_t pte = *ptep;
38 int r = 1;
39 if (!pte_young(pte))
40 r = 0;
41 else
42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 return r;
45 #endif
47 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
49 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pmd_t *pmdp)
53 pmd_t pmd = *pmdp;
54 int r = 1;
55 if (!pmd_young(pmd))
56 r = 0;
57 else
58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 return r;
61 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
62 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pmd_t *pmdp)
66 BUG();
67 return 0;
69 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
70 #endif
72 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
73 int ptep_clear_flush_young(struct vm_area_struct *vma,
74 unsigned long address, pte_t *ptep);
75 #endif
77 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78 int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 unsigned long address, pmd_t *pmdp);
80 #endif
82 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
83 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 unsigned long address,
85 pte_t *ptep)
87 pte_t pte = *ptep;
88 pte_clear(mm, address, ptep);
89 return pte;
91 #endif
93 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
95 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 unsigned long address,
97 pmd_t *pmdp)
99 pmd_t pmd = *pmdp;
100 pmd_clear(pmdp);
101 return pmd;
103 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
104 #endif
106 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 unsigned long address, pte_t *ptep,
109 int full)
111 pte_t pte;
112 pte = ptep_get_and_clear(mm, address, ptep);
113 return pte;
115 #endif
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
122 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
123 static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 unsigned long address,
125 pte_t *ptep,
126 int full)
128 pte_clear(mm, address, ptep);
130 #endif
132 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
133 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 unsigned long address,
135 pte_t *ptep);
136 #endif
138 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 unsigned long address,
141 pmd_t *pmdp);
142 #endif
144 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
145 struct mm_struct;
146 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
148 pte_t old_pte = *ptep;
149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
151 #endif
153 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
155 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 unsigned long address, pmd_t *pmdp)
158 pmd_t old_pmd = *pmdp;
159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
161 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
162 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 unsigned long address, pmd_t *pmdp)
165 BUG();
167 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168 #endif
170 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
171 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
172 unsigned long address, pmd_t *pmdp);
173 #endif
175 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
176 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
177 pgtable_t pgtable);
178 #endif
180 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
181 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
182 #endif
184 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
185 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
186 pmd_t *pmdp);
187 #endif
189 #ifndef __HAVE_ARCH_PTE_SAME
190 static inline int pte_same(pte_t pte_a, pte_t pte_b)
192 return pte_val(pte_a) == pte_val(pte_b);
194 #endif
196 #ifndef __HAVE_ARCH_PTE_UNUSED
198 * Some architectures provide facilities to virtualization guests
199 * so that they can flag allocated pages as unused. This allows the
200 * host to transparently reclaim unused pages. This function returns
201 * whether the pte's page is unused.
203 static inline int pte_unused(pte_t pte)
205 return 0;
207 #endif
209 #ifndef __HAVE_ARCH_PMD_SAME
210 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
211 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
213 return pmd_val(pmd_a) == pmd_val(pmd_b);
215 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
216 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
218 BUG();
219 return 0;
221 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
222 #endif
224 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
225 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
226 #endif
228 #ifndef __HAVE_ARCH_MOVE_PTE
229 #define move_pte(pte, prot, old_addr, new_addr) (pte)
230 #endif
232 #ifndef pte_accessible
233 # define pte_accessible(mm, pte) ((void)(pte), 1)
234 #endif
236 #ifndef pte_present_nonuma
237 #define pte_present_nonuma(pte) pte_present(pte)
238 #endif
240 #ifndef flush_tlb_fix_spurious_fault
241 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
242 #endif
244 #ifndef pgprot_noncached
245 #define pgprot_noncached(prot) (prot)
246 #endif
248 #ifndef pgprot_writecombine
249 #define pgprot_writecombine pgprot_noncached
250 #endif
253 * When walking page tables, get the address of the next boundary,
254 * or the end address of the range if that comes earlier. Although no
255 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
258 #define pgd_addr_end(addr, end) \
259 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
260 (__boundary - 1 < (end) - 1)? __boundary: (end); \
263 #ifndef pud_addr_end
264 #define pud_addr_end(addr, end) \
265 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
266 (__boundary - 1 < (end) - 1)? __boundary: (end); \
268 #endif
270 #ifndef pmd_addr_end
271 #define pmd_addr_end(addr, end) \
272 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
273 (__boundary - 1 < (end) - 1)? __boundary: (end); \
275 #endif
278 * When walking page tables, we usually want to skip any p?d_none entries;
279 * and any p?d_bad entries - reporting the error before resetting to none.
280 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
282 void pgd_clear_bad(pgd_t *);
283 void pud_clear_bad(pud_t *);
284 void pmd_clear_bad(pmd_t *);
286 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
288 if (pgd_none(*pgd))
289 return 1;
290 if (unlikely(pgd_bad(*pgd))) {
291 pgd_clear_bad(pgd);
292 return 1;
294 return 0;
297 static inline int pud_none_or_clear_bad(pud_t *pud)
299 if (pud_none(*pud))
300 return 1;
301 if (unlikely(pud_bad(*pud))) {
302 pud_clear_bad(pud);
303 return 1;
305 return 0;
308 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
310 if (pmd_none(*pmd))
311 return 1;
312 if (unlikely(pmd_bad(*pmd))) {
313 pmd_clear_bad(pmd);
314 return 1;
316 return 0;
319 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
320 unsigned long addr,
321 pte_t *ptep)
324 * Get the current pte state, but zero it out to make it
325 * non-present, preventing the hardware from asynchronously
326 * updating it.
328 return ptep_get_and_clear(mm, addr, ptep);
331 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
332 unsigned long addr,
333 pte_t *ptep, pte_t pte)
336 * The pte is non-present, so there's no hardware state to
337 * preserve.
339 set_pte_at(mm, addr, ptep, pte);
342 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
344 * Start a pte protection read-modify-write transaction, which
345 * protects against asynchronous hardware modifications to the pte.
346 * The intention is not to prevent the hardware from making pte
347 * updates, but to prevent any updates it may make from being lost.
349 * This does not protect against other software modifications of the
350 * pte; the appropriate pte lock must be held over the transation.
352 * Note that this interface is intended to be batchable, meaning that
353 * ptep_modify_prot_commit may not actually update the pte, but merely
354 * queue the update to be done at some later time. The update must be
355 * actually committed before the pte lock is released, however.
357 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
358 unsigned long addr,
359 pte_t *ptep)
361 return __ptep_modify_prot_start(mm, addr, ptep);
365 * Commit an update to a pte, leaving any hardware-controlled bits in
366 * the PTE unmodified.
368 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
369 unsigned long addr,
370 pte_t *ptep, pte_t pte)
372 __ptep_modify_prot_commit(mm, addr, ptep, pte);
374 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
375 #endif /* CONFIG_MMU */
378 * A facility to provide lazy MMU batching. This allows PTE updates and
379 * page invalidations to be delayed until a call to leave lazy MMU mode
380 * is issued. Some architectures may benefit from doing this, and it is
381 * beneficial for both shadow and direct mode hypervisors, which may batch
382 * the PTE updates which happen during this window. Note that using this
383 * interface requires that read hazards be removed from the code. A read
384 * hazard could result in the direct mode hypervisor case, since the actual
385 * write to the page tables may not yet have taken place, so reads though
386 * a raw PTE pointer after it has been modified are not guaranteed to be
387 * up to date. This mode can only be entered and left under the protection of
388 * the page table locks for all page tables which may be modified. In the UP
389 * case, this is required so that preemption is disabled, and in the SMP case,
390 * it must synchronize the delayed page table writes properly on other CPUs.
392 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
393 #define arch_enter_lazy_mmu_mode() do {} while (0)
394 #define arch_leave_lazy_mmu_mode() do {} while (0)
395 #define arch_flush_lazy_mmu_mode() do {} while (0)
396 #endif
399 * A facility to provide batching of the reload of page tables and
400 * other process state with the actual context switch code for
401 * paravirtualized guests. By convention, only one of the batched
402 * update (lazy) modes (CPU, MMU) should be active at any given time,
403 * entry should never be nested, and entry and exits should always be
404 * paired. This is for sanity of maintaining and reasoning about the
405 * kernel code. In this case, the exit (end of the context switch) is
406 * in architecture-specific code, and so doesn't need a generic
407 * definition.
409 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
410 #define arch_start_context_switch(prev) do {} while (0)
411 #endif
413 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
414 static inline int pte_soft_dirty(pte_t pte)
416 return 0;
419 static inline int pmd_soft_dirty(pmd_t pmd)
421 return 0;
424 static inline pte_t pte_mksoft_dirty(pte_t pte)
426 return pte;
429 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
431 return pmd;
434 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
436 return pte;
439 static inline int pte_swp_soft_dirty(pte_t pte)
441 return 0;
444 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
446 return pte;
449 static inline pte_t pte_file_clear_soft_dirty(pte_t pte)
451 return pte;
454 static inline pte_t pte_file_mksoft_dirty(pte_t pte)
456 return pte;
459 static inline int pte_file_soft_dirty(pte_t pte)
461 return 0;
463 #endif
465 #ifndef __HAVE_PFNMAP_TRACKING
467 * Interfaces that can be used by architecture code to keep track of
468 * memory type of pfn mappings specified by the remap_pfn_range,
469 * vm_insert_pfn.
473 * track_pfn_remap is called when a _new_ pfn mapping is being established
474 * by remap_pfn_range() for physical range indicated by pfn and size.
476 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
477 unsigned long pfn, unsigned long addr,
478 unsigned long size)
480 return 0;
484 * track_pfn_insert is called when a _new_ single pfn is established
485 * by vm_insert_pfn().
487 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
488 unsigned long pfn)
490 return 0;
494 * track_pfn_copy is called when vma that is covering the pfnmap gets
495 * copied through copy_page_range().
497 static inline int track_pfn_copy(struct vm_area_struct *vma)
499 return 0;
503 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
504 * untrack can be called for a specific region indicated by pfn and size or
505 * can be for the entire vma (in which case pfn, size are zero).
507 static inline void untrack_pfn(struct vm_area_struct *vma,
508 unsigned long pfn, unsigned long size)
511 #else
512 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
513 unsigned long pfn, unsigned long addr,
514 unsigned long size);
515 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
516 unsigned long pfn);
517 extern int track_pfn_copy(struct vm_area_struct *vma);
518 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
519 unsigned long size);
520 #endif
522 #ifdef __HAVE_COLOR_ZERO_PAGE
523 static inline int is_zero_pfn(unsigned long pfn)
525 extern unsigned long zero_pfn;
526 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
527 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
530 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
532 #else
533 static inline int is_zero_pfn(unsigned long pfn)
535 extern unsigned long zero_pfn;
536 return pfn == zero_pfn;
539 static inline unsigned long my_zero_pfn(unsigned long addr)
541 extern unsigned long zero_pfn;
542 return zero_pfn;
544 #endif
546 #ifdef CONFIG_MMU
548 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
549 static inline int pmd_trans_huge(pmd_t pmd)
551 return 0;
553 static inline int pmd_trans_splitting(pmd_t pmd)
555 return 0;
557 #ifndef __HAVE_ARCH_PMD_WRITE
558 static inline int pmd_write(pmd_t pmd)
560 BUG();
561 return 0;
563 #endif /* __HAVE_ARCH_PMD_WRITE */
564 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
566 #ifndef pmd_read_atomic
567 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
570 * Depend on compiler for an atomic pmd read. NOTE: this is
571 * only going to work, if the pmdval_t isn't larger than
572 * an unsigned long.
574 return *pmdp;
576 #endif
578 #ifndef pmd_move_must_withdraw
579 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
580 spinlock_t *old_pmd_ptl)
583 * With split pmd lock we also need to move preallocated
584 * PTE page table if new_pmd is on different PMD page table.
586 return new_pmd_ptl != old_pmd_ptl;
588 #endif
591 * This function is meant to be used by sites walking pagetables with
592 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
593 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
594 * into a null pmd and the transhuge page fault can convert a null pmd
595 * into an hugepmd or into a regular pmd (if the hugepage allocation
596 * fails). While holding the mmap_sem in read mode the pmd becomes
597 * stable and stops changing under us only if it's not null and not a
598 * transhuge pmd. When those races occurs and this function makes a
599 * difference vs the standard pmd_none_or_clear_bad, the result is
600 * undefined so behaving like if the pmd was none is safe (because it
601 * can return none anyway). The compiler level barrier() is critically
602 * important to compute the two checks atomically on the same pmdval.
604 * For 32bit kernels with a 64bit large pmd_t this automatically takes
605 * care of reading the pmd atomically to avoid SMP race conditions
606 * against pmd_populate() when the mmap_sem is hold for reading by the
607 * caller (a special atomic read not done by "gcc" as in the generic
608 * version above, is also needed when THP is disabled because the page
609 * fault can populate the pmd from under us).
611 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
613 pmd_t pmdval = pmd_read_atomic(pmd);
615 * The barrier will stabilize the pmdval in a register or on
616 * the stack so that it will stop changing under the code.
618 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
619 * pmd_read_atomic is allowed to return a not atomic pmdval
620 * (for example pointing to an hugepage that has never been
621 * mapped in the pmd). The below checks will only care about
622 * the low part of the pmd with 32bit PAE x86 anyway, with the
623 * exception of pmd_none(). So the important thing is that if
624 * the low part of the pmd is found null, the high part will
625 * be also null or the pmd_none() check below would be
626 * confused.
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 barrier();
630 #endif
631 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
632 return 1;
633 if (unlikely(pmd_bad(pmdval))) {
634 pmd_clear_bad(pmd);
635 return 1;
637 return 0;
641 * This is a noop if Transparent Hugepage Support is not built into
642 * the kernel. Otherwise it is equivalent to
643 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
644 * places that already verified the pmd is not none and they want to
645 * walk ptes while holding the mmap sem in read mode (write mode don't
646 * need this). If THP is not enabled, the pmd can't go away under the
647 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
648 * run a pmd_trans_unstable before walking the ptes after
649 * split_huge_page_pmd returns (because it may have run when the pmd
650 * become null, but then a page fault can map in a THP and not a
651 * regular page).
653 static inline int pmd_trans_unstable(pmd_t *pmd)
655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
656 return pmd_none_or_trans_huge_or_clear_bad(pmd);
657 #else
658 return 0;
659 #endif
662 #ifdef CONFIG_NUMA_BALANCING
663 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
665 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
666 * same bit too). It's set only when _PAGE_PRESET is not set and it's
667 * never set if _PAGE_PRESENT is set.
669 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
670 * fault triggers on those regions if pte/pmd_numa returns true
671 * (because _PAGE_PRESENT is not set).
673 #ifndef pte_numa
674 static inline int pte_numa(pte_t pte)
676 return (pte_flags(pte) &
677 (_PAGE_NUMA|_PAGE_PROTNONE|_PAGE_PRESENT)) == _PAGE_NUMA;
679 #endif
681 #ifndef pmd_numa
682 static inline int pmd_numa(pmd_t pmd)
684 return (pmd_flags(pmd) &
685 (_PAGE_NUMA|_PAGE_PROTNONE|_PAGE_PRESENT)) == _PAGE_NUMA;
687 #endif
690 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
691 * because they're called by the NUMA hinting minor page fault. If we
692 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
693 * would be forced to set it later while filling the TLB after we
694 * return to userland. That would trigger a second write to memory
695 * that we optimize away by setting _PAGE_ACCESSED here.
697 #ifndef pte_mknonnuma
698 static inline pte_t pte_mknonnuma(pte_t pte)
700 pteval_t val = pte_val(pte);
702 val &= ~_PAGE_NUMA;
703 val |= (_PAGE_PRESENT|_PAGE_ACCESSED);
704 return __pte(val);
706 #endif
708 #ifndef pmd_mknonnuma
709 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
711 pmdval_t val = pmd_val(pmd);
713 val &= ~_PAGE_NUMA;
714 val |= (_PAGE_PRESENT|_PAGE_ACCESSED);
716 return __pmd(val);
718 #endif
720 #ifndef pte_mknuma
721 static inline pte_t pte_mknuma(pte_t pte)
723 pteval_t val = pte_val(pte);
725 val &= ~_PAGE_PRESENT;
726 val |= _PAGE_NUMA;
728 return __pte(val);
730 #endif
732 #ifndef ptep_set_numa
733 static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
734 pte_t *ptep)
736 pte_t ptent = *ptep;
738 ptent = pte_mknuma(ptent);
739 set_pte_at(mm, addr, ptep, ptent);
740 return;
742 #endif
744 #ifndef pmd_mknuma
745 static inline pmd_t pmd_mknuma(pmd_t pmd)
747 pmdval_t val = pmd_val(pmd);
749 val &= ~_PAGE_PRESENT;
750 val |= _PAGE_NUMA;
752 return __pmd(val);
754 #endif
756 #ifndef pmdp_set_numa
757 static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
758 pmd_t *pmdp)
760 pmd_t pmd = *pmdp;
762 pmd = pmd_mknuma(pmd);
763 set_pmd_at(mm, addr, pmdp, pmd);
764 return;
766 #endif
767 #else
768 extern int pte_numa(pte_t pte);
769 extern int pmd_numa(pmd_t pmd);
770 extern pte_t pte_mknonnuma(pte_t pte);
771 extern pmd_t pmd_mknonnuma(pmd_t pmd);
772 extern pte_t pte_mknuma(pte_t pte);
773 extern pmd_t pmd_mknuma(pmd_t pmd);
774 extern void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
775 extern void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp);
776 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
777 #else
778 static inline int pmd_numa(pmd_t pmd)
780 return 0;
783 static inline int pte_numa(pte_t pte)
785 return 0;
788 static inline pte_t pte_mknonnuma(pte_t pte)
790 return pte;
793 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
795 return pmd;
798 static inline pte_t pte_mknuma(pte_t pte)
800 return pte;
803 static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr,
804 pte_t *ptep)
806 return;
810 static inline pmd_t pmd_mknuma(pmd_t pmd)
812 return pmd;
815 static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr,
816 pmd_t *pmdp)
818 return ;
820 #endif /* CONFIG_NUMA_BALANCING */
822 #endif /* CONFIG_MMU */
824 #endif /* !__ASSEMBLY__ */
826 #ifndef io_remap_pfn_range
827 #define io_remap_pfn_range remap_pfn_range
828 #endif
830 #endif /* _ASM_GENERIC_PGTABLE_H */